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Introduction: The accurate reconstruction and prediction of dust and polluted
aerosol trajectories in educational environments are critical for assessing air
quality and mitigating health risks. Traditional numerical models for aerosol
transport rely on Eulerian or Lagrangian approaches, which often suffer from
trade-offs between computational efficiency and physical accuracy. Eulerian
models struggle with resolving small-scale turbulence, while Lagrangian
tracking methods face challenges in capturing multiscale interactions effectively.
Methods: To address these limitations, we propose a deep learning-driven
approach that integrates a hybrid Eulerian-Lagrangian computational model
with machine learning-enhanced optimization. Our method employs a high-
fidelity aerosol transport model incorporating stochastic corrections for sub-grid
scale effects and adaptive meshing for efficient resolution of dynamic aerosol
distributions. We introduce a data-driven optimization framework that leverages
physics-informed neural networks to enhance predictive accuracy while
reducing computational overhead.

Results and Discussion: Experimental validation demonstrates that our approach
significantly outperforms conventional numerical methods in both accuracy and
efficiency, making it highly suitable for real-time applications in educational
environments. This study provides an innovative and scalable solution for
understanding and mitigating aerosol dispersion in indoor spaces, contributing
to improved air quality management and public health protection.

3D reconstruction, deep learning, aerosol trajectory prediction, hybrid Eulerian-
Lagrangian model, machine learning optimization, stochastic corrections, adaptive
meshing, indoor air quality monitoring

1 Introduction

Airborne particulate matter (PM), including dust and polluted aerosols, poses
significant health risks in educational environments, where prolonged exposure can
lead to respiratory diseases, reduced cognitive function, and other health complications
(Fang Song et al., 2022). The increasing concerns regarding indoor air quality (IAQ) in
schools and universities have motivated research on effective monitoring and predictive
modeling techniques (Yu and Yang, 2023). Traditional sensor-based monitoring
methods are not only costly but also limited in spatial and temporal resolution,
making them inadequate for comprehensive assessments. Moreover, real-time
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trajectory prediction of these pollutants is crucial for proactive
intervention, ensuring healthier learning spaces. The integration
of deep learning with 3D reconstruction techniques has emerged
as a powerful approach to addressing these challenges. Not only
does it provide a fine-grained spatial understanding of airborne
particulate distribution, but it also enhances predictive accuracy
for aerosol movement patterns. Deep learning models can
efficiently leverage multimodal data sources, such as LiDAR,
and IoT
environments and forecast pollutant dispersion dynamics

computer vision, sensors, to reconstruct 3D

(Gonzélez-Lezcano, 2023). This study explores the evolution
methods for 3D
trajectory prediction of aerosols, transitioning from traditional

of computational reconstruction and
symbolic AT to modern deep learning frameworks (Mao et al,
2024), highlighting the limitations of earlier techniques and
proposing an advanced learning-based solution.

Early approaches to 3D reconstruction and pollutant trajectory
modeling relied on symbolic AI and knowledge-based systems,
emphasizing explicit rule definitions and mathematical
formulations. Computational fluid dynamics (CFD) models were
widely adopted to simulate aerosol dispersion based on physical
equations governing airflow and particulate transport. Expert
systems incorporated domain-specific knowledge to infer
pollutant behavior under varying environmental conditions.
While these methods provided interpretable insights, they
suffered from computational inefficiency and limited adaptability
to real-world complexity. The reliance on predefined rules made
them sensitive to environmental uncertainties and dynamic changes,
reducing their practicality in real-time applications. The integration
of sensor data into these models often required manual calibration,
which hindered scalability. In addressing these limitations,
researchers began exploring data-driven methodologies capable of
automatically capturing complex aerosol behaviors without
exhaustive rule engineering.

The advent of data-driven machine learning methods marked a
shift toward more adaptable and scalable solutions for aerosol
modeling (Hasheminasab et al, 2020). Supervised learning
techniques, such as regression models and support vector
machines, leveraged historical sensor data to predict pollutant
concentrations and movement patterns. Computer vision-based
approaches employed image processing techniques to reconstruct
3D aerosol distributions from visual input, such as thermal and RGB
cameras (Li and Su, 2021). Data assimilation techniques, integrating
real-time sensor data with machine learning models, further
improved predictive accuracy. Despite these advancements,
conventional machine learning approaches struggled with high-
dimensional spatial data and lacked the ability to generalize
effectively across diverse indoor environments (Heravi et al,
2024).

requiring domain expertise to extract relevant descriptors from

Feature engineering remained a critical bottleneck,
multimodal sensor inputs. These models often failed to capture
intricate turbulence dynamics in indoor airflow, limiting their
applicability for accurate trajectory forecasting (Tien et al., 2022).
These challenges motivated the adoption of deep learning
techniques, which offered end-to-end feature extraction and
representation learning capabilities.

Deep learning, particularly convolutional neural networks
(CNNs) and networks  (RNNs), has

recurrent  neural

Frontiers in Environmental Science

10.3389/fenvs.2025.1582806

revolutionized 3D reconstruction and pollutant trajectory
prediction by automatically learning spatial and temporal
dependencies from large-scale sensor data. CNNs have been
extensively used for volumetric reconstruction, leveraging depth
images and point clouds from LiDAR or structured light sensors to
model aerosol dispersion in three-dimensional space. Generative
adversarial networks (GANs) further enhance reconstruction
fidelity by generating realistic pollutant distributions that align
with observed sensor data (Zhou et al, 2022). Meanwhile, long
short-term memory (LSTM) networks and transformer models have
significantly improved trajectory prediction by capturing sequential
dependencies in pollutant movements. These models process time-
series data from IoT sensors, forecasting future dispersion trends
with high accuracy (Nakamura et al, 2022). The integration of
multimodal learning further strengthens predictive performance,
allowing deep networks to fuse visual, LIDAR, and environmental
sensor inputs. However, existing deep learning methods still face
challenges related to computational demands and generalization
across varying indoor airflow conditions. Addressing these issues
requires the development of more efficient and adaptable learning
architectures.

Based on the limitations of previous methods, we propose a
novel deep learning framework that integrates 3D generative
models with transformer-based spatiotemporal learning for
accurate aerosol reconstruction and trajectory prediction. Our
approach leverages a hybrid neural architecture, combining
volumetric CNNs for detailed 3D representation learning and
attention-based transformers for capturing long-range
dependencies in aerosol motion. By integrating physics-
(PINNs), we further enhance

model robustness, embedding domain knowledge into the

informed neural networks

learning process while retaining deep learning’s adaptability
(Hu and Kabala, 2023; Cuomo et al.,, 2022; Cai et al., 2021;
Raissi et al., 2024). Unlike traditional methods that rely heavily
on predefined assumptions, our framework is designed to learn
directly from raw multimodal sensor data, enabling high
generalization across diverse educational environments. We
incorporate a real-time inference mechanism, optimizing
model efficiency for deployment in

edge computing

environments, such as smart classrooms and school
monitoring systems. This comprehensive approach not only
surpasses previous modeling efforts but also offers a scalable
and cost-effective solution for improving IAQ monitoring in
educational settings.

The proposed method has several key advantages.

CNN-based
transformer-driven

e Our  approach volumetric

reconstruction with

integrates

spatiotemporal
learning, ensuring accurate 3D modeling and future aerosol
trajectory predictions.

e By leveraging multimodal sensor fusion and physics-informed
learning, our model achieves robust performance across
diverse indoor environments while maintaining efficiency
for real-time applications.

e Experimental results demonstrate superior reconstruction
accuracy and trajectory forecasting compared to existing
machine learning baselines, providing actionable insights
for improving air quality management in educational settings.
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2 Related work

2.1 Deep learning in 3D aerosol
reconstruction

Recent advancements in deep learning have significantly enhanced
the reconstruction of three-dimensional (3D) aerosol distributions.
Traditional methods often rely on inverse modeling techniques,
which can be computationally intensive and may not capture
complex spatial patterns effectively (Li and Li, 2022). To tackle these
challenges, deep learning techniques, especially convolutional neural
networks (CNNs), have been utilized to capture complex spatial
patterns from observational data. For instance, a study introduced a
deep-learning framework utilizing a conditional invertible neural
network (cINN) to reconstruct 3D dust density and temperature
distributions from multi-wavelength dust emission observations
(Shafiee et al., 2021). The cINN model was trained on synthetic data
generated from radiative transfer simulations, enabling it to predict full
posterior distributions for target dust properties. The model
demonstrated high accuracy, achieving median absolute relative
errors of approximately 1.8% in log (n/m’) and 1% in log (T pas/K),
respectively. This approach highlights the potential of deep learning in
capturing the complex interplay between different wavelengths and the
underlying physical properties of aerosols (Dhami et al., 2023). Another
approach involves the use of Deep Feature Gaussian Processes (DFGP)
for single-scene aerosol optical depth (AOD) reconstruction. This
method combines deep representation learning with Gaussian
processes to handle spatial correlations and uncertainties in AOD
data (Calafino et al., 2025). By leveraging deep learning to transform
variables into a feature space with better explanatory power, DFGP
effectively reconstructs AOD in scenarios where multi-temporal
observations are unavailable. Experiments on real-world datasets
DFGP outperformed traditional methods,
achieving higher coefficients of determination (R?) and lower root
mean square errors (RMSE) (Hu et al, 2022). These studies
underscore the efficacy of deep learning models in 3D aerosol

demonstrated that

reconstruction, offering improved accuracy and computational
efficiency over traditional methods. The ability to learn complex
spatial features and handle uncertainties makes deep learning a
promising tool for advancing our understanding of aerosol
distributions in various environments (Hu et al., 2021).

2.2 Trajectory prediction of dust
and aerosols

Predicting the trajectory of dust and polluted aerosols is crucial for
assessing environmental impacts and implementing mitigation
strategies. Deep learning models, particularly those incorporating
temporal dynamics, have been developed to forecast aerosol
movement with enhanced accuracy. A notable example is the
application of Long Short-Term Memory (LSTM) networks for
aerosol optical depth (AOD) forecasting over dust-prone regions.
LSTM networks are adept at capturing temporal dependencies in
sequential data, making them suitable for modeling the temporal
evolution of aerosol concentrations. In one study, LSTM models
were trained on historical AOD data along with meteorological
variables to predict future AOD levels. The results indicated that
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LSTM-based models significantly outperformed traditional statistical
methods, providing more accurate and timely forecasts of aerosol
concentrations. Another study employed a Convolutional Neural
Network (CNN) model to predict dust-storm transport pathways
(Dai et al,, 2022). The model was trained on aerosol optical depth
data along with geographic context information, including relative
humidity, surface air temperature, wind direction, and wind speed.
The CNN model demonstrated high predictive accuracy, with overall
accuracy values exceeding 97% for time steps up to 24 h ahead (Zhong
et al, 2020). This approach highlights the potential of CNNs in
capturing spatial patterns and interactions between various
environmental factors influencing aerosol movement. Hybrid models
combining CNNs and LSTMs have been explored to leverage both
spatial and temporal features in aerosol trajectory prediction. These
models aim to capture the spatial distribution of aerosols using CNNs
while modeling temporal dynamics with LSTMs. Such architectures
have shown promise in improving prediction accuracy, particularly in
complex scenarios involving varying meteorological conditions and
emission sources (Hu et al, 2020). These advancements in deep
learning-based trajectory prediction models offer valuable tools for
environmental monitoring and decision-making. By accurately
forecasting the movement of dust and polluted aerosols, these
models can inform timely interventions to mitigate adverse
environmental and health impacts (Liu et al., 2022).
Physics-Informed Neural Networks (PINNs) have emerged as a
powerful paradigm for solving partial differential equations (PDEs)
by embedding physical constraints directly into the loss function of
deep learning models. The seminal work by Hu and Kabala (2023)
established the foundational framework for applying neural
networks to both forward and inverse problems governed by
nonlinear PDEs, demonstrating their capability in approximating
solutions without labeled data. Recent studies have further extended
the PINN methodology to more complex and domain-specific
problems. For instance, (Cai et al, 2021) applied PINNs to
simulate aerosol-cloud-precipitation interactions, showcasing
their effectiveness in modeling multi-scale atmospheric processes.
Cuomo et al. (2022) provided a broader review of scientific machine
learning approaches, positioning PINNs as a key enabler for
interpretable and generalizable physical modeling. Raissi et al.
(2019) reviewed the application of PINNs in fluid mechanics,
highlighting challenges such as stiff equations, boundary
conditions, and training stability, which are directly relevant to
our aerosol transport context. In light of these developments, our
work adopts PINNs to enforce physically consistent aerosol
trajectory modeling within the SHAT framework. Specifically, we
use PINNS to capture latent sub-grid dynamics, integrate them with
Eulerian and Lagrangian modules, and enable mesh-aware
regularization during training. The incorporation of these
physics-informed components enhances both numerical stability
and interpretability, bridging the gap between data-driven modeling

and physical simulation.

2.3 Deep learning applications in
educational environments

The integration of deep learning techniques into educational
settings has opened new avenues for environmental monitoring and
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health assessment. Educational institutions, particularly those in
urban areas, are increasingly concerned about indoor air quality due
to its impact on students’ health and learning outcomes (Liao et al.,
2024). Deep learning models have been applied to monitor and
predict the concentration of pollutants, including dust and aerosols,
within educational environments. One application involves the use
of deep learning models to detect and classify aerosol emissions
using data from Light Detection and Ranging (LiDAR) systems
(Sharifi et al, 2024). A study developed a convolutional
autoencoder-based deep learning approach to identify aerosol
emissions from various sources, including pollution events and
dust storms. The model effectively detected aerosol layers and
provided insights into their spatial distribution, which is crucial
for assessing indoor air quality in educational settings (Deng et al.,
2022). Deep learning models have been utilized to estimate air
pollution levels by integrating data from multiple sources, such as
satellite-retrieved aerosol optical depth (AOD), meteorological data,
and ground-based measurements. For example, a spatiotemporal
convolution feature random forest (SCRF) model was developed to
predict PM concentrations by combining high-resolution satellite
data with meteorological variables. This model demonstrated high
accuracy in estimating pollution levels, providing valuable
information for managing air quality in educational institutions.
The deployment of these models in educational environments
enables real-time monitoring and prediction of air quality,
facilitating proactive measures to ensure a healthy learning
atmosphere (Zhao et al, 2022). By leveraging deep learning
techniques, schools and universities can implement data-driven
strategies to mitigate exposure to harmful aerosols, thereby
promoting better health and academic performance among
students (Yang et al., 2022).

3 Methods
3.1 Overview

The study of aerosol transport plays a crucial role in
understanding various environmental and industrial processes,
ranging from atmospheric pollution dispersion to biomedical
applications such as inhalation therapy. The complexity of
aerosol transport arises from the intricate interplay between fluid
dynamics, particle physics, and thermodynamic interactions. This
work presents a novel approach to modeling aerosol transport,
integrating advanced numerical techniques and refined physical
modeling to improve predictive accuracy. To evaluate the
effectiveness of the proposed deep learning-enhanced hybrid
model, we conducted

Eulerian-Lagrangian comparative

experiments against traditional aerosol transport models,
including pure Eulerian solvers and Lagrangian particle tracking
frameworks. Our method achieved an average increase of 12.6% in
predictive accuracy (measured via trajectory RMSE reduction and
spatiotemporal correlation with ground truth sensor data)
compared to the Eulerian baseline, and 8.4% compared to
Lagrangian tracking. Additionally, by leveraging adaptive
meshing and physics-informed neural networks, our framework
reduced computational overhead by approximately 35%-50%,

depending on the simulation domain complexity. The efficiency
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gains were most prominent in dynamic indoor scenes with
fluctuating boundary conditions, demonstrating the scalability of
our approach for real-time educational environment monitoring.
In Section 3.2, the preliminaries provides a formal definition of the
aerosol transport problem, detailing the fundamental conservation
laws that govern particle-laden flows. This includes the Eulerian and
Lagrangian descriptions of particle motion, along with key
assumptions regarding particle-fluid interactions. We introduce the
relevant dimensionless parameters that characterize aerosol behavior
across different flow regimes. In Section 3.3, we present a novel
computational framework designed to capture aerosol dynamics
with high fidelity. Traditional numerical models often struggle with
the multiscale nature of aerosol transport, where particle behavior is
influenced by both macroscopic flow structures and microscopic
stochastic effects. Our approach integrates high-order discretization
schemes with a hybrid Eulerian-Lagrangian formulation, enabling
robust handling of particle dispersion under diverse flow
conditions. In Section 3.4, the New Strategy details a set of
optimization techniques aimed at enhancing model performance.
One of the primary challenges in aerosol transport modeling is
achieving a balance between computational efficiency and physical
accuracy. We employ a combination of adaptive time-stepping,
physics-informed machine learning, and reduced-order modeling to
mitigate computational overhead while preserving essential dynamical
features. We explore domain decomposition methods to parallelize
computations, making large-scale simulations more feasible. This
research advances the understanding of aerosol dynamics in indoor
environments by integrating a data-driven, hybrid modeling
framework with high spatial-temporal resolution. Educational
settings, such as classrooms and lecture halls, pose unique
challenges due to complex airflows induced by human activity,
dense occupancy, and varied ventilation systems. Our model
captures these factors by simulating aerosol generation, dispersion,
and decay patterns under different classroom configurations and
behavioral scenarios. Specifically, the use of adaptive meshing
allows for detailed analysis near critical zones—such as student
seating areas, instructor locations, and ventilation inlets—enabling
identification of aerosol accumulation hotspots. Furthermore, by
analyzing the influence of varying occupancy levels, ventilation
rates, and movement patterns, the model provides new insights
into how localized microclimates and human interactions shape
aerosol transport in learning environments. These findings offer
practical guidance for designing healthier classroom layouts and
improving HVAC strategies to reduce airborne exposure risk. To
evaluate the predictive accuracy of our model in tracking the
trajectories of dust and polluted aerosols within educational
environments, we conducted a series of experiments using sensor-
validated benchmark datasets and synthetically generated indoor
airflow scenarios based on typical classroom layouts. The model’s
performance was assessed using standard trajectory prediction
metrics, including Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and spatiotemporal correlation coefficients
between predicted and ground-truth aerosol distributions. Results
showed that our approach achieved an average RMSE reduction of
28.3% compared to conventional Eulerian models, and 18.7%
compared to Lagrangian particle tracking frameworks. In addition,
the model achieved a high Pearson correlation (>0.91) between
predicted and observed aerosol concentration fields over time,
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demonstrating its capability to accurately capture dispersion patterns
influenced by airflow dynamics, occupancy behavior, and ventilation
states. This level of precision supports reliable real-time air quality
assessment and enhances our ability to detect and forecast exposure
risks in classroom environments. Consequently, the model offers a
valuable tool for informing targeted interventions to protect occupant
health and improve environmental quality in educational spaces.
Unlike conventional Eulerian models that discretize the flow field
over a fixed grid and solve partial differential equations at each point,
or Lagrangian particle tracking models that simulate individual aerosol
particles through the flow, our proposed approach leverages a hybrid
Eulerian-Lagrangian framework enhanced with deep learning
components, offering several key advantages: Multiscale Coupling
Capability: Traditional methods often struggle with simultaneously
resolving large-scale flow structures and small-scale turbulent effects.
Our model integrates physics-informed neural networks (PINNs) with
stochastic sub-grid scale corrections, allowing it to capture fine-
grained aerosol dynamics across scales. Adaptive Mesh Refinement
(AMR): Unlike fixed-resolution Eulerian grids, we incorporate
adaptive meshing techniques that concentrate computational
resources on regions with high aerosol variability (e.g., breathing
zones or near ventilation sources), improving accuracy without
prohibitive costs. Data-Driven Generalization: While traditional
numerical methods require domain-specific calibration and
boundary condition tuning, our model learns generalizable aerosol
transport behaviors from data, enabling it to adapt across various
room geometries and ventilation patterns—particularly important for
dynamic educational environments. Real-Time Predictive Capability:
Traditional CFD simulations are often computationally intensive and
unsuitable for real-time use. Our deep learning-enhanced model
achieves significant reductions in computational overhead (up to
50% as shown in Section 3.1), enabling fast and reliable trajectory
prediction that supports real-time decision-making. These differences
establish our method as a novel alternative that bridges the physical
rigor of numerical simulations with the scalability and efficiency of
machine learning, making it particularly well-suited for indoor air
quality monitoring and intervention design in education-related
infrastructure.

3.2 Preliminaries

Aerosol transport is governed by the complex interactions
between suspended particles and the surrounding fluid medium.
These interactions are influenced by various physical forces,
drag,
diffusiophoresis, electrostatic forces, and gravitational settling. To

including Brownian motion, thermophoresis,
formulate the aerosol transport problem mathematically, we define
the governing equations and establish the fundamental assumptions
that underpin our model.

The motion of an aerosol particle in a fluid is traditionally
described using either an Eulerian or a Lagrangian framework. The
Eulerian approach considers the particle phase as a continuous field
described by a probability density function, while the Lagrangian
approach tracks individual particles along their trajectories.

Let f(x,v,t) denote the number density function of aerosol

particles in phase space, where x € R? represents spatial coordinates,
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v € R? denotes velocity, and ¢ is time. The evolution of f is governed
by the Boltzmann-type transport Formula 1:

of

§+Vovxf+Vv~(Ff):C(f), (1)
where F represents the net force acting on the particles, and C( f)
denotes the collision term, which accounts for inter-particle
interactions and coagulation.

The motion of an individual particle can be described by

Newton’s second law Formula 2:

dv
P
m,—=—=F, 2
¥ )
where m,, is the particle mass, v, is the particle velocity, and F is the
sum of forces acting on the particle. The key forces contributing to F
include Formula 3:

F=Fp +Fg+Fr +Fg + Fp, (3)

where Fp is the drag force, Fp is the Brownian force, Fr is the
thermophoretic force, Fg is the gravitational force, and Fj is the
electrostatic force.

For small aerosol particles in a low Reynolds number flow
regime, the Stokes drag law provides an accurate approximation
of the drag force acting on the particle due to viscous resistance.

This regime typically applies to micron- or submicron-sized
particles suspended in air, where inertial effects are negligible
compared to viscous forces.

Under these conditions, the particle Reynolds number
Re, = pilve vy 1, allowing the use of the linear Stokes drag
formulation, which assumes steady-state, laminar, and creeping
flow conditions around a spherical particle.

For particle-scale momentum exchange, we initially employ the
classical Stokes drag formulation, which assumes low Reynolds
number flow (Re <« 1). The drag force under this regime is given
by: The drag force Fp is then given by Formula 4:

Fp = —67'[;4R1,(v17 - vf), 4)

where y is the dynamic viscosity of the fluid, R,, is the particle radius,
v, is the particle velocity, and vy is the velocity of the
surrounding fluid.

However, this assumption may not hold near air outlets or in
locally turbulent zones where the Reynolds number exceeds unity.
To address this, we apply the Schiller-Naumann correction for
(1 <Re<1000), which
modifies the drag coefficient as follows: This blended formulation

moderate Reynolds number regimes

allows for a smooth transition between viscous-dominated and
inertia-influenced drag regimes. The appropriate drag coefficient
is selected dynamically based on the local instantaneous particle
Reynolds number Formula 5.

4
Cp = o (1+0.15Re*®"), 1<Re<1000 (5)
e
This force acts in opposition to the relative motion between the
particle and the fluid, and plays a key role in determining the
particle’s trajectory, especially when other forces such as gravity or
buoyancy are also present. In the context of our hybrid

Eulerian-Lagrangian model, this expression is used to evaluate
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the interphase momentum exchange when solving the Lagrangian
particle dynamics.

For higher Reynolds number conditions (Re,>1), where
inertial effects become significant and flow separation or wake
formation may occur, the simple Stokes law is no longer valid. In
such cases, our model incorporates an empirical drag coefficient
formulation based on the particle Reynolds number, commonly
expressed as Formula 6:

1
Fp = ECDPfAP|VP —vfl(vP - vf), (6)

where Cp is the drag coefficient, and A, = nRé is the particle cross-
sectional area. We adopt the Schiller-Naumann correction for Cp
when Re, < 1000, given by Formula 7:

24
Cp = R—ep(l +0.15Re)*). (7)

This allows a smooth transition between laminar and
moderately turbulent drag regimes, ensuring that the drag force
is evaluated appropriately across the full range of particle-flow
conditions encountered in indoor environments. The Brownian
force arises due to random collisions with gas molecules and is
modeled as a stochastic term Formula 8:

Fp = \2ksTy 7(0), (8)

where kg is the Boltzmann constant, T is the absolute
temperature, y is the friction coefficient, and #(t) represents
Gaussian white noise with zero mean and unit variance.

Temperature and concentration gradients in the fluid induce
motion in aerosol

particles due to thermophoresis and

diffusiophoresis, respectively Formula 9:

FT = —CTVT, FD = —CDVC, (9)

where Cy and Cp are empirical coefficients, T is the temperature,
and C is the concentration of a secondary species.

Gravitational settling is an important factor for large aerosol
particles Formula 10:

F; = my8g, (10)

where g is the gravitational acceleration. Charged aerosol particles
experience electrostatic interactions Formula 11:

Fp = gq,E, (11)

where g, is the charge on the particle and E is the ambient
electric field.

To characterize aerosol behavior, we introduce key

dimensionless groups: Stokes Number: St = %, where T, = 6;:—‘}’%
is the particle relaxation time, U is the characteristic velocity, and L

UL
D

the diffusion coefficient. Knudsen Number: Kn = Ri, where A is the

is the characteristic length scale. Péclet Number: Pe = =5, where D is
mean free path of the gas molecules. These dimensionless numbers
help delineate different aerosol transport regimes and guide model
simplifications.

Given an initial aerosol distribution f(x,v) and prescribed
to determine the

boundary conditions, the objective is

spatiotemporal evolution of f(x,v,t) using a combination of
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numerical and analytical methods. The subsequent sections
present a new modeling framework that integrates advanced
numerical schemes and optimization strategies to improve
solution accuracy and computational efficiency.

3.3 Stochastic hybrid aerosol transport
model (SHAT)

Accurately modeling aerosol transport requires capturing both
deterministic and stochastic effects governing particle motion.
Traditional methods rely either on Eulerian approaches, solving
macroscopic continuum equations, or Lagrangian methods, tracking
individual particles. To address these limitations, we introduce the
Stochastic Hybrid Aerosol Transport (SHAT) Model, a
computational framework integrating high-fidelity stochastic
particle dynamics with an adaptive Eulerian fluid representation.

Figure 1 illustrates the overall structure of the SHAT model. The
architecture combines a down-sampling convolutional encoder for
macroscopic aerosol field modeling with a transformer-based
temporal branch for sequence prediction. Both branches feed
into a fusion module that integrates adaptive mesh refinement
(AMR) and stochastic Langevin corrections to address unresolved
sub-grid turbulence. Each component plays a distinct role: CNN
layers capture spatial gradients, transformers manage temporal
evolution, and stochastic modules simulate fine-scale aerosol
fluctuations. This hybrid approach ensures both physical fidelity
and predictive accuracy.

3.3.1 Hybrid eulerian-lagrangian dynamics
The SHAT model integrates an Eulerian fluid representation
with Lagrangian particle tracking, enabling accurate and efficient
modeling of aerosol transport across multiple spatial and temporal
scales. The Eulerian component describes the carrier fluid using the
incompressible ~ Navier-Stokes equations, ensuring proper
representation of flow dynamics and turbulence effects. The
Lagrangian framework captures individual particle trajectories,
preserving the essential stochastic and deterministic forces acting
on aerosols. The evolution of the aerosol distribution function

f(x,v,t) is governed by the Vlasov-Fokker-Planck Formula 12:
of

v Vef + V- (Bf) =V, - (DV, f),

ot (12)

where F represents external deterministic forces such as drag,
gravity, and electrostatic interactions, while D captures stochastic
diffusion effects due to Brownian motion. The incompressible fluid
phase obeys the following equations Formula 13:

0

1
V.ou=o, _“+u.Vu=——Vp+vV2u+Fp, (13)
P

ot
where u is the velocity field, p is the pressure, p is the fluid density, v
is the kinematic viscosity, and FP represents the momentum
exchange force exerted by particles on the fluid. The motion of

each aerosol particle is described by Newton’s second law,
incorporating multiple force contributions Formula 14:

Dy _
—FD+FB+FT+Fg+FE,

at (14)

mp
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FIGURE 1

Overview of the Stochastic Hybrid Aerosol Transport (SHAT) Model. The diagram presents the SHAT architecture, which integrates a convolutional
branch (pink blocks, top-left) for capturing macroscopic fluid features and a transformer branch (purple stacks, bottom-left) for modeling temporal
aerosol dynamics. Both branches converge into a hybrid Eulerian-Lagrangian module (blue-shaded area), where particle trajectories are refined using
adaptive mesh refinement (AMR) and stochastic sub-grid corrections. Yellow blocks represent 3 x 3 convolutional modules used for down- and up-
sampling operations. The flow of information follows directional arrows: green for down-sampling, orange for up-sampling, and gray for element-wise
addition. Key components like Layer Normalization, Batch Normalization, and MLP modules are also visualized to reflect the modular design. This
architecture enables high-fidelity simulation of aerosol dispersion by jointly leveraging deep spatial encoders and attention-based temporal reasoning.

where m,, is the particle mass, Fp, is the drag force, Fp represents
Brownian motion, Fr accounts for thermophoretic effects, Fg
corresponds to gravitational settling, and Fr denotes electrostatic
interactions. The evolution of particle position is then determined by
Formula 15:

) _ va =— Z (15)

=V, p—
da ~f

By coupling these Eulerian and Lagrangian components, the
SHAT model provides a high-fidelity representation of aerosol
dispersion, allowing for accurate simulations of particle-laden
turbulent flows. This hybrid approach ensures that the small-
scale interactions influencing particle behavior, such as near-wall
effects and local turbulence structures, are captured effectively while
maintaining computational efficiency. The model supports efficient
numerical integration schemes, leveraging
advection for the Eulerian field and high-order stochastic
differential equation solvers for Lagrangian trajectories. As a
result, the SHAT model can simulate realistic aerosol transport
in complex environments, ranging from atmospheric dispersion to

semi-Lagrangian

industrial filtration processes.

Frontiers in Environmental Science

Figure 2 illustrates the deep learning formulation of the Hybrid
Eulerian-Lagrangian Dynamics module, which lies at the core of the
SHAT framework. The module integrates physical modeling principles
with temporal sequence learning by employing multi-head attention,
residual normalization, and transformer-based embeddings. The left
sub-block implements scaled dot-product attention using the g, k, and v
representations to model directional influence among aerosol particles.
The center block introduces temporal reasoning via a transformer
encoder, equipped with a feed-forward layer and residual
normalization. The right-hand section depicts the embedding-to-
decoder pipeline, where normalized representations are passed
through encoder-decoder modules and finally projected to the
output aerosol state space. This hybridized architecture allows the
model to simultaneously learn fluid-field constraints and sequence-
based aerosol transport behavior with high resolution and stability.

3.3.2 Stochastic sub-grid corrections

In aerosol transport modeling, unresolved sub-grid turbulence
effects play a crucial role in particle dispersion, particularly in high
Reynolds number flows. These unresolved effects lead to stochastic
fluctuations in particle trajectories, which must be accurately
captured to ensure physically consistent simulations. To address
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FIGURE 2

Hybrid Eulerian-Lagrangian Dynamics Module in SHAT. This diagram illustrates the deep learning-based implementation of the Hybrid Eulerian-
Lagrangian framework used in the SHAT model. The first block (left, yellow background) represents the scaled dot-product attention mechanism, where
query (q), key (k), and value (v) vectors are processed through matrix multiplications, rescaling, and softmax operations (green, yellow, and purple
blocks). The second block (center, light yellow background) shows the transformer encoder structure, comprising a temporal attention mechanism,
residual connections with normalization (blue), and feed-forward layers (pink). The third block (right, green background) represents the embedding and
decoding pipeline, including encoder-decoder layers, normalization steps (orange), de-normalization, and a final projector module (blue). Arrows
indicate the flow of aerosol features across temporal layers. The module collectively enables the modeling of spatiotemporal aerosol behavior by

integrating sequence learning with physical constraints.

this challenge, we incorporate a stochastic correction mechanism
based on a Langevin formulation, effectively modeling the influence
of turbulent eddies at sub-grid scales. The particle velocity evolution
is governed by Formula 16:

dv, = Fdt + \/ZD,dW,, (16)

where dW, represents an increment of the Wiener process, and D; is
the turbulence-induced diffusivity. This formulation ensures that
stochastic perturbations account for unresolved turbulent
fluctuations, thereby improving the accuracy of sub-grid scale
modeling. The stochastic force acting on the particles follows a
generalized Langevin equation, where the velocity evolution is

expressed as Formula 17:

dv, __1

2kgT
I _Z (vp - u) + L

MmpTp

§@), (17)

where Tp denotes the particle relaxation time, kp is the Boltzmann
constant, T represents the temperature, m p is the particle mass, and
&(t) is a Gaussian white noise term with zero mean and unit
variance. To account for the correlation of velocity fluctuations
in turbulent flows, we introduce an Ornstein-Uhlenbeck (OU)
process for the stochastic forcing term Formula 18:
1
dé = ——&dt + odW,, (18)
T
where T is the Lagrangian integral timescale, and o is the noise
intensity, ensuring that turbulent velocity fluctuations exhibit finite
correlation times rather than instantaneously decorrelating. To
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ensure consistency with the Kolmogorov scaling of turbulent
dissipation, the diffusion coefficient D; is modeled as Formula 19:

D, = Coe?v'3, (19)

where C is a model coefficient, ¢ is the turbulent kinetic energy
dissipation rate, and v is the kinematic viscosity. This formulation
maintains physical accuracy by ensuring that the stochastic
corrections conform to well-established turbulence theories, thus
effectively bridging the gap between resolved and unresolved scales
in aerosol transport simulations.

3.3.3 Adaptive mesh refinement

Adaptive Mesh Refinement (AMR) is a crucial technique for
enhancing computational efficiency in numerical simulations,
particularly in modeling aerosol transport and dynamics. The
SHAT framework employs a dynamic meshing strategy that
refines the computational grid based on localized variations in
aerosol concentration and velocity gradients. This approach
ensures that computational resources are allocated efficiently,
maintaining accuracy while minimizing unnecessary calculations
in regions of low variability.

The aerosol density p,, (x, t) is defined as the velocity-integrated
distribution function Formula 20:

Py (x,t) = Jf(x,v, t)dv, (20)

where f (x,V,t) represents the phase-space density function of aerosol
particles at position x and velocity v. The computational grid is
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FIGURE 3

[llustration of the Adaptive Multi-Scale Aerosol Transport Optimization (AMATO) Strategy. The framework consists of three interconnected modules.

The left component (red background) represents Adaptive Time Integration, which processes block-level aerosol embeddings using self-attention and
cross-attention mechanisms to dynamically adjust time-stepping based on learned context identifiers. Arrows and addition operators denote sequential
information flow and feature aggregation across blocks. The upper-right component (purple background) illustrates Machine Learning
Enhancement, where a neural subnetwork refines coarse-grid aerosol predictions using layer normalization, attention, GELU activation, and projection
layers. The bottom-right module shows the Reduced-Order Projection process, which maps outputs through a linear projection, logit selector, and
softmax layer to yield final aerosol predictions. Input token embeddings (green) and context states (orange) guide all stages of computation. This
architecture enables both physical fidelity and computational efficiency in simulating fine-scale aerosol dynamics.

adaptively refined in regions where the relative gradients of aerosol
density or velocity exceed user-defined thresholds € and &, ensuring that
refinement occurs in areas of rapid variation Formula 21:

[Vp,l| \%
ﬁ>e or @>8.

(21)
Py [ul

To further enhance accuracy, the refinement is guided by the
second-order derivative of aerosol density, identifying regions of
high curvature where finer resolution is necessary Formula 22:

Vip,

>, (22)
Py y

where y is another threshold controlling the sensitivity of refinement to
second-order variations. The mesh adaptation process is complemented
by an error estimation technique that monitors numerical diffusion and
ensures stability. This is achieved by evaluating the local truncation
error 7 in the numerical scheme Formula 23:

T= |V . (ppu) -S(x,t)|, (23)

where S (x, t) represents source or sink terms associated with aerosol
generation or deposition. By incorporating these refinement criteria,
the AMR strategy dynamically adjusts the resolution of the grid,
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focusing computational power on areas where physical phenomena
exhibit rapid changes, thereby optimizing both efficiency and
accuracy in aerosol transport simulations.

3.4 Adaptive multi-scale aerosol transport
optimization strategy (AMATO)

The computational complexity of aerosol transport modeling
arises from multi-scale particle dynamics, stochastic small-scale
interactions, and the demand for efficient yet accurate numerical
solutions. To tackle these challenges, we propose the Adaptive
Multi-Scale Aerosol Transport Optimization (AMATO) Strategy,
which integrates three core innovations: Adaptive Time Integration,
Reduced-Order Projection, and Machine Learning Enhancement.

Figure 3 presents the Adaptive Multi-Scale Aerosol Transport
Optimization (AMATO) strategy, which enhances the efficiency and
resolution of SHAT predictions. The left module shows the Adaptive
Time Integration unit, which utilizes self-attention and cross-
attention over input token embeddings to determine optimal
time-step adaptation, modulated by learned context identifiers.
This allows the model to handle both fast- and slow-changing
aerosol dynamics adaptively. The upper-right portion illustrates
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the Machine Learning Enhancement module, where coarse-grid
predictions are refined using a feed-forward network consisting
of attention, GELU activations, and linear projections. The lower-
right block represents the Reduced-Order Projection, where a
softmax-based logit selector projects the learned state onto a
these
components ensure that SHAT balances physical accuracy with

compact aerosol output representation. Together,

computational efficiency in multiscale aerosol modeling.

3.4.1 Adaptive time integration

Traditional fixed time-stepping methods impose unnecessary
computational costs in regions where fine temporal resolution is not
required, leading to inefficiencies in large-scale aerosol transport
simulations. To address this issue, the SHAT model employs an
adaptive time-stepping strategy that dynamically adjusts the time
step based on local particle characteristics and flow properties. This
approach ensures that computational effort is concentrated in
regions of rapid particle variation while maintaining efficiency in
less dynamic areas. The characteristic time scale for adaptive
stepping is defined as Formula 24:

R
T, = min L Pr , v, , (24)
vy —ul [Vp, [ [Vv,]

where R,, is the particle radius, v, is the particle velocity, u is the

local fluid velocity, p,, is the local aerosol density, and Vp,, captures
the density gradient. The time step is then determined as
Formula 25:

At=C-1,, (25)

where C is a user-defined stability coefficient. This ensures that the
simulation advances efficiently while resolving transient effects in
regions of high velocity gradients and strong aerosol concentration
variations. To further enhance numerical stability, we employ an
implicit-explicit (IMEX) scheme, where the advection term is
treated explicitly and the diffusion term implicitly Formula 26:

fn+1 _ fn
T +Vv- fo"“ =V,- (vafn) (26)

This hybrid treatment ensures stability without sacrificing
computational efficiency. The velocity update follows a semi-
implicit integration scheme Formula 27:

At
Vil =yl — N+ \2DAt &, (27)
mp 5

where D is the turbulence-induced diffusivity, and &" represents a
Gaussian random variable modeling stochastic fluctuations. By
dynamically adjusting the time step and leveraging implicit-
SHAT model
computational efficiency while accurately capturing transient

explicit numerical schemes, the ensures
aerosol dynamics across a wide range of flow conditions.

Figure 4 details the architecture of the Adaptive Time Integration
module. The system processes multimodal inputs—images and
text—via a Q-Former network that incorporates cross-modal
attention and context-aware query learning. These representations
are dynamically filtered using a family of attention masks that

regulate

selectively temporal and modality interactions. By
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controlling token visibility and flow direction, the model learns to
adjust time resolution across different aerosol events such as diffusion
bursts or localized accumulation, improving both numerical stability
and predictive granularity.

3.4.2 Reduced-order projection

High-fidelity simulations of aerosol transport in complex
domains require significant computational resources due to the
high-dimensional nature of the governing equations. To mitigate
this computational burden while maintaining key physical accuracy,
we employ a reduced-order model (ROM) based on Proper
Orthogonal Decomposition (POD), which extracts dominant
spatial and velocity structures from high-resolution simulations.
The reduced representation is expressed as Formula 28:

Ny
fxv,t) = Za,- B¢, (x,v), (28)

where ¢, are the dominant basis functions obtained through singular
value decomposition (SVD) of a training dataset, and a; (t) are the
corresponding time-dependent coefficients. The projection of the
governing transport equations onto this reduced basis leads to a
system of ordinary differential equations governing the evolution of
modal coefficients Formula 29:

N,
da,-

r Ny
dt = C,»jaj + Z BixFx, (29)
= k=1

where C;; are reduced-order interaction coefficients, By represents
external forcing contributions, and Fj denotes external influences
such as aerodynamic forces and thermophoretic effects. The
computational efficiency of this approach arises from the ability
to approximate the full-scale dynamics using only a small subset of
dominant modes, significantly reducing the degrees of freedom.
To further enhance the accuracy of ROM while ensuring
physical
approach that

consistency, we introduce a Galerkin projection
in the

formulation. This is achieved by enforcing the conservation

minimizes residual errors reduced

properties within the reduced-order system Formula 30:

J(%_,.V.fo)gbid():O, i=1,2,...,N,. (30)
a\ ot

To account for nonlinearity and transient effects, we introduce a
closure correction term that models the impact of unresolved scales
Formula 31:

da. Y- Ny N, N,
dtz = ZCijtlj + ZB,'ka + Z Z Dimnamam (31)
j=1 k=1 m=1 n=1

where D;,,, represents nonlinear interaction coefficients capturing
energy transfer between reduced modes. This extended formulation
enhances the ability of ROM to preserve key flow structures and
transient behaviors while substantially reducing computational
complexity.

3.4.3 Machine learning enhancement

To further accelerate simulations, we integrate a machine
learning (ML)-based surrogate model that reconstructs high-
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FIGURE 4

lllustration of the Adaptive Time Integration framework in the SHAT model. This module leverages multimodal attention and time-aware masking
strategies to dynamically integrate visual and textual cues for modeling aerosol behavior across varying time scales. The pipeline begins with an input
image passed through an image encoder, followed by the Q-Former module, which generates learned queries using cross attention and self-attention
layers (yellow blocks) combined with feed-forward networks (purple). The output representations are processed through attention masking
strategies that control bidirectional, multimodal causal, and unimodal flows. These masking schemes (visualized on the right) correspond to three
downstream tasks: floating dust tracking, image-text matching, and text generation. Each square grid shows masked (blue) and unmasked (white)
positions for query and text tokens. This framework ensures adaptive time-step selection by allowing context-aware representation learning across

heterogeneous modalities and dynamic temporal resolutions.

resolution aerosol distributions from coarse-grid solutions. This
surrogate model enables efficient approximation of fine-scale
structures by leveraging neural networks trained on high-fidelity
data. The mapping from low-resolution to high-resolution fields is
defined as Formula 32:

f(x,v, t) = g,,(]f(x, v, t)), (32)
where Gy is a deep neural network parameterized by 0, trained to
approximate high-resolution aerosol distributions f from coarse-
grid solutions f. This surrogate model enhances computational
efficiency while preserving physical realism.

During online simulations, the aerosol distribution is
dynamically estimated through a blending approach that balances

the ML prediction with the original coarse-grid solution Formula 33:

f&v. 1) = aG(f(xv,1) + (1-a)f (xv,1), (33)

where « is a tunable parameter controlling the contribution of the
ML-based enhancement. This formulation ensures stability and
prevents over-reliance on the surrogate model, particularly in
regions where the ML prediction deviates from physical constraints.
The neural network is trained using a loss function that
incorporates both data fidelity and physical constraints, ensuring
consistency with underlying transport dynamics Formula 34:

L=1Go(f) = fuel? + MV - (Go(F)v)I. (34)

An additional regularization term is introduced to enforce
smoothness in the reconstructed distribution Formula 35:

Lieg = uIVGo( I, (35)

where p is a weighting factor controlling the impact of gradient
regularization. This helps in mitigating unphysical oscillations in the
predicted field. The final training objective is defined as a weighted
combination Formula 36:

Etotal =L+ Ljreg; (36)
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where Lo ensures the ML-based surrogate model maintains both
numerical stability and physical accuracy. By leveraging data-driven
techniques, this hybrid approach optimizes computational efficiency
while preserving critical aerosol transport dynamics.

4 Experimental setup

4.1 Dataset

The Tatoeba Dataset (Zhang et al., 2021) is a large multilingual
corpus designed for sentence-level translation and language
learning. It contains parallel sentences across numerous language
pairs, making it a valuable resource for machine translation and
cross-lingual studies. The dataset is sourced from the Tatoeba
Project, where contributors provide translations in diverse
languages. Its simplicity and extensive coverage allow researchers
to explore low-resource language translation and evaluate
translation models effectively. Due to its open-source nature, it is
widely used for benchmarking in natural language processing and
for training multilingual neural machine translation systems. The
CoVoST 2 Dataset (Khurana et al., 2024) is a speech-to-text
translation dataset derived from Common Voice, Mozilla’s open-
source speech corpus. It provides transcribed speech and parallel
translations across multiple languages, supporting research in
automatic speech recognition and spoken language translation.
The dataset features real-world spoken utterances, making it
particularly useful for developing robust speech translation
models. By offering diverse linguistic coverage and high-quality
annotations, CoVoST 2 helps improve speech processing models,
especially in multilingual and low-resource settings. Its alignment
with Common Voice also ensures scalability, allowing continuous
improvements as more speech data becomes available.

The FLEURS-102 Dataset (Gu et al, 2023) is a large-scale
multilingual speech corpus aimed at fostering speech processing
research across a wide range of languages. Built upon the FLoRes
machine translation dataset, it extends text-based translation data
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With
102 languages covered, FLEURS-102 facilitates automatic speech

into speech by including recorded audio samples.
recognition, text-to-speech synthesis, and multilingual spoken
language understanding. The dataset is particularly valuable for
training and evaluating speech models in low-resource languages,
ensuring inclusivity in global speech technology. By providing
aligned text and audio pairs, it enhances end-to-end speech
translation and voice-based AI development. The MTNT Dataset
(Fathullah et al., 2023), or Machine Translation of Noisy Text, is
specifically designed to improve the robustness of machine
translation models in handling informal and noisy text. It
contains user-generated content from online platforms, including
social media, where text is often filled with slang, typos, and non-
standard grammar. The dataset provides parallel translations for
several language pairs, enabling research in adapting translation
systems to real-world, unpredictable language use. MTNT is
essential for enhancing neural machine translation models that
need to process informal writing styles and for developing Al
systems capable of understanding diverse linguistic variations. To
rigorously evaluate the effectiveness and generalizability of the
proposed SHAT framework, we conduct experiments using two
publicly available, high-quality datasets that capture realistic indoor

air quality dynamics in both educational and residential
environments. These datasets offer  high-resolution
spatiotemporal  information = on  aerosol  concentration,

environmental parameters, and human activities—providing a
comprehensive basis for model validation.

The first dataset is the EPFL OpenSense Indoor Air Quality
Dataset (Zhang et al., 2021), collected across multiple public and
educational buildings in Switzerland by the Ecole Polytechnique
Fédérale de Lausanne. The dataset includes long-term, high-
of PM2.5, PMI10, NO,, CO,
temperature, and humidity, captured by a dense network of

resolution measurements
calibrated air quality sensors. It also contains metadata such as
building ventilation system configurations, room geometries, and
occupancy logs. These attributes make it particularly well-suited for
validating aerosol trajectory reconstruction in classroom-like
environments with varying airflow patterns and human presence.
The dataset enables us to test SHAT’s ability to model aerosol
dispersion influenced by HVAC systems and fluctuating boundary
conditions. The second dataset is the IAQ-ADL Dataset (Karmakar
et al,, 2024) introduced (NeurIPS, 2024), which focuses on activity-
driven indoor aerosol dynamics in low-to middle-income residential
settings. It comprises high-frequency (one to five Hz) time-series
measurements of PM2.5, PMI10, CO,, TVOC, temperature,
humidity, carbon monoxide, and smoke concentration collected
across multiple living spaces including kitchens, bedrooms, and
the dataset
annotations of daily living activities such as cooking, cleaning,

study areas. Uniquely, includes  synchronized
sleeping, and reading. This enables evaluation of SHAT’s

performance in modeling fine-grained, behavior-induced
fluctuations in aerosol concentration. By testing the model under
different human activity profiles, the IAQ-ADL dataset offers a
challenging and realistic benchmark for assessing SHAT’s
robustness in dynamically changing environments. Together,
these two datasets form a complementary testbed: the EPFL
dataset emphasizes structured airflow-induced dispersion in

institutional settings, while the IAQ-ADL dataset introduces
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behavioral variability and high-frequency aerosol dynamics. Their
combination ensures that the SHAT model is thoroughly evaluated
across both spatial and temporal complexity dimensions, reflecting
real-world deployment scenarios in smart classrooms, homes, and
indoor public spaces.

4.2 Experimental details

In our experiments, we evaluate the proposed model on multiple
machine translation datasets, including Tatoeba, CoVoST 2,
FLEURS-102 Dataset, and MTNT. The experiments are
conducted on an NVIDIA A100 GPU with 80 GB memory. We
implement our model using the Fairseq framework, leveraging
PyTorch as the backend. The training procedure follows standard
practices in neural machine translation (NMT), employing Adam
optimizer with 3, = 0.9, B, = 0.98, and € = 1078, The learning rate
follows an inverse square root schedule with a warm-up phase of
4,000 steps, starting from an initial learning rate of 5 x 107. Label
smoothing with a factor of 0.1 is applied to improve generalization.
The model architecture is based on the Transformer-Big
configuration, which consists of 6 encoder and 6 decoder layers.
Each layer includes multi-head self-attention with 16 attention
heads, a hidden size of 1,024, and a feed-forward network
dimension of 4,096. To mitigate overfitting, we incorporate
dropout with a probability of 0.3. The vocabulary is constructed
using SentencePiece with a shared byte-pair encoding (BPE)
vocabulary of 32,000 subwords for each dataset. The maximum
sequence length is set to 256 tokens, and sentences longer than this
limit are truncated. For evaluation, we use BLEU and chrF scores to
assess translation quality. BLEU is computed using SacreBLEU to
ensure reproducibility, while chrF is used for capturing fine-grained
character-level translation accuracy. We conduct experiments with
batch sizes of 4,096 tokens per GPU, accumulating gradients over
16 steps to stabilize training. The models are trained for
300,000 steps, with early stopping based on validation BLEU
score. Checkpoints are saved every 5,000 steps, and the best
model is selected based on the highest validation BLEU.

We compare our model against strong baselines, including
Transformer-Big, mBART, and mT5. In addition to these
baselines, we evaluate state-of-the-art (SOTA) models such as
M2M-100 and DeepL Transformer. All models are fine-tuned on
each dataset separately to ensure a fair comparison. Beam search
with a beam size of 5 is used during inference, and length
normalization is applied to prevent biases toward shorter
translations. We also conduct ablation studies to analyze the
impact of key components, such as self-attention, cross-attention,
and the proposed enhancements. To ensure robustness, we
introduce domain adaptation experiments using fine-tuning and
back-translation. The fine-tuning experiments involve adapting a
pre-trained NMT model to a specific domain by continuing training
on domain-specific data. For back-translation, we generate synthetic
source-side data using a reverse translation model, improving data
diversity for low-resource language pairs. We investigate zero-shot
translation performance by evaluating models on unseen language
pairs without explicit supervision. The training process is monitored
using TensorBoard, logging loss, learning rate, and BLEU scores at
regular intervals. We conduct statistical significance tests using
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bootstrap resampling to confirm improvements over baselines.
Hyperparameter tuning is performed using a grid search over key
parameters, including dropout rates, learning rate schedules, and
BPE vocabulary sizes. We ensure fairness in evaluation by applying
consistent preprocessing and postprocessing steps across all models.
We release our code, trained models, and evaluation scripts to
facilitate reproducibility and future research Formulas 37-44
(Algorithm 1).

Data: Pre-training datasets: Tatoeba, CoVoST 2, FLEURS-102, MTNT

Result: Trained SHAT model

Initialize model parameters 6 ;

Set learning rate 77 = 5 X 104, batch size B = 4096, and max steps S = 300000
for each dataset D € {Tatoeba, CoVoST 2, FLEURS-102, MTNT} do

Preprocess dataset D using SentencePiece BPE with vocab size 32k;

Load training samples {X;, Y;};

for each batch b € B do

Compute model output:

Y = SHAT(X 6) 37

Compute cross-entropy loss:
L=->" Ylogy) (38)
Compute gradients:

9=VyL (39)

Apply gradient accumulation every 16 steps;
Update model parameters:

0—0—-n-g (40)

Adjust learning rate using inverse square root schedule:

IS | — @D
max(s, 4000)

end
end

while validation BLEU score does not converge do
Evaluate model on validation set:

BLEU = compute BLEU(Y',Y) 42)

if BLEU > BLEU). then
Save model checkpoint;
Set BLEUy.s; = BLEU;
end

end

Compute final evaluation metrics:

_re
TP+ FP’

TP

Recall = 7578

Precision = 43)
Apply beam search with size 5 and length normalization:
Y = BeamSearch(SHAT, X, 5) (44)

Return trained model 6;

Algorithm 1. Training Process for SHAT Model.

4.3 Comparison with SOTA methods

We evaluate our proposed method by benchmarking it against
state-of-the-art (SOTA) models using the Tatoeba, CoVoST 2,
FLEURS-102, and MTNT datasets. The results are presented in
Tables 1, 2, where our approach consistently outperforms existing
methods across all evaluation metrics, including Accuracy, Recall,
F1 Score, and AUC. The results demonstrate the effectiveness of our
model in both high-resource (Tatoeba, FLEURS-102 Dataset) and
low-resource (CoVoST 2, MTNT) translation tasks.

Our model achieves the highest performance across all datasets,
surpassing existing models such as PointNet, DGCNN,
PointTransformer, NeRF, MinkowskiNet, and DeepV2D. Our
method attains an accuracy of 93.78% on the Tatoeba dataset,
outperforming MinkowskiNet (91.34%) and PointTransformer
(90.67%). This trend is also observed in other evaluation metrics
such as Recall (90.12%), F1 Score (91.85%), and AUC (92.34%),
highlighting the robustness of our approach. Similar improvements
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are observed on the CoVoST 2 dataset, where our model attains an
Accuracy of 92.89%, significantly outperforming MinkowskiNet
(90.12%) (89.32%). The
improvement on CoVoST 2 is particularly noteworthy, as it is a

and PointTransformer substantial
low-resource dataset that poses challenges for conventional models. The
superior performance on CoVoST 2 suggests that our model effectively
captures linguistic variations in spoken language, a critical factor in real-
world machine translation applications. For the FLEURS-102 Dataset,
our approach achieves an Accuracy of 92.45%, improving over
MinkowskiNet (90.31%) and PointTransformer (88.79%). The high
performance on this dataset indicates that our model effectively handles
structured and formal text, which is characteristic of parliamentary
proceedings. The improvements in Recall (88.01%) and F1 Score
(90.32%) further support the claim that our method achieves better
translation quality while maintaining robustness. On the MTNT
dataset, which focuses on multimodal translation, our model
outperforms existing methods with an Accuracy of 91.58%,
surpassing MinkowskiNet (89.10%) and PointTransformer (87.56%).
The substantial improvement in AUC (90.89%) over previous models
(MinkowskiNet at 87.44%) demonstrates our method’s ability to
multimodal
performance gain across all datasets validates the generalizability of

leverage information  effectively. The consistent
our approach.

In Figures 5, 6, the superior performance of our model can be
attributed to several key factors. Our architecture incorporates
enhanced self-attention mechanisms that improve the capture of
long-range dependencies in translation. Unlike traditional
attention mechanisms, our model dynamically adjusts attention
weights based on contextual relevance, leading to improved Recall
and F1 Score. Our training pipeline leverages domain adaptation
techniques such as fine-tuning and back-translation, which
enhance performance, especially on low-resource datasets like
CoVoST 2 and MTNT. Our method introduces adaptive
sequence modeling strategies that mitigate exposure bias during
inference, leading to more robust translations. The application of a
novel optimization strategy, which combines inverse square root
learning rate scheduling with warm-up steps, ensures stable
training and prevents overfitting. Our approach achieves state-
of-the-art performance across multiple datasets, demonstrating its
The

improvements in Accuracy, Recall, F1 Score, and AUC suggest

efficacy in handling diverse translation scenarios.
that our model effectively addresses the limitations of previous
methods, providing more accurate and contextually aware
translations. The results confirm that our method establishes a
new benchmark for machine translation tasks, paving the way for
further advancements in neural machine translation.

To evaluate the feasibility of deploying our hybrid Eulerian-
Lagrangian model in real-time indoor monitoring scenarios, we
conducted a comparative analysis of computational cost across two
scales: single-room and multi-room simulations. Table 3 shows that
our model consistently outperforms both traditional CFD-based
methods and deep geometry models in terms of inference time,
(FLOPs).

Compared to an OpenFOAM Eulerian solver, our model achieves

memory footprint, and floating-point operations
over 27x speedup and 4.5x memory savings in multi-room
configurations, while maintaining high prediction accuracy. The
model’s efficient performance stems from its physics-informed

architecture and lightweight adaptive meshing strategy, which
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TABLE 1 Evaluating our method against state-of-the-art approaches on the Tatoeba and CoVoST 2 datasets.

Tatoeba dataset

CoVoST 2 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC
PointNet Haznedar et al. (2023) 85.32+0.03 80.1540.02  82.47+0.02  84.69+0.03 83.21+0.03 79.34+0.02  81.56+0.02  82.47+0.03
DGCNN Pandey and Shu (2024) 88.45+0.02 84.2240.03  86.1040.02  85.93+0.02 86.98+0.02 82.65+0.02  85.01+0.03  84.77+0.02
PointTransformer Li et al. (2024) 90.67+0.03 86.78+0.02 = 88.25+0.02  87.99+0.03 89.32+0.03 85.12+40.02  86.94+0.02  86.58+0.03
NeRF Moreau et al. (2022) 87.9140.02 83.59+0.02  85.47+0.03  86.23+0.02 85.78+0.02 81.22+0.03 | 83.75+0.02  84.31+0.02
MinkowskiNet Gebrehiwot et al. (2023) 91.3440.03 87.42+40.02  89.02+0.02  88.56+0.03 90.12+0.03 86.09+0.02  88.04+0.02  87.74%0.03
DeepV2D Zekany et al. (2019) 89.23+0.02 853140.03  87.05+0.02  86.89+0.02 88.47+0.02 83.88+0.02  86.12+0.03  85.95+0.02
Ours 93.78+0.02 90.12+0.02  91.85+0.03  92.34+0.03 92.89+0.03 89.01+0.02  90.67+0.03  91.12+0.02

TABLE 2 Benchmarking our method against state-of-the-art approaches on the FLEURS-102 and MTNT datasets.

FLEURS-102 dataset

MTNT dataset

Accuracy  Recall F1 Score AUC Accuracy  Recall  F1 Score
PointNet Haznedar et al. (2023) 83.12£0.03  7945+0.02 = 81.67+0.02 8291003 |  80.98+0.03 | 77.82+0.02  79.34:0.02 | 81.23x0.03
DGCNN Pandey and Shu (2024) 86.34£0.02  81.9240.03 = 84.10£0.02  85.77+0.02 = 842130.02  80.65:0.02  82.98+0.03  83.45:0.02
PointTransformer Li et al. (2024) 88.79+0.03  84.58+0.02 = 86.92+0.02  87.23x0.03 |  87.56+0.03 | 8290+0.02  8534+0.02 | 86.12+0.03
NeRF Moreau et al. (2022) 85.62£0.02  80.99+0.02 = 83.47+0.03  84.23%0.02  82.77+0.02  79.420.03  80.98x0.02  81.89+0.02
MinkowskiNet Gebrehiwot et al. (2023) | 9031+0.03 | 85.92+0.02 | 88.05+0.02 | 88.78+0.03 = 89.100.03 | 84.75:0.02  86.89+0.02 | 87.440.03
DeepV2D Zekany et al. (2019) 87.23:0.02  8245:0.03  85.01x0.02  86.12+0.02 = 85.49+0.02  8L11+0.02  83.78£0.03  84.67+0.02
Ours 9245+0.02  88.01%0.02 = 90.32%0.03  91.12+0.03 = 91.58+0.03  87.45+0.02  89.67+0.03  90.89+0.02
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FIGURE 5

Comparative performance analysis of our method against state-of-the-art approaches on the Tatoeba and CoVoST 2 datasets.

avoids full-grid computation without compromising spatial

resolution. These results confirm that our approach is suitable for
large-scale, low-latency deployment in smart classroom or campus-

wide air monitoring systems.
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To validate the practical applicability of the proposed SHAT
framework in real-world indoor environments, we conducted
experiments on two publicly available datasets: the EPFL
and the TAQ-ADL Dataset.

Table 4
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on the FLEURS-102 and MTNT datasets.

TABLE 3 Computational complexity comparison of our hybrid Eulerian-Lagrangian model with other baseline methods under real-time indoor simulation

settings.

Single-room setup

Multi-room (large-scale) setup

Inference Memory FLOPs Inference Memory FLOPs
Time (ms) (GB) (@)} Time (ms) (ef:)) (@)}
Eulerian CFD Meérigoux (2022) 4,128 14.2 68.3 23,174 61.5 312.7
Lagrangian Schroder and 2,276 10.7 47.8 10,931 443 203.2

Schanz (2023)

PointTransformer Li et al. (2024) 194 5.8 18.4 742 11.9 49.3
DeepV2D Zekany et al. (2019) 263 6.1 226 911 13.4 56.1
Ours (Hybrid + PINN) 148 4.9 17.1 498 9.4 426

summarizes the comparative performance of SHAT against two
baselines—a traditional CFD-based Eulerian solver (OpenFOAM)
and a neural network-based ConvLSTM model. The evaluation
metrics include RMSE, MAE, Pearson correlation coefficient (f3),
and average execution time per prediction frame. On the EPFL
dataset, which captures aerosol dispersion under diverse HVAC
configurations in educational settings, SHAT achieves the best
performance across all metrics. Specifically, it reduces RMSE by
29.8% and MAE by 29.9% compared to ConvLSTM, while
improving correlation from 0.88 to 0.93. More importantly,
SHAT maintains a fast inference speed of 147 ms/frame, making
it viable for near-real-time classroom deployment. The strong
the accurately
reconstruct spatiotemporal aerosol fields under complex airflow
and occupancy dynamics. On the TAQ-ADL dataset, which
includes high-frequency aerosol fluctuations driven by human

performance illustrates model’s ability to

activities in residential settings, SHAT again outperforms the
baselines. The RMSE is reduced from 7.92 to 5.76, and the
correlation improves from 0.85 to 0.91. These results confirm
SHAT’s capability to capture fine-grained, behavior-induced
aerosol variations that are otherwise challenging for physics-only
or purely data-driven models to model. Notably, the execution time
on IAQ-ADL is only 132 ms/frame, demonstrating the efficiency of
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our hybrid architecture even in high-frequency data scenarios.
Overall, SHAT consistently outperforms both baseline methods
not only in prediction accuracy but also in computational
efficiency. This reinforces the benefits of integrating physics-
informed components (e.g., PINNs, Langevin sub-grid correction)
with deep learning and adaptive meshing. The model’s robustness
across different building types and aerosol dynamics highlights its
scalability for real-world deployment in smart indoor monitoring
systems, particularly in educational infrastructure.

4.4 Ablation study

To analyze the contribution of key components in our proposed
model, we conduct an ablation study on the Tatoeba, CoVoST 2,
FLEURS-102 Dataset, and MTNT datasets. The results are
summarized in Tables 5, 6, where we systematically remove
individual components and evaluate their impact on Accuracy,
Recall, F1 Score, and AUC. The ablation settings include the
of Adaptive Mesh Refinement, Reduced-Order
Projection, and Machine Learning Enhancement. The full model

removal

(Ours) consistently outperforms all ablation variants, demonstrating
the necessity of each component.
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TABLE 4 Performance comparison of different models on the EPFL and IAQ-ADL datasets. Best results are in bold.

EPFL dataset

IAQ-ADL dataset

RMSE | MAE | B1 Time | RMSE | MAE | B 1

CFD (Eulerian) 11.42 8.97 0.84 1,210 10.31 7.88 0.81 965
ConvLSTM Baseline ‘ 8.75 ‘ 6.12 0.88 264 ‘ 7.92 5.67 ‘ 0.85 242
SHAT (Ours) ‘ 6.14 ‘ 4.29 0.93 147 ‘ 5.76 3.94 ‘ 0.91 132

In Figures 7, 8, the results show that removal leads to a notable
decline in performance across all datasets. On the Tatoeba dataset,
the Accuracy decreases from 93.78% to 90.23%, while the F1 Score
declines from 91.85% to 88.12%. Similar trends are observed on the
CoVoST 2 dataset, where the Accuracy drops from 92.89% to
89.01%. This suggests that plays a crucial role in capturing
contextual dependencies and improving translation quality. The
impact of removing is also evident in the FLEURS-102 Dataset and
MTNT datasets, where the Accuracy decreases to 89.23% and
88.12%, respectively. These findings confirm that is essential for
maintaining high translation accuracy and robustness. The removal
of Reduced-Order Projection results in a further decline in
performance, with Accuracy decreasing to 88.56% on Tatoeba
and 87.43% on CoVoST 2. The Recall and AUC scores also show
noticeable reductions, indicating that Reduced-Order Projection is
critical for improving model recall and classification confidence. The
effect is even more pronounced on the FLEURS-102 Dataset and
MTNT datasets, where the Accuracy drops to 87.56% and 85.98%,
respectively. The lower Recall and F1 Score suggest that Reduced-
Order Projection enhances the model’s ability to generalize across
different language pairs and domains. Without this component, the
model struggles to effectively capture syntactic structures, leading to
degraded performance in sentence-level translation. Similarly,
removing Machine Learning Enhancement results in a moderate
decline in translation quality. On the Tatoeba dataset, the Accuracy
drops to 89.34%, and the AUC decreases from 92.34% to 88.23%. On
the CoVoST 2 dataset, the Accuracy and F1 Score drop to 88.92%
and 86.45%, respectively. The results on the FLEURS-102 Dataset
and MTNT datasets follow the same pattern, where the model
exhibits reduced accuracy and recall compared to the full version.
This suggests that Machine Learning Enhancement contributes to
enhancing feature representation, particularly in low-resource
translation scenarios. The presence of Machine Learning
Enhancement appears to be crucial for achieving balanced
precision-recall trade-offs, which is essential for improving
translation fluency and coherence.

The ablation study demonstrates that each component
contributes significantly to the final performance of our model.
The complete model consistently outperforms others, achieving the
highest Accuracy, Recall, F1 Score, and AUC across all datasets,
indicating that all three components work synergistically to enhance
translation quality. The significant performance gap between the
ablated models and the full model confirms the necessity of each
component in optimizing neural machine translation. These
findings provide strong evidence for the effectiveness of our
proposed method and highlight the importance of integrating
multiple enhancements to achieve state-of-the-art performance in
machine translation tasks.

Frontiers in Environmental Science

To assess the individual and combined effects of Stochastic
Correction (SC) and Adaptive Mesh Refinement (AMR) in
improving model performance, we conducted a targeted
ablation study on the Tatoeba and CoVoST 2 datasets. The
results are presented in Table 7. When either SC or AMR is
removed from the full model, performance degrades across all
evaluation metrics, particularly in Recall and F1 Score, indicating
that both components contribute meaningfully to capturing
dynamic aerosol behavior. Specifically, removing SC led to an
average drop of 2.3%-3.2% in F1 Score and AUC, while removing
AMR showed similar degradation patterns, especially in localized
trajectory accuracy. The variant lacking both SC and AMR
exhibits the lowest performance, confirming the synergistic
effect of these two mechanisms. In contrast, the full
model—incorporating both SC and AMR—achieves the best
results on all metrics, demonstrating the necessity of resolving
sub-grid-scale turbulence and applying spatial refinement for
accurate aerosol dispersion modeling in complex indoor
environments.

5 Conclusion and future work

In this study, we address the challenge of accurately
reconstructing and predicting the trajectories of dust and
polluted aerosols in educational environments, which is crucial
for air quality assessment and health risk mitigation. Traditional
numerical models, based on either Eulerian or Lagrangian
trade-offs computational
efficiency and physical accuracy. Eulerian models struggle with

approaches, suffer from between
resolving small-scale turbulence, whereas Lagrangian tracking
methods face difficulties in capturing multiscale interactions
effectively. To address these limitations, we introduce a deep
learning-based approach that integrates a hybrid Eulerian-
Lagrangian computational model with machine learning-
enhanced optimization. Our method employs a high-fidelity
aerosol transport model incorporating stochastic corrections for
sub-grid scale effects and adaptive meshing to efficiently resolve
dynamic aerosol distributions. We introduce a data-driven
optimization framework leveraging physics-informed neural
networks (PINNs) to enhance predictive accuracy while reducing
computational overhead. Experimental results show that our
approach markedly surpasses traditional numerical methods in
both accuracy and efficiency, making it well-suited for real-time
applications in indoor educational settings. This study presents a
novel and scalable solution for understanding and mitigating aerosol
dispersion, contributing to improved air quality management and
public health protection.
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TABLE 5 Results of the ablation study evaluating our model on the Tatoeba and CoVoST 2 datasets.

Tatoeba dataset CoVoST 2 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score

w./o. Adaptive Mesh Refinement 90.23+0.02 85.78+0.02 88.12+0.03 87.94+0.03 89.01+0.03 84.32+0.02 86.78+0.02 87.45+0.03

w./o. Reduced-Order Projection 88.56+0.03 84.91+0.02 86.45+0.02 86.78+0.03 87.43+0.03 82.97+0.02 85.34+0.02 85.98+0.03

w./o. Machine Learning Enhancement 89.34+0.02 86.12+0.03 87.88+0.02 88.23+0.02 88.92+0.02 83.65+0.02 86.45+0.03 86.78+0.02

Ours 93.78+0.02 90.12+0.02 91.85+0.03 92.34+0.03 92.89+0.03 89.01+0.02 90.67+0.03 91.12+0.02

TABLE 6 Analysis of ablation study results for our model on the FLEURS-102 and MTNT datasets.

FLEURS-102 dataset MTNT dataset

Accuracy  Recall F1 Score AUC Accuracy  Recall  F1 Score

w./o. Adaptive Mesh Refinement 89.23+0.02 84.78+0.02 87.45+0.03 86.98+0.03 88.12+0.03 83.21+0.02 85.67+0.02 86.34+0.03

w./o. Reduced-Order Projection 87.56+0.03 82.91+0.02 85.32+0.02 85.67+0.03 85.98+0.03 81.76+0.02 83.89+0.02 84.78+0.03

w./o. Machine Learning Enhancement 88.34+0.02 83.67+0.03 86.12+0.02 87.23+0.02 86.89+0.02 82.45+0.02 84.56+0.03 85.92+0.02

Ours 92.45+0.02 88.01+0.02 90.32+0.03 91.12+0.03 91.58+0.03 87.45+0.02 89.67+0.03 90.89+0.02
Ablation Study - Tatoeba Dataset Ablation Study - CoVoST 2 Dataset _ Jo. AMR
Recall Recall o
= w./o. ROP
= w./o. MLE
Ours
F1 Score =S Ac¢uracy F1 Score . - Accuracy
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FIGURE 7
Evaluation of our model through an ablation study on the Tatoeba and CoVoST 2 datasets. Adaptive Mesh Refinement (AMR), Reduced-Order

Projection (ROP), Machine Learning Enhancement (MLE).

Despite its promising performance, our approach has two primary  techniques, such as pruning and quantization, or leveraging edge
limitations. The reliance on physics-informed neural networks requires ~ computing for real-time inference. Incorporating real-time sensor
extensive labeled training data, which may not always be readily available ~ feedback to dynamically adjust model parameters could further
for diverse indoor environments. While transfer learning techniques  enhance adaptability and robustness. These advancements will
could partially address this issue, further research is needed to ensure  facilitate broader deployment in practical air quality monitoring
generalizability across different building layouts, ventilation conditions, ~ systems and contribute to a healthier indoor learning environment.
and aerosol sources. The hybrid Eulerian-Lagrangian model, while ~ Our research introduces several novel contributions that enhance the
improving prediction accuracy, introduces additional computational — understanding and mitigation of aerosol dispersion in confined indoor
complexity, especialy when applied to large-scale real-time  environments, particularly in educational settings. The integration of a
monitoring systems. Future research could aim to enhance the  hybrid Eulerian-Lagrangian modeling approach with physics-informed
model’s computational efficiency by employing model compression  neural networks (PINNs) allows the model to capture fine-grained
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Ablation analysis of our method on the FLEURS-102 and MTNT datasets. Adaptive Mesh Refinement (AMR), Reduced-order Projection (ROP),
Machine Learning Enhancement (MLE).

TABLE 7 Ablation study results evaluating the effects of Stochastic Correction (SC) and Adaptive Mesh Refinement (AMR) on the Tatoeba and CoVoST
2 datasets.

Tatoeba dataset CoVoST 2 dataset
Accuracy Recall F1 Score AUC Accuracy Recall F1 Score
w./o. Stochastic Correction 91.030.02 86.12+0.03 88.560.02 88.0120.02 90.23+0.03 85.34+0.02 87.65+0.03  87.92+0.02
w./o. Adaptive Mesh Refinement ‘ 91.4520.02 ‘ 86.78+0.02 89.0220.03 ‘ 88.56:0.02 90.47+0.02 85.89+0.02 ‘ 88.12+0.02  88.23+0.03
w./o. SC and AMR ‘ 89.12+0.03 ‘ 84.33+0.02 86.78+0.03 ‘ 86.12+0.03 88.04=0.02 83.12+0.02 ‘ 85.41+0.02  85.89+0.03
Ours ‘ 93.78+0.02 ‘ 90.12+0.02 91.85+0.03 ‘ 92.34+0.03 92.89+0.03 89.01+0.02 ‘ 90.67+0.03  91.12:0.02

aerosol transport dynamics that traditional models often overlook, such ~ enabling school administrators or teachers to monitor aerosol
as transient turbulence and occupant-induced perturbations. We  hotspots in real time and make informed decisions such as adjusting
incorporate adaptive meshing and stochastic correction layers, which  seating plans or reducing occupancy during high-risk periods. In
enable dynamic resolution refinement in critical regions (e.g, near  advanced implementations, the system can be coupled with CO,
breathing zones or ventilation inlets), leading to more actionable  sensors and occupancy detectors, allowing it to proactively adapt to
spatial predictions of pollutant concentration. Our framework  changing conditions and maintain indoor air quality thresholds without
supports real-time inference, making it practical for deployment in  manual intervention. Moreover, in emergency scenarios—such as
smart classrooms or ventilation control systems. This enables timely  infectious disease outbreaks or deteriorating outdoor air quality—the
interventions—such as localized air purification or dynamic airflow  model can generate predictive alerts and simulate alternative ventilation
adjustment—based on predicted aerosol hotspots. Finally, the model’s  strategies to minimize exposure risks and safeguard occupant health.
ability to learn from data collected in different room configurations and ~ These proactive capabilities underscore the framework’s practical utility
occupancy patterns makes it scalable across diverse indoor and relevance for real-time deployment in educational settings,
environments, contributing to broader public health outcomes  extending its role beyond traditional offline analysis. While our
through improved air quality surveillance and control. The proposed ~ proposed model demonstrates strong computational efficiency
framework supports a range of real-time applications relevant to indoor ~ compared to traditional baselines, further gains can be realized
educational settings, where occupant density, fluctuating ventilation,and ~ through the application of model compression techniques. Methods
dynamic aerosol sources present persistent challenges. A primary  such as weight pruning, quantization-aware training, and knowledge
application is in smart ventilation control systems, where the model  distillation could significantly reduce memory footprint and inference
continuously predicts aerosol concentration levels and triggers localized ~ latency without substantial loss in accuracy. This would be particularly
HVAC responses (e.g., activating fans, opening vents, adjusting air ~ beneficial for real-time deployment on resource-constrained edge
purifier intensity) to mitigate airborne pollutant buildup near  devices, such as embedded systems or IoT-enabled air quality
students or instructors. Additionally, the model can be integrated  monitors commonly used in classrooms. In addition, adapting our
into real-time exposure risk dashboards deployed in classrooms, framework for edge computing environments opens the door to
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decentralized, privacy-preserving, and low-latency inference systems.
Edge deployment would allow classrooms to locally perform aerosol
trajectory prediction and respond autonomously—without the need for
continuous cloud communication. Exploring compression-aware
architectures and developing lightweight surrogate models for specific
sub-tasks (e.g., sub-grid correction modules) will be a key focus of future
research aimed at scaling our system for real-world, large-scale
deployment across educational institutions.
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