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Introduction: This study investigates the nonlinear dynamics between
environmental regulation (ER) and the development speed of New Quality
Productive Forces (NQPF) by integrating compliance cost effects and
innovation compensation effects into a unified framework.

Introduction: Using panel data from Chinese A-share listed firms (2012–2022),
we apply fixed-effects model and nonlinear mediation analysis (via the SPSS
Medcurve program) to quantify the inverted U-shaped ER-NQPF relationship,
incorporating robustness checks for endogeneity and heterogeneity across
industries, regions, and ownership types.

Results and Discussion:We identify a robust invertedU-shaped relationship, with
moderate ER intensity stimulating productivity gains through innovation
incentives, while excessive stringency suppresses growth due to escalating
compliance costs. Mechanism analyses reveal that compliance costs mediate
this relationship nonlinearly, whereas innovation investment—particularly R&D
expenditures—exerts a negative mediating effect, reflecting resource diversion
toward short-term compliance over transformative innovation. Heterogeneity
tests underscore critical disparities across industries, regions, and firm
ownerships, challenging the universality of the Porter Hypothesis in
transitional economies. Practically, the findings advocate for spatially and
sectorally differentiated environmental policies, emphasizing institutional
readiness and localized innovation ecosystems. This study redefines the ER-
productivity debate by integrating institutional context and firm-level adaptability,
offering actionable insights for sustainable governance in emerging economies.
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1 Introduction

Since September 2023, when Xi Jinping, the General Secretary of the Central Committee
of the Communist Party of China (CPC), visited Heilongjiang Province and introduced the
concept of “new quality productive forces” (NQPF), the term has garnered significant
scholarly and public attention. NQPF refers to advanced productive forces characterized by
innovation as the primary driver, a departure from traditional economic growthmodels and
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productivity development trajectories, which exhibit high-tech,
high-efficiency, and high-quality attributes consistent with the
new development philosophy (Xinhua News Agency, 2024). As a
concrete manifestation of advanced productive forces, NQPF
represents a distinct Chinese innovation and practical application
of Marxist theory for productive forces. This theoretical framework
inherits the essence of Marxist theory by highlighting the decisive
role of productive force development in propelling economic
progress. Moreover, it enriches the scope and connotation of the
Marxist productive force theory, furthering its development by
deepening our understanding of productive forces and their
inherent developmental laws through a methodological approach
that organically integrates qualitative and quantitative dimensions.

Human society has experienced tremendous productivity leaps
brought about by the first and subsequent technological revolutions.
Based on traditional productivity theories, China has undergone rapid
growth for over 3 decades through a development mode characterized
by substantial resource investment and high energy consumption.
Currently, a new round of scientific and technological revolution and
industrial transformation is in full swing, and China has entered an era
of intelligence and digitalization. The Chinese economy is confronting
issues such as transforming from traditional to high-tech industries,
adjusting and upgrading of industrial structures, and facing sustainable
development challenges, including resource shortages and
environmental pollution. Traditional productivity theories cannot
sufficiently address these contemporary challenges and to provide
adequate guidance for China’s future economic development.
Although traditional productivity theories still hold value and
significance, they must to be integrated with new theories to adapt
better to China’s current development needs. Against this backdrop,
NQPF theory proposed by Xi Jinping provides precise theoretical
guidance for the current development of the Chinese economy. The
concept of NQPF extends Marx’s classical theory of productive forces
(labor, means of labor and objects of labor) to encapsulate the dynamic
interplay of innovation, technological upgrading, and institutional
adaptation in modern economies. Unlike conventional productivity
metrics (e.g., Total Factor Productivity) that prioritize static efficiency,
NQPF quantifies the synergistic transition from labor-intensive to
technology-driven production systems—a shift exemplified by
intelligent machinery adoption (materialized labor) and
management-process innovations (soft technology). By constructing
a multidimensional index for strategic emerging industries (Song et al.,
2024), NQPF provides a granular lens to assess how firms reconcile
environmental compliance with productivity transformation,
particularly under China’s dual policy goals of green transition and
innovation-led growth. This operationalization not only grounds the
concept inmeasurable dimensions but also addresses the critical gap in
existing literature: disentangling the nonlinear effects of ERon quality
(vs quantity) of productivity growth.

NQPF is grounded in the novel perspective that ecology is a
resource and equates to productivity and characterized by its green and
low-carbon attributes. This aligns well with the international focus on
carbon emissions that has persisted over time. As the country with the
largest increase in carbon emissions, and soon to become the largest in
cumulative emissions, China faces significant international pressure to
reduce its carbon footprint. In response to this challenge, at the 75th
Session of the United Nations General Assembly, China committed to
reaching peak carbon by 2030 and carbon neutrality by 2060. To

achieve these goals, the Chinese government has continuously
intensified its ER in recent years. Confronted with escalating
environmental constraints, enterprises have adopted various
strategies to meet carbon emission standards, such as hiring highly
skilled personnel (new quality labor), adopting more advanced
production tools (new quality means of labor), and utilizing cleaner
raw materials or energy (new quality objects of labor). However, this
raises several critical questions that warrant further investigation: Does
heightened ER accelerate the development speed of firms’ NQPF? Is
the relationship between the two linear or nonlinear? What are the
mechanisms underlying the effects of ER on the development speed of
NQPF? Does the impact vary across firms and provinces?

This study aims to investigate the nonlinear relationship
between ER and NQPF development speed. Employing data from
non-financial A-share listed firms in China from 2010 to 2022, this
study uses the ratio of completed investment in industrial pollution
abatement to the value-added of the secondary industry as a proxy
for the stringency of ER at the provincial level. Drawing on extant
literature, this study constructs an index system for corporate NQPF
and uses the entropy method to quantify each firm’s NQPF level.
Based on this, we calculate the development speed of NQPF for each
firm. Subsequently, we conduct an in-depth analysis of the causal
link between ER and the development speed of NQPF, as well as the
underlying transmission mechanisms.

This study contributes to the existing literature in several key ways.
(1) It examines the nonlinear relationship between ER and NQPF,
offering a novel theoretical perspective on both ER and NQPF. (2) This
study prioritizes the development speed of NQPF over static NQPF
levels to evaluate the dynamic interplay between ER and sustainable
transitions. Our choice for this variable mainly grounded in three
critical considerations. First, static NQPF levels reflect cumulative
outcomes but obscure the adaptation velocity at which firms
respond to regulatory pressures. For instance, firms with identical
NQPF levels may exhibit divergent trajectories—one stagnating
under compliance costs and another advancing rapidly through
green innovation—a distinction SNQPF quantifies by aligning with
dynamic capability theory (Teece et al., 1997), which emphasizes
resource reconfiguration under external shocks. Second, growth rates
provide policymakers with temporally sensitive insights into whether
ER drives short-to-medium-term progress toward sustainability goals,
revealing incremental improvements or stagnation masked by level-
based analyses. Third, SNQPF mitigates baseline heterogeneity by
isolating the marginal effect of ER on innovation velocity, reducing
confounding from path dependency (e.g., diminishing returns in high-
NQPF firms) and selection bias (e.g., overrepresentation of resource-
rich firms in level-based metrics). By focusing on development speed,
this study captures ER’s role in accelerating or impeding firms’ adaptive
capabilities, offering actionable insights for iterative policy design and
sustainable transition strategies. (3) This study empirically reveals an
inverted U-shaped relationship between ER stringency and NQPF
development speed at the firm level. This finding offers a scientific
basis for policymakers to devise differentiated environmental policies
that can facilitate technological innovation and productivity upgrades
while simultaneously protecting the environment. This can help firms
achieve a win-win scenario for sustainable development and
economic growth.

The remainder of this paper is organized as follows. Section 2
provides a theoretical foundation, reviewing the evolution of
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productivity theory. Section 3 presents a literature review
summarizing relevant prior research. Section 4 details the
methodology and outlines the research design, data sources, and
models used. Section 5 presents the empirical analysis and results.
Section 6 discusses the results. Finally, Section 7 provides
conclusions and policy recommendations.

2 Theoretical evolution of productive
forces: from classical foundations to
New quality dynamics

Since introducing the concept of NQPF, Xi Jinping has repeatedly
elaborated on its connotations. He has emphasized that revolutionary
technological breakthroughs, innovative allocation of production
factors, and deep industrial transformation and upgrading catalyze
NQPF. The fundamental essence lies in the significant upgrading of
workers, means of labor, and objects of labor, as well as their
optimized combinations. A substantial increase in total factor
productivity serves as a core indicator. Characterized by
innovation, with quality as the key factor, the essence of NQPF is
that it represents advanced productive forces. This original concept of
NQPF has become a pivotal point of focus in China’s efforts to
advance high-quality development, attracting significant attention
both domestically and internationally.

Productive forces decisively drive human progress and economic
growth, and the study of the development of productive forces and how
this relates to societal advancement has been the central focus of
economists. The development of productive forces has traversed a
historical trajectory from “old” to “new,” from “low-quality” to “high-
quality,” and from “traditional” to “modern,” with its constituent
elements constantly evolving alongside societal changes. Traditional
theories of productive forces can be traced back to the era of Classical
Political Economy. During this period, theories of productive forces
emphasized the labor theory of value (initially proposed by British
economist Petty (1662) and significantly developed by Smith and
Strahan (1776); Ricardo (2009)], role of production factors [labor,
land, and capital, delineated by Say (1836), and impact of division
of labor and specialization (Smith and Strahan, 1776) on productive
forces. List (1856) further expanded the concept to encompass “material
productive forces” (agriculture, industry and commerce) and “spiritual
productive forces” (science, education, culture, and institutions).

During the Neoclassical Economics period, productive forces
theory shifted in focus towards measuring economic growth. Several
scholars have employed mathematical tools to explore the impact of
production factors on economic growth from both macro and micro
perspectives, such as the “three engines” of economic growth
(consumption, investment, and exports) described by Keynes
(1937), Cobb-Douglas production function (Cobb and Douglas,
1928), Harrod-Domar Growth Model (Harrod, 1939; Domar,
1946), and Solow Growth Model (Solow, 1956; Solow, 1957).
However, the traditional theory of productive forces centers on
the optimal allocation of traditional production factors, such as
labor, capital, and land, overlooking the significant contributions of
knowledge, technology, and human capital to economic growth.
Schultz (1964) asserted that the role of human capital in economic
growth might be more crucial than that of physical capital, whereas
Romer (1986) argued that knowledge is a production factor that

influences economic growth. Building upon Schultz’s theory, Lucas
Jr (1988) incorporated human capital into endogenous growth
models to explain the intrinsic drivers of economic growth.

A key concept in the Marxist theoretical framework is that of
“productive forces,” which refers to the “mode of cooperation” that
people create when they produce substances (Xie et al., 2024). Marx
identified productivity as the human capacity to transform and
utilize nature, characterizing it as a dynamic and revolutionary force
that drives societal progress (Marx, 2024). Productivity undergoes
continuous development and transformation involving both
quantitative shifts and qualitative transformations in collaborative
methods (Xie et al., 2024). Marx emphasized that labor productivity
advances with continuous scientific and technological progress, but
that productivity enhancement depends not only on material and
technological progress but also crucially on improvements in labor
quality, enhancements in the quality and efficiency of the means of
production, and the expansion of the scope of objects of labor (Marx,
2000). From an economic perspective, NQPF represents a
qualitative leap in productivity. The transition from traditional
productive forces to NQPF fundamentally signifies a qualitative
change in the constituent elements of productivity. However, the
aim of NQPF development is not to reach a fixed level, but rather to
manifest as a dynamic process of continuous optimization and
enhancement driven by technological advancements.

NQPF development is not driven by the advancement of a single
factor alone but by the synergistic effect of multiple factors. Labor
factor, as a fundamental element of productive forces, the
requirements for labor experience and skills were relatively low
when the level of productivity development was less advanced.
However, with technological progress and the development of
digitalization, the increasing complexity of the production
process places higher requirements on workforce quality. This
has driven a transformation in the workforce, from traditional
manual and mental labors to innovative creators, creating “new
quality labor.” Unlike traditional skilled workers who primarily
engaged in simple repetitive tasks, new quality laborers are
strategic talent capable of creating new productive forces and
applied talents proficient in utilizing new production methods
and tools. They have typically attained higher levels of education
and stronger learning capabilities, representing the most active and
dynamic component of the NQPF (CPPCC News, 2024).

As another crucial component of productive forces, the means of
labor are the physical entities or systems (material tools) on which
laborers rely during the processing of labor objects. They provide the
material means necessary for transforming labor objects, acting as a
link between labor and objects of labor. The means of labor assist
workers in processing and transforming labor objects more
efficiently, and in the process of utilizing these means, laborers
continually optimize and innovate them, thereby enhancing their
functional capacity and efficiency within the production process.
The emergence of new means of labor across historical periods
reflects the level of social productivity development at that time, and
their innovation and application have directly promoted rapid
advancements in productivity. The evolution of labor means has
progressed from handmade tools in early societies, to energy
conversion tools during the Industrial Revolution (e.g., steam
engines, internal combustion engines, and generators), to
intelligent tools in the information and big data era of the 21st
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century. New-quality labor means serve as important NQPF
manifestations and carriers. They alter the form and function of
labor means, reshape traditional production paradigms, and liberate
laborers from repetitive and routine work. The application of
intelligent tools enables laborers to operate and control more
labor means and act on a broader range of labor objects, thereby
achieving a significant leap in productivity and accelerating NQPF
formation and development.

Objects of labor are vital components of productive forces and
refer to the entities processed, transformed, or serviced during the
production process. These can be physical (raw materials,
components, and parts) or intangible (data, knowledge, and
certain services). With technological advancements and industrial
upgrading, the physical objects of labor have transitioned from
traditional natural resources to more advanced forms, such as
environmentally friendly renewable energy. Furthermore, the
development of information technology has facilitated the
emergence of data resources as a new object of labor. These new
objects of labor provide abundant “raw materials” for NQPF
development and drive the evolution of new production
technologies. The application of these new labor objects facilitates
the optimal allocation of resource elements, significantly enhancing
production efficiency.

In summary, new quality laborers, objects of labor, and means of
labor are the core elements of NQPF, whose dynamic interplay drives
a qualitative leap in productivity. While rooted in Marx’s theory of
productive forces—labor and means of production—this framework
redefines their roles through technological and organizational
modernization. First, labor evolves from traditional manual input
to innovative human capital, where skilled workers and R&D talent
actively engage in technology-driven value creation. Second, objects of
labor transition from passive raw materials to materialized labor (e.g.,
intelligent machinery and automated systems), embedding value
through human-machine collaboration and blurring the
boundaries between labor and capital. Finally, means of labor
expand beyond Marx’s physical tools to encompass hard and soft
technologies—high-precision equipment, intangible assets, and
adaptive management practices—that optimize production
efficiency and risk control. The synergy among these upgraded
dimensions—innovative labor, value-embedded objects, and
technology-augmented tools—enables a structural shift from labor-
intensive to knowledge-driven production modes, fostering
transformative upgrades in both productivity and social
production relations. This tripartite linkage positions NQPF as
a pivotal engine for high-quality economic development,
grounded in the dialectical integration of human,
technological, and material forces.

While NQPF provides a cohesive framework to align
productivity growth with China’s national development goals
(e.g., innovation-driven growth, green transition), its policy-
driven origin necessitates cautious interpretation. As a concept
embedded in state-led modernization agendas, NQPF’s normative
emphasis on technological sovereignty and industrial upgrading
may implicitly prioritize certain sectors (e.g., strategic emerging
industries) over others. To mitigate potential bias, our empirical
analysis focuses on measurable dimensions of NQPF (e.g.,
materialized labor, hard/soft technology), allowing data-driven
validation independent of policy narratives.

While the term “NQPF” was formally proposed in 2023, its
theoretical foundations are deeply rooted in the Marxian framework
of productive forces, which emphasizes the evolutionary
transformation of labor, means of labor, and objects of labor
across historical stages. The core elements of NQPF—such as the
shift toward intelligent tools (e.g., IoT-enabled production systems),
data-driven labor objects (e.g., renewable energy adoption), and
high-skilled labor—reflect structural transformations in China’s
production systems that have been empirically observable since
the early 2010s, particularly during its rapid digitalization and
green transition. By retroactively applying the NQPF lens, we
systematically quantify these pre-existing but theoretically
underexamined shifts, aligning with established practices in
economic history where contemporary frameworks reinterpret
historical processes (Robinson and Acemoglu, 2012; North, 1991).

3 Environmental regulation and
productivity growth: dual mechanisms
of compliance costs versus innovation
compensation

To bridge the theoretical gap between ER and NQPF framework,
this study integrates Marxian productive forces theory with modern
innovation dynamics. Rooted in Marx’s theory of productivity
forces, NQPF emphasizes the synergistic evolution of workers,
tools, and objects of labor through technological and institutional
modernization. ER, as an external institutional force, interacts with
these core elements by reshaping labor skills, production tools, and
resource allocation. For instance, ER pressures accelerate the
transition from traditional labor to “new quality labor” by
mandating upskilling for green technologies (e.g., operating
intelligent pollution control systems), while simultaneously
driving firms to adopt advanced means of labor (e.g., IoT-
enabled monitoring tools) and sustainable objects of labor (e.g.,
renewable energy inputs). This alignment with NQPF’s tripartite
structure positions ER as both a catalyst for innovation-driven
productivity and a constraint via compliance costs, offering a
cohesive lens to reconcile the Porter Hypothesis and compliance
cost effect within China’s transitional economy.

Against this theoretical backdrop, the relationship between ER
and productivity growth has been extensively debated in the
literature. Scholars have primarily focused on two contrasting
mechanisms—compliance costs versus innovation
compensation—with divergent perspectives on linear and
nonlinear dynamics.

Currently, the academic literature presents two contrasting
viewpoints on this relationship. The first posits a linear
relationship between ER and productivity. This perspective
suggests that the impact of ER on productivity is linear, meaning
that as the ER intensifies, productivity changes exhibit a singular
upward or downward trend. Scholars who support a positive linear
relationship argue that appropriate ER can incentivize enterprises to
engage in technological innovation and production process
optimization, thereby enhancing production efficiency and
productivity. Porter and Linde (1995) initially proposed the
“innovation compensation effect,” known as “Porter Hypothesis”
contending that ER, as a form of external pressure, can stimulate
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firm innovation, thereby prompting the adoption of more
environmentally friendly and efficient production methods. This
will partially or fully offset compliance costs to ultimately achieve a
win-win scenario for both productivity and environmental
performance (Zhang, 2021; Rubashkina et al., 2015). Hille and
Möbius (2019) and De Santis et al. (2021) analyzed the impact of
ER on the productivity growth rate in OCED countries, with both
studies finding an indirect and positive effect of environmental
policies on productivity growth through fostering innovation (or
capital accumulation). Similarly, Feng et al. (2021) found that while
stricter environmental policies may increase overall production
costs in OECD countries, further strengthening policies in
countries already implementing strict regulations appears to
enhance their productivity growth rates in the long run. Albrizio
et al. (2014) indicated that, at the macroeconomic level, policy
changes negatively impact productivity growth in OECD
countries in the year preceding the policy change (the
“announcement effect”), but this effect is offset within 3 years of
policy implementation. At the industry level, tightening
environmental policies promotes short-term productivity growth
in technologically advanced countries. However, this effect
diminishes with increasing distance from the industry’s global
productivity frontier and eventually becomes insignificant at
greater distances. At the firm level, only the most technologically
advanced firms benefited from tightened environmental policies,
whereas less-productive firms experience a slowdown in
productivity growth.

However, some scholars have argued that ER directly increases a
firm’s operating costs, including the purchase of pollution control
equipment and the payment of pollutions fees. These costs may
crowd out funds otherwise allocated for technological upgrades and
productivity growth, leading to a slowdown in productivity growth
(Liu et al., 2021). This negative impact may be more significant when
regulations are overly stringent or improperly enforced. This
phenomenon is referred to as the “compliance cost effect”
(Christainsen and Haveman, 1981; Haveman and Christainsen,
1981; List et al., 2003). Benatti et al. (2024) found that tightened
environmental policies have a negative impact on productivity
growth among heavily polluting firms, with this effect being
more significant than that on lightly polluting firms. However,
this negative impact is mitigated in large firms, potentially
because they have easier access to financing and stronger
innovation capabilities.

An alternative perspective posits a nonlinear relationship
between ER and productivity growth. Contrary to a linear
relationship, a nonlinear relationship suggests that the impact of
ER on productivity does not monotonically increase or decrease but
displays a more intricate pattern, such as a “U-shaped,” and
“inverted U-shaped,” or other nonlinear curves. Some scholars
advocate for the existence of a U-shaped relationship between the
two, contending that in the initial stages of ER, firms may experience
a temporary decline in productivity due to the substantial
investment of funds and resources necessary to adapt to new
environmental protection requirements. However, with
advancements in technological innovation, firms have gradually
mastered more efficient environmental technologies and
production methods, leading to significant improvements in
productivity. Therefore, the relationship between ER and

productivity growth exhibits a U-shaped curve, with productivity
first decreasing and then increasing. Yang et al. (2023) discovered a
significant U-shaped relationship between ER and total factor
productivity in listed Chinese firms, with credit allocation playing
a significant mediating role.

Conversely, proponents of an inverted U-shaped relationship
argue that firms can achieve the greatest productivity improvements
under moderately intense ER. This is because moderate regulation
stimulates innovation while avoiding excessive resource constraints.
However, when ER intensity becomes excessively high, firms may
face undue environmental burdens, suppressing technological
innovation and productivity improvements (Wang et al., 2019).
Beyond the “U-shaped” and “inverted U-shaped” relationships,
some scholars have proposed other forms of nonlinear
relationships, such as “S-shaped” and “N-shaped” curves. These
perspectives all emphasize the complexity and diversity of the
relationship between ER and productivity. Shen et al. (2019)
found that industry heterogeneity results in different types of ER
having varying impacts on productivity across different sectors. In
heavily polluting industries, excessively stringent regulations
weaken firms’ technological innovation. In moderately polluting
industries, a moderate level of ER, coupled with a coordinated
approach of command-and-control and market-based
instruments, was observed. In lightly polluting industries, a
significant N-shaped relationship between market-based ER and
productivity is evident.

Existing studies on the relationship between ER and productivity
growth reveal significant heterogeneity across countries with
different development levels. In developed economies, mature
market mechanisms and robust innovation ecosystems facilitate
the manifestation of ER’s “innovation compensation effect.” For
instance, multi-level studies on OECD countries demonstrate that
stricter environmental policies promote short-term productivity
growth in technology- and capital-intensive industries (e.g.,
chemicals, power generation) (Albrizio et al., 2014). Market-
based instruments (e.g., carbon pricing) further enhance long-
term total factor productivity (TFP) by optimizing resource
allocation. However, these positive effects exhibit firm-level
heterogeneity: only technologically advanced firms can offset
compliance costs through innovation, while less efficient firms
face productivity stagnation (Albrizio et al., 2014; Kozluk and
Zipperer, 2014). Notably, studies in developed economies often
rely on panel data and composite policy indices (e.g.,
Environmental Policy Stringency Index, EPS), yet their
conclusions are constrained by endogenous policy design and
cross-country data comparability issues (Kozluk and
Zipperer, 2014).

In contrast, developing countries, constrained by institutional
deficiencies and technological gaps, exhibit more complex nonlinear
dynamics in the ER-productivity relationship. China’s case is
particularly illustrative. Early studies using provincial panel data
(Zhang et al., 2011) found that stringent ER boosted TFP through
forced technological upgrades. However, subsequent empirical
analyses reveal threshold-dependent effects. For example,
research on Chinese listed firms (Benatti et al., 2024) identifies a
U-shaped relationship between ER and TFP: initial compliance costs
suppress productivity, while long-term credit reallocation drives
innovation compensation. Similarly, a 2021 study on China’s
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industrial green TFP (GTFP) highlights regional variations in
U-shaped inflection points, with eastern regions more likely to
surpass thresholds due to FDI-driven technology spillovers (Qiu
et al., 2021). Mexico’s food processing industry, under rising
environmental standards, outperformed its U.S. counterpart in
productivity growth (Alpay et al., 2002), underscoring
institutional adaptability as a critical enabler of the Porter
Hypothesis. Nevertheless, developing countries face systemic
challenges, including data quality inconsistencies and policy
enforcement fragmentation (Zhang et al., 2011), while excessive
regulation risks triggering unintended “compliance cost
dominance,” particularly among SMEs and heavy-polluting
industries (Albrizio et al., 2017).

The “innovation-efficiency” transmission mechanism observed
in developed economies may weaken in developing contexts due to
institutional frictions (e.g., weak intellectual property rights, green
financing barriers), transforming the ER-productivity relationship
from linear to inverted U-shaped or N-shaped (Albrizio et al., 2014;
Albrizio et al., 2017). This divergence underscores the need for
context-specific policy frameworks that account for nonlinear
thresholds and institutional readiness.

While prior studies have extensively debated the linear and
nonlinear impacts of ER on productivity, few explicitly link the dual
mechanisms of compliance costs and innovation compensation to
the dynamic development of NQPF. Existing literature
predominantly examines static productivity levels or generic
growth rates, leaving a critical gap in understanding how ER
shapes the speed of NQPF advancement—a metric central to
sustainable transitions. Crucially, this omission overlooks the
interplay between institutional contexts and firm-level adaptive
capacities, whichmay asymmetrically mediate ER’s effects over time.

This study bridges this gap by integrating the compliance cost
effect and innovation compensation effect into a unified framework
that explains the inverted U-shaped relationship between ER
intensity and NQPF development speed. The use of a nonlinear
econometric model is justified by two interrelated factors. First, the
Porter Hypothesis—which assumes a linear link between ER and
productivity via innovation—fails to account for institutional gaps
in developing economies like China, where weak green technology
markets, intellectual property systems, and financing mechanisms
create threshold-dependent effects. Empirical studies (e.g.,
Rubashkina et al., 2015) reveal an inverted U-shaped
relationship: moderate ER fosters incremental innovation, but
excessive stringency raises compliance costs that outweigh
benefits, particularly for smaller firms. Second, diminishing
marginal returns to innovation imply that early regulatory
pressures drive cost-effective improvements (Aghion et al., 2016),
while higher ER intensity demands disproportionately expensive
upgrades, eroding productivity. Together, macro-level institutional
constraints and micro-level scale inefficiencies necessitate nonlinear
modeling to identify critical ER thresholds and heterogeneous firm
responses, addressing gaps in understanding how NQPF evolves
dynamically under varying regulatory intensities.

ER’s role in NQPF development is inherently dualistic, reflecting
its capacity to simultaneously accelerate and constrain productivity
transitions—a tension mirrored in the literature’s competing
narratives of compliance costs versus innovation compensation.
On one hand, stringent ER forces firms to adopt green

technologies (e.g., carbon capture systems) and digital
infrastructure, aligning with NQPF’s emphasis on technological
sovereignty and industrial upgrading. This “creative destruction”
process echoes the Porter Hypothesis’ prediction of innovation-
driven transitions (Porter Linde, 1995), yet its realization hinges on
institutional readiness. For instance, advanced firms in eastern
China—endowed with mature innovation ecosystems akin to
OECD economies (Albrizio et al., 2014)—leverage ER-induced
innovation to achieve productivity leaps, as observed in their
inverted U-shaped NQPF trajectories. On the other hand,
compliance costs disproportionately burden SMEs and heavy-
polluting industries, exacerbating resource misallocation and
delaying systemic upgrades—a phenomenon consistent with
Benatti et al.’s (2024) findings on China’s U-shaped TFP
patterns. Lagging firms in central regions, constrained by
fragmented green financing and institutional voids (Zhang
et al., 2011), face technological lock-ins that mirror the
“compliance cost dominance” observed in developing contexts
(Albrizio et al., 2017). This duality underscores the need for
adaptive policies that balance ER’s innovation incentives with
targeted support for vulnerable sectors, ensuring that regulatory
pressures translate into equitable NQPF advancement rather
than reinforcing existing disparities—a gap our empirical
analysis seeks to address through nonlinear threshold
modeling and heterogeneous subsample tests.

4 Methods

4.1 Sample and data

This study focuses on Chinese A-share listed firms between
2012 and 2022. To ensure the robustness of our results, two specific
subsets of firms are excluded: (1) firms experiencing financial or
operational distress, such as those under special treatment (ST) or
delisting risk warnings (*ST), ensuring the financial health and
operational stability of our sample; and (2) firms in the financial
sector, focusing instead on non-financial firms to avoid potential
interference from the unique characteristics of the financial sector
on the research outcomes. To calculate the development speed of
NQPF, we first constructed a panel dataset spanning 2011–2022.
Since some firms were listed after 2012, the dataset is unbalanced.
Based on the NQPF index, we derived the development speed of
NQPF. However, the calculation method inherently results in
missing values for the first year of each firm’s observation period.
Therefore, we removed the first-year data for all firms. Descriptive
analysis reveals that the missing value proportion is only 2.44%
(below 5%), implying minimal risk of estimation bias due to missing
data; thus, no further imputation was performed. Additionally, to
mitigate the influence of outliers, we winsorized all continuous
variables at the 1st and 99th percentiles. The final sample
comprises 4,055 firms with 30,962 observations. We used a
flowchart to detail the entire data processing procedure, as
shown in Figure 1. Micro-level firm data are primarily sourced
from the China Stock Market and Accounting Research Database
(CSMAR), whereas macroeconomic data are sourced from the
National Bureau of Statistics of China and provincial
statistical yearbooks.
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4.2 Variable definition and measurement

4.2.1 Explained variable
The explained variable in this study is the development speed of

NQPF, measured by its annual growth rate (SNQPF). Grounded in
Marx’s two-element theory of productive forces (labor and means of
production), we extend this framework to reflect the dynamic
synergy of innovation-driven economies. Specifically, labor is
decomposed into living labor (human innovation capacity) and
materialized labor (value-embedded tools), while means of
production are categorized into hard technology (tangible/
intangible R&D infrastructure) and soft technology (management
efficiency). Following Song et al. (2024), we employ the entropy
method to aggregate these dimensions into a composite NQPF index
for firm (Supplementary Appendix Table A.1), with SNQPF
capturing its growth trajectory. Distinct from conventional
productivity metrics like Total Factor Productivity (TFP), which
focus on static input-output efficiency, NQPF emphasizes the
interplay between technological advancement, human capital
upgrading, and institutional innovation—exemplified by metrics
such as manufacturing cost ratios that quantify the shift from
labor-intensive to machine-driven production modes.
Subsequently, based on the calculated NQPF index, the NQPF
growth rate is derived using traditional growth rate calculation
methods (Equation 1) as follows:

SNQPFi,t � NQPFi,t −NQPFi,t−1( ) ∕NQPFi,t−1 (1)
where SNQPFi,t represents the NQPF growth rate of firm i in year t.

4.2.2 Explanatory variables
The explanatory variable is the intensity of ER (ERI), which

represents the stringency of ER in each province. The measurement
of ER is multifaceted in the existing literature and uses various
approaches, including the pollution abatement costs (Kathuria,
2018; Berman and Bui, 2001), pollutant emissions (Cole and
Elliott, 2003), pollutant emission reduction (Levinson, 1996), and
environmental expenditure (Brunel and Levinson, 2013; Friedman
et al., 1992; Albrecht, 1998).

Following the methodologies of Jiang et al. (2025), this study
uses the ratio of completed investment in industrial pollution
control to the added value of the secondary industry per
thousand yuan as a proxy for ER intensity at the provincial level.

The formula is expressed as: ERI = (completed investment in
industrial pollution treatment/added value of the secondary
industry) × 1,000.

4.2.3 Control variables
Drawing on extant literature, this study employs several

variables to control for firm-level characteristics, including firm
age (Age), which captures a firm’s accumulated experience and
potential learning curve (D’Angelo et al., 2013; Xie, 2017); total
assets (Asset), which reflects a firm’s overall size and resources (Liu
et al., 2022); return on equity (ROE), which indicates a firm’s
profitability (Yu et al., 2021),; asset-liability ratio (ALR), which
measures a firm’s financial leverage (Wang et al., 2022); and
current ratio (CUR), which assesses a firm’s short-term liquidity
(Alarussi and Alhaderi, 2018).

This study also controls for macroeconomic conditions at the
provincial level using the following variables: per capita gross
domestic product (GPC), representing the overall level of
economic development; level of industrialization (INDS),
measured as the share of secondary industry added value in
GDP, indicating the extent of industrial development (Wang
et al., 2013); level of technological advancement (TECHE),
proxied by local government expenditure on science and
technology, reflecting the level of technological innovation (Wang
and Kang, 2024); and degree of openness (OPEN), measured by the
ratio of total imports and exports to GDP, indicating the extent of
integration into the global economy (Rathnayaka Mudiyanselage
et al., 2021).

4.2.4 Mediating variables
To examine whether compliance cost and innovation

compensation effects mediate the relationship between ER and
NQPF development speed, this study introduces compliance cost
(COST) and research and development (R&D) investment (RD) as
mediating variables. Compliance costs are measured by firms’ total
operating costs (Jiang et al., 2025; Liu et al., 2022). Total operating
costs capture both direct compliance expenditures (e.g., pollution
control) and indirect adjustments (e.g., process redesign) driven by
ER. As indirect costs are inseparable from general operations in
financial data, total costs holistically reflect ER’s systemic impact on
firms. And R&D investment is measured by the amount of R&D
expenditure.

FIGURE 1
Data Screening process.
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4.3 Research model

To investigate the relationship between ERI and SNQPF, the
following model is constructed:

SNQPFit � α0 + α1ERIit + α2ERI
2
it + α3Ageit + α4lnAssetit

+ α5ROEit + α6ALRit + α7CURit + α8 ln GPCit

+ α9INDSit + α10lnTECHEit + α11OPENit + εit (2)
where SNQPFit denotes the NQPF growth rate for firm i in year t.
ERI is the core explanatory variable representing ER intensity. The
other variables are control variables. ε denotes the random
disturbance term.

5 Empirical analysis

5.1 Basic estimation

5.1.1 Descriptive analysis and correlation analysis
Table 1 presents descriptive statistics that reveal critical

distributional characteristics and policy implications of core
variables. First, the negative fluctuation (min = −0.47) and
positive peak (max = 1.56) of the explained variable SNQPF
reflect the uneven development pattern of NQPF. While some
firms experienced productivity regression due to failed
technological upgrades (e.g., ineffective intelligent equipment
adoption) or policy implementation volatility (e.g., environmental
production restrictions), a minority achieved leapfrog advancements
through green technology breakthroughs or digital transformation.
However, the low mean value (0.06) suggests that ER has yet to
systematically activate the innovation compensation effect across
most firms, implying potential threshold constraints in the “weak
regulation-low incentive” linkage. Second, the weak regulatory
intensity (ERI mean = 1.66) and substantial heterogeneity

(0.05–7.65) highlight spatial and sectoral enforcement disparities
in China’s environmental governance. This imbalance may
simultaneously drive passive innovation among firms in high-
regulation regions (e.g., eastern China) and reinforce path
dependence in low-regulation areas (e.g., central-western China).

Furthermore, the distribution of mediator lnCOST (mean =
21.53, max = 25.61) underscores the double-edged sword of
compliance costs: high-cost firms face survival pressures that
suppress innovation, while low-cost firms lack upgrading
motivation under lax regulation. Concurrently, the polarized
distribution of lnRD (13.55–21.96) reveals structural imbalances
in R&D investment, where leading firms establish green technology
barriers while lagging firms remain locked in low-end development
due to resource constraints.

In summary, these patterns depict a complex landscape of ER-
driven productivity upgrading: weak regulation universally
constrains innovation motivation, yet heterogeneous regulatory
pressures shape asymmetric responses through cost transmission
and R&D stratification. These findings provide prior empirical clues
for subsequent nonlinear relationship testing and
mechanism analysis.

Table 2 presents the results of correlations among the variables.
The findings indicate that the correlations between the variables are
relatively low. Additionally, the results of the collinearity test show
that the variance inflation factor (VIF) values are less than 3.22 for
all variables, with a mean of 1.70, suggesting no multicollinearity
issues among the variables.

5.1.2 Benchmark regression
Before conducting the regression analysis based on the research

model (Equation 2) established above, the Hausman test is
performed to determine the appropriate model. When the linear
term of ERI is included in the model for the Hausman test, the
results showed a chi2 value of 145.21 and a p-value of 0.0000,
supporting a fixed-effects model. Then, the quadratic term is added
to the model, yielding a chi2 value of 127.34 and a p-value of 0.000,
which again favors a fixed-effects model. Therefore, this study
adopts a fixed-effects model for the subsequent analysis. In the
baseline regression, the core explanatory variable ERI, followed by
micro- and macro-level control variables, are subsequently added to
the model to examine the linear relationship between ERI and
SNQPF. The results are presented in columns (1)–(3) of Table 3.
In the baseline regression analysis, the impact of ERI on SNQPF
exhibits a significant reversal (from positive to negative) after
incorporating control variables. We attribute this reversal
primarily to the correction of omitted variable bias, which alters
the true effect of ERI on SNQPF.

First, the spurious positive association observed in uncontrolled
models (Column 1 of Table 3). When enterprise- and provincial-
level controls are excluded, ERI demonstrates a significantly positive
coefficient, likely attributed to confounding factors between selective
regulation and regional economic vitality. Provinces with stringent
ER typically exhibit higher economic development (high GPC) and
industrialization levels (high INDS). Enterprises in these regions
generally possess superior innovation capabilities and resource
endowments (e.g., technological reserves, financing channels),
creating an illusory positive correlation between ERI and SNQPF
through selective regulation bias.

TABLE 1 Descriptive analysis.

Variable Obs Mean Std.
dev.

Min Max

SNQPF 30,953 0.0623368 0.2728451 −0.4727656 1.557534

ERI 30,962 1.657372 1.459597 0.0475996 7.652909

lnCOST 30,957 21.5323 1.458718 18.38763 25.61425

lnRD 26,423 18.00262 1.539248 13.54664 21.96221

Age 30,962 20.2495 5.703135 7 34

lnAsset 30,680 22.02762 1.17971 19.4346 25.5297

ROE 30,679 0.0385746 0.1283024 −0.68546 0.352231

ALR 30,680 0.3518349 0.2138399 0.002983 0.920806

CUR 30,680 4.089077 10.46143 0.131054 86.44115

lnGPC 30,962 11.24579 0.4608707 10.16942 12.15643

INDS 30,962 0.3930706 0.0891646 0.1597365 0.5292542

lnTECHE 30,962 5.43584 1.029456 2.500616 7.063725

OPEN 30,962 0.4729367 0.3150688 0.0424285 1.354123
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Second, the emergence of net effects after controlling for
covariates (Column 3 of Table 3). The ERI coefficient becomes
significantly negative upon introducing enterprise characteristics
and provincial economic variables, revealing crowding-out effects
from compliance costs. ERI suppresses SNQPF dynamics through
dual channels: directly increasing operational costs (e.g., pollution
control investments) and indirectly displacing innovation resources
(e.g., R&D funding, human capital allocation). Moreover,
controlling for per capita GDP eliminates the confounding
influence of regional heterogeneity, where economically advanced
areas benefit from both stricter environmental standards and
technology spillover effects. This adjustment exposes the net
inhibitory effect of ERI on enterprise productivity.

We next add the quadratic term of ERI to the model and conduct
a sequential test. The results presented in columns (4)–(6) of Table 3
indicate that, both before and after the control variables are
included, ERI exhibits a significant positive effect on SNQPF,
whereas ERI2 demonstrates a significant negative impact on
SNQPF. The opposite signs of ERI and ERI2 suggest an inverted
U-shaped relationship between ERI and SNQPF. To further validate
this relationship, we conduct a U-test. The results presented in
Table 4 show that the overall test of presence of an inverse U shape is
statistically significant at the 1% level, indicating an inverted
U-shaped relationship between ERI and SNQPF. Furthermore,
Figure 2 visually confirms this relationship.

The above method is commonly used to test for inverted
U-shaped relationships. This approach involves first conducting a
regression between the core explanatory and explained variables,
followed by an ordinary linear regression. The quadratic term of the

core explanatory variable is then added to the model for quadratic
regression. Based on the significance and signs of the coefficients of
the linear and quadratic terms of the core explanatory variable, a
U-shaped relationship is subsequently identified. If the signs are the
same, a U-shaped relationship exists. If the signs differ, it indicates
an inverted U-shaped relationship. Finally, graphical analysis is
conducted for supplementary verification. However, this
method has certain limitations. Relying solely on the quadratic
term of the core explanatory variable to determine the existence
of a U-shaped relationship is problematic, because U-shaped
relationships can be observed ubiquitously, even when they do
not genuinely exist.

To address this issue, this study adopts an improved method
proposed by Simonsohn (2018) to confirm the presence of an
inverted U-shaped relationship. The fundamental idea of this
method is that the explained variable Y initially increases along
with core explanatory variable X; however, after reaching a peak, Y
decreases as X increases. Based on Simonsohn’s (2018) method, the
analysis in this study proceeds as follows. (1) Construct a quadratic
regression model of X with Y = aX + bX2, conduct regression
analysis, and determine whether the coefficients of the linear and
quadratic terms of X are significant and have opposite signs. (2) If
step (1) holds, identify the turning point (i.e., the value of X at which
the U-shape reaches its peak), denoted as Xmax (calculated as -a/2b).
(3) Generate the new variables Xlow, Xhigh, and high, using the
following calculation methods:

Xlow � X −Xmax ifX≤Xmax, 0 otherwise (3)
Xhigh � X −Xmax ifX≥Xmax, 0 otherwise (4)

TABLE 2 Correlation analysis.

Variables (1) (2) (3) (4) (5) (6) (7) VIF

(1) SNQPF 1.000

(2) ERI 0.041*** 1.000 1.32

(3) Age −0.065*** −0.173*** 1.000 1.13

(4) lnAsset −0.052*** −0.015*** 0.123*** 1.000 1.17

(5) ROE −0.024*** 0.003 −0.041*** 0.133*** 1.000 1.09

(6) ALR −0.033*** 0.027*** 0.071*** 0.265*** −0.190*** 1.000 1.34

(7) CUR 0.025*** −0.011** 0.028*** −0.044*** 0.046*** −0.364*** 1.000 1.17

(8) lnGPC −0.061*** −0.397*** 0.165*** 0.066*** 0.012** −0.081*** 0.011* 3.22

(9) INDS 0.032*** 0.140*** −0.111*** −0.124*** 0.033*** 0.049*** −0.049*** 1.66

(10) lnTECHE −0.039*** −0.443*** 0.086*** 0.007 0.033*** −0.046*** −0.015*** 2.83

(11) OPEN 0.020*** −0.196*** −0.077*** −0.018*** 0.045*** −0.060*** 0.024*** 2.07

(8) (9) (10) (11)

(8) lnGPC 1.000 3.22

(9) INDS −0.476*** 1.000 1.66

(10) lnTECHE 0.706*** −0.100*** 1.000 2.83

(11) OPEN 0.631*** −0.384*** 0.586*** 1.000 2.07

Mean VIF 1.70

Note: *p < 0.1, **p < 0.05, ***p < 0.01.
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TABLE 3 Benchmark regression results.

Variables (1) (2) (3) (4) (5) (6)

SNQPF SNQPF SNQPF SNQPF SNQPF SNQPF

ERI 0.014*** −0.003* −0.004** 0.051*** 0.017*** 0.016***

(9.682) (−1.661) (−2.127) (14.225) (4.080) (3.670)

ERI2 −0.006*** −0.003*** −0.003***

(−11.281) (−5.215) (−4.993)

Age −0.012*** −0.006*** −0.011*** −0.005**

(−14.680) (−2.787) (−12.489) (−2.104)

lnAsset −0.005 −0.005 −0.006 −0.005

(−1.196) (−1.071) (−1.274) (−1.079)

ROE −0.063*** −0.062*** −0.063*** −0.063***

(-4.055) (-3.991) (−4.097) (−4.071)

ALR −0.082*** −0.084*** −0.080*** −0.082***

(−5.442) (−5.577) (−5.264) (−5.439)

CUR 0.000* 0.000* 0.000* 0.000*

(1.812) (1.892) (1.845) (1.888)

lnGPC −0.096*** −0.091***

(-3.300) (-3.114)

INDS 0.096 0.172**

(1.122) (1.970)

lnTECHE 0.011 0.014*

(1.334) (1.728)

OPEN −0.042** −0.029

(−2.127) (−1.482)

_cons 0.039*** 0.457*** 1.338*** 0.009** 0.419*** 1.176***

(13.713) (5.034) (4.588) (2.190) (4.604) (4.009)

N 30,953 30,669 30,669 30,953 30,669 30,669

R2 0.0035 0.0177 0.0186 0.0082 0.0187 0.0195

F 93.750 80.140 50.466 110.725 72.645 48.185

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 4 U-test results.

Parameter/Test Lower bound Upper bound

Interval 0.0475996 7.652909

Slope 0.0160651 −0.0302062

t-value 3.647714 −5.415321

P>|t| 0.0001325 3.09e-08

Overall test of presence of an inverse U shape
95% Fieller interval for extreme point

t-value = 3.65 P>|t| = 0.000133
[1.8607106; 3.2810922]
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high � 1 ifX≥Xmax, 0 otherwise (5)
(4) Establish a new model for breakpoint regression: Y = cXlow +
dXhigh + ehigh. If coefficients c and d are significant and have
opposite signs, this confirms the existence of an inverted
U-shaped relationship between X and Y.

Following the above steps, we first calculate ERImax at the peak of
the inverted U-shaped curve, which is 2.6881146. Subsequently,
ERIlow and ERIhigh are derived using Equations 3, 4, respectively.
Furthermore, the binary variable high is obtained following
Equation 5. Finally, these three variables are included along with
the control variables in breakpoint regression model. The results in
Table 5 indicate that the slope of the ERIlow curve on the left side of

the peak is positive, whereas the slope of the ERIhigh curve on the
right side is negative, further validating the inverted U-shaped
relationship between ERI and SNQPF.

To further examine the potential existence of other non-linear
relationships, we conducted a cubic regression test, the results of
which once again supported the inverted U-shaped relationship (for
specific analysis and results, see the Supplementary Analysis in
the appendix).

5.1.3 Robustness check
To test the robustness of the above results, this study adopts

several methods. To examine the lagged effects of ER, we firstly
introduced a one-period lag to the core explanatory variable (ERI).
As shown in Column 1 of Table 6, the lagged ERI retains a
statistically significant inverted U-shaped relationship with
SNQPF, confirming the robustness of the baseline regression
results and demonstrating the presence of time-lagged regulatory
impacts. This finding underscores the persistence of ER’s nonlinear
influence on productivity dynamics, even when accounting for
temporal delays in policy implementation and firm adaptation.

The second method involves replacing the core explanatory
variables. ER can be measured using various methods, and this study
uses two alternative variables to verify the baseline results. (1) One
common approach is to use sulfur dioxide emissions (lnSO2) as a
proxy for ER (Xing and Kolstad, 2002; Cai et al., 2016). Looser ER
leads to higher sulfur dioxide emissions, whereas stricter ER results
in lower emissions. Therefore, this indicator is inversely related to
ER intensity. Columns (2) of Table 6 show that both the linear and
quadratic terms of lnSO2 are significantly positive, indicating a
U-shaped relationship between lnSO2 and SNQPF. That is, as
sulfur dioxide emissions increase, the NQPF development speed
first declines and then rises. This indicator is inversely related to ER
intensity, indicating that as ER becomes stricter, the NQPF
development speed first increases and then declines, verifying an
inverted U-shaped relationship. This validates the previously
observed inverted U-shaped relationship between ERI and SNQPF.

(2) Another widely used approach is to measure ER levels by
calculating the ratio of the frequency of environmental terms in
government work reports to the total word count of the reports
(Chen et al., 2018). This indicator not only indirectly reflects the
government’s attention and efforts towards environmental
governance but also helps mitigate endogeneity issues to a certain
extent. Therefore, following the method of we use the proportion of
environmental term frequency per 1,000 words in government work
reports (FREQ) as a substitute for the core explanatory variable.
Columns (3) of Table 6 indicate that both the linear and quadratic
terms of FREQ are significant but have opposite signs, suggesting an
inverted U-shaped relationship between FREQ and SNQPF. These
findings further support the baseline results.

To further validate our findings, we employ a third robustness
check by substituting the dependent variable SNQPF with the
growth rate of green patent applications. The essence of NQPF
lies in achieving synergies between production efficiency and
sustainable development goals through technological
leapfrogging. Green patents, which focus on clean technologies,
energy-saving processes, and circular economy practices, directly
reflect a firm’s capability to reconfigure production functions via
technological breakthroughs. The growth rate of patent applications

FIGURE 2
U-test curve.

TABLE 5 Inverted U-shape test.

Variables (1)

ERlow 0.019***

(4.696)

ERhigh −0.016***

(-5.160)

high −0.009

(-1.120)

CV YES

Year FE YES

Firm FE YES

_cons 1.107***

(3.752)

N 30,669

R2 0.0206

F 46.668

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01.
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quantifies the pace of technological iteration, aligning with the
“disruptive innovation-driven” characteristic of NQPF. Therefore,
this study adopts this metric as a substitute for SNQPF. As shown in
column (4) of Table 6, the linear term of the explanatory variable ERI
exerts no significantly effect on SNQPF, while the quadratic term
exhibits a significantly negative impact. Subsequently, we calculated
the vertex and found that its ERI value is 2.526, which lies within the
range of ERI values [0.0476, 7.6529]. Although the coefficient of the
linear term is not statistically significant, its sign is consistent with
theoretical expectations, and the quadratic effect is significant.
Therefore, we consider the inverted U-shaped relationship to
be valid.

The fourth method we adopted was to change the regression
model. We conducted regressions using Random-effects GLS and
Mixed OLS respectively. The results in columns (5) and (6) of
Table 6 show that the results obtained from the two models are very

close to each other and highly consistent with the results of the
benchmark regression, further validating the robustness of
the results.

The last method excludes abnormal years. Given that the sample
period spans from 2011 to 2022, which encompasses the COVID-19
pandemic that began in 2020, this study excludes data from 2020 to
2022 to mitigate the effects of the pandemic. Columns (7) of Table 6
show that, after removing the impact of the pandemic, the inverted
U-shaped relationship between ERI and SNQPF holds, indicating
the robustness of the above findings.

5.1.4 Endogeneity test
Three methods are used to test for potential endogeneity

between the explanatory and explained variables (Table 7). First,
PM2.5 (lnHAZE) was selected as an instrumental variable (IV-1).
This variable is strongly correlated with ER but plausibly

TABLE 6 Robustness test results.

Variables (1) (2) (3) (4) (5) (6) (7)

SNQPF Replacing
explanatory
variables

Replacing explained
variable

Random
effects

Mixed
OLS

Excluding pandemic
years

LERI 0.013***

(3.009)

LERI2 −0.001**

(−2.061)

lnSO2 0.057***

(13.697)

lnSO22 0.009***

(12.568)

FREQ 0.032**

(2.023)

FREQ2 −0.005*

(-1.879)

ERI 0.019 0.021*** 0.021*** 0.017***

(0.905) (6.515) (6.517) (2.668)

ERI2 −0.005* −0.003*** −0.003*** −0.003***

(−1.749) (−6.620) (−6.621) (-3.961)

CV YES YES YES YES YES

Year FE YES YES YES YES YES

Firm FE YES YES YES YES YES

_cons 1.230*** −0.350 1.270*** −4.702*** 0.708*** 0.708*** 1.904***

(4.222) (−1.126) (4.319) (−3.492) (10.022) (10.024) (3.743)

N 30,669 30,669 30,669 30,677 30,669 30,669 19,707

R2 0.0189 0.0340 0.0186 0.0147 0.0149

F 46.565 85.094 45.887 36.011 22.509

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.
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uncorrelated with the development speed of firms’ NQPF, thereby
satisfying the requirements of a valid instrument. The validity of
PM2.5 as an instrumental variable (IV) for ER is grounded in its
exogenous determinants and empirical robustness. Regional
PM2.5 levels are primarily driven by natural and historical
factors, such as atmospheric dispersion capacity and legacy coal-
dependent energy policies (e.g., centralized heating systems in
northern China), which are unrelated to contemporary firm
behavior or unobserved economic confounders (Chen et al.,
2018; Almond et al., 2009). These exogenous drivers create
spatial discontinuities in pollution exposure that correlate with
local governments’ urgency to implement stringent ER, satisfying
the IV relevance condition. While no IV is perfectly exogenous, our
design aligns with established methodologies in environmental
economics (Greenstone et al., 2012; Jiang et al., 2025) and
rigorously addresses potential confounders through geographic
and temporal controls, ensuring credible causal inference. Given
that this study focuses on firm-level data, a high-dimensional fixed-
effects model is utilized, which is better suited to panel data and
allows for better control of individual effects. The results in Table 7
indicate that the instrumental variable confirm the inverted
U-shaped relationship between ERI and SNQPF. The results of
the under-identification tests are significant, thus rejecting the
null hypothesis that the instruments are under-identified.
Furthermore, the weak identification test results show that the

Cragg-Donald Wald F-values are greater than 10, demonstrating
that both instrumental variables pass the weak instrument test.

Second, to mitigate selection bias and the influence of
confounding factors, this study divided provinces into those with
strict ER and those with loose ER based on the average level of ER.

TABLE 7 Endogeneity test results.

Variables/Test (1) (2) (3) (4)

IV-1 PSM Strategy

First-stage Second-stage PSM PSM

ER SNQPF SNQPF SNQPF

ERI −0.084 −0.005** 0.015***

(−1.095) (−2.417) (3.360)

ERI2 −0.006* −0.003***

(−1.881) (−4.800)

lnHAZE −2.276***

(−4.921)

lnHAZE2 0.273***

(4.417)

Underidentification test 29.196***

Weak identification test (Cragg-Donald Wald F statistic) 12.731

CV YES YES YES YES

Year FE YES YES YES YES

Firm FE YES YES YES YES

Obs 26,422 26,422 25,805 25,805

R-squared 0.0177 0.0187

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.

FIGURE 3
PSM balance test.

Frontiers in Environmental Science frontiersin.org13

Chen et al. 10.3389/fenvs.2025.1582399

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1582399


Propensity score matching (PSM) is then applied to the sample, and
regressions are performed based on the matched data to eliminate
the influence of sample selection bias. As illustrated in Figure 3,
the distribution of the matched sample is more converges more
than that of the unmatched sample. Columns (3) and (4) of
Table 7 indicate that the regression analysis using the matched
sample data still supports the inverted U-shaped relationship
between ERI and SNQPF. Overall, the results from these three
methods for addressing potential endogeneity issues consistently
indicate an inverted U-shaped relationship between ERI
and SNQPF.

5.2 Mechanism test

5.2.1 The mediating effect of compliance
cost effect

To examine whether compliance cost and innovation
compensation effects mediate the relationship between ER and
NQPF development speed, we conduct a mediating effects test
using COST and RD as mediators. Unlike the test method for
linear mediation effects, the complexities arising from the
relationship between the mediating, explanatory, and explained
variables necessitate different approaches for testing nonlinear
mediation effects. Following Luo and Jiang (2014), three types of
nonlinear mediation are considered. First, a nonlinear relationship
exists between the explanatory and mediating variables, whereas a
linear relationship prevails between the mediating and explained
variable, which is termed the “earlier-stage nonlinear mediation
effect.” Second, the relationship between the explanatory and
mediating variables is linear; however, that between the
mediating and explained variables is nonlinear. This is described
as “later-stage nonlinear mediation effect.” Third, both
relationships—between the explanatory and mediating variable
and between the mediating and explained variables—are
nonlinear, creating the “two-stage nonlinear mediation effect.”
The regression analyses are conducted to verify the relationships
between the mediating, explanatory, and explained variables in
this study.

To test the instantaneous indirect effect, this study employs the
SPSS Medcurve program developed by Hayes and Preacher (2010)
to conduct a Bootstrap test (1,000 times). The advantage of the SPSS
Medcurve program lies in its ability to effectively test non-linear
mediating effects. By identifying the heterogeneous changes in the
mediating path under different intensity ranges of the independent
variable (such as mean ±1 standard deviation), it reveals the complex
dynamic relationships between variables. At the same time, this
method intuitively displays the marginal trend of the mediating
effect as the level of the independent variable adjusts, providing a
quantitative basis for policy threshold identification and
differentiated interventions.

The results in Table 8 reveal a nonlinear inverted U-shaped
relationship between ERI and the mediating variable lnCost and a
nonlinear inverted U-shaped relationship between lnCost and
SNQPF. This verifies that the mediator lnCost falls into the third
scenario, indicating the “two-stage nonlinear mediation effect.”
Then, we tested its mediating effect using the Medcurve
program, with the results shown in Table 9.

The results show that when the explanatory variable ERI is at a
low level (ERI = 0.1945) and a medium level (1.6512), the 95%
confidence interval does not include zero, indicating that the
mediating effect of ERI on SNQPF through lnCOST is significant.
However, when ERI is too high, the confidence interval includes
zero, indicating that the mediating effect of lnCOST is not
significant. The mediating effect values of lnCOST are
(−0.0005, −0.0003, −0.0001), indicating that lnCOST exerts a
negative mediating effect between ERI and SNQPF. Notably, the
operating cost primarily captures firms’ short-term compliance
costs, including expenditures on pollution control equipment
procurement, environmental retrofitting of production lines, and
adoption of end-of-pipe treatment technologies, etc. When ERI is
low to moderate, firms must increase short-term spending to meet
compliance requirements. These costs directly crowd out resources
that could otherwise be allocated to technology R&D, or
management optimization, thereby slowing SNQPF.

The insignificance of the mediating effect under high ERI levels
primarily stems from the following mechanisms: (1) Firms
chronically exposed to stringent regulation may gradually absorb
compliance pressures through technological absorption (e.g.,
optimizing operational efficiency of end-of-pipe equipment) or
managerial improvements (e.g., supply chain integration to
reduce pollution control costs), thereby mitigating the marginal
inhibitory effect of costs on productivity; (2) High-intensity
regulation is often accompanied by government support policies
(e.g., subsidies for environmental equipment purchases, special
funds for pollution control), which partially offset compliance
costs. Due to the multiple possible reasons mentioned above
(including those not mentioned), the overall effect is not significant.

Given that using operating costs (lnCOST) to measure corporate
cost increases induced by ER may be overly broad and that it
primarily captures short-term compliance costs, which may
directly suppress the development speed of NQPF. To test the
robustness of the compliance cost mediation effect, we adopt
environmental investment (ENINV) as a proxy for long-term
compliance costs. We aggregate expenditures directly related to
environmental protection (passive compliance expenditures) from
the detailed items under the “construction in progress” category in
listed firms’ annual reports, including desulfurization projects,
denitrification projects, wastewater treatment, exhaust gas
treatment, dust removal, and energy conservation projects, to
derive annual environmental investment increments.

The “construction in progress” account typically records fixed
asset purchases and constructions that enterprises undertake tomeet
production or regulatory requirements, rather than R&D
expenditures. Facilities such as desulfurization towers and
wastewater treatment plants constitute compliance-oriented
infrastructure tied to production processes, not carriers of
technological innovation. Consequently, these investments
represent passive choices to avoid fines or production shutdowns
rather than proactive innovation. Moreover, these projects
predominantly employ end-of-pipe technologies (e.g., limestone-
gypsum desulfurization, activated sludge wastewater treatment),
which are mature and aim at meeting standards, lacking
significant innovation premiums. Thus, employing ENINV as a
proxy for compliance effects is theoretically justified. To control
for firm size heterogeneity, environmental investment is
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standardized by dividing by the firm’s total assets at year-end.
Additionally, standardized environmental investment is
multiplied by 100 to enhance the interpretability of regression
coefficients in subsequent analyses.

The regression analysis results (see Supplementary Appendix
Table A.5) indicate that ENINV exhibits significant nonlinear
relationships with both ERI and SNQPF. The mediation effect
test results (Supplementary Appendix Table A.6) align with those
in Table 9. When ERI is low to moderate, the confidence intervals
exclude zero, confirming statistically significant mediating effects.
However, under high ERI levels, the confidence intervals include
zero, rendering the mediating effects insignificant. Unlike the
negative mediating effects observed for operating costs (lnCOST),
ENINV demonstrates positive mediating effects (except under high
ERI levels), suggesting distinct pathways through which ERI
influences SNQPF.

When ERI is low to moderate, firms not only incur short-term
compliance costs but also increase environmentally related

investments as part of long-term strategic development. Although
such investments represent passive compliance expenditures, their
capitalization attributes (e.g., desulfurization towers, wastewater
treatment plants) contribute to production continuity (avoiding
shutdowns and penalties) and operational stability (meeting long-
term regulatory requirements), thereby exerting a weak yet
statistically significant positive effect on productivity. In contrast,
under high ERI levels, excessive investments in end-of-pipe
treatment facilities lead to capital misallocation (resource waste)
and technological lock-in (reliance on low-efficiency technologies),
undermining the potential productivity gains from compliance
expenditures.

5.2.2 The mediating effect of innovation
compensation effect

The same methodology as described above is used to examine
the mediating effect of lnRD. The results in Table 10 show that ERI
has a significant negative effect on lnRD, whereas the quadratic term

TABLE 8 Mediation effect Test—lnCost.

Variables (1) (2) (3) (4) (5) (6)

lnCOST lnCOST SNQPF SNQPF SNQPF SNQPF

ERI −0.006** −0.031*** 0.016*** 0.016***

(−2.483) (−5.157) (3.605) (3.607)

ERI2 0.004*** −0.003*** −0.003***

(4.536) (−4.938) (−4.910)

lnCOST −0.010** −0.299*** −0.010** −0.296***

(−2.199) (−5.700) (-2.094) (-5.639)

lnCOST2 0.007*** 0.007***

(5.530) (5.478)

CV YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES

_cons 1.334*** 1.533*** 1.302*** 4.431*** 1.190*** 4.288***

(3.387) (3.869) (4.476) (6.965) (4.055) (6.731)

N 30,675 30,675 30,667 30,667 30,667 30,667

R2 0.5607 0.5610 0.0186 0.0197 0.0197 0.0208

F 3397.914 3093.154 50.496 48.737 44.545 43.472

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.

TABLE 9 Bias Corrected Bootstrap Confidence Interval for lnCOST.

ERI THETA Normal-based [95% conf. interval]

0.1945 (M-1SD) −0.0005 −0.0008 −0.0002

1.6512 (M) −0.0003 −0.0005 −0.0001

3.1080 (M+1SD) −0.0001 −0.0002 0.0000

Notes:M represents the mean, and SD, represents the standard deviation.M-1SD,M, andM+1SD, represent the low, medium, and high typical ranges of X, capturing the inflection points and

trend changes of the non-linear relationship.
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of ERI exhibits no significant effect on lnRD, suggesting a linear
relationship between the explanatory and mediating variables.
Furthermore, the mediator lnRD demonstrates a nonlinear
relationship with the explained variable SNQPF. Therefore, this
study confirms that the mediator lnRD falls into the second
category, indicating the presence of “later-stage nonlinear
mediation effect”. Subsequently, we tested its mediating effect
using the Medcurve program, with the results presented in
Table 11. The results in Table 11 reveal that the mediating effect
of lnRD remains consistently −0.0003 across low, moderate, and
high ERI, with confidence intervals excluding zero in all cases. This
indicates that ERI significantly hinders SNQPF by suppressing R&D
investment—a finding that contradicts the traditional “Porter
Hypothesis” and underscores the complexity of the regulation-
innovation nexus in the Chinese context.

The negative mediating effect of ERI on SNQPF via R&D
investment can be attributed to intertwined mechanisms. First,
resource crowding-out effects dominate. ER compels firms to

prioritize resource allocation toward pollution control, diverting
budgets from breakthrough R&D initiatives. Concurrently,
compliance-driven R&D activities (e.g., pollution treatment
process improvements) exhibit low technological spillovers,
failing to translate into productivity gains and resulting in
diminishing marginal returns. Second, R&D direction deviates
from core innovation. Firms tend to invest in mature end-of-pipe
technologies (e.g., activated carbon adsorption, wet
desulfurization) to achieve rapid compliance, rather than
pursuing clean production processes or digital upgrades,
leading to end-of-pipe technology lock-in. The improper
combination of policy instruments and implementation biases
further distort innovation trajectories, stifling structural
productivity improvements. Finally, temporal dynamics
exacerbate contradictions. While R&D investments may yield
delayed positive effects on productivity (e.g., over 3–5 years), the
current results capture short-term resource diversion during the
initial phase of regulatory intensification; long-term

TABLE 10 Mediation effect Test—lnRD.

Variables (1) (2) (3) (4) (5) (6)

lnRD lnRD SNQPF SNQPF SNQPF SNQPF

ERI −0.017*** −0.017* 0.025*** 0.025***

(−4.222) (−1.775) (5.344) (5.297)

ERI2 −0.000 −0.004*** −0.004***

(−0.004) (−6.542) (−6.496)

lnRD 0.017*** 0.097*** 0.017*** 0.094***

(5.251) (3.158) (5.213) (3.046)

lnRD2 −0.002*** −0.002**

(-2.625) (−2.516)

CV YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES

_cons −5.534*** −5.534*** 1.658*** 0.873** 1.489*** 0.739*

(-8.205) (-8.169) (5.124) (1.982) (4.574) (1.675)

N 26,193 26,193 26,188 26,188 26,188 26,188

R2 0.4444 0.4444 0.0317 0.0320 0.0337 0.0339

F 1785.989 1623.553 73.153 67.147 64.807 60.323

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.

TABLE 11 Bias corrected bootstrap confidence interval for lnRD.

ERI THETA Normal-based [95% conf. interval]

0. 1771 (M-1SD) −0.0003 −0.0004 −0.0002

1.5812 (M) −0.0003 −0.0005 −0.0002

2.9854 (M+1SD) −0.0003 −0.0005 −0.0002

Notes:M represents the mean, and SD, represents the standard deviation.M-1SD,M, andM+1SD, represent the low, medium, and high typical ranges of X, capturing the inflection points and

trend changes of the non-linear relationship.
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technological sedimentation requires validation via
dynamic models.

This divergence from the Porter Hypothesis highlights the
theory’s contextual limitations. Chinese firms—particularly
small and medium-sized enterprises—face resource constraints
and rely on single-policy instruments (e.g., command-and-
control regulations), which impede their ability to convert
regulatory pressures into innovation momentum. Meanwhile,
the absence of a mature innovation ecosystem (e.g., green
finance, intellectual property protection)—common in
developed markets—further weakens the innovation-
compensation potential of ER in China.

Given that R&D investment focuses on the input perspective, we
next reanalyze the mediating effect of innovation compensation
from the output perspective. We employ green patent applications
(lnGPAT) as a substitute indicator for R&D investment (lnRD), as it
directly reflects enterprises’ substantive innovation achievements in
environmental technologies, thereby better circumventing the
“black box” issue of input-output efficiency. Moreover, green
patents precisely capture clean technology upgrading behaviors
compelled by ER, avoiding estimation biases caused by mixed
technical domains in traditional patent metrics, which aligns
more closely with the theoretical logic of the innovation
compensation hypothesis.

The regression analysis results show that ERI has a significant
negative impact on lnGPAT (linearly), and lnGPAT has a
significant negative impact on SNQPF (linearly). This pattern
differs from the three scenarios of nonlinear mediating effects
previously discussed. Despite linear relationships in both stages,
the ultimate impact of ERI on SNQPF manifests nonlinear
characteristics, suggesting that green patent applications do
not constitute the core pathway through which ERI influences
SNQPF. Their transmission role may be overshadowed or
counterbalanced by alternative mechanisms (e.g., compliance
costs, management efficiency). The nonlinear ERI-SNQPF
relationship might operate through unobserved mediating
variables such as organizational management reforms.
Consequently, we infer that the mediating effect remains
statistically insignificant. This conclusion is corroborated by
Medcurve mediation test results: confidence intervals for
lnGPAT encompass zero across low-, medium-, and high-
intensity ER scenarios, confirming the absence of
significant mediation.

This outcome may stem from the “pseudo-innovation”
attributes of green patents and the failure of their transformation
mechanisms. The lnGPAT indicator exhibits inherent limitations:
First, quantity-quality structural decoupling emerges as enterprises
strategically file low-tech defensive patents (e.g., end-of-pipe process
modifications) to meet compliance requirements. While such
technologies enable rapid regulatory compliance, they lack
substantive breakthroughs and commercial viability, potentially
suppressing production efficiency through increased equipment
maintenance costs. Second, systemic delays plague innovation
conversion. Green patents typically require 2–5 years from
application to industrial deployment, while current policies
emphasize application over transformation. Institutional frictions
including underdeveloped technology transaction platforms and
inefficient patent pledge financing exacerbate patent dormancy,

making short-term productivity contributions statistically
undetectable. This dual dilemma of “quality deficiency -
transformation stagnation” undermines green patents’ capacity to
serve as effective carriers for NQPF development, consequently
weakening the explanatory power of their mediating pathway.

The significant divergence in mediating effects between
innovation input (R&D expenditure) and output (green patents
applications) underscores the intricate contradictions between ER
and innovation compensation mechanisms, as well as structural
deficiencies within China’s technological innovation ecosystem. At
the theoretical level, this phenomenon reflects a fractured
innovation value chain and the contextual failure of the Porter
Hypothesis in China’s institutional setting.

The consistently negative mediating effect of R&D investment
(lnRD) reveals a resource lock-in effect at the upstream of the
innovation chain. ERI forces firms to reallocate limited resources
from breakthrough R&D to compliance-driven retrofitting, directly
impairing core innovation capabilities. Concurrently, the
insignificant mediating effect of green patents (lnGPAT) exposes
an efficiency black hole at the downstream—even when R&D inputs
translate into patent outputs, their low technological-economic
value and commercialization barriers prevent meaningful
productivity gains. The traditional Porter Hypothesis asserts that
ER can offset compliance costs through the “innovation
compensation effect,” yet this mechanism demonstrates dual
failures in the Chinese context. At the input end, the observed
linear negative correlation between regulatory intensity and R&D
investment substantiates the predominance of the “compliance cost
hypothesis,” revealing enterprises’ strategic inadequacy in
transforming regulatory pressures into innovation-driven
initiatives. Concurrently, the output end manifests systemic
inefficiencies: even when green patents emerge as regulatory
responses, their inherent low-quality characteristics and
institutional conversion barriers nullify potential compensation
effects. This dual failure perpetuates an “innovation input trap,”
characterized by a self-reinforcing cycle of diminishing R&D
investments and stagnating productivity gains, wherein reduced
innovation inputs and inefficient technological outputs mutually
exacerbate each other, ultimately undermining the theoretical
premise of innovation-driven sustainability transition.

These findings highlight structural flaws in China’s
innovation governance: policy overemphasis on quantitative
patent metrics neglects quality cultivation and market
linkages, while command-and-control environmental tools
crowd out endogenous innovation incentives. Resolving this
requires reengineering the innovation value chain through
quality-driven patent regimes, market-oriented green
financing, and adaptive regulatory frameworks that balance
compliance pressures with innovation spillovers.

5.3 Heterogeneity test

Heterogeneity tests are conducted to further explore the
heterogeneous effects of ER on the NQPF development speed,
focusing on how factors such as industry characteristics,
geographical environment, and ownership structure influence this
relationship.
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5.3.1 Industry heterogeneity analysis
We conducted heterogeneity tests using two different industry

classification methods. First, we divided the industries into heavily
polluting industries and non-heavily polluting industries. The
results in Table 12 indicate that ERI does not significantly affect
SNQPF in heavily polluting manufacturing industries. This may be
primarily attributable to three factors. First, high environmental
governance costs lead to insufficient innovation incentives. Second,
technological barriers significantly limit firms’ ability to improve
NQPF through technological innovation in the short term. Third,
large firms may leverage their market advantages to pass on
environmental governance costs, thereby mitigating the direct
impact on the NQPF development speed. Conversely, non-
heavily polluting manufacturing industries exhibit an inverted
U-shaped growth path under ER. In the initial stage, the
compliance costs associated with ER are manageable and can be
offset, or even exceeded, by the benefits of simulated innovation and
optimized resource allocation, thus fostering NQPF development.
However, as ER intensity gradually increases, the associated
compliance costs become excessive, crowding out resources for
innovation and thus slowing down the pace of NQPF
development. When regulatory intensity reaches a certain
threshold, the excessive burden of compliance costs begins to
inhibit the firms’ innovation validity, thereby negatively affecting
the NQPF development speed.

For labor-intensive industries, the primary and quadratic terms
of ERI demonstrate no significant impact on SNQPF. This result
likely stems from the inherent characteristics of labor-intensive
industries, which rely heavily on manual labor and exhibit low
technological complexity. First, constrained by limited capital
reserves and profit margins, these firms prioritize short-term
survival over long-term innovation. Environmental compliance
costs may further compress their operational flexibility, leaving

minimal resources for substantive productivity-enhancing
upgrades. Second, labor-intensive firms often adopt passive
compliance strategies—such as rudimentary end-of-pipe
treatments or temporary production halts—to meet regulatory
requirements. These tactics fail to generate meaningful
technological spillovers or efficiency gains, rendering ER
ineffective in driving NQPF development.

For capital-intensive industries, a significant negative linear
effect of ERI on SNQPF emerges in the baseline model, while the
quadratic model reveals a significant negative coefficient for the
squared term. The calculated vertex (ERI = 2.75) lies within the
observed ERI range [0.048, 7.653], confirming an inverted U-shaped
relationship. This nonlinearity reflects the dual pressures faced by
capital-intensive firms. Initially, moderate ER incentivizes firms to
optimize existing capital stock (e.g., retrofitting production lines or
adopting energy-efficient equipment), temporarily boosting
productivity. However, as ER intensity surpasses the threshold,
diminishing marginal returns set in: escalating compliance costs
(e.g., pollution control investments and equipment maintenance)
crowd out funds for innovation, while rigid capital structures hinder
rapid technological adaptation. Consequently, the initial
productivity gains are offset by long-term financial burdens,
leading to net productivity suppression.

For technology-intensive industries, both the linear term of ERI
and its quadratic term significantly affect SNQPF, supporting an
inverted U-shaped relationship. This pattern aligns with the
innovation compensation hypothesis. At low-to-moderate ER
levels, technology-intensive firms leverage their R&D capabilities
to convert regulatory pressures into innovation
opportunities—developing green patents, clean production
processes, and high-value-added products. These innovations
enhance resource efficiency and market competitiveness,
accelerating NQPF growth. However, beyond a critical ER

TABLE 12 Industry heterogeneity test.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Heavily Polluting Non-Heavily
Polluting

Labor Intensive Capital Intensive Technology
Intensive

ERI −0.000 0.007 −0.005** 0.024*** −0.002 0.004 −0.006* 0.011 −0.003 0.029***

(−0.116) (1.071) (−2.213) (4.140) (−0.598) (0.479) (−1.656) (1.253) (−0.993) (4.100)

ERI2 −0.001 −0.005*** −0.001 −0.002** −0.005***

(−1.222) (−5.535) (−0.785) (−2.116) (−4.977)

CV YES YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES YES YES YES YES

_cons 1.823*** 1.778*** 1.418*** 1.112*** 1.040* 1.002* 1.583*** 1.445** 1.973*** 1.700***

(3.498) (3.403) (3.859) (2.993) (1.885) (1.808) (2.672) (2.424) (4.092) (3.507)

N 8,722 8,722 21,947 21,947 8,097 8,097 8,571 8,571 14,001 14,001

R2 0.0150 0.0152 0.0216 0.0232 0.0066 0.0067 0.0077 0.0083 0.0441 0.0461

F 11.439 10.536 41.698 40.752 4.692 4.321 5.703 5.594 54.714 52.092

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.
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threshold, the cumulative costs of compliance (e.g., R&D risks,
regulatory uncertainty, and certification delays) outweigh
innovation benefits. Additionally, excessive ER may divert
managerial attention and R&D resources toward compliance
rather than breakthrough innovations, resulting in diminishing
productivity returns. The inverted U-shaped trajectory thus
reflects the interplay between ER-driven innovation incentives
and escalating cost constraints in technology-intensive sectors.

5.3.2 Regional heterogeneity analysis
The results in Table 13 indicate that ERI has a significant

negative impact on SNQPF in regions with strict ER. Conversely,
in regions with lax ER, they demonstrate a significant inverted
U-shaped relationship. The divergent outcomes arise from the
interplay between regulatory stringency and firms’ adaptive
capacities. In strict ER regions, persistently high compliance costs
(e.g., pollution control investments, operational disruptions)
dominate firm behavior, crowding out resources for innovation
and efficiency upgrades, leading to linear productivity
suppression. Conversely, in lax ER regions, moderate regulatory
pressures initially incentivize low-cost compliance adjustments (e.g.,
energy-saving retrofits) that marginally boost productivity.
However, as ER intensity surpasses firms’ absorptive capacity
(e.g., limited technical expertise, financial constraints),
incremental compliance costs outweigh productivity gains,
resulting in an inverted U-shaped trajectory. This dichotomy
underscores how regulatory thresholds interact with regional
institutional readiness to shape heterogeneous
productivity responses.

From the perspective of regional differences, the results show
that ERI has an inverted U-shaped impact on SNQPF in the eastern
region, whereas no significant impact is observed in the central and
western regions. The divergent regional impacts stem from

disparities in economic structure, innovation ecosystems, and
regulatory enforcement capacities. The eastern region,
characterized by advanced industrialization and robust
innovation infrastructures (e.g., mature green finance systems,
efficient technology markets), enables firms to initially leverage
ER for productivity-enhancing upgrades (e.g., clean technology
adoption). However, beyond a critical ER threshold, escalating
compliance costs and rigid resource reallocation (e.g., diverting
R&D funds to end-of-pipe retrofits) outweigh innovation
benefits, triggering productivity declines. In contrast, the central
and western regions, constrained by weaker technological
absorption capacities, underdeveloped institutional support (e.g.,
fragmented patent commercialization platforms), and reliance on
traditional industries, lack the adaptive flexibility to convert
regulatory pressures into innovation-driven productivity gains.
Consequently, ER either imposes linear cost burdens without
compensatory innovation or fails to induce behavioral changes
due to lax enforcement, rendering its net effect statistically
insignificant.

5.3.3 Firm ownership heterogeneity analysis
This study conducts heterogeneity analyses on firm ownership

by dividing firms into two groups: stated-owned enterprises (SOEs)
and non-state-owned enterprises (non-SOEs) and foreign -invested
enterprises (FIEs) and non-foreign-invested enterprises (non-FIEs).
The results in Table 14 show that SOEs and non-SOEs exhibit
similar patterns, with ERI having an inverted U-shaped effect on
SNQPF. This stems primarily from both types of firms facing similar
policy environments, technological challenges, and changes in the
cost structures of the domestic market. In contrast, FIEs exhibit a
distinctly different pattern under ER, experiencing a significant
negative effect. This may be because FIEs face more complex
multinational operating environments, including differences in

TABLE 13 Regional heterogeneity test.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Regions with
Strict ER

Regions with
Lax ER

Eastern Regions Central Regions Western Regions

ERI −0.009*** −0.001 0.005 0.052*** −0.004 0.033*** −0.004 −0.008 −0.004 −0.015

(−2.765) (−0.153) (1.371) (5.239) (−1.607) (5.304) (−0.766) (−0.802) (−0.782) (−1.224)

ERI2 −0.001 −0.011*** −0.006*** 0.001 0.001

(−0.849) (−5.097) (−6.375) (0.504) (0.992)

CV YES YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES YES YES YES YES

_cons 0.600 0.616 1.257*** 0.875** 2.771*** 1.981*** −0.151 −0.223 3.792*** 4.117***

(0.854) (0.876) (3.311) (2.261) (5.819) (4.031) (−0.179) (−0.261) (3.271) (3.418)

N 7,884 7,884 22,785 22,785 20,320 20,320 4,697 4,697 3813 3813

R2 0.0133 0.0135 0.0199 0.0212 0.0245 0.0268 0.0137 0.0137 0.0167 0.0170

F 6.988 6.418 38.687 37.578 44.017 43.801 5.682 5.187 5.671 5.244

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.
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environmental standards across countries, barriers to technology
transfer, and cultural differences. Furthermore, FIEs’ investments in
governance costs and technological innovation may be insufficient
owing to their unfamiliarity with or weaker adaptability to local
environmental policies, which directly inhibits NQPF development
speed. Non-FIEs can adapt and respond to domestic environmental
policies more quickly because of their deeper integration into the
domestic market. The NQPF development speed of these firms
shows an inverted U-shaped trend, with initial growth followed by a
decline. These findings suggest that non-FIEs have advantages over
FIEs in terms of technological innovation capabilities, cost controls
and market responsiveness. They can achieve continuous
improvements in NQPF under ER, although they also face the
challenges of rising costs and technological bottlenecks in
later stages.

6 Discussion

The empirical findings of this inverted U-shaped relationship
between ER and the development speed of NQPF provide a nuanced
reconciliation of the conflicting perspectives in prior literature.
While earlier studies predominantly debated whether ER linearly
promotes productivity through innovation offsets (Porter Linde,
1995) or linearly suppresses it via compliance costs (Christainsen
and Haveman, 1981), this study identifies a threshold-dependent
duality that aligns with—yet critically extends—the nonlinear
frameworks proposed for developing economies (Rubashkina
et al., 2015; Aghion et al., 2016). The inflection point (ERI ≈2.69)
underscores a pivotal transition: moderate ER incentivizes firms to
reallocate resources toward incremental innovations (e.g., energy-
efficient retrofits), but excessive stringency triggers diminishing
marginal returns as compliance costs eclipse innovation benefits.
This nonlinearity diverges from the linear “win-win” outcomes

observed in OECD contexts (Albrizio et al., 2014), highlighting
how institutional voids in green technology markets and fragmented
policy enforcement in China amplify firms’ vulnerability to
regulatory overreach. Unlike the Porter Hypothesis, which
assumes mature innovation ecosystems, the inverted U-shaped
pattern here reflects the precarious balance between regulatory
pressure and firms’ adaptive capacity in transitional economies.

The mechanism tests further clarify this divergence. While the
compliance cost effect exhibits a significant inverted U-shaped
mediating role, innovation investment fails to mediate the ER-
NQPF relationship, challenging the core premise of the Porter
Hypothesis. This inconsistency suggests that ER-induced R&D in
China predominantly funds compliance-driven, low-spillover
activities (e.g., end-of-pipe technologies) rather than
transformative innovations. Such findings resonate with Benatti
et al. (2024), who noted that heavy polluters prioritize survival
over innovation under stringent regulations, but contrast sharply
with studies in advanced economies where innovation compensates
for compliance costs (De Santis et al., 2021). The absence of
innovation compensation underscores structural inefficiencies in
China’s innovation value chain—such as weak intellectual property
protection and underdeveloped green financing—that stifle the
translation of R&D inputs into productivity gains. This
misalignment between regulatory intent and innovation outcomes
reveals a critical gap in applying the Porter Hypothesis to
institutional contexts lacking robust market-driven incentives.

Heterogeneity analyses deepen the contextual understanding of
ER’s dual effects. The null impact of ER on NQPF in heavily
polluting industries aligns with Shen et al. (2019), who attributed
such inertia to technological lock-in and high retrofitting costs.
However, the inverted U-shaped effect in non-heavy polluters—a
novel contribution—signals that moderately regulated industries
can leverage ER to catalyze productivity-enhancing reforms,
provided they possess sufficient technical and financial flexibility.

TABLE 14 Ownership heterogeneity test.

Variables (1) (2) (3) (4) (5) (6) (7) (8)

SOE Non-SOE FIE Non-FIE

ERI −0.001 0.017*** −0.007** 0.016** −0.016* −0.013 −0.003* 0.017***

(−0.324) (2.756) (−2.538) (2.506) (−1.790) (−0.539) (−1.795) (3.781)

ERI2 −0.003*** −0.004*** −0.000 −0.003***

(−3.145) (−3.963) (−0.120) (−4.969)

CV YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES

Firm FE YES YES YES YES YES YES YES YES

_cons 0.611 0.458 2.120*** 1.937*** 3.517** 3.472* 1.300*** 1.142***

(1.466) (1.094) (5.109) (4.641) (1.980) (1.913) (4.354) (3.803)

N 11,152 11,152 19,517 19,517 1,679 1,679 28,990 28,990

R2 0.0072 0.0082 0.0277 0.0286 0.0339 0.0339 0.0182 0.0191

F 7.145 7.401 46.914 44.115 4.613 4.192 46.573 44.623

Notes: (1) t-values in parentheses; (2) *p < 0.1, **p < 0.05, ***p < 0.01; (3) CV, represents the control variable.
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Regionally, the significant nonlinear relationship in eastern China,
contrasted with null effects in central/western regions, mirrors Yang
et al. (2023) but emphasizes the role of FDI-driven technology
spillovers and advanced institutional readiness in overcoming
compliance cost thresholds. Similarly, the underperformance of
foreign-invested enterprises (FIEs) under ER echoes Qiu et al.
(2021), yet uniquely attributes their struggles to regulatory
misalignment with global operational norms and limited access
to localized innovation networks—a “liability of foreignness”
exacerbated by China’s evolving policy landscape.

These findings collectively challenge the universality of linear
ER-productivity frameworks and underscore the centrality of
institutional and technological contexts in shaping nonlinear
outcomes. While prior cross-country studies (e.g., Kozluk and
Zipperer, 2014) emphasized policy design heterogeneity, this
study reveals how subnational institutional disparities and firm-
level resource asymmetries mediate ER’s efficacy. The inverted
U-shaped curve thus serves not merely as a statistical pattern but
as a diagnostic tool for policymakers to identify intensity thresholds
and tailor interventions to regional and sectoral capacities. Future
research could extend this framework by integrating dynamic
measures of institutional evolution (e.g., green finance reforms)
and firm-level adaptive strategies to unravel the temporal
dimensions of ER’s dual effects.

In sum, this study recontextualizes the ER-productivity debate
within the realities of developing economies, where institutional
imperfections and technological lags transform theoretical linearity
into pragmatic nonlinearity. By bridging macro-level regulatory
dynamics with micro-level behavioral responses, it offers a
roadmap for designing adaptive policies that balance
environmental and productivity goals in institutionally
fragmented settings.

7 Conclusion and implications

This study examined the nonlinear relationship between ER
and the development speed of NQPF using a comprehensive
sample of Chinese A-share listed firms from 2012 to 2022. The
empirical analysis demonstrates a robust inverted U-shaped
relationship between ER and the development speed of NQPF,
as evidenced by baseline regressions revealing a critical threshold
at ERI ≈2.69, where moderate regulatory pressure initially
enhances productivity through innovation incentives but
excessive stringency suppresses growth due to escalating
compliance costs. Mechanism tests further identify compliance
costs as a nonlinear mediator, exhibiting an inverted U-shaped
effect that dominates in low-to-moderate ER regimes. While
innovation investment exhibits divergent pathways: R&D
expenditures demonstrate a persistent negative mediating
effect, indicating that ER suppresses NQPF development speed
by crowding out resources for transformative innovation, while
green patent applications fail to mediate the relationship due to
their limited technological spillovers and commercialization
barriers. Heterogeneity analyses highlight stark disparities
across industries, regions, and ownership structures: ER exerts
no significant impact on NQPF development speed in heavily
polluting industries but follows an inverted U-shaped trajectory

in non-heavy polluters; eastern China exhibits a pronounced
nonlinear pattern aligned with institutional readiness, while
central/western regions show muted effects; and foreign-
invested enterprises face linear productivity declines under ER,
contrasting with the inverted U-shaped responses of domestic
firms, underscoring the interplay between regulatory adaptability
and localized innovation ecosystems.

The study’s theoretical significance lies in its deconstruction
of the “innovation compensation” narrative. Contrary to the
Porter Hypothesis, which presupposes mature markets capable
of converting regulatory pressures into productivity-enhancing
innovations, our mediation analyses expose a “compliance-
driven innovation trap” prevalent in China’s transitional
context. Firms prioritize low-spillover, short-term
environmental technologies to meet regulatory requirements,
diverting resources from systemic process innovations that
drive long-term NQPF growth. This divergence highlights the
inadequacy of linear innovation models in explaining the ER-
productivity nexus in emerging economies, where institutional
voids in green financing, intellectual property protection, and
technology markets distort innovation pathways. Such insights
necessitate a paradigm shift in environmental economics—one
that integrates institutional readiness and firm-level adaptive
capacities as core determinants of policy outcomes.

Practically, the findings advocate for a recalibration of China’s
environmental governance framework. Policymakers must abandon
one-size-fits-all approaches in favor of spatially and sectorally
differentiated strategies. In eastern regions with robust innovation
infrastructures, ER intensity should be strategically aligned near the
identified inflection point to maximize productivity incentives.
Conversely, central and western regions require preemptive
investments in green technology hubs and data-sharing platforms
to build institutional resilience before escalating regulatory
demands. For heavy-polluting industries, where ER shows
negligible impact due to technological lock-ins, hybrid policies
combining phased emission targets with R&D subsidies could
disrupt path dependency. Foreign-invested enterprises,
disproportionately hindered by regulatory compliance, would
benefit from tailored support mechanisms—such as cross-border
green technology partnerships—to mitigate “liabilities of
foreignness” and align their operations with China’s
sustainability goals.

The study’s implications extend beyond national borders,
offering a blueprint for emerging economies navigating the
sustainability-productivity dilemma. It demonstrates that
environmental governance cannot be divorced from
institutional context; effective policies must synchronize
regulatory ambition with localized technological capacities and
market maturity. For global climate agreements, these insights
underscore the necessity of flexible, adaptive frameworks that
account for heterogenous national conditions rather than
imposing uniform standards.

This study acknowledges certain limitations, which offer
promising avenues for future research. First, the NQPF metric,
though pioneering, warrants refinement to incorporate digital
transformation and circular economy indicators, reflecting
evolving productivity paradigms. Currently, the measurement of
NQPF is still in the initial exploratory stages, and several scholars
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have proposed various measurement methods based on different
theoretical backgrounds. Therefore, although the NQPF
measurement method used in this study draws on prior research,
its rationality and comprehensiveness require further validation.
Future research could explore alternative measurement frameworks
for NQPF, perhaps incorporating more dynamic indicators.
Furthermore, research should focus on developing a more
universally accepted and validated NQPF measurement system
that can be applied across different sectors and context.

Second, the mediating variables adopted in this study
(i.e., compliance costs and innovation investment) are commonly
used in traditional research on the relationship between ER and
productivity. However, different transmission mechanisms may
underlie the relationship between ER and NQPF. Future research
should investigate alternative or more nuanced mediating factors,
such as technological learning, green supply chain integration, and
resource allocation efficiency, to understand how ER affects NQPF.
Furthermore, future study on the dynamic effects of ER on NQPF
over time is also warranted, perhaps using quasi-experimental
designs to reveal the complex pathways involved.

Third, the current analysis primarily relies on aggregated
regulatory indices and macro-level environmental indicators,
which, despite offering a comprehensive overview, inherently lack
the granularity required to discern the nuanced impacts of
individual regulatory instruments. Future studies could advance
the field by employing more sophisticated methodologies such as
policy text mining techniques, which involve the systematic
extraction and analysis of policy documents to identify specific
regulatory features, or by leveraging firm-level subsidy disclosures
that detail the nature and extent of government support received by
individual companies. These approaches would enable researchers
to disentangle the distinct roles of various regulatory tools—ranging
from emissions standards and tax incentives to green procurement
policies—and evaluate their differential effectiveness in promoting
environmental sustainability. Such granular analyses not only
enhance our understanding of how specific regulatory
mechanisms operate but also offer actionable insights for
policymakers aiming to design more targeted and efficient
environmental policies. By addressing these limitations, future
research can contribute to a more refined and evidence-based
policy-making process, ultimately fostering greater environmental
stewardship across industries and regions.
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