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The accuracy of urban runoff simulation using the Storm Water Management
Model (SWMM) largely depends on parameter calibration. This study proposes a
universal and effective method to enhance model accuracy by optimizing
parameter value ranges through an unsupervised intelligent clustering
algorithm. Simulation scenarios with varying proportions of pervious and
impervious areas are established, and sensitivity analysis is conducted to rank
key parameters and identify dominant runoff generation patterns. The results
show that when the impervious area is less than 10%, the most sensitive
parameters are Zero.Imperv, N.Imperv, and Dstore-Imperv, indicating that
runoff primarily originates from pervious surfaces. As the impervious area
increases, runoff generation shifts to impervious areas, where the Unit
Hydrograph Model, with fewer parameters and a simpler calibration process,
leads to higher simulation accuracy. These findings improve the reliability of
SWMM calibration and provide a reference for setting accuracy requirements
under different urban surface conditions.
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1 Introduction

With the rapid acceleration of urbanization and the increasing frequency of extreme
rainfall events, accurately simulating urban runoff processes has become essential for
effective flood management and water resource planning. The Storm Water Management
Model (SWMM) is a dynamic precipitation-runoff model for simulating the hydrological
processes such as the runoff generation in urban areas. However, the reliability of SWMM
simulations heavily depends on accurate parameter calibration. Currently, SWMM lacks a
universal parameter adjustment tool, which presents challenges in both efficiency and
accuracy, particularly when applied to complex urban environments. The model represents
the spatial difference of the urban surface by dividing the study area into multiple sub-
catchments. The SWMM hydrology module generalizes the sub-catchment into three types
of the underlying surface and their runoff simulation, an impermeable area with depression
storage, an impermeable area without depression storage, and a permeable area. The
hydraulics module is used for water transmission through pipe networks, canals, storage
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and treatment facilities, pumps, regulating gates, etc. Three main
methods are available for convergence calculations: the Steady Flow
Model, the Kinematic Wave Model, and the Dynamic Wave Model.
SWMM has been widely used worldwide for modelling of flood
processes and stormwater regulation treatments. It has also worked
on the planning, analysis and design of drainage systems in urban
and non-urban areas.

As the three subareas in SWMM had different hydraulic
properties from each other and the urban runoff process was
controlled by a combination of three runoff generation patterns,
it was not easy to efficiently calibrate the parameters according to the
conditions of each case. Further, the SWMMmodel did not include
a complete calibration module, which made developing a calibration
method for SWMM an urgent task and an important research field
in SWMM application.

The SWMM calibration could be conducted manually through
the trial-and-error method or automatically through optimization
algorithms. Trial-and-error calibration was easily affected by human
subjectivity and had the disadvantages of poor accuracy and low
efficiency (Snieder and Khan, 2022). Therefore, automatic
calibration was considered as a better alternative because it could
accelerate the calibration process and reduce model errors (Wagner
et al., 2019). Automatic calibration algorithms commonly included
the genetic algorithm (Sun et al., 2022), back propagation neural
network (BPNN) (Huang et al., 2015), particle swarm optimization
(PSO) (Jafari et al., 2018), as well as other surrogate models that
became popular recently (Bellos et al., 2017; Garzón et al., 2022; Li
et al., 2023; Yang et al., 2023). The above algorithms were
operationally able to find the parameter set that made the
SWMM simulation the most accurate. However, those methods
did not convey useful information of model uncertainty, i.e., how
reasonable the combination of parameters was.

The uncertainty inherent in hydrological models predominantly
arises from four sources: the quality of observational data, the
structure of the model, initial conditions, and the parameters
involved (Zhao et al., 2024). The model structure and data
cannot be optimized for the model users. The initial conditions
can be eliminated by Pre-Training Model (PTM) (Chen et al., 2023).
Therefore, the uncertainty in the model caused by parameters is an
issue that model users need to pay attention to. The SWMM runoff
process contained generalizations of the runoff characteristics of two
kinds of underlying surfaces and their runoff patterns. As the
number of parameters increased, the correlation between
parameters became complex and the model uncertainty
also increased.

As a conceptual model, parameter calibration in SWMM was
essentially a series of trial runs; when trying out a large number of
model parameters with a limited number of observations, a unique
combination of parameters could not be guaranteed (Abbaspour
et al., 2007; Ajami et al., 2004; Serban and Freeman, 2001). This is
not only because of the large number of parameters but also due to
the large range of the parameter values. Although the simulation
accuracy of the model is high, if the two sources of model
uncertainty are ignored, the predictive accuracy of the model will
be significantly reduced.

The number of model parameters was determined by the model
developer. For model users, defining a reasonable range of
parameters was an effective strategy to eliminate parameter

uncertainty (Zhong et al., 2022). In general, the initial ranges of
the model parameters were universally provided by the user manual.
Though the surface characteristics would be parameterized
according to the professional experience and local conditions, the
manual calibration was subjective and could only narrow down the
range of parameters to a limited extent. Therefore, optimizing the
value ranges of the parameters became an important task in model
calibration and uncertainty reduction.

This paper develops a Python-based SWMM batch calculation
interface, using Latin Hypercube Sampling to generate a parameter
sample set. The SOM algorithm is then applied to perform self-
organizing clustering of the sample set and its corresponding model
simulation accuracy index (NSE) to narrow the parameter value
range, effectively reducing parameter uncertainty. Subsequently, a
random sampling method is used to search for the optimal
parameter combination within the optimized range. After
parameter calibration, the SA-BP global sensitivity analysis
method is employed to identify the key parameters and
dominant runoff generation patterns of SWMM under different
surface conditions (varying proportions of impervious areas). This
study provides a generally effective method for improving SWMM
model accuracy and reducing model parameter Method.

1.1 Study area

The study area was located at the central campus of Jilin
University (125°15′E, 43°54′N), in Changchun, Jilin Province,
China (Figure 1). Changchun had a semi-wet, monsoon-type
climate; with an average annual precipitation of 570.3 mm. The
monthly distribution of the precipitation was uneven, with the
flooding season lasting from June to September.

The study area covers approximately 647,300 m2 and has a
complete drainage network. Based on the terrain and watershed
network layout, the study area is divided into 26 sub-catchment
areas (Figure 1; Table 1), with the underlying surface morphology
identified using regional remote sensing data. The rain event of
August 14 to 15, 2023 was selected for calibration (Figure 2A) with a
return period of 0.11 years. The model validation was based on the
rain event on 25 August 2023 (Figure 2B) with a return period of
0.13 years. Both rainfall events occurred during the flood season
(June to September) in northern China. According to SWMM’s
generalization requirements, better forecasting accuracy is achieved
when the future application environment aligns with the model’s
calibration period (Choi et al., 2002).

1.2 Method

1.2.1 Latin hypercube sampling algorithm
McKay et al. proposed LHS algorithm in 1979, which was a

stratified sampling method of taking approximately random
samples from a multivariate distribution (Mckay et al., 1979).

For a random variable X, with its sample denoted as xi,
i � 1, 2, . . . . . . , I, where I is the dimension of the random
variable X, the values xi are uniformly sampled from
each value range Δi, resulting in J groups, This can be
expressed as: xi,j � x1,j ∈ Δ1, x2,j ∈ Δ2, . . . , xi,j ∈ Δi, . . . , xI,j ∈ ΔI{ }
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FIGURE 1
Study area overview (A) central campus of jilin university (B) sub-catchment delineation (C) drainage network layout.

TABLE 1 Sub-catchments properties.

ID Slope (%) Area (m2) Impervious (%) ID Slope (%) Area (m2) Impervious (%)

S1 0.03 28,100 33 S14 0.03 30,300 0

S2 0.03 22,600 0 S15 0.02 11,100 85

S3 0.04 22,900 0 S16 0.02 11,900 85

S4 0.02 19,900 85 S17 0.02 42,500 41

S5 0.03 9,400 85 S18 0.03 90,100 54

S6 0.02 17,200 85 S19 0.02 33,700 79

S7 0.02 11,500 85 S20 0.02 76,600 73

S8 0.03 12,800 40 S21 0.02 47,000 50

S9 0.02 25,000 93 S22 0.03 27,400 85

S10 0.04 10,000 94 S23 0.03 15,600 50

S11 0.04 8,000 85 S24 0.02 19,700 35

S12 0.03 15,000 85 S25 0.03 11,400 28

S13 0.03 15,000 85 S26 0.04 12,600 0
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and pi,j � xi,j ∈ Ωi, i � 1, 2, . . . . . . , I, j � 1, 2, . . . . . . , J{ }. In this
paper, LHS algorithm was used to generate the sample set of model
parameters.

1.2.2 Sensitivity analysis-back propagation method
In this paper, sensitivity analysis was used for key parameter

identification to determine the main runoff generation pattern (Xie
et al., 2021). Sensitivity analysis is an analytical technique to quantify
the extent to which changes in independent variables lead to changes
in dependent variables (Pan et al., 2021).

When the independent variable is x1, x2, . . . , xn and the
dependent variable is y, the mapping relationship between them
is y � f(x1, x2, . . . , xn). Each independent variable xi changes
within its range, and the impact of these changes on the
dependent variable y is analyzed. This is referred to as the
sensitivity of y to the independent variable xi. In this study, the
SA-BP method, a global sensitivity analysis technique based on
backpropagation neural networks, is used to simulate the complex
nonlinear mapping relationship between rainfall and runoff in
SWMM, considering the coupling effects of other model
parameters (Li et al., 2014; Li et al., 2012).

1.2.3 Self-organizing map
In this paper, the SOM algorithm was used for optimizing

the parameter range. The SOM was developed by the Finnish
scientist T. Kohonen (Kohonen, 1998). The SOM algorithm is a
neural network algorithm based on unsupervised learning that
can achieve intelligent clustering of data through self-
organizing competitive learning without understanding the
interrelationships between sample data. The algorithm
evaluates the similarity of input patterns using Euclidean
distance, where a smaller distance indicates higher similarity,
and clustering analysis can be performed based on a constant
distance threshold.

The SOM process involves several key steps: First, the weight
vectors of neurons are unitized. Then, the neuron most similar to
the input vector is identified. Afterward, the weight vector of the
winning neuron is adjusted using either the summation or
subtraction method, where the weight vectors of other
neurons remain unchanged. The adjustment is made using a
learning rate that decreases over time. Through multiple
adjustments, the winning neuron’s weight vector moves closer
to the input vector.

1.2.4 Generalized likelihood uncertainty estimation
and evaluation index

GLUE was used to analyze the parameter uncertainty of
SWMM. The model calibration was essentially updating the
parameters to reduce the model error to meet the design
requirements. GLUE, a method of assessing the overall
uncertainty of a model, was developed by the British hydrologist
Beven based on the Generalized Sensitivity Analysis (RSA) method
of Beven and Freer (2001), Hornberger and Spear (1980).

1.2.5 SWMM principle and structure
There are two types of surface runoff generation patterns used in

the SWMM model, the permeable generation pattern and the
impermeable generation pattern, as shown in Figure 3 The two
types of runoff generation patterns are similar in principle. Each
sub-catchment is treated as a non-linear “reservoir,” with rainfall
and surface runoff from the upstream sub-catchment as the water
input. The outflow consists of evaporation and surface runoff, with
the presence or absence of infiltration determined by the sub-
catchments underlying surface permeability. Surface runoff Q will
only occur if the reservoir depth d exceeds the maximum depression
storage depth dp.

The parameters that dominate various land covers would be
different, as they acted on different runoff generation patterns. To
investigate the effect of each parameter on different runoff
generation patterns, the simulation results were analyzed and
discussed in different scenarios of varying impervious
percentages.

2 SWMM parametric intelligent
calibration method

2.1 Optimization of SWMM
parameter ranges

In this study, 9 SWMMmodel parameters for the investigated
watershed were optimized, denoted as P (Figure 4). The LHS
algorithm was employed to generate a sample set of 500 model
parameters, denoted as pi,j, where pi,j � pi,j ∈ Ωi; i � 1,{
2, . . . . . . , 9; j � 1, 2, . . . . . . , 500}. SWMM was run to simulate
the runoff process set based on pi,j groups parameter set. The
parameters were randomly sampled within their respective value

FIGURE 2
Rainfall process (a) August 14 to 15, 2023 (b) 25 August 2023.
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FIGURE 3
Conceptual view of surface runoff (A) impervious area (B) pervious area.

FIGURE 4
Framework flowchart.
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ranges Ωi (Rossman, 2015). The Nash-Sutcliffe efficiency (NSE)
coefficient was chosen as the evaluation index of the model
accuracy. The P-factor and R-factor were selected for
evaluating the model uncertainty. The P-factor represents the
ratio of the number of observation data points within the 95%
confidence interval of the simulated values to the total number of
observation data points, and the R-factor represents the ratio of
the mean difference between the results corresponding to the
97.5% and 2.5% percentiles, i.e., expanding the upper and lower
limits of the 95% confidence interval by 2.5%, to the standard
deviation of the observation values (Narsimlu et al., 2013).

To optimize the parameter ranges and improve the accuracy of
the model simulation, the SOM was used as an intelligent clustering
algorithm to perform a clustering analysis of the parameter values.
The sampling set pi+1,j (10 dimensions) consisting of 500 parameter
sets (9 dimensions) and corresponding simulation results, denoted
as NSEj. The highest NSEj is represented as NSEbest

(NSEbest � max NSEj{ }). The SOM model classifies pi+1,j into 4,
5, and 6 clusters based on the corresponding NSE values
(Figures 5–7).

The best class in terms of the high NSE coefficient and the
low standard deviation was picked. The range of each parameter

within this class was then considered to be optimized. As the
number of clustering classes increased (e.g., from 4 to 6), the
ranges of the parameter value were continuously narrowed down
and then optimized. By comparing the NSE coefficients of the
4 classes in Figure 5A, the third class with the high NSE
coefficients and the low standard deviation was chosen as the
optimal one. The parameter ranges corresponding to the optimal
class were extracted as the new ranges for the next round of
optimization (Figures 5B–J). The N-Imperv in Figure 5B could
be used as an example; The parameter values of the third class
were concentrated to the optimal range of [0.011, 0.0125] after
the 4-class clustering. Similarly, the ranges of values for the
parameters Dstore-Perv (Figure 5E), %Zero-imperv (Figure 5F),
and Min. Infil.Rate (Figure 5H) can be reduced. The remaining
parameters (Figures 5C, D, G, I, J) had no narrower
concentration so the initial ranges of their values were still
used. The value ranges of each parameter after the clustering
according to 4, 5, and 6 classes were shown in Table 2, and the
optimized parameter ranges were the intersection of the three
clustering results.

Figure 8 shows the degrees to which the parameter ranges
were reduced. Except for Dstore-Imperv, all parameters have

FIGURE 5
SOM 4-class clustering (A) NSE (B) N-Imperv (C) N-Perv (D) Dstore-Imperv (E) Dstore-Perv (F) %Zero-imperv (G)Max.Infil.Rate (H)Min.Infil.Rate (I)
Decay_Constantv (J) Drying_Time.
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been reduced significantly, with the largest reduction of 63.2% for
Max. Infil.Rate and an average reduction of 47.4% for all
parameters.

In the next iteration, the LHS algorithm is used again to generate
500 parameter sets, denoted as pi,j′, from the optimized parameter
ranges Ωi′ to drive the SWMM simulation.

In the next iteration, the LHS algorithm is used again to generate
500 parameter sets from the optimized parameter rangeΩi′ denoted
as pi,j′ to drive the SWMM simulation. This process yields a new
NSEj′, NSEbest′ (NSEbest′ � max NSEj′{ }), P’ − factor and R’ −
factor.

This cycle will be only ended until the optimal parameter ranges
Ω*

i were found when the P’ − factor, R’ − factor, and theNSEbest′
reached better values than the design requirements; otherwise, the
SOM clustering algorithm would be repeated. After confirming Ωi*,
the final optimal parameter set pi* can be determined through
computation.

2.2 Uncertainty analysis of model

Compared to the original 95% confidence interval (Figure 9), the
updated 95% confidence interval became significantly narrower
through the class clustering. There were also significant
reductions in the standard deviation (by 49.39% on average),

discrete coefficient (SD/Mean) (by 48.77% on average), and the
R-factor from 0.396 to 0.226 of the optimized parameters set
(Table 3). Although the NSE coefficients did not significantly
improve (from 0.776 to 0.777), the effect of parameter
uncertainty on the accuracy of model results was
effectively mitigated.

2.3 Evaluation of optimization accuracy

Evaluation of the accuracy of the simulation and validation
results was carried out based on the above parameter optimization
results. The results (see Table 3, the Optimal Solution) were
validated by selecting the return period of 0.13 years of rainfall
on 25 August 2023 (Figure 10). It can be seen that the NSE
coefficient remained high after the parameter optimization,
indicating that the parameter optimization method was effective
and feasible.

3 Factors controlling the runoff
generation patterns

As can be seen from Table 3, although the optimization of
parameter range was effective in abating the model uncertainty,

FIGURE 6
SOM 5-class clustering (A) NSE (B) N-Imperv (C) N-Perv (D) Dstore-Imperv (E) Dstore-Perv (F) %Zero-imperv (G)Max.Infil.Rate (H)Min.Infil.Rate (I)
Decay_Constantv (J) Drying_Time.
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there was no significant improvement in the model accuracy.
According to the SWMM model runoff analysis, the impermeable
area and its runoff generation patterns were likely to be themain cause
controlling the runoff simulation. The runoff pattern was only related
to the three parameters in this study: N-Imperv, Dstore-Imperv, and

%Zero-imperv, which were relatively easy to determine. In order to
verify this assumption, the key parameters were identified according
to the land covers, while the runoff generation patterns were analyzed
with various surface characteristics such as impervious percentages of
subcatchments.

FIGURE 7
SOM 6-class clustering (A) NSE (B) N-Imperv (C) N-Perv (D) Dstore-Imperv (E) Dstore-Perv (F) %Zero-imperv (G)Max.Infil.Rate (H)Min.Infil.Rate (I)
Decay_Constantv (J) Drying_Time.

TABLE 2 The parameters range under clustering of groups.

Parameter Unit Initial
(recommended)

Range

4-Class
Clustering

5-Class
Clustering

6-Class
Clustering

Optimized
range

N-Imperv — [0.011, 0.015] [0.011, 0.0125] [0.011, 0.013] [0.011, 0.0135] [0.011, 0.0125]

N-Perv — [0.15, 0.8] [0.15, 0.8] [0.4, 0.8] [0.35, 0.8] [0.4, 0.8]

Dstore-Imperv mm [1.27, 2.54] [1.27, 2.54] [1.27, 2.54] [1.5, 2.54] [1.27, 2.54]

Dstore-Perv mm [2.54, 7.62] [2.54, 5.5] [2.54, 4.5] [2.54, 4.5] [2.54, 4.5]

%Zero-imperv % [0, 100] [0, 55] [0, 50] [0, 60] [0, 50]

Max.Infil.Rate in/hr [1, 5] [1, 5] [1, 5] [2.5, 4.8] [2.5, 4.8]

Min.Infil.Rate in/hr [0.01, 4.74] [3, 4.74] [3, 4.74] [1.8, 4.74] [3, 4.74]

Decay_Constant 1/hr [2, 7] [2, 7] [4.5, 7] [3.5, 7] [4.5, 7]

Drying_Time days [2, 14] [2, 14] [9, 14] [8.5, 14] [9, 14]

Frontiers in Environmental Science frontiersin.org08

Yang et al. 10.3389/fenvs.2025.1582306

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1582306


3.1 Identification of runoff generation
patterns

The SA-BP Sensitivity Analysis was used to identify the key
parameters that controlled the runoff generation patterns (Chen

et al., 2009; Jenkins, 2006). The LHS algorithm was used to generate
500 sets of samples as the model inputs, and the NSE coefficients
corresponding to the simulation results were used as the outputs.
Three runs were performed and the results of each run, i.e., the
sensitivity of these parameter sets, were normalized separately,
shown in Figure 11. The influence of the parameters %Zero-
imperv on the simulation results was greater than the other
parameters with the current surface conditions. It can be inferred
that the impermeable runoff generation pattern was the major factor
controlling the runoff generation pattern due to the greater
proportion of impermeable area (55.8%).

3.2 Urban runoff generation mechanisms

The above analysis shows that when the impermeable area was
55.8%, the parameters controlling the impermeable surface played a
predominant role in determining the runoff generation process,

FIGURE 8
Comparison of parameter ranges before and after the
optimization.

FIGURE 9
Confidence intervals for flow hydrograph before and after parameters range optimization.

TABLE 3 Statistical characteristics and optimal solution of parameters set before and after parameters range optimization.

Sub_property Initial Optimized

Optimal solution Mean SD SD/Mean Optimal solution Mean SD SD/Mean

N-Imperv 0.0111 0.0130 0.00115 0.089 0.0112 0.0117 0.00043 0.037

N-Perv 0.774 0.48 0.19 0.395 0.580 0.60 0.12 0.192

Dstore-Imperv 2.534 1.90 0.37 0.192 2.540 2.02 0.30 0.149

Dstore-Perv 3.332 5.08 1.47 0.289 3.847 3.52 0.57 0.161

%Zero-imperv 8.497 50.00 28.87 0.577 8.637 25.00 14.43 0.577

Max.Infil.Rate 2.666 3.00 1.15 0.385 4.210 3.65 0.66 0.182

Min.Infil.Rate 3.643 2.38 1.37 0.575 3.944 3.87 0.50 0.130

Decay_Constant 4.608 4.50 1.44 0.321 5.793 5.75 0.72 0.126

Drying_Time 5.059 8.00 3.46 0.433 12.723 11.50 1.44 0.126

NSE 0.776 0.777

R-factor 0.396 0.226
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which needed to be further studied to fully understand the
underlying relationship between the imperviousness of the
catchment and the SWMM accuracy.

3.2.1 Impervious scenarios
The model impervious percentages of 0%, 10%, 20%, 90%, and

100% were studied separately to investigate their roles in affecting
the runoff generation patterns. The rain event on August 14 to 15,
2023 was selected as the model input to simulate the corresponding
hydrographs at the outfall (Figure 12). As the percentage of
impervious area increased, the peak and total runoff significantly
increased as expected, and the magnitude of change decreased with
the increase of impervious area.

3.2.2 Identification of the control parameters
To identify the key parameters controlling the runoff generation

patterns, the sensitivity analysis based on the SA-BP method was
performed for the parameters in each impermeable scenario. The
results were normalized (Figure 13A) and sorted (Figure 13B).
When all the catchment surface was permeable, the parameter
Min. Infil.Rate was the key parameter affecting the runoff
generation, followed by N.Perv and Decay_Constant. these three
parameters were all acting on the permeable generation pattern,
i.e., the runoff generation process of the catchment was mainly
controlled by the permeable pattern.When the entire catchment was
covered by the impermeable surface, the parameter %Zero.Imperv
was the key parameter, followed by N. Imperv and Dstore-Imperv;

all three parameters were acting on the impermeable surface, i.e., the
impermeable pattern was dominant in determining the runoff
generation.

As the percentages of impervious area in the study area
increased, the sensitivity of parameters representing the
impervious surface increased according and vice versa for the
parameters controlling the permeable surface (Figure 13A), which
indicates that the runoff generation mechanism gradually shifted
from the permeable pattern to the impermeable pattern. Notably,
20% of the impermeable percentage was the threshold of
determining the surface runoff generation pattern; when the
impervious percentage became less than 10%, Min. Infil.Rate

FIGURE 10
Validation period flow hydrograph (A) Before parameter optimization (B) After parameter optimization.

FIGURE 11
Parameter sensitivity analysis under current surface conditions.

FIGURE 12
Hydrographs at the outfall for different impermeable
percentages.
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became the key parameter and the runoff generation process was
controlled by the permeable pattern; when the impervious
percentage was greater than 10%, the key parameter became %
Zero.imperv and the runoff generation process was
impermeable pattern.

The value of this study was to qualitatively estimate the
simulation and forecasting accuracy of the model based on the
percentage of the impermeable area, so that the requirements of the
simulation accuracy could be reasonably proposed. When the
impervious percentage exceeded a certain critical value such as
10% in this study, the SWMM could have a good simulation
accuracy; conversely, the accuracy may not be too good, so the
accuracy requirement should be set relatively lower in practical
application.

4 Conclusion

This study used the SOM and GLUE algorithms for the
clustering analysis to optimize the parameter range and
effectively reduce the model uncertainty. This method was used
for the 9 parameters of SWMM and the ranges of the 8 parameters
were significantly reduced, except for the parameter Dstore-Imperv.
The largest reduction in the value range by 63.2% was achieved for
the parameter Max. Infil.Rate, with an average reduction rate of
47.4% for all parameters.

This work provided a feasible 3-step workflow for SWMM
calibration consisting of identifying key parameters by the SA-BP
method, optimizing the parameter ranges by the SOM method, and
optimizing the parameter values based on the LHS method.

The SWMM runoff generation pattern was found to be
controlled by the ratio of permeable area to the impermeable
area of the underlying surface based on this study. When the
impervious area accounted for over 10%, the corresponding
parameters of the impervious surface controlled the runoff
generation pattern of the catchment, and the accuracy of SWMM
results tended to be relatively higher; on the contrary, if the overall
impervious percentage was below 10%, the runoff generation was
controlled by the permeable pattern, and the accuracy of SWMM
results was comparatively lower.

Given that a universal parameter calibration tool for SWMMhas
not yet been developed, the parameter range optimization and
calibration method based on the SOM algorithm proposed in this
paper not only improves the accuracy of SWMM simulation and
prediction but also provides additional value in the following
aspects: Firstly, by establishing reasonable value ranges for each
parameter and gradually increasing the number of parameters set
classifications (e.g., dividing the parameter set into 4, 5, and
6 categories in this study), the parameter ranges are continuously
narrowed to achieve parameter optimization, thereby reducing the
uncertainty in parameter values and their combinations. Secondly,
by identifying key parameters, the dominant runoff generation
pattern can be determined, which further allows the
quantification of the critical impervious area ratio at which the
“impermeable generation pattern” becomes the dominant runoff
generation pattern (e.g., 10% in this study). At this point, SWMM
tends to achieve higher simulation and prediction accuracy, and
most urban rainfall-runoff patterns fall into this category.
Conversely, when the “permeable generation pattern” is the
dominant runoff generation pattern, the simulation and

FIGURE 13
Parameter sensitivity at different impervious area percentages (A) normalized indicators (B) indicators sorting.
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prediction accuracy of SWMM tends to be relatively lower. This
often occurs in catchments with significant spatial variability in
underlying surface conditions.

The SWMM parameter calibration in this study was conducted
based on measured historical rainfall and runoff data. The Python-
based SWMM batch computation program, combined with LHS,
was used to generate SWMM accuracy indicators such as NSE. The
SOM clustering algorithm was then applied to optimize parameter
value ranges and obtain the optimal parameter combination. The
complete execution of the case study in this paper takes
approximately within 2 h. If this algorithm were embedded into
an urban flood control system for real-time simulation and
forecasting, it would involve system integration and other related
aspects. This will be the focus of the authors’ future work.

The results of this study have significant potential applications in
urban hydrology and flood risk management. The proposed
workflow improves both the calibration efficiency and accuracy
of SWMM, thereby enhancing its suitability for urban stormwater
simulation. Furthermore, a deeper understanding of runoff
generation mechanisms contributes to optimizing urban drainage
system design and improving the accuracy of flood predictions.
Looking ahead, this approach can be extended to real-time flood
control, urban hydrological digital twin modeling, and integrated
water resource management.
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