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Introduction:With the advent of remote sensing (RS) big data, the evolving deep
learning (DL) enabled analysis has shown remarkable potential in uncovering
intricate features and detecting environmental changes from the vast influx of
remote sensing imagery. This is particularly promising for data-driven, intelligent
environmental change monitoring, including coastal land cover classification,
urbanization impact analysis and so on. Accordingly, the remote sensing imagery
sample datasets have become crucial in ensuring robust training models with
satisfactory performance across various AI (Artificial Intelligence)-enabled
remote sensing applications. However, as the significant demand for more
abundant and diverse remote sensing imagery samples continues to surge,
sample data scarcity has emerged as a critical challenge for large-scale AI-
enabled remote sensing applications. Moreover, the inconsistencies in labeling
semantic categories among sample datasets, coupled with the limits of the
commonly used single-label representation of datasets, have posed a huge
barrier to fully leveraging the training samples across diverse remote sensing
sample datasets. Besides, the existing remote sensing training sample datasets
dispersed across various hosting platforms are typically organized in supplier-
specific and arbitrary data structures, making it rather trivial and difficult for
applications to gather demand sample datasets to fit into training models.

Methods: To tackle the above challenges, we propose an intelligent remote
sensing sample dataset retrieval approach with awareness of label semantics and
visual features for fully integrating and leveraging sample datasets for AI-enabled
remote sensing monitoring applications. Notably, it takes both label semantics
and visual features into consideration during cross-dataset querying by
measuring the similarity distance of visual features and label semantics
between samples and the cluster center of label categories. Following this
way, it could dynamically build application-tailored remote sensing sample
datasets to better harness the multi-source sample datasets with single-label
limits and label disparities. Moreover, it also establishes a dynamic RS label
category system that is capable of dynamically expanding distinct categories
from new sample datasets through label semantic similarity mapping to resolve
label inconsistencies across sample datasets. In addition, it conducts in-memory
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sample data discovery and integration across clouds supported by a virtual
distributed storage system to sufficiently leverage the multi-source remote
sensing sample datasets from platforms with limited interoperability.

Results: The comparative performance experiments have confirmed the
effectiveness and efficiency of this approach. The proposed method is capable
of dynamically integrating and leveraging multi-source sample datasets, effectively
addressing the challenges of sample data scarcity, label inconsistencies, and data
structure disparities. The dynamic RS label category system and the cross-dataset
retrieval approach have shown significant improvements in sample dataset
integration and retrieval accuracy.

Discussion: The proposed intelligent remote sensing sample dataset retrieval
approach provides a comprehensive solution to the challenges faced by large-
scale AI-enabled remote sensing applications. By integrating label semantics and
visual features, themethod enhances the accuracy and efficiency of sample dataset
retrieval and integration. The dynamic label category system and in-memory data
discovery mechanisms further improve the usability and accessibility of multi-
source remote sensing sample datasets. Future work may focus on further
optimizing the retrieval algorithms and expanding the range of supported data
platforms to enhance the robustness and scalability of the system.

KEYWORDS

remote sensing sample datasets, remote sensing sample retrieval, remote sensing sample
database, AI-enabled remote sensing application, remote sensing imagery, deep learning,
label category system, remote sensing big data

1 Introduction

With the exponential growth of remote sensing big data and the
blooming of Artificial Intelligence (AI) technologies, deep learning
has emerged as a transformative approach, particularly in the
context of remote sensing monitoring for coastal cities and
environments. This includes applications such as coastal land
cover classification (Lv et al., 2024), urbanization impact analysis
(Qi, 2024), and shoreline detection and change monitoring (Dang
et al., 2022). These applications are crucial for understanding and
managing the complex interactions between urban development and
environmental changes in coastal regions. By leveraging large-scale
RS imagery and evolving training model structures, the deep-
learning-enabled approach has shown increasing potential in
improving the automatic interpretation of complex features and
the detection of environmental changes that traditional methods
may overlook (Yuan et al., 2020). Gradually, remote sensing training
sample datasets have emerged as vital determinants in delivering
optimal model performance for AI-powered RS applications. The
availability and quality of these datasets directly impact the accuracy
and reliability of AI models used for environmental change
detection and urban impact assessment in coastal regions.

Up till now, significant efforts have been devoted to labeling
training datasets derived from vast, multi-source satellite imagery
for diverse AI-enabled remote sensing tasks. Some of the most
widely used remote sensing datasets include the UC Merced dataset
for urban land use classification (Yang and Newsam, 2010), and
BigEarthNet (Sumbul et al., 2019) for large-scale multi-class
classification (Sumbul et al., 2019). Additionally, the SpaceNet
dataset has become prominent for tasks such as building
detection and urban mapping (Van Etten et al., 2018). These
datasets provide a diverse set of samples that cover different

geographic regions, seasons, and time periods. Meanwhile, there
has been a surging demand for more abundant and comprehensively
labeled training samples to improve the generalization performance
of models on unseen data. However, despite the growing amount of
RS sample datasets built from the vast deluge of remote sensing
imagery, sample data scarcity has practically emerged as a critical
challenge (Cheng et al., 2020).

Unfortunately, several challenging issues have further severe the
scarcity of remote sensing sample datasets. Firstly, the existing
remote sensing sample datasets are typically dispersed across
different data hosting platforms, such as AWS Clouds and
Kaggle, and each differs in access protocols. To complicate the
case, the sample datasets from these distinct hosting platforms are
mainly organized in diverse arbitrary and supplier-specific manners.
These discrepancies have significantly impeded the interoperable
harnessing of extensive datasets scattered across different
repositories, which may greatly exacerbate data scarcity issues.
Hence, an integrated sample management system is urgently
demanded to facilitate comprehensive and interoperable sharing
and access across clouds. Secondly, remote sensing sample datasets
from different hosting platforms inevitably differ in label category
systems and label representations. Diverse platforms or
organizations may adopt varying categorizations to label the
same land cover objects. However inconsistent semantic or
granularity of label categories can cause models to struggle
during training (Li et al., 2018), ultimately posing significant
challenges in comprehensively leveraging multi-source and multi-
sensor samples across datasets. In addition, current labeling
practices, with coarse category labels and single-label
representations, often fail to sufficiently depict the content of
remote sensing sample imagery (Chaudhuri et al., 2017).
Consequently, the traditional label-based sample retrieval often
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struggles to properly locate the semantically matched samples.
Although cross-dataset queries incorporate label semantics, such
as Luojiaset (Cao et al., 2023), they often result in compromised
retrieval performance across datasets, as they rely solely on
inadequately represented label semantics. Therefore, fostering
innovative retrieval strategies that better present samples’ context
is crucial for enhanced retrieval outcomes in various remote sensing
applications.

To properly settle the challenging issues above, we propose an
intelligent remote sensing imagery samples retrieval approach with
awareness of label semantics and image features. This approach aims to
fully leverage multi-source sample datasets from various platforms to
generate more imagery samples that accurately meet themodel training
needs of different remote sensing monitoring applications. It is worth
noting that this approach takes both the imagery visual features and the
label semantic features of sample datasets into consideration during
sample data integration and cross-dataset retrieval procedure. By
utilizing a BERT-based word embedding model to capture label
semantics and a multi-label scene classification model to extract
visual features, this approach enables comprehensive semantic data
integration. For performance efficiency, the extracted feature vectors are
then cached and indexed in feature database using Inverted File Product
Quantization (IVF-PQ) encoding. The kernel retrieval method
conducts a multi-level cross-dataset sample query, starting with
spatial retrieval for an initial query, followed by label-semantic-based
retrieval formore precise filtering, and endingwith image-feature-based
imagery retrieval for an extended sample retrieval to gather more
supplementary samples. Following this retrieval method, it can provide
composite sample datasets with more finely filtered samples from
multi-source datasets, tailored semantically to meet various model
training needs of remote sensing applications.

Moreover, to eliminate the inconsistency of supplier-specific label
categories among multi-source samples, it adopts a knowledge-graph-
based dynamic label category system on top of Million-AID (Long et al.,
2021) label category network, which serves as a standard label category
semantic network. Enabled by label semantic similarity and structural
similarity mapping, the proposed label category system could build
semantic relations between the existing categories and new labels to
dynamically expand new label categories from newly integrated sample
datasets. Withal, by virtue of a multi-task data crawler engine CrawLab
and Alluxio for in-memory virtual data accessing across clouds, it could
also offer highly efficient sample data discovery and integration
across platforms.

The rest of this paper is organized as follows. Section II reviews
related work. In Section III, we present the framework and
implementation of the cross-cloud dynamic remote sensing sample
data management platform and describe the design principles of the
system. Section IV discusses the experimental validation and analysis of
the proposed platform. Finally, Section V concludes the paper.

2 Related work

2.1 Sample data management

2.1.1 Dataset-oriented sample data management
Current mainstream sample data integration management

techniques employ a dataset-oriented management approach,

where datasets are treated as the smallest unit of management as
shown in Table 1. Platforms such as AWS, Kaggle (Iglovikov et al.,
2017), and AIEarth (He et al., 2024) independently manage sample
data from various datasets and integrates multiple datasets through
user-uploaded data, providing a unified access interface for the
datasets. Within each dataset, sample retrieval is enabled based on
attributes such as labels and spatiotemporal ranges. While this
management approach can offer a vast amount of remote sensing
data, it falls short of meeting the needs of more advanced applications
in remote sensing deep learning. As these applications evolve, a single
dataset often fails to provide sufficient samples. Complex applications
like coastal city and environmental monitoring applications seek to
combine sample data from multiple datasets to train more robust
models. However, dataset-oriented management lacks the ability to
manage samples across datasets, thus limiting its capability to meet
these emerging application requirements.

2.1.2 Sample-oriented sample data management
A single RS dataset often fails to meet the requirements of deep-

learning-enabled remote sensing applications. There is an urgent
need to organize sample data across multiple datasets to obtain the
necessary sample data from various sources (Gominski et al., 2022).

Gong et al. (Cao et al., 2023) have proposed a label-based shared
management platform that organizes samples by sample units across
multiple datasets. Unlike dataset-oriented management, these
platforms enable cross-dataset sample retrieval, allowing the free
combination of multiple dataset samples.

Combining different dataset samples significantly enhances the
intra-class diversity of the dataset. Variations in lighting,
background, geographical location, and scale among similar
samples from different datasets contribute to diversity, suggesting
that a richer intra-class diversity of a sample set is closer to
representing the real-world distribution, thus better reflecting the
general characteristics of similar entities.

2.2 Label category system

2.2.1 File-directory structured label
category system

Current remote sensing deep learning sample datasets often use
a tree directory structure, with labels serving as directory names for
datasets related to scene classification, object detection, and other
applications. This label management approach provides a
straightforward visualization of sample label information without
the need for additional storage.

However, because label management is highly intertwined with
sample management, directory-based label management is
inefficient in querying and challenging to update. File system-
based queries are generally less efficient than database
management systems, and extensive directory restructuring may
be necessary as datasets grow over time or when label categories
need to be updated or modified. Furthermore, in modern deep
learning applications where a single sample may have multiple
labels, relying on a directory structure to define labels can lead to
redundant storage of multi-labeled samples.

Some datasets, like MLRSNet (Qi et al., 2020), utilize additional
mapping files to record the mapping from sample instances to their
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corresponding labels. This label management approach separates
the management of sample instances and labels, facilitating updates
and integration with databases to support complex queries and data
handling. Unlike the natural tree structure of directory names, this
method does not reflect the dependency relationships between
different labels.

2.2.2 Knowledge graph-based label
category system

Early sample datasets treated different semantic labels as
independent entities at the same granularity level, ignoring
semantic relationships between categories. To consolidate existing
sample datasets and eliminate semantic differences between labels,
several sample datasets and platforms have proposed their own label
category systems, referring to land cover/use standards and real-
world application needs (Cao et al., 2023; Li et al., 2020; Long et al.,
2021; Jin et al., 2018). These systems merge existing sample datasets
by semantic mapping of labels and discarding ambiguous categories
(Peng et al., 2020).

Recently, the dependency relationships between labels have
gained significant attention in deep learning applications,
particularly in multi-label learning. Based on structured
knowledge graphs like WordNet to measure label similarity, these
relationships are used to construct label knowledge graphs and are
applied in multi-label zero-shot learning (Lee et al., 2018). Chen, Li
(Chen et al., 2019; Li et al., 2022), et al. have modeled label
dependency relationships as directed graphs and used graph
neural networks to explore complex relationships between labels
in these graphs.

Introducing graph-based label category systems enables detailed
modeling of complex relationships between label categories,
facilitating the learning of dependencies between different labels.
Moreover, the graph structure offers expandability, supporting the
introduction of new label categories.

2.3 Sample data retrieval methods

2.3.1 Label Keyword-Based Sample Retrieval
Traditional sample retrieval methods include Label Keyword-

Based Sample Retrieval, where sample data within a single dataset is
retrieved based on sample labels and keywords from samplemetadata.
The metadata of remote sensing samples primarily consists of
additional information such as acquisition time, spatial extent,
sensor details, and spectral band information, which can be used
to characterize the sample. By providing sample label keywords or
defining specific metadata, a retrieval process can return sample data
that accurately matches the given criteria.

Due to its simple retrieval logic and fast response time, current
mainstream sample data management platforms, such as Kaggle,
Sense Earth, and GEE (Gorelick et al., 2017), support Label
Keyword-Based Sample Retrieval. Sense Earth provides dataset
search services based on various criteria, including dataset name,
data type, data format, and creation time. Kaggle allows dataset
retrieval based on keywords, data type, dataset creator, and upload
date. GEE offers filtering capabilities by dataset name and, within
datasets, supports filtering data based on time, spectral bands, cloud
cover, and various geometric types (such as points, polygons, etc.).
LuojiaSet offers filtering based on task type, dataset name, image
type, label category, and spatiotemporal range.

However, due to the immaturity of current sample labeling
techniques, sample labels often fail to fully represent the complex
content of sample images. This leads to Label Keyword-Based
Sample Retrieval missing some usable samples. Furthermore, due
to differences in labeling systems and granularity across datasets,
Label Keyword-Based Sample Retrieval is limited to retrieving
samples within a single dataset and cannot obtain required
samples across datasets, making it difficult to meet the needs of
current intelligent remote sensing applications.

2.3.2 Cross-dataset sample retrieval
In modern intelligent remote sensing applications, diverse

label category schemes are required to meet varying application-
specific demands. This necessitates the selection of appropriate
label categories from different sample datasets based on specific
application needs. However, the sample size of a single dataset is
often insufficient to meet the demands of complex applications,
and significant differences in sample organization and
labeling systems across datasets make traditional sample
retrieval methods limited to a single dataset. To address this
issue, Gong et al. proposed a cross-dataset compatible label
category system. By mapping the label categories of each
dataset to a unified labeling system, they integrated samples
from multiple datasets into a unified sample repository and
achieved cross-dataset sample retrieval. Based on label
mapping, cross-dataset sample retrieval enables the retrieval of
usable samples from multiple datasets. However, its essence
remains label-based, which, limited by the representational
capacity of labels, cannot fully explore and utilize potential
usable samples.

2.3.3 Image feature-based sample retrieval
There is a certain degree of mismatch between existing

sample labels and sample images, which manifests in two
main aspects: 1) Coarse category labels often fail to represent
detailed label categories in sample data. For example, the

TABLE 1 Summary of platform functionalities.

Platform Data upload Label storage format Sample filtering conditions

GEE Supported Sample metadata attributes Time, Space, Cloud Coverageetc.

AWS Supported Directory names and label mapping files Time, Space

Kaggle Supported Label mapping files Keywords, Upload Date

AIEarth Supported Sample metadata attributes Time, Space, Label
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“cultivated land” label cannot accurately describe sample images
that contain arid land categories, leading to missed samples when
retrieving more specific label categories. 2) The complexity of
remote sensing images often results in sample images containing
multiple object-level semantic categories. Single-label
classification is usually insufficient to fully describe sample
image content with complex categories (Shao et al., 2020).
Consequently, single-label samples may contain additional
semantic categories besides the labeled one. These issues
prevent traditional label-based sample retrieval from
comprehensively capturing all qualifying samples in the
sample repository.

With the development of deep learning technologies, image
feature-based retrieval techniques have gradually matured. Tang
et al. utilized pre-trained sample representation models to extract
visual features from sample images and applied the HNSW
(Hierarchical Navigable Small World) approximate nearest
neighbor matching algorithm to match samples with similar
image content (Tang et al., 2024). Existing representation
models can uncover high-level feature representations of
images, such as color, shape, and texture, which provide more
semantic information compared to vague label text. As such,
performing search and matching based on the visual features of
sample images can overcome the subjectivity and incompleteness
of labels and metadata. This approach has the potential to
discover visual similarities that users might not have
anticipated. Tang et al. (2024). Have already made attempts to
retrieve samples based on image features, but a mature and usable
system has not yet been developed. Unlike other remote sensing
data, remote sensing sample data typically comes with expert-
annotated labels, so relying solely on image features for retrieval
does not fully leverage the information provided by expert
annotations.

3 Methodology

3.1 Main Solution

The inconsistency of label categories among multi-source
samples, the limits of single-label representation of datasets, as
well as the diverse supplier-specific data organization and
arbitrary data structures, make it quite trivial and difficult to
make sufficient use of the surging volume of diverse remote
sensing imagery samples available from diverse platforms. As a
result, obtaining abundant high-quality remote sensing sample
datasets that properly fit the demand of various remote sensing
monitoring applications remains quite challenging. To properly
tackle these challenging obstacles, an intelligent remote sensing
sample retrieval approach with awareness of both label semantics
and image features is proposed in this paper. This approach is
designed to dynamically integrate and leverage multi-source sample
datasets, providing a rich and diverse set of samples that can
effectively support the training of AI models for coastal city and
environmental monitoring applications. The main idea of the
retrieval approach is demonstrated in Figure 1.

Firstly, in-memory dataset discovery. It conducts in-memory
remote sensing sample datasets discovery across diverse platforms

or repositories that host remote sensing sample datasets. By
employing Alluxio, a virtual distributed file system across clouds,
it can virtually mount a remote sensing sample data repository as a
local data directory and offer a dynamic in-memory data cache.
Thus, it can offer a unified, easy but efficient way to access the multi-
source sample datasets from different platforms transparently. Then,
based on a data crawler engine with multi-task management, it
implements a data discovery process in parallel on a multi-threaded,
Spark-enabled cluster to search remote sensing sample datasets on
these virtually mounted and in-memory cached sample data
repositories. Each data discovery thread conducts preliminary
metadata retrieval and then ingests the target data samples into
the local sample repository.

Secondly, remote sensing sample data integration of multi-
source sample datasets through interpreting both visual features
of imagery and semantic features of sample labels. At first, it
abstracts the label and spatial metadata (such as spatial and
temporal regions of imagery) of the sample datasets and ingests
them into a metadata repository facilitated by PostgreSQL. Then, it
incorporates a Bert (Devlin, 2018)-based word embedding model to
extract the semantic features from the sample labels and cache them
into the label category feature repository. Meanwhile, it also employs
a multi-label scene classification model to extract the visual features
from the remote sensing sample imagery and store them in the
sample feature repository as feature vectors. Following this
approach, the sample datasets can be fully understood and
integrated into the sample database by parsing and interpreting
not only the visual features of imagery but also the semantic features
of sample labels.

Thirdly, label semantics and image features aware sample
retrieval. First of all, to eliminate the inconsistency of label
categories among multi-source samples, it adopts a graph-based
dynamic label category system, which uses OSM
(OpenStreetMap) semantic network as a fundamental
category system. It is stored in a Neo4j-enabled label
category repository. In case of category inconsistency, this
dynamic label category system can expand new label
categories from newly integrated sample datasets through
building semantic relations between the existing categories
and new labels using label semantic similarity. After that, it
builds data indexing of the sample datasets, including the spatial
indexing, label semantic feature indexing, and visual feature
indexing. Here, the spatial data indexing incorporates a
quadtree and Hilbert curve indexing approach. Meanwhile,
the label semantic features and image features are indexed by
employing the Inverted File Product Quantization (IVF-PQ)
encoding algorithm. Then, it proceeds with an intelligent three-
step cross-dataset sample query among various integrated
datasets in the repository to fully search for the samples that
are properly matched both in label semantics and visual
features. The first retrieval is a spatial retrieval based on the
spatial indexing using spatial conditions. The secondary
retrieval is a label-semantic-based retrieval using label
semantic similarities to match the samples within the label
semantic repository. Then, the third step involves a feature-
based imagery retrieval, which identifies similar samples
from the sample feature repository by matching image
feature vectors using an approximate nearest neighbor
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(ANN) matching algorithm. Eventually, it reorganizes the
matched remote sensing imagery samples returned from
cross-dataset retrieval and packages them as a new
application-tailored remote sensing sample dataset. The new
supplementary samples obtained through expanded feature
retrieval can be further filtered through user interaction for a
refined dataset.

3.2 In-memory sample data discovery
across clouds

To address the issue of dispersed sample datasets, the proposed
method virtualizes remote sensing sample data repositories, like
GEE, Kaggle, Paddle and AWS, as local directories using Alluxio,
providing dynamic in-memory caching to enable unified,
transparent, and efficient access to multi-source datasets.
Utilizing the multi-task management data crawler engine
Crawlab, the method employs a distributed computing
framework, Spark, to concurrently mine available sample datasets
from the mounted data repositories. Subsequently, the directory
structure and metadata of these datasets are recorded in Alluxio.
Through Alluxio, the sample data is retrieved for subsequent
integration.

The integration of sample datasets begins with a breadth-first
traversal of the dataset’s hierarchical directory structure to
acquire the label category system. Once the dataset’s label

category system is successfully obtained, each sample instance
corresponding to a label category is located within its respective
subdirectory. A parallel depth-first traversal is then performed on
each label category to retrieve the corresponding sample images.
For each accessed sample instance, the visual features of the
sample image and the semantic features of the sample label are
parsed. The label and spatial metadata (such as the spatial and
temporal extent of the imagery) of the sample dataset are
abstracted and imported into a metadata repository supported
by PostgreSQL. Simultaneously, a BERT-based word embedding
model is employed to extract the semantic features of the sample
labels, which are then cached in the label category feature
repository. Furthermore, a multi-label scene classification
model is utilized to extract the visual features from the remote
sensing imagery, storing these as feature vectors in the sample
feature repository. This approach enables comprehensive
understanding and integration of the sample datasets, not only
by analyzing the visual features of the imagery but also by
interpreting the semantic features of the sample labels.

3.3 Building dynamic label category system
based on semantic similarity

Traditional label category systems consist of tree structures
containing labels of different granularities. However, the
coupling of label information with the dataset directory

FIGURE 1
Main solution.
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structure leads to inefficient label management. Moreover,
traditional classification systems only describe parent-child
relationships between categories, providing a single,
insufficient semantic relationship description to handle
differences in label category systems across datasets.

To address these differences in label category systems and
label representations among current remote sensing sample

datasets, this paper proposes a label category system
compatible with multiple sample datasets based on land cover
standards such as LCCS and existing open-source sample dataset
classification systems (Herold et al., 2006). Labels and their
relationships are stored and managed in a graph structure,
mapping semantic labels from existing sample datasets to this
classification system. This standardizes the label formats of

FIGURE 2
Build dynamic label category system.
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multi-source sample data, achieving unified organization and
management of multi-source sample data labels.

To address synonym labels between different datasets, this
paper introduces similarity relationships to establish connections
among synonymous label categories. For differences in label
granularity across datasets, the graph-based classification
system provides more flexible management of label categories
through parent-child relationships compared to traditional tree
directory structures. For issues where most sample instances
contain multiple label categories, the label system additionally
introduces spatial adjacency relationships to represent the co-
occurrence frequency of different categories within the same
sample instance. Li et al. measured the spatial adjacency
degree of categories based on content similarity between
sample instances of different categories.

Based on the above, this method’s label category system can
encompass the label categories of most sample datasets and better
describe relationships among categories, in addition to being
extensible. The construction of the label category system for this
method is illustrated in Figure 2.

3.3.1 Calculate label semantic similarity and
structural similarity

Label similarity in this study is primarily calculated by weighting
the textual similarity of the labels and the structural similarity based on
an open-source geographic knowledge graph. As shown in Figure 3,
the textual similarity is first enhanced by augmenting the label text with
additional descriptive information retrieved from external sources such
as Wikipedia. The enhanced label text is then transformed into feature
vectors using a Bert-based word embedding model, which excels in

understanding contextual nuances through its bidirectional
mechanism, providing an efficient approach to capturing complex
language structures. Finally, the cosine similarity between the feature
vectors is used to determine the textual similarity of the labels. The
structural similarity describes the degree of association between two
label entities within the geographic knowledge graph (Yu et al., 2018).
In this study, the structural similarity is calculated based on the OSM
Semantic Network. The OSM Semantic Network, derived from the
OSM Wiki website, is a semantic network that includes a rich set of
geographic entities and various semantic relationships between them.
The co-occurrence algorithm iteratively computes the degree of
association between two label entities based on the relationships
among entities in the semantic network (Ballatore et al., 2013). A
geographic knowledge graph organizes geographic data through
ontologies and semantic links, where an ontology defines categories,
attributes, and relationships of geographic entities (e.g., a “city” belongs
to the category of “residential areas,” and a “river” flows through a
“city”). This structured representation enables the geographic semantic
network to inherently encapsulate domain-specific knowledge and
terminology in geography. In contrast, natural language processing
(NLP) models are typically trained on general-purpose language
corpora and may not be specifically optimized for geographic
terminology and concepts. As a result, text similarity based on NLP
models may fail to fully capture geographic semantic information due
to a lack of specialized processing for geographic terms and
relationships. To address this limitation, this study introduces
structural similarity based on geographic knowledge graphs to
complement text-based similarity, ensuring the inclusion of
geospatial information that might be missing in purely textual
representations.

FIGURE 3
Label semantic feature parsing.
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1: function MERGE_NEW_LABELS_TO_LABEL_CATEGORY_SYSTEM (new_

classify)

2: new_labels ← addToClassify (new_classify)
3: for new_label in new_labels do

4: sim_labels ← GET_SIMILAR_LABEL (new_label)
5: for (label,score) in sim_labels do

6: createSynonymLink(label, new_label,score)
7: end for

8: end for

9: end function

10: function GET_SIMILAR_LABEL (label_name)

11: tag ← getOSMTag (label_name)
12: descr ← tag.getDescr()
13: feature ← generateFeature (label_name + descr)
14: [(sim_label,sim_score)] ← knnSearch(feature)
15: similarLabelList ← [ ]
16: for (label,txt_sim) in [(sim_label,sim_score)] do
17: struct_sim ←

COCITATION(osm_network, tag,getOSMTag(label))
18: score � a × txt_sim + b × struct_sim

19: if score>Threshold then

20: similarLabelList.append ((label,score))
21: end if

22: end for

23: return similar_label_list

24: end function

Algorithm 1. Merge New Labels To Label Category System.

The label semantic matching in this study begins by parsing the
label tree of the new dataset and adding it to the dynamic label category
system. The new labels are thenmapped to the OSM Semantic Network
labels, which enhances the label text. The augmented label text is
transformed into text features using a word embedding model, and
these features are compared for similarity with the text feature library of
the labels in the classification system. Subsequently, the co-occurrence
algorithm is applied to calculate the structural similarity between the
nodes in the OSM network. Finally, the textual and structural
similarities are combined using a weighted approach to obtain a
similarity score between the new labels and those in the label
system. Similar relationships are established between highly similar
labels, thus completing the integration of the newdataset’s label tree into
the label category system.

3.3.2 Merge new label to build dynamic label
system through label mapping

In traditional label category systems for datasets, hierarchical
relationships between labels of different granularities are
typically defined in terms of parent and child categories.
Building upon this foundation, this paper introduces
additional relationships, such as similarity and spatial
adjacency, to further construct the label category system. Yang
et al. developed a hierarchical label category system, as illustrated
in Figure 4, consisting of 87 categories, where the relationships
between categories are restricted to parent-child connections.
This paper adopts this system as the baseline label category
system, and further extends it by merging label systems from

multiple existing datasets to construct a dynamic label system.
When mapping the labels from a new dataset to the classification
system, we first measure the similarity between the labels in the
new dataset and those in the existing label system. Based on the
results of this measurement, we establish similarity relationships
between similar labels and record the number of matching
samples with content similarities between different labels. If
no direct relationship exists between categories, spatial
adjacency is assumed once a certain threshold is reached,
establishing spatial adjacency relationships between
corresponding label pairs.

As shown in Figure 4, the extended dynamic label system is
depicted with newly added nodes and relationships highlighted.
This system comprises 171 label categories, covering most of the
categories found in existing datasets, and supports the inclusion
of new label categories. The relationships between these
categories include parent-child, semantic similarity, and
spatial adjacency, enabling a comprehensive representation of
the complex interrelationships between categories. Given the
richness of label categories and the complexity of the
relationships among them, this paper models the labels in the
expanded system as nodes, with the relationships between
labels represented as weighted edges. The system is stored and
managed using the Neo4j graph database to handle the graph-
structured dynamic label category system. Compared to
traditional label management methods, which rely on
directory names and mapping files, the graph-based label
category system allows for detailed modeling of complex
relationships between labels, facilitating the learning of
dependencies among different labels. Additionally, the graph
structure offers scalability, supporting the introduction of new
label categories.

3.4 Cross-dataset sample retrieval based on
visual and semantic features

To tackle the inconsistencies in labeling semantic categories
among datasets, and the limits of the commonly used single-label
representation, we proposed a cross-dataset sample retrieval
approach based on visual and semantic features. As shown in
Figure 5, it begins by retrieving sample metadata that satisfies
user-defined label semantics and spatiotemporal constraints. For
spatial constraints, efficient spatial retrieval is achieved using a
pre-constructed quadtree and Hilbert indexing. The retrieved
sample data is then returned as the preliminary result. In the
second step, label semantic based retrieval is performed based on the
input label constraints. We uses the shortest path algorithm to identify
associated labels within the system’s label category hierarchy and
conducts sample retrieval using the prototype features of these
associated labels. The prototype features of a label category are
derived from several cluster centers of image features obtained from
all sample instances of that label category. Finally, based on the
constructed feature index, the image-feature-based sample retrieval
method performs feature matching between the prototype features of
the associated labels and the image features of all integrated samples. It
then conducts parallel approximate matching of samples whose feature
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similarity exceeds a given threshold and returns these samples as
reference samples.

The proposed semantic feature-based sample retrieval initially
retrieves accurately matched sample data based on user-defined
sample attribute constraints. Then, related labels are retrieved
from the system’s label category system, and prototype features
corresponding to these related labels are obtained. A prototype
feature is a category-level feature representation rather than an
individual sample feature. It aims to capture the general
characteristics of a given label category by aggregating feature
representations of all sample instances belonging to the same
category. Typically, multiple cluster centers or a global mean
vector are computed to derive a generalized representation of

the category. In this study, extracted sample image features are
classified according to their associated label categories to construct
a category-level image feature library. Then, the K-means
clustering algorithm is applied to compute multiple cluster
centers, which are used as the prototype features for label
categories. These prototype features are approximately matched
with pre-extracted sample image features from the feature library
to retrieve several content-similar supplementary samples.

3.4.1 Label semantic feature matching
Traditional sample retrieval methods typically search for

samples belonging to specific label categories based on sample
labels. However, since most current remote sensing sample

FIGURE 4
Fundamental and dynamic label category system after merging new labels.
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datasets have only a single label per sample, traditional retrieval
methods often overlook other categories present in the sample
images. In many cases, samples from certain label categories tend

to co-occur, meaning that images labeled as category A often also
contain category B. This co-occurrence is commonly observed
when there is a strong association between categories A and B,

FIGURE 5
Remote sensing sample data retrieval procedure with awareness of label semantic and visual feature.
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such as a parent-child relationship, semantic similarity, or
spatial adjacency.

1: function CROSS_DATASET_SAMPLE_RETRIEVAL (label_name)

2: label_graph ← LOAD_LABEL_GRAPH

3: dis ← DIJKSTRA (label_graph,label_name)
4:

related_labels ← label |{
label ∈ label_graph,

dis[label] ≤MAX_DISTANCE}
5: supplementary_samples ← {}
6: for label in related_ labels do

7:

proto_feature ← GET_prototype_

featurelabel

8:

samples ← KNNSEARCHfeature_db,

proto_features

9: supplementary_samples [label] ← samples

10: end for

11: return supplementary_samples

12: end function

13: function GET_PROTOTYPE_FEATURE (label)

14: if label in

cluster_db then

15: prototype_features ← cluster _db[label]
16: return prototype_features

17: else

18: features ← feature_db[id]{ | (id,label)
∈ feature_db.items

(),sample_label �� label}
19: if features is not empty then

20: kmeans_result ← KMEANS (features,10)
21: prototype_features ← kmeans_res.

centroid

22: cluster_db[label] ← prototype_

features

23: return prototype_features

24: else

25: return None

26: end if

27: end if

28: end function

Algorithm 2. Cross-Dataset Sample Retrieval.

To better exploit sample data containing instances of a specific label
category, this paper extends traditional retrieval methods by using the
dynamic label category system developed in Section 3.2. This system
identifies additional label categories that are strongly associated with the
search label category. Samples in these associated categories are more
likely to contain the queried label category.

For example, with label A, the label-semantic-based sample
retrieval aims to discover sample data from label categories
associated with A that might contain samples of category A. The
association weights between categories in the dynamic label category
system vary according to the type of relationship. As shown in
Equation 1, subclass relationships are assigned a weight of 0,

assuming that subclass samples always include instances of their
parent class. The weights for parent-child and semantic similarity
relationships are inversely proportional to the semantic similarity
between categories: the more semantically similar the labels are, the
lower the distance weight. Spatial proximity is computed by
counting the co-occurrence of sample categories; if two categories
co-occur in the same image above a certain threshold, they are
considered to have a spatial adjacency relationship. The more
frequent the co-occurrence, the lower the associated distance
weight. Specifically, the distance weighting formula between
labels is defined as (1):

W A, B( ) �

0 if B is a subclass of A
α

sim A, B( ) if A andB are semantically similar

β

co − occurrence A, B( ) + τ
if A andB are spatially adjacent

∞ otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
where α and β are tuning parameters, and τ is a

threshold parameter.
Using the label category system with multiple types of

association weights, the weighted shortest path algorithm is
applied to compute a set of label categories whose distance to
category A is below a specified threshold. These labels are
considered associated labels for A.

3.4.2 Image visual feature matching
Given that image features better represent complex image

content than labels, this paper further combines sample image
features with label semantics for sample retrieval. To
accommodate the multi-scale characteristics of sample images,
this paper employs the multi-label scene classification model, as
shown in Figure 6, to extract image features from the sample images.
The feature extraction module is responsible for extracting suitable
feature representations from the sample images, which typically
possess varying scales. To address this, the feature extractionmodule
fuses the outputs from multiple convolutional layers at different
levels of the classification model, capturing multi-scale information
present in the sample images, thereby obtaining image features that
encapsulate multi-scale information. In order to enhance the
extracted image features’ ability to represent all potential label
categories contained within the sample images, this paper further
integrates the Binary Cross-Entropy (BCE) loss function and pre-
trains the model using the multi-label dataset MLRSNet. The labels
of multi-label samples are represented as one-hot vectors, and a
weight matrix is constructed based on the similarity of the vectors.
Image pairs with more shared labels are assigned higher weights.
Through multiple iterations, the model minimizes the distance
between similar label samples in the feature space to achieve
parameter optimization.

We train an image retrieval model based on existing datasets to
simultaneously learn suitable low-dimensional feature encodings,
high-dimensional feature dimensionality reduction, and
feature matching.

Multispectral remote sensing sample images significantly differ
from optical RGB remote sensing images in terms of the number of
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TABLE 2 Datasets overview.

Dataset Number of classes Number of instances Resolution (m) Sensor type

NWPU-RESISC45 45 31,500 0.2 ~ 30 Optical

AID 30 10,000 0.5 ~ 0.8 Optical

RSI-CB256 35 24,000 0.22 ~ 3 Optical

AID++ 46 > 400,000 Optical

PatternNet 38 30,400 0.06 ~ 4.7 Optical

CLRS 25 15,000 0.26 ~ 8.85 Optical

BigEarthNet-MM 19 590,326 10, 20, 60 Multispectral

DFC-15 8 3,342 Optical

OPTIMAL-31 31 1,860 Optical

RSSCN7 7 2,800 0.5 Optical

VArcGIS 38 59,071 0.07 ~ 19.11 Optical

VGoogle 38 59,404 0.075 ~ 9.555 Optical

VBing 38 58,944 0.07 ~ 38.22 Optical

Million-AID 51 1,000,848 0.5 ~ 153 Optical

fmow 63 > 10,000,000 2 ~ 30 Multispectral

WHU-RS19 19 1,005 ≤ 0.5 Optical

EuroSAT 10 27,000 10 Optical, Multispectral

MLRSNet 46 109,161 0.1 ~ 10 Optical

RS_C11 11 1,232 0.2 Optical

UCMerced 21 2,100 0.3 Optical

FIGURE 6
Imagery Feature parsing.
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spectral bands and their spectral distribution. While RGB images
contain only the visible red (R), green (G), and blue (B) bands,
multispectral images typically include multiple spectral bands, such
as visible, near-infrared (NIR), and shortwave infrared (SWIR). This
disparity introduces certain mismatches in feature extraction and
analysis processes between the two data types. Additionally, even
within multispectral remote sensing imagery, data collected by
different sensors may exhibit variations in band structure, central
wavelength, and bandwidth, posing challenges in band alignment
and feature unification when conducting cross-sensor analysis. To
address these differences, we adopt a band selection and
dimensionality reduction fusion approach. First, all multispectral
image bands undergo normalization to ensure consistency in data
distribution. Next, we configure band mapping files to align the
RGB-related visible bands while preserving key non-visible bands
(e.g., NIR) to enhance feature expressiveness. Finally, Principal
Component Analysis (PCA) is applied to reduce the
multispectral bands to three principal components, enabling
unified feature extraction between multispectral and optical
remote sensing data within the same feature space.

To support fast approximate matching during the retrieval
phase, we build an IVF-PQ clustering index for the extracted
image features and maintain several feature cluster centers for
each label category. The IVF index divides the entire vector space
into smaller regions using clustering algorithms such as K-means,
where each region is represented by a cluster center. The PQ index
quantizes the feature vectors by segmenting them and clustering
each segment, replacing each segment with the nearest cluster
center. During the approximate matching phase, the IVF index
groups the vectors based on the nearest cluster centers, and within
each group, the PQ index further compresses the vectors. The
quantized vectors are then used for further matching.

Finally, based on the constructed feature index, the image-
feature-based sample retrieval method first performs segment-
wise quantization on the image features. Subsequently, it
calculates the Euclidean distance between the quantized feature
vectors and the cluster centroids in the index. The features from
the nearest cluster centroids are then selected and returned as the
matching results.

3.4.3 Generating application-tailed synthetic
remote sensing sample dataset

To meet the increasingly complex requirements of remote
sensing applications and provide sample data that accurately
matches these needs, this paper employs semantic feature-based
sample retrieval to obtain qualifying sample data and construct
dynamic datasets based on the application-specific dataset label
category sets and sample attributes. According to the user-
selected label category sets and other sample attribute constraints,
the process first splits the task into multiple parallel sample retrieval
subtasks based on the label category sets. Each task retrieves
metadata for samples that meet the criteria, and these metadata
are then used to construct a logical dataset. The retrieval results
include accurately matched samples from the initial search and
supplementary samples obtained through feature matching. Users
interactively decide whether to retain these supplementary samples
in the dataset, leading to the dynamic construction of the sample
dataset upon completion of the interaction. The system interface

presents a visual preview of all retrieved samples in a list format,
enabling users to quickly assess whether the supplementary samples
contain the desired labels. Users can then complete the interactive
selection by checking the relevant samples within the list.
Additionally, the filtered-out supplementary samples are recorded
as user feedback, which serves as a reference for subsequent
refinement of the image feature extraction model. The label
categories included in the dynamic dataset are entirely specified
by the user, thus meeting the needs of most deep learning
applications. Furthermore, the sample data for the dynamic
dataset come from various source datasets, and the heterogeneity
of samples across different datasets naturally endows the dynamic
dataset with high intra-class diversity and broad spatiotemporal
distribution.

4 Experiment

In this paper, we design and implement a cross-cloud dynamic
sample repository that provides a unified and efficient access
method for distributed sample datasets. By constructing a
dynamic label category system and implementing sample retrieval
based on image features, we enable the customized generation of
sample datasets tailored to specific application requirements. This
system maximally exploits available sample data, helping to mitigate
the issue of scarce sample data to some extent.

To evaluate the system’s performance, we conducted a series of
experiments, as outlined below:

(1) External dataset integration performance evaluation.
(2) Time performance and accuracy evaluation of supplementary

sample retrieval based on feature mining.
(3) Comparison of dynamic sample datasets generated by the

cross-cloud dynamic sample repository for specific
applications with general scene classification datasets.

The experiments were conducted across five computing nodes,
each equipped with a processor featuring a four-core CPU
(3.0 GHz), 8 GB of memory, running CentOS 7.0. The GPU
model used was the RTX 3090, with a memory capacity of 24 GB.

4.1 Experimental datasets

The current sample repository contains approximately
20 remote sensing (RS) sample datasets, encompassing
178 label categories. The sample distribution spans the globe
and includes data from optical and multispectral sensor types.
The total number of sample instances is 1,397,210. Detailed
information about the RS sample datasets included in the
repository is provided in Table 2.

4.2 Dataset integration performance
experiment

Dataset integration aims to add new sample datasets from
external data platforms to the sample repository, involving

Frontiers in Environmental Science frontiersin.org14

Ren et al. 10.3389/fenvs.2025.1580797

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1580797


several key steps: dataset mounting, label category system parsing,
sample feature extraction, and feature index updating. In this
section, to evaluate the system’s performance in integrating
external datasets, we assess the dataset integration process across
various scales and data source platforms. The datasets are sourced
primarily from remote cloud platforms and local disks, with
examples including Amazon AWS, Kaggle, and PaddlePaddle.
Sample data is retrieved from remote platforms via client
applications and platform APIs. The size of the datasets is
measured by the number of sample instances and the storage
space occupied by the dataset. The experimental results are
as follows:

From the experimental results shown in Table 3, it is observed
that as the number of sample instances increases, the integration
time grows linearly. However, the storage space of the sample
dataset has minimal impact on the integration time. This is
because the majority of the time consumption during dataset
integration occurs during the feature extraction process of sample
images. Since the model requires fixed image dimensions, the
input images undergo resampling, which ensures that the
performance of feature extraction is not significantly
influenced by the size of the sample images. For a dataset with
100,000 instances and a total size of 3.7 GB, the integration time is
approximately 30 min. The integration time for remote platforms
is slightly longer than for local datasets due to network
transmission overhead, but the system is still capable of
quickly integrating the majority of datasets.

This efficiency is attributed to the use of the distributed memory
layer Alluxio, which caches some sample images for pre-mounted
datasets. Additionally, sample images stored in the Zarr array
database format allow for chunked and parallel loading, resulting
in faster image loading speeds. Furthermore, both dataset parsing
and sample image feature extraction steps are performed using
multi-node and multi-threaded parallelization, further reducing
time consumption.

4.3 Supplementary sample retrieval
experiment

Supplementary sample retrieval aims to extract usable samples
from those with mismatched labels. The system retrieves associated
label categories from the dynamic label category system based on

one or more input labels and then mines content-similar samples
from other label categories using feature matching, based on
prototype features of the associated label categories. A
supplementary sample retrieval example is provided in Figure 7.
This section evaluates the proposed retrieval method in terms of
both time performance and the effectiveness of the retrieved
supplementary samples.

4.3.1 Evaluation of retrieval time efficiency
To validate the time performance of supplementary sample

retrieval, this experiment measures the time consumption of
supplementary sample retrieval under different dataset sizes.
Additionally, the experiment evaluates the system’s retrieval
performance in high-concurrency scenarios by incrementally
increasing the number of requests per unit of time.

According to the experimental results shown in Figure 8, as
the total data volume of the sample repository increases, the time
consumption for supplementary sample retrieval does not exhibit
significant changes. This is due to the efficient PQ-IVF feature
index. The IVF algorithm partitions the feature set into multiple
clusters. As the dataset size increases, the number of samples
within each cluster increases, while the number of clusters
remains relatively fixed. As a result, even as the data volume
grows, the number of clusters involved in the retrieval remains
essentially constant, leading to stable query time consumption.
Moreover, the PQ algorithm further quantizes and reduces the
dimensionality of feature vectors, reducing the storage space and
the computational complexity of similarity measures. This
prevents a significant increase in query time as the dataset
size grows.

From Figure 9, it is observed that retrieval time increases linearly
with parallelism. When the parallelism reaches 140, the retrieval
time is 224 m, indicating that the supplementary sample retrieval
system can efficiently discover available samples even under high
parallelism conditions.

4.3.2 Evaluation of retrieval performance
As shown in Figure 10, the supplementary samples retrieved

through the system are highly likely to contain samples belonging to
the corresponding label categories. These supplementary samples
cover a variety of complex scene categories, and their label categories
exhibit spatial adjacency to the queried labels, such as “river” and
“bridge,” or “viaduct” and “highway.”

TABLE 3 Summary of datasets with storage and integration details.

Dataset name Number of
instances

Storage size Image
format

Image size Storage
platform

Integration time

UCMerced 2,100 424MB tif 256 Local 1 min

NWPU-RESISC45 31500 470MB jpg 256 Kaggle 11 min

Million-AID–mini 10000 3.7GB jpg 512 Local 5 min

EuroSAT 27000 134MB jpg 64 Local 8 min

MLRSNet 109161 1.6GB jpg 256 Local 32 min

fmow 132716 tif 74–16184 AWS 48 min

RSI-CB256 14052 2.7GB tif 256 Paddle 7 min
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FIGURE 7
Supplementary sample retrieval example.

FIGURE 8
(a) Classify overview. (b) Datasets overview. (c) Accuracy sample retrieval overview. (d) Supplement sample retrieval overview.
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Supplementary sample retrieval relies on the label category
system and sample image features. To evaluate its performance,
we construct a label category system using 20 scene classification
datasets, each containing multiple label categories. Prototype
features are extracted from sample image features, with cluster
centers representing each category. Using this system, we assess
supplementary sample retrieval on a mixed sample set from three
multi-label datasets: UCMerced_multi_label, AID_multi_label, and
DCF. Multi-label datasets provide a more comprehensive
representation of complex scenes than single-label samples,
making them more suitable for evaluating retrieval effectiveness.

Experiments were conducted on this mixed sample set to assess
cross-dataset generalizability, i.e., the ability to handle samples from
different datasets. Since dataset samples may vary, this setup
provides a comprehensive evaluation in a multi-source
heterogeneous data environment. The experiment focuses on
10 common label categories, present across datasets but differing
in textual representation. For each category, associated labels are
retrieved, prototype features are obtained, and feature matching is
performed to retrieve supplementary samples. Accuracy and

precision are calculated based on whether retrieved samples
contain the queried label within their associated label categories.
Since retrieval spans multiple datasets, samples are grouped by
dataset, and accuracy is computed separately for each group. A
weighted overall accuracy is then derived, with dataset weight
proportional to the number of positive instances of the target
label. Table 4 presents the overall accuracy.

Results indicate that cross-dataset supplementary sample
retrieval effectively identifies potential usable samples. However,
supplementary sample accuracy is limited and requires manual
verification. Precision varies across datasets due to differences in
sample quantity, with the DCF dataset, having fewer instances,
showing the lowest precision. Given that the goal is maximizing
usable sample discovery, a lower precision is acceptable.

4.4 Dataset application experiment

The dynamic sample repository presented in this paper aims to
generate dynamic sample datasets that match application
requirements, particularly in scenarios where sample data is
scarce. In this section, to comprehensively evaluate the
effectiveness of the generated dynamic sample datasets, we
compare the performance of the new dataset with that of other
datasets of varying scales across multiple model architectures.

Three commonly used network architectures—VGGNet16,
ResNet50, and DenseNet—are employed in this study. By
comparing the performance of these convolutional neural
network (CNN) architectures on the new dataset, we can fully
assess the dataset’s effectiveness and the strengths of different
models. These network architectures are pre-trained on three
widely-used general scene classification datasets—AID,
UCMerced, and NWPU-RESISC45—as well as on the dynamic
dataset. Transfer learning experiments are conducted on the
Million-AID dataset (Long et al., 2021), and the classification
accuracy and precision of the models are validated on the
validation set. By comparing the classification performance of the
same network architectures after training on samples from different
datasets, the performance of the datasets is evaluated. UCMerced,
AID, and NWPU-RESISC45 represent small, medium, and large-
scale datasets in the remote sensing scene classification domain.
They differ in terms of label sets, image resolution, and data sources.
These datasets have been widely used in various studies, and
comparing them with the dynamic dataset allows us to more
clearly demonstrate the practical effectiveness of the dynamic
dataset, while also ensuring high generalizability and
reproducibility of the experimental results.

The label set of the dynamic dataset is constructed by mapping
the labels of the aforementioned datasets. The generated dataset

FIGURE 9
Retrieval Time vs. Total Data Volume.

FIGURE 10
Retrieval Time vs. Concurrency Level.

TABLE 4 Accuracy and Precision comparison across different datasets.

UCMerced_
multi_label

AID_multi_label DCF

Accuracy 64.61% 60.44% 75.17%

Precision 57.45% 73.15% 25.28%
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contains 70 label categories, with each category having between
100 and 5,900 sample instances. As shown in Figure 11, there are
notable differences in the number of sample instances between some
common categories across the four datasets. The dynamic dataset
has more sample instances within each category compared to the
other datasets.

The Million-AID dataset, a larger-scale scene classification
dataset, includes label categories that cover the three datasets
mentioned above. Validating the transfer-learned models on
Million-AID better simulates the model’s performance in real-
world scenarios where the model faces various unknown data.
This allows for a more comprehensive assessment of the impact
of the dataset on model performance.

As shown in Table 5, the classification accuracy and precision
after pre-training with the dynamic dataset outperforms the results
on UCMerced, AID, and NWPU-RESISC45 across all three network
architectures. Moreover, the dynamic dataset shows superior
performance in more complex classification models, indicating
that models pre-trained on the dynamic dataset exhibit better
generalization and classification precision. This is due to the
higher number of sample instances in the dynamic dataset, as
well as the increased intra-class diversity resulting from samples
coming from multiple datasets with variations in lighting
conditions, viewpoints, and backgrounds. As a result, the
dynamic dataset enables the training of more robust
classification models.

FIGURE 11
Sample instances number for each category in different datasets.

TABLE 5 Accuracy and Precision comparison across different models.

Dataset Classification model Accuracy Precision

UCMerced LandUse ResNet50 93.30% 89.15%

VGG16 56.80% 36.54%

DenseNet 91.9% 85.48%

NWPU-RESISC45 ResNet50 95.25% 90.06%

VGG16 69.75% 52.78%

DenseNet 94.4% 87.97%

AID ResNet50 91.10% 84.84%

VGG16 71.85% 55.96%

DenseNet 93.2% 88.46%

Dynamic Dataset ResNet50 96.30% 92.49%

VGG16 72.90% 54.18%

DenseNet 97.05% 94.23%
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The results demonstrate that the dynamic dataset outperforms
datasets such as UCMerced and AID, particularly when using
complex classification models. This improvement can be
attributed to the higher number of sample instances in the
dynamic dataset and the significant inter-class variability among
samples from different datasets, which contributes to training more
robust classification models.

However, the current remote sensing scene classification
field still suffers from a lack of diverse datasets. The number of
remote sensing sample instances is insufficient to bridge the
differences in sample styles and dataset scales between different
datasets. Consequently, the generated dynamic dataset exhibits
some performance differences compared to MillionAID
and MLRSNet.

5 Conclusion

Remote sensing sample data, especially those used for coastal
city and environmental monitoring, currently face challenges such
as dispersion, inconsistency in dataset structures and labeling
systems, and insufficient representation capability of sample
labels. To address these issues, this paper presents an intelligent
remote sensing sample dataset retrieval approach with awareness of
label semantics and visual features. By leveraging distributed storage,
a dynamic labeling system, and a hybrid retrieval mechanism that
integrates textual and image-based label features, our approach
effectively consolidates heterogeneous remote sensing sample data
and enables efficient data management. Experimental results
demonstrate that the proposed multi-source data unification
strategy based on a dynamic labeling system significantly
enhances the compatibility of diverse datasets while improving
the accuracy of data retrieval and sample matching in intelligent
remote sensing analysis tasks. However, the current system still has
certain limitations. For instance, it lacks support for multimodal
remote sensing data, as it does not yet fully incorporate SAR, speech,
and text modalities. Additionally, the adaptability of the labeling
system needs further improvement to better accommodate various
application scenarios and remote sensing tasks. Moreover,
discrepancies remain between the data distribution in our system
and real-world environments. The existing sample datasets cannot
fully simulate real-world conditions, particularly in extreme
environments (e.g., polar regions, high-altitude observations, and
nighttime remote sensing) or specific tasks (e.g., disaster monitoring
and underground imaging). These limitations may affect the
system’s generalization ability in complex remote sensing
applications. Future research will focus on the following three
key directions: First, integration of multimodal remote sensing
data: Incorporate SAR, speech, and textual data while exploring
cross-modal feature alignment techniques to enhance the fusion of
multi-source information, thereby supporting more complex
intelligent remote sensing analysis tasks. Second, development of
an adaptive label evolution system: Utilize knowledge graphs and
large-scale vision-language pre-trained models to enable dynamic
label expansion and automated normalization, improving the
scalability and intelligence of the labeling system. Third,
optimization of remote sensing sample data distribution:
Continuously integrate new sample datasets to expand the

number of sample instances, ensuring that data distributions
better approximate real-world scenarios, thereby enhancing the
system’s adaptability in complex remote sensing environments.
With the incorporation of multimodal data, optimization of the
intelligent labeling system, and improvements in data distribution,
the proposed system is expected to further advance the organization
and management of remote sensing sample data, providing a highly
efficient, accurate, and scalable data foundation for future intelligent
remote sensing analysis.
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