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Net ecosystem productivity (NEP) is a critical indicator for characterizing the
carbon cycle dynamics within terrestrial ecosystems. This study employs six
different combinations of methods for calculating Net Primary Productivity
(NPP) and heterotrophic soil respiration (Rh) to estimate monthly NEP values
in Inner Mongolia from 2001 to 2021. The carbon flux observation data obtained
through the eddy covariance method are used to validate and evaluate these
combinations, and the best NEP estimation model combination is selected, and
the spatiotemporal distribution patterns of NEP along with its primary driving
factors are analyzed. Results show that: 1) TheNEP estimates derived fromMODIS
NPP combined with the Global Soil Respiration Model (GSMSR) and Bond-
Lamberty’s Rs-Rh relationship model exhibit a strong correlation with validated
data; 2) The NEP in Inner Mongolia shows a significant increasing trend, with an
annual average value of 168.73 gC·m−2·a−1, or 177.57 gC·m−2·a−1 when excluding
barren. Forests, croplands, and grasslands are identified as the primary carbon
sinks during the growing season, with average NEP values of 84.81, 46.41, and
32.95 gC·m−2·mth−1, respectively; 3) Precipitation is the dominant meteorological
factor driving the spatiotemporal variations of NEP across the region, contributing
72.29% to NEP during the growing season. Additionally, over 80% of areas
influenced by human activities exhibit a positive impact on NEP; 4) The
interannual and growing season increases in NEP are primarily attributed to
climate change and anthropogenic activities, which account for 57% and
66.3% of NEP variations, respectively. These effects are particularly
pronounced in the eastern forested regions and central grasslands of Inner
Mongolia. The findings of this study provide valuable insights for regional
carbon sink management and ecological environment protection.
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1 Introduction

The acceleration of global industrialization has precipitated a substantial increase in
greenhouse gas emissions, particularly CO2 (Raihan et al., 2022). According to the synthesis
report of the Sixth Assessment Report (AR6) by the United Nations Intergovernmental
Panel on Climate Change (IPCC) in 2023, atmospheric CO2 concentrations have surged to
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their highest levels in nearly two million years, accompanied by a
global temperature rise of 1.1°C above pre-industrial levels (IPCC,
2023). These changes have triggered unprecedented climatic shifts
worldwide, with extreme weather events such as intense heatwaves,
heavy precipitation, and prolonged droughts becoming increasingly
frequent, thereby disrupting the carbon balance within ecosystems
(Kelong et al., 2011). To mitigate the adverse effects of carbon cycle
imbalances on ecological systems and human livelihoods, the
international community has emphasized the importance of
enhancing carbon sinks, making their development across various
ecosystems a critical strategy for achieving national “dual carbon”
goals (Yu et al., 2022). Consequently, investigating the
spatiotemporal dynamics of ecosystem carbon cycles and their
driving factors is essential for advancing ecological civilization
and ensuring the sustainability and security of human society.
Inner Mongolia, situated within an arid and semi-arid region,
represents the most extensive and diverse ecological functional
area in northern China. The alterations in its ecosystem carbon
storage have a considerable impact on the global ecosystem carbon
cycle (Cao et al., 2023; Jiang et al., 2019; Meng et al., 2020).
Therefore, investigating the spatiotemporal distribution patterns
of terrestrial Net Ecosystem Productivity (NEP) and its drivers in
Inner Mongolia is of significant scientific importance, enabling a
scientifically informed explanation of the regional ecosystem carbon
cycle and facilitating the rational use of forest and
grassland resources.

Gross Primary Productivity (GPP), Net Primary Productivity
(NPP), and NEP are key indicators of ecosystem carbon cycling,
reflecting the response of different ecosystems to climate change and
the productive capacity of plant communities under natural
environmental conditions (Zhou et al., 2020; Hou et al., 2023;
Zheng et al., 2023; Huang et al., 2023a; Li et al., 2022; Liu et al.,
2022; Ding et al., 2025). NEP, representing NPP minus the products of
photosynthesis consumed by heterotrophic soil respiration (Rh) and
soil total respiration (Rs), more accurately reflects the relationship
between photosynthesis, respiration, and energy balance within
ecosystems compared to GPP and NPP. NPP is highly effective for
quantitatively evaluating an ecosystem’s carbon sequestration potential
in relation to climate change, serving as a crucial indicator for
measuring carbon sinks, sources, and the global carbon balance of
ecosystems (Mendes et al., 2020; Song et al., 2020; Zou et al., 2022; Chen
et al., 2024). NEP can be measured directly using carbon flux or eddy
correlation techniques or estimated based on physiological or ecological
models. Although direct measurements are the most straightforward
method withminimal errors, they are generally infeasible for large-scale
studies due to site layout and accuracy requirements (Lees et al., 2018;
Berg et al., 2022; Zhi et al., 2024). Estimation of NEP based onCarnegie-
Ames-Stanford Approach (CASA) and Carbon Exchange in
Vegetation–Soil–Atmosphere System (CEVSA) models, integrated
with remote sensing and other geographic information systems, has
become the primary method for the quantitative assessment of NEP.
However, these model-based estimates are subject to subsurface
influences at varying spatial and temporal scales, often leading to
significant uncertainty (Liang et al., 2023; Qiu et al., 2022; Zuo et al.,
2023; Ouyang et al., 2021; Xu et al., 2024; Zhang et al., 2025).

The carbon cycle in terrestrial ecosystems is influenced by a
complex array of environmental factors, making the exploration of
its drivers and dominant factors a prominent focus in global carbon

change research. Correlation analysis, random forest modelling,
regression analysis, and other machine learning techniques are
the primary research methods. For instance, Lu et al. (2023)
found that NEP in Xinjiang is more sensitive to rainfall, while
Wang et al. (2022a) observed that climatic factors had the largest
contribution to NEP changes in the mountainous arid regions of
northwestern China, with anthropogenic activities contributing
negatively. Zhang et al. (2024) identified elevation as the
dominant factor influencing NEP changes in Heilongjiang
Province, and Cao et al. (2022) found precipitation to be the
main climatic factor influencing the spatial distribution of NEP
in the Yellow River Basin. Variations in NEP patterns, driving
factors, and spatial distribution within the same region are
markedly influenced by regional subsurface conditions and
vegetation types (Huang et al., 2023b; Wang et al., 2022b;
Bejagam and Sharma, 2022). Current research methodologies are
limited by their dependence on singular carbon sink estimation
models and exhibit insufficient comparative analysis of carbon sink
estimation outcomes from alternative models.

Forest and grassland ecosystems, indispensable components of
terrestrial ecosystems, play a crucial role in the global carbon cycle
(Ahlström et al., 2015; Bai and Cotrufo, 2022). Data from the third
national land survey indicate that the forested area in Inner
Mongolia is 24.37 × 104 km2 (23%), encompassing the temperate
coniferous forest belt, the mid-temperate deciduous broadleaf forest
belt, and the warm-temperate deciduous broadleaf forest belt. The
grassland area extends to 54.37 × 104 km2, representing the most
extensive terrestrial ecosystem in Inner Mongolia, with meadow
steppes, typical steppes, desert steppes, and grassland desertification
areas accounting for 5.57%, 37.10%, 10.75%, and 11.55%,
respectively. The total cropland area is 11.50 × 104 km2. These
ecosystems are essential terrestrial ecological resources for achieving
the dual carbon targets (Balasubramanian et al., 2020; Liu et al.,
2019). As a vital livestock and grassland production base in China
and a northern ecological security barrier, Inner Mongolia is
significantly affected by pronounced spatiotemporal climate
variations and frequent interannual extreme climate events,
resulting in an unclear understanding of the regional NEP and
its driving factors.

This paper estimates monthly NEP in the study area from
2001 to 2021 using six NPP and Rh model combinations. The
best fit model combination is selected from the vorticity-related
data of desert grassland and typical grassland to analyze the spatial
and temporal distribution pattern of NEP. Furthermore, the
principal driving factors and contribution rates of carbon sources
and sinks in Inner Mongolia are assessed based on influencing
factors, including climate change and human activities.

2 Materials and methods

2.1 Research area

The Inner Mongolia Autonomous Region is located in northern
China, spanning from 37°24′-53°23′N to 97°12′-126°04′E.
Encompassing the northeastern, northern, and northwestern
parts of the country, it stretches approximately 2,400 km from
east to west and 1,700 km from north to south. The region’s diverse
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landscape includes forested and grassy areas in the east, expansive
grasslands in the central region, and predominantly barren terrain in
the west, as depicted in Figure 1.

With an average altitude exceeding 1,000 m, the region’s
topography is characterized by higher elevations in the southwest
compared to the northeast. Inner Mongolia experiences a
medium-temperate continental monsoon climate, marked by
distinct seasonal variations. The climate transitions from
humid and semi-humid conditions in the east to semi-arid
and arid conditions in the west. Annual average temperatures
range from 0°C to 8°C, while precipitation varies significantly
across the region, from 50 mm to 450 mm annually. The annual
total solar radiation here ranges from 5,400 to 5,900 MJ·m−2, with
an average of about 5600 MJ·m-2. The spatial distribution of this
resource shows a gradual increase from the northeast to
the southwest.

Due to the diverse underlying surfaces across different zones,
there are notable variations in annual potential evapotranspiration.
For instance, areas near the Greater Khingan Mountains have
potential evapotranspiration values below 1,200 mm, whereas

most other regions exceed this threshold. It is important to note
that Inner Mongolia’s ecological environment is relatively fragile,
with frequent occurrences of extreme droughts.

2.2 Data sourcing and preprocessing

The meteorological and remote sensing datasets utilized in this
study, covering a comprehensive time span from 2001 to 2021, are
systematically presented in Table 1. These datasets encompass a
wide range of variables, including but not limited to precipitation
(PRE), temperature (TEM), solar radiation (SOL), potential
evapotranspiration (PET), and vegetation indices (NDVI), which
are critical for analyzing the climatic and environmental dynamics
over the two-decade period. The integration of these multi-source
data provides a robust foundation for the subsequent analysis and
modeling efforts in this research.

The carbon flux data associated with vortex measurements,
obtained from the desert grassland site (Damao Station) (Song
et al., 2022) and the typical grassland site (Xiwuqi Banner

FIGURE 1
Overview of the study area.

TABLE 1 Data sources and units.

Data Unit Time span Spatial resolution Data sources

GPP gC·m−2 8 days 500 m × 500 m https://earthdata.nasa.gov/

NPP gC·m−2 Year 500 m × 500 m https://earthdata.nasa.gov/

TEM 0.1p Month 1 km × 1 km http://data.tpdc.ac.cn

PRE 0.1 mm Month 1 km × 1 km http://data.tpdc.ac.cn

NDVI — Month 500 m × 500 m https://earthdata.nasa.gov/

SOL W m−2 Month 500 m × 500 m https://cds.climate.copernicus.eu

Land use — Year 30 m × 30 m https://zenodo.org/

PET 0.1 mm Month 1 km × 1 km http://data.tpdc.ac.cn

Soil carbon density kg/ m2 - 1 km × 1 km https://doi.org/10.4060/cc3823en
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Station) (Tan et al., 2023), were meticulously selected for model
validation.

The meteorological and remote sensing raster datasets
underwent standardized preprocessing in terms of spatial extent
and resolution using ArcGIS. This preprocessing included raster
projection transformation, resampling, and clipping procedures to
ensure consistency across the datasets.

2.3 Research methods

2.3.1 NPP estimation model
The estimation of NPP in this study utilized MODIS annual

NPP and 8-day GPP products, in conjunction with the CASA
models. The monthly NPP formula derived from MODIS
products is presented as Equations 1, 2:

NPP8 � GPP8/GPPy( ) × NPPy (1)
NPPm � ∑NPP8i (2)

Where NPP8 is 8-day NPP data in gC·m-2; GPP8 is the 8-day
GPP data in gC·m−2; GPPy is the annual total GPP data in gC·m−2;
NPPy is the annual total NPP in gC·m−2;NPPm is the monthly total
NPP in gC·m−2; NPP8i indicates the NPP8 data in the month i
in gC·m−2.

The present study employs the CASA model to compute
monthly NPP (Piao et al., 2001), reducing the estimation time
scale to 1 month and refining the input parameters of the model
for enhanced accuracy. Finally, NPP data is estimated to have a
temporal resolution of 1 month and a spatial resolution of 1 km. The
NPP estimation in this model is based on the assimilated
photosynthetic active radiation (APAR) by plants and their
effective utilization of light energy (ε). The estimation formula is
shown in Equation 3:

NPP x, t( ) � APAR x, t( ) × ε x, t( ) (3)
Where, ε(x, t) is the actual light energy utilization rate in

gC·MJ−1; APAR(x, t) is the photosynthetically active radiation
absorbed, calculated by the Equation 4 pixel x at t time in
gC·m−2 in ε(x, t) is calculated by the Equation 8:

ε x, t( ) � Tε1 x, t( ) × Tε2 x, t( ) × Wε x, t( ) × εmax (4)
Where, Tε1(x, t) and Tε2(x, t) are the stress coefficients of the

maximum and minimum TEM on the actual light energy utilization
ε(x, t), Wε(x, t) is the, calculated separately using Equations 5, 6
water stress coefficient, and εmax is the maximum light energy
utilization under ideal conditions calculated using Equation 7.

Tε1 x, t( ) � 0.8 + 0.02 × Topt x( ) − 0.0005 × Topt x( )2 (5)

Topt(x) is the optimal TEM for vegetation growth.

Tε2 x, t( ) � 1.184
1 + e0.2×Topt x( )−10−t x,t( ) ×

1

1 + e0.3× T x,t( )−10−Topt x( )( ) (6)

When the average TEM of a month is 10°C higher or 13°C lower
than the optimum TEM Topt(x), the Tε2(x, t) of the month is equal
to half of the average TEM of the month Topt(x).

Wε x, t( ) � 0.5 + 0.5 ×
EET x, t( )
PET x, t( ) (7)

Where EET represents the actual evapotranspiration of
the region.

APAR x, t( ) � SOL x, t( ) × FPAR x, t( ) × 0.5 (8)
Where SOL(x, t) represents the SOL at the pixel x at time t in

MJ·m-2; FPAR(x, t) is the photosynthetic active radiation
absorption ratio of vegetation canopy; and,
FPAR(x, t) � NDVI(x,t)−NDVImin

NDVImax−NDVImin
. The overall process of the CASA

model to estimate NPP is shown in Figure 2.

2.3.2 Rh estimation model
The Rh of Inner Mongolia was estimated in this study using

three well-established and validated models: the Pei. model (Pei
et al., 2009), the GSMSR model (Yu et al., 2010) coupled with Bond-
Lamberty, and the Rs-Rh relationship model developed by
Shi (2015).

The calculation formula of the soil microbial heterotrophic
respiration model established by Pei is as Equation 9:

Rh x, t( ) � 0.22 × exp 0.0912T x, t( )( ) + ln 0.3145R x, t( ) + 1( )( )
× 30 × 46.5% (9)

Where, T(x, t) is the average TEM of the pixel x at time t in °C;
R(x, t) is the average PRE of the pixel x at time t in mm.

The GSMSR model is primarily utilized for the computation of
Rs, followed by the utilization of the Rs-Rh relationship model to
calculate Rh. The calculation formula for the GSMSR model is as
Equation 10:

Rs � RDS�0 +M × Ds( ) × eln αe
βtt/10 × P + P0

P + K
(10)

Where Rs is soil total respiration in gC·m-2; Ds is the soil carbon
density at a depth of 20 cm in kg/ m2; RDS�0 = 0.588; M � 0.118;
α � 1.83; β � −0.0006; P0 � 2.97;K � 5.66; P is the regional average
monthly PRE in cm.

FIGURE 2
Flowchart for estimating NPP with CASA model.
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The Rh was calculated using the Rs-Rh relationship model
constructed by Bond-Lamberty et al. (2004) and Shi (2015),
respectively. The equation developed by Bond-Lamberty et al. is
as Equation 11:

lnRh � 1.22 + 0.73 ln Rs (11)

The Rs-Rh relationship constructed by Shi is as Equation 12:

Rh � −0.0009R2
s + 0.6011Rs + 4.8874 (12)

2.3.3 NEP estimation model
Without considering the influence of other natural and human

factors, NEP is equal to the difference between vegetation NPP and
Rh (Tang et al., 2016), and the calculation formula is as Equation 13.

NEP x, t( ) � NPP x, t( ) − Rh x, t( ) (13)

Where, NEP(x, t) is the net ecosystem productivity of
vegetation of the pixel x at time gC·m−2. When NEP >0,
vegetation acts as a carbon sink, otherwise, as a carbon source.

2.3.4 Correlation and significance analysis
The key climate factors influencing regional NEP changes were

identified as PRE, TEM, SOL, and PET. Their spatial correlation
with NEP at both annual and growing season scales was analyzed at
the pixel level. The correlation coefficient (r) was calculated using
the Equation 14.

r � ∑n
i�1 xi − �x( ) yi − �y( )





















∑n

i�1 xi − �x( )2∑n
i�1 yi − �y( )2√ (14)

Where xi and yi are the time series of NEP and climatic
elements, �x and �y are the annual average values of NEP and
climatic factors. The value range of the correlation coefficient is
between −1~1, r > 0 indicates a positive correlation between the two
groups of variables, and r < 0 indicates a negative correlation. The
greater the magnitude of |r|, the stronger the correlation between the
two sets of variables.

T-test is used to determine whether the correlation between NEP
and climate factors is significant. The calculation formula of the
T-value is as Equation 15:

t � r






n − 2

√





1 − r2

√ (15)

If the absolute value of t is greater than t0.05 it means that the
correlation between the two groups of variables passes the 0.05 level
significance test; otherwise, it means that the correlation is not
significant.

2.3.5 NEP trend analysis
The trend of the NEP long-time series was analyzed using the

Theil-Sen (Sen) median analysis combined with the Mann-Kendall
(M-K) test method. Sen median analysis is a robust nonparametric
trend statistical method (Cai and Yu, 2009), and its calculation
formula is as Equation 16:

SNEP � Median
NEPj −NEPi

j − i
( ) (16)

Where NEPj and NEPi represent the NEP index of the year j
and the year i respectively, and SNEP is the changing trend of NEP. A
SNEP >0 indicates an increasing NEP is while SNEP = 0 and
SNEP <0 indicate a constant and decreasing NEP, respectively.
Larger absolute value of SNEP, indicate a stronger change in
the trend.

Sen median analysis lacks a statistical significance test for trend
analysis, thus the M-K test was employed for evaluation. The M-K
test is a non-parametric statistical test that can be utilized to
determine the presence of a significant trend in a time series.
The formula for the M-K test is as Equations 17–19:

S � ∑n−1
i�1

∑n
j�i+1

sgn NEPj −NEPi( ) (17)

sgn NEPj −NEPi( ) � 1 NEPj >NEPi

0 NEPj � NEPi

−1 NEPj <NEPi

⎧⎪⎨⎪⎩ ∀ i< j (18)

Var S( ) � n n − 1( ) 2n + 5( )
18

(19)

Where n ≥ 10 indicates a normal distribution for the statistic S,
with S representing the test statistic, n denoting the length of the
time series, sgn indicating the symbolic function, and Var(S)
representing variance. For this study’s time series length of 21
(2001–2021), after standardizing the test statistics, the calculation
by Equation 20.

Z �

S






Var S( )√ S> 0

0 S � 0
S + 1






Var S( )√ S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(20)

The threshold of the test statistic Z is set under various
significance levels to determine the statistical significance of the
trend. Specifically, when |Z| exceeds 1.96, it indicates that the trends
pass the significance test at the confidence level of 95%.

2.3.6 NEP driver analysis
The method of partial derivative correlation was employed to

quantitatively assess the respective contributions of climate factors
and human activity factors to NEP (Liu and Sun, 2016). The
calculation formula is provided as Equation 21.

dNEP

dt
≈
δNEP

δPRE
×
dPRE

dt
+ δNEP

δTEM
×
dTEM

dt
+ δNEP

δSOL
×
dSOL

dt

+δNEP

δPET
×
dPET

dt
+Hcon (21)

� PREcon + TEMcon + SOLcon + PETcon +Hcon � Ccon +Hcon

Where PREcon, TEMcon, SOLcon, PETcon are the contributions of
PRE, TEM, SOL, and PET to NEP, respectively. Ccon represents the
contribution of climate factors to NEP variation as Ccon � PREcon +
TEMcon + SOLcon + PETcon;Hcon represents the contribution of other
factors (human activities, natural disasters, etc.) to the change of NEP,
and it is generally believed that human activities play a major role (Qu
et al., 2020); dNEP

dt , dPREdt , dTEMdt , dSOLdt ,
dPET
dt are the variation trends of NEP,

PRE, TEM, SOL, and PET with time t, respectively, calculated by the
multiple linear regression model as Equation 22.
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dx

dt
� ∑n

i�1 i × xi( ) − 1
n ∑n

i�1i( ) ∑n
i�1xi( )∑n

i�1i2 − 1
n ∑n

i�1i( )2 (22)

Here, δNEP
δPRE ,

δNEP
δTEM,

δNEP
δSOL ,

δNEP
δPET are partial derivatives of each

climate factor to NEP, taking into account that each factor has a
linear effect on NEP. By eliminating the influence of other variables,
each partial derivative is equal to the corresponding correlation
coefficient (Wu et al., 2020). The positive and negative contributions
represent the positive and negative effects of impact factors on NEP
respectively.

The specific discrimination method and contribution rate
calculation are shown in Table 2:

3 Results

3.1 Model validation

In this study, the NPP values were estimated using two
approaches: one based on MODIS NPP data and the other based
on the CASA model. These NPP estimates were then coupled with
the Rs-Rh soil respiration model to calculate the net ecosystem
productivity NEP values for the study area across different time
periods. To validate the accuracy of the models and select the most
suitable one, measured eddy covariance data from both desert steppe
and typical steppe ecosystems were employed, as depicted in
Figure 3. The NEP values derived from coupling the MODIS
NPP product with the GSMSR and the Rs-Rh relationship model
proposed by Bond-Lamberty and Shi demonstrated a strong
correlation with the observed values in both ecosystem types.
These results confirmed the reliability of the selected model,
which was subsequently used to analyze the spatial and temporal
distributions of NEP and to investigate the key driving factors
influencing these patterns.

3.2 NEP spatiotemporal distribution in
Inner Mongolia

3.2.1 Interannual spatiotemporal distribution of
NEP in Inner Mongolia

Figure 4 illustrates the interannual and spatial distribution of
NEP in Inner Mongolia from 2001 to 2021. Over the past 21 years,
the overall NEP has shown an increasing trend. The mean annual
NEP ranged between 114.96 and 201.05 gC·m−2·a−1, with an annual
average of 168.73 gC·m−2·a−1. The minimum value was observed in

TABLE 2 Method for identifying primary factors influencing NEP changes in Inner Mongolia and the calculation principle for contribution rates.

Effecting factor Identification (yr-1) Contribution rate (%)

Ccon Hcon Climate change Human activities

dNEP
dt > 0 Combined contribution >0 >0 Ccon

Ccon+Hcon

Hcon
Ccon+Hcon

Climate change >0 <0 100 0

Human activities <0 >0 0 100

dNEP
dt < 0 Combined contribution <0 <0 Ccon

Ccon+Hcon

Hcon
Ccon+Hcon

Climate change <0 >0 100 0

Human activities >0 <0 0 100

FIGURE 3
Comparison of calculated and measured NEP values across
various grassland types (A). Desert grassland, (B). Typical grassland 1.
Formula (1) + (9); 2. Formula (1) + (10) + (12); 3. Formula (1) + (10) + (11);
4. Formula (3) + (9); 5. Formula (3) + (10) + (12); 6. Formula (3) +
(10) + (11)

Frontiers in Environmental Science frontiersin.org06

Cui et al. 10.3389/fenvs.2025.1581983

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1581983


2001, while the maximum occurred in 2018, indicating distinct
interannual variability with an annual trend of 0.91. Spatially, NEP
in Inner Mongolia exhibits a pattern of higher values in the
northeast and lower values in the southwest, reflecting clear
regional differences. Furthermore, different ecosystem types
exhibit varying levels of NEP, with forests > cropland >
grassland having corresponding annual averages of
419.14 gC·m−2·a−1, 228.19 gC·m−2·a−1, and 158.48 gC·m−2·a−1.

3.2.2 Spatial and temporal distribution of NEP
during the growing season in Inner Mongolia

The vegetation growth season in Inner Mongolia was defined as
May to September. The spatial and temporal NEP distribution
during this period was analyzed, as illustrated in Figures 5, 6.

The long-term average NEP values throughout the growing
season range from 125.96 to 207.69 gC·m−2·5 mth−1, peaking in
July at 53.04 gC·m−2·mth−1, marking a significant carbon sink phase.
Spatial analysis indicates that NEP patterns during the growing
season remain consistent across years, with distinct regional
characteristics. Specifically, different ecosystem types show a

hierarchy of NEP as in the following order: forest > cropland >
grassland, with corresponding monthly averages of 84.81, 46.41, and
32.95 gC·m−2·mth−1.

FIGURE 4
Spatial and temporal variation trend of interannual NEP in Inner
Mongolia (A) Temporal scale; (B) Spatial scale.

FIGURE 5
Spatial and temporal variation of NEP in Inner Mongolia during
the growing season (A) Temporal scale; (B) Spatial scale.

FIGURE 6
Monthly average NEP during the growing season.
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3.2.3 Interannual and growing season variation of
NEP in Inner Mongolia

To further quantify the temporal variation trend of NEP in
Inner Mongolia from 2001 to 2021, both the M-K test and the
Sen median estimator were employed. These methods were used
to investigate the interannual and seasonal growth patterns at a
regional level as illustrated in Figure 7. NEP exhibits pronounced
spatial differences, with a general trend of “higher in the
northeast and lower in the southwest.” Moreover, forests
demonstrate the highest upward trend followed by grassland
and cropland. Due to the unfavorable vegetation site conditions
in barren areas, NEP tends to be predominantly negative.
Consequently, the results for the entire region are
significantly influenced by the NEP in western barren areas,
both during the growing season and throughout the year.
Moreover, an overall weak or downward trend was observed.
Significance tests reveal that, except for the western barren area
which did not meet a significance level of 0.05, all other regions
exhibited significant changes in trend. Therefore, our
subsequent analysis will primarily focus on NEP variations
within vegetated areas while omitting a detailed examination
of the western barren.

3.3 Analysis of NEP drivers in Inner Mongolia

3.3.1 Correlation analysis
The spatial and average correlation coefficients between NEP

and meteorological driving factors (PRE, TEM, SOL, and PET) in
Inner Mongolia are illustrated in Figures 8, 9.

NEP exhibits a positive correlation with various meteorological
factors, except for certain areas in barren and desert grasslands.
Particularly, in the eastern part of the forest and grassland areas,
NEP demonstrates the most significant positive response to
meteorological factors. Conversely, cultivated land displays a
weak positive correlation with these factors. Notably, the
disparity between PET and TEM manifests itself as the most
pronounced difference. There was a weak to moderate negative
correlation between NEP and meteorological factors in the barren
grasslands located at the Yinshanbeilu in central and western China.
Specifically, during the growing season, there was a significant
decrease in the correlation between SOL and PET with NEP.
Additionally, the positive interannual effect observed in certain
regions during this period was hindered due to the influences of
regional underlying surface conditions. The impact of PRE on NEP
differs across different land types, with grassland and cultivated land

FIGURE 7
The trend of NEP variations and its significance test in Inner Mongolia (A) interannual, (B). Growing season.
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being more affected compared to forest areas. Conversely, TEM and
PET exhibit an opposite trend. Based on the correlation coefficients,
PRE shows the strongest correlation (0.868), followed by PET and
TEM (0.785 and 0.721, respectively), while SOL demonstrates the
weakest correlation (0.456). During the growing season, TEM
exhibits the highest correlation (0.811), followed by PRE (0.709),
PET (0.588), and SOL (0.371).

3.3.2 Contribution analysis
① Contribution rate of climate factors to NEP change. To

further investigate the contributions of climate factors and
human activities to changes in NEP in Inner Mongolia, we
employed the partial derivative correlation analysis. The
contribution rates of meteorological factors to NEP during
the interannual and growing seasons are illustrated in
Figure 10. It is evident that on the interannual scale,

PRE has the greatest contribution to forest and meadow
areas in the eastern region, while the impact of NEP on
TEM-coupled PRE is more significant in the western
region. The contribution rate of PET to NEP remains
unstable due to its comprehensive dependence on
vegetation conditions, TEM, and SOL. In certain
cultivated land and desert grassland areas, there is a
transition from positive to negative contribution to
NEP. Throughout the growing season, the impact of
PRE on forests and grasslands in eastern China was
paramount, while the influence of PET significantly
diminished in comparison to interannual variations. The
contribution of SOL to the NEP changes in the eastern

FIGURE 8
Spatial correlation between NEP and various meteorological
factors (A). Interannual, (B). Growing season.

FIGURE 9
The correlation coefficient between NEP and various
meteorological factors (A). Interannual, (B). Growing season (The red *
represents the significance level of the correlation between variables.
** indicate a significance level of p < 0.01; and *** indicate a
significance level of p < 0.001.).
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forest and grassland areas was more significant. However,
the contribution of the TEM is low, and the changing trend
of spatial distribution is not significant.

② Contribution of climate factors and human activities to NEP.
Table 3 shows the contribution of climate factors and human
activity to NEP changes in Inner Mongolia (Positive and
negative denote positive and negative contribution effects,
respectively). The primary drivers of interannual NEP
variation in the study area, excluding the western barren,
are predominantly climate-related, with human activities
contributing 24% to this change. There are some
differences between the driving factors of the growing
season and the interannual ones. The influence of climate
factors and human activities on NEP in the study area is
45.36% and 54.64%, respectively. PRE is the main factor
affecting NEP during the growth season in Inner Mongolia,
and the contribution rate of TEM and SOL to the region as a
whole has a certain inhibitory effect.

Considering the potential impact of NEP instability on research
outcomes in the western barren region, this study provides a
supplementary analysis of climate factors and human activities
on NEP in non-vegetated barren areas. As presented in Table 3
it is evident that human activities have significantly contributed to
changes in NEP, while rainfall has shown a significant influence
among climate factors.

Figure 11 illustrates the contribution of various influencing
factors to NEP in Inner Mongolia, with positive and negative
areas distinguished. Human activities and climate factors make
up over 60% of the positive contribution to NEP in Inner
Mongolia, while the negative impact of climate change on NEP
surpasses that of the human activities. The most significant negative
contributions come from SOL and TEM, whereas more than 80% of
PRE can promote regional NEP changes.

③ Analysis of driving factors of NEP change in Inner Mongolia.
The primary driving factors behind the NEP spatial change
trend in Inner Mongolia were examined, as illustrated in
Figure 12, by integrating the classification criteria of
contribution rate of different driving factors presented in
Table 2. It can be seen that climate change and human
activities have impacted over 60% of Inner Mongolia,
primarily concentrated in the eastern and southern regions.
Furthermore, a decrease of approximately 20% in NEP was
attributed to climate factors, mainly occurring in the western

FIGURE 10
Contribution of meteorological factors to NEP (A). Interannual,
(B). Growing season.

TABLE 3 2001–2021 Contribution magnitude and rate of each factor in Inner Mongolia.

PRE TEM SOL PET Climatic factor Human activity

Considered barren Contribution degree Interannual 0.013 −0.007 −0.029 0.046 0.095 0.030

Growing season 0.047 −0.0005 −0.014 0.007 0.069 0.082

Contribution rate Interannual 13.68% −7.36% −30.53% 48.42% 76.00% 24.00%

Growing season 68.11% −0.73% −20.29% 10.14% 45.36% 54.64%

Excluding barren Contribution degree Interannual 0.02 −0.002 −0.018 0.036 0.076 0.034

Growing season 0.06 0.0002 −0.015 0.008 0.083 0.099

Contribution rate Interannual 26.32% −2.63% −23.68% 47.37% 69.09% 30.91%

Growing season 72.29% 0.24% −18.07% 9.64% 45.60% 54.40%
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barren area. The increase of NEP in the Yinshanbeilu and west
of Ordos is predominantly influenced by climate factors, while
human activities dominate the rise of NEP in southwest
Alashan and south Ordos.

4 Discussion

4.1 Uncertainty analysis of NEP estimation

In this paper, based on different estimation models of NPP and
soil heterotrophic respiration, the NEP values of vegetation net
primary productivity in the study area from 2001 to 2021 was
derived under the six combination models, and it was found that the
NEP values obtained from the results of different models had large

deviations. This is because changes in NEP are jointly influenced by
NPP and soil heterotrophic respiration and by a combination of
controlling variables such as vegetation cover, SOL, PRE, TEM, PET,
subsurface characteristics, soil organic carbon density, etc. Existing
studies of NEP are mainly based on soil monitoring, remote sensing
inversion, and model simulation, and these data sources have
limitations in terms of accuracy and generality. The NEP values
obtained from ground monitoring are insufficient to encompass the
entire study area; the NEP derived from remote sensing inversion is
influenced by cloud cover and atmospheric conditions, while the
NPP estimation model is constrained by variations in spatial and
regional scales across different models, the resolution of remote
sensing data, pre-processing techniques, and the impact of
parameter weighting, among other factors. Consequently,
discrepancies persist in the regional boundaries and parameter
rates of various land covers, including forests, grasslands, and
croplands, as well as at the global scale. The estimation of Rh is
crucial for delineating the ratio of soil heterotrophic respiration to
vegetation root autotrophic respiration within soil respiration.
However, significant discrepancies exist in the Rs-Rh relationship
curves derived from various methodologies. The curve modeling
presents one of the most challenging scientific problems to address.
In this study, based on the validated vegetation NEP of desert
grassland and typical grassland, we selected the most accurate
estimation model to reflect the NEP in the study area. But
for future application, it remains essential to enhance the
precision of NEP calculations derived from physiological and
ecological processes.

4.2 Spatiotemporal variation trends of NEP

In terms of time trends, the NEP of Inner Mongolia shows an
overall upward trend from 2001 to 2021, which is consistent with

FIGURE 12
The dominant factors of annual and growing seasonNEP in InnerMongolia from 2001 to 2021 (1. NEP increases due to climate and human factors; 2.
NEP increases due to climate factors; 3. NEP increases due to human activities; 4. NEP decreases due to climate and human factors; 5. NEP decrease due
to climate; 6. NEP decrease due to human factors).

FIGURE 11
The ratio of positive to negative contribution areas of each
influencing factor to NEP.
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the findings of Zhai et al. (2024) and Liang et al. (2023). This is
partly due to a series of ecological restoration and management
projects implemented in Inner Mongolia since 1978, such as the
“Three North” Protective Forest Project, the Beijing-Tianjin
Wind and Sand Source Management Project, the Grassland
Ecological Protection and Restoration Project, the Soil and
Water Conservation and Desertification Management Project,
etc., which have resulted in significant vegetation restoration in
Inner Mongolia (Kang et al., 2021). On the one hand, the increase
in vegetation cover has increased vegetation photosynthesis and
carbon sequestration capacity of regional ecosystems. On the
other hand, It has mitigated soil erosion to some degree,
enhanced soil organic carbon levels, and diminished carbon
emissions from soil disturbances, increasing NEP (Sha et al.,
2022; Qiu et al., 2021; Tian et al., 2022). Conversely, NEP in
western Inner Mongolia exhibited no significant alterations or a
declining trend, as this region predominantly comprises desert
grasslands and barrens, characterized by minimal vegetation
cover and reduced carbon sequestration capacity, while
elevated soil temperatures augmented microbial respiration.
This results in the release of more soil carbon into the
atmosphere in the form of carbon dioxide, coupled with a
fragile regional ecological environment and a more
pronounced response to extreme climatic events such as
drought, all of which can lead to a decline in NEP (Guan
et al., 2021).

Annual carbon sequestration by vegetation occurs in the
growing season. Because soil microorganisms are active in the
growing season due to higher TEM and high PRE, the carbon
sequestration capacity is significantly higher than in the non-
growing season (Yun et al., 2022). The variation in NEP
throughout the growing season is the primary factor affecting
the annual regional change in NEP. The significant decrease in
NEP values in the study area in 2007, 2010, and 2016 was due to
extreme drought events in these years, where low PRE and high
TEM resulted in the closure or partial closure of plant stomata,
limiting carbon dioxide uptake and reducing the rate of
photosynthesis (Kapoor et al., 2020; Hu et al., 2023).
Furthermore, higher TEM can expedite soil organic matter

decomposition and augment soil respiration, leading to a
decreased NEP.

The present study also unveiled substantial spatial heterogeneity in
the vegetation’s carbon sequestration capacity within Inner Mongolia,
exhibiting a distinct east-west distribution pattern that corresponds to
the regional underlying vegetation types. These findings are consistent
with previous investigations conducted by Zhai et al. (2024) and Hao
et al. (2023). Furthermore, the investigated areas displayed notable
disparities in both vegetation types and carbon sequestration capacity,
which were influenced by various meteorological factors such as mean
TEM, PRE, and elevation. The overall ranking of these characteristics
was as follows: forest > grassland > cropland > impervious > barren;
within the grassland ecosystem, meadow steppe surpassed typical
steppe and barren steppe.

4.3 Analysis of driving factors influencing
carbon sink/source

Climate change is one of the key factors affecting the
productivity level of vegetation. Some scholars believe that TEM
and PRE are the most dominant factors affecting the change of
vegetation carbon cycle (Wei et al., 2014). Some scholars conclude
that SOL and PET also have an important effect on vegetation
carbon sequestration capacity, while TEM has a relatively small
effect on vegetation carbon sequestration capacity (Li et al., 2020).
Therefore, in this study, four key factors (PRE, TEM, SOL, and PET)
affecting the changes in NEP were screened for the analysis of
climate-driven factors. Different climate factors have different
effects on the vegetative carbon sequestration capacity. PRE
supplies the requisite water for vegetative growth, and enhances
plant productivity and biomass, thereby augmenting the carbon
sequestration potential of vegetation. In Inner Mongolia, is mostly
arid or semi-arid, and water is the main factor limiting vegetation
growth (WEI et al., 2014; Zhang et al., 2019). TEM can change the
activity of plant enzymes, which in turn affects the vegetative
photosynthesis rate and its carbon sequestration capacity.
Generally, elevated TEM enhance plant photosynthesis; however,
the relationship between photosynthesis rate and TEM is not linear.

TABLE 4 Land transfer matrix table (unit:104km2).

2000

2020

Cropland Forest Grassland Shrub Wetland Water Impervious Barren Sum

Cropland 16.35 0.08 3.67 0.05 0.10 0.06 0.13 0.51 20.95

Forest 0.09 17.31 2.21 0.04 0.01 0.02 0.00 0.00 19.69

Grassland 1.93 2.03 62.44 0.36 0.33 0.10 0.06 4.58 71.84

Shrub 0.02 0.02 0.80 0.24 0.01 0.00 0.00 0.03 1.12

Wetland 0.02 0.00 0.21 0.01 0.45 0.09 0.00 0.02 0.80

Water 0.05 0.01 0.10 0.00 0.06 0.58 0.00 0.03 0.84

Impervious 0.51 0.01 0.56 0.01 0.01 0.01 0.79 0.06 1.95

Barren 0.02 0.00 1.36 0.03 0.07 0.04 0.01 34.34 35.87

Sum 18.98 19.48 71.35 0.74 1.05 0.90 1.00 39.56 ——
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If TEM surpass the optimal range for plant growth, they may inhibit
photosynthesis, leading to a reduction in Net Ecosystem Production
(Moore et al., 2021). SOL can affect the photosynthesis active
radiation received by the plant. PET has an impact on plant
photosynthesis by affecting vegetation transpiration and soil
moisture (Post et al., 1992). According to the analyses in this
study, PRE is the main meteorological factor affecting NEP
changes in Inner Mongolia.

Positive anthropogenic contributions can significantly increase
the carbon sequestration capacity of vegetation, while negative
anthropogenic activities have a decreasing effect. This study
shows that more than 90% of the anthropogenic contributions in
Inner Mongolia are positive, as can be seen from the land transfer
matrix from 2000 to 2020 (Table 4).

The area of cropland, forest, grassland, and shrubland increased by
10.36%, 1.08%, 0.69%, and 52. 2% while the bare land area decreased by
9.33%. This indicates the importance of the Inner Mongolia Sand
Control Project which has improved the regional ecosystem
environment. These measures have played an important role in the
increase of vegetation NEP, reflecting the positive role of human
activities. A major negative role of human activities is manifested in
the degradation of grassland due to overgrazing and intense grazing
which have led to the degradation of the aboveground biomass. Land
degradation has resulted in the reduction of grassland productive
capacity. Some scholars found that the changes in grassland
ecosystems in Inner Mongolia from 1999 to 2015 were mainly due
to human activities by as much as 78.8% (Wang et al., 2021). This
suggests that although China has implemented ecological protection
and construction projects such as “returning pasture to grass” and
“natural grassland protection” in grassland areas, many areas are still in
a state of overgrazing.

5 Conclusion

This study utilized monthly multi-source remote sensing data,
meteorological data, and ground-measured carbon flux data from
2001 to 2021 in Inner Mongolia. The CASA model, MODIS NPP
data, and the Rh soil respiration model were employed and evaluated
to estimate NEP. Furthermore, the spatiotemporal distribution of
NEP and its driving factors in Inner Mongolia were analyzed. The
main findings are as follows:

1) The NEP model, which integrates MODIS NPP products with
the GSMSR model and the Rs-Rh relationship model
developed by Bond-Lamberty, demonstrated the best
performance. The fitting coefficients for typical grassland
and desert grassland were 0.76 and 0.51, respectively.

2) The annual average NEP in Inner Mongolia from 2001 to
2021 was 168.73 gC·m−2·a−1. The multi-year average NEP
during the growing season was 177.57 gC·m−2·5 mth−1. The
seasonal variation in NEP was distinct, with the region acting
as a carbon sink from May to September and as a carbon source
during the remaining months. There was a seasonal transition
between carbon sink and source behavior. The peak NEP value
occurred in July, reaching 53.04 gC·m−2·mth−1. Due to ecological
restoration and management efforts, NEP showed a fluctuating
upward trend, with vegetation conditions improving year by year.

3) The large east-west extent of Inner Mongolia and the diverse
climatic conditions led to significant spatial heterogeneity in
NEP. Vegetation ecosystems showed higher density in the
northeastern regions compared to the sparser southwestern
areas. The arid western region, experiencing warming and
drying trends, exhibited a tendency toward carbon source
behavior, substantially influencing both annual and growing
season NEP patterns.

4) All Climatic conditions collectively influence the magnitude
and variation of NEP. Based on correlation coefficients, PRE
emerged as the primary meteorological driver of interannual
NEP variations in Inner Mongolia. TEM and PRE during the
growing season jointly influenced NEP. In terms of
contribution rates, PRE remained the dominant
meteorological factor affecting NEP changes in the study area.

5) When considering barren and non-barren areas, the
contribution rates of climate change and human activities
to NEP variations were relatively similar. Over 55% of areas
with increasing NEP were influenced by both climate change
and anthropogenic activities, predominantly located in the
eastern and south-central regions of Inner Mongolia. In
contrast, climate factors were the primary drivers of the
approximately 20% decline in NEP, mainly observed in the
arid western regions of Inner Mongolia.
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