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Introduction: Understanding ecological vulnerability and its impact on
ecosystem services is essential for promoting sustainable environmental
management, particularly in ecologically fragile areas. This study focuses on
the Zhangjiakou–Chengde area (ZC area), a representative ecologically sensitive
area, and explores the mechanisms through which ecological vulnerability
influences ecosystem service value.

Methods: Based on the evaluation results of the ecosystem service value (ESV)
and the ecological vulnerability index (EVI), this study employs Geodetector and
constraint line analysis methods to examine their interrelationships.

Results: The results indicate that: (1) from 2000 to 2020, there was a significant
negative spatial correlation between ESV and EVI in the ZC area, with clusters of
low ESV–high EVI in the west and high ESV–low EVI in the east; (2) among all the
driving factors of EVI, fractional vegetation cover, land use intensity index, average
annual precipitation, and population density were identified as the most
influential factors on ESV. These variables exhibited clear threshold effects:
ESV initially increased with the variable but began to decline after a certain
threshold was exceeded; and (3) EVI itself also demonstrated threshold effects on
ESV. In 2000 and 2010, ESV growth slowed and then turned negative once EVI
exceeded 0.41 and 0.36, respectively. By 2020, EVI showed a consistently
suppressive effect on ESV.

Discussion: These findings underscore the importance of identifying critical
thresholds in ecosystem management to enhance the protection and
sustainable improvement of ecosystem services in ecologically vulnerable areas.
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1 Introduction

Ecosystem services are the benefits that ecosystems provide to
humans, including functions such as water purification, carbon
sequestration, soil conservation, and food supply (Elmqvist et al.,
2015). Ecological vulnerability, on the other hand, refers to the
sensitivity and adaptive capacity of ecosystems to external stressors,
including both natural and human-induced factors (He et al., 2018).
Ecological vulnerability is an important factor that limits the level of
ecosystem services (Weisshuhn et al., 2018). Research on ecosystem
services and ecological vulnerability is crucial for identifying the
pressures on ecosystems and implementing strategies for
conservation and restoration (Li, 2022). The ability to assess and
predict ecosystem services and their vulnerability is increasingly
important in light of climate change, land use changes, and growing
human populations. Current studies have focused on exploring the
spatial and temporal dynamics of ecosystem services and the driving
factors behind ecological vulnerability (Bai et al., 2021; Liao et al.,
2022). However, there is still a lack of consensus on how exactly
ecological vulnerability impacts ecosystem services, particularly in
ecologically fragile regions where these effects are more pronounced.

Ecosystem service value (ESV) is a widely used indicator that
quantifies the economic value of the benefits provided by
ecosystems. The use of ESV allows for an integrated evaluation
of ecosystem services, facilitating decision-making processes related
to land-use planning, conservation strategies, and resource
allocation (Costanza et al., 2014). More recent studies have
applied ESV in specific regions to assess the impact of land use
changes or climate change on ecosystem services (Rahman and
Szabó, 2021; Watson et al., 2020). Ecological vulnerability index
(EVI) is a critical metric used to assess the degree of ecological
vulnerability in a given area, reflecting both the inherent
characteristics of the ecosystem and the pressures exerted by
external factors (Fang et al., 2019). Models like the
Sensitivity–Resilience–Pressure (SRP) model have been widely
used to calculate EVI, due to their ability to integrate a wide
range of environmental, social, and economic factors that
influence ecological vulnerability (Ghosh et al., 2022). The SRP
model has proven effective in assessing ecological vulnerability in
different regions. For instance, it has been applied in ecologically
fragile areas with poor ecological backgrounds and those where
frequent human activities have led to increased ecological
vulnerability (Li et al., 2021; Yang et al., 2021; Zou et al., 2021).
These studies have demonstrated how the SRP model can be used to
identify areas of high vulnerability and suggest appropriate
management strategies.

Understanding the influence of ecological vulnerability on
ecosystem service value is critical for developing strategies that
balance conservation with human development (He et al., 2025).
Several studies have investigated the relationship between EVI and
ESV, often finding that increased vulnerability leads to a reduction
in the value of ecosystem services (Xie et al., 2021). For example, in
the case of grassland degradation, increased soil erosion and loss of
biodiversity have been shown to decrease carbon sequestration and
water retention capacity (Zhao et al., 2020). However, these
relationships are not always linear, and small changes in driving
factors can lead to significant shifts in the level of ecosystem service
(Jantz and Manuel, 2013; Jiang et al., 2024; Martínez-Sastre et al.,

2017). Ecological vulnerability does not always affect ecosystem
services in a straightforward, linear fashion but rather exhibits
threshold effects. This threshold effect is critical for
understanding the delicate balance between maintaining
ecosystem health and accommodating human activities. By
employing constraint line analysis (Huang et al., 2024), this
research aims to identify these thresholds and provide insights
into where and how ecological management interventions should
be targeted.

The Zhangjiakou-Chengde area (ZC area) is a key water
conservation zone in northern China and serves as an important
ecological barrier for Beijing and Tianjin. Despite its high ecosystem
service value, the region remains ecologically fragile due to intensive
human activities—such as overgrazing—and climate change
impacts like rising temperatures and increasing precipitation
variability. This study focuses on the spatiotemporal dynamics of
ESV and EVI in the ZC area from 2000 to 2020, aiming to clarify
how ecological vulnerability influences ecosystem services.
Specifically, it (1) analyzes the spatial clustering patterns of ESV
and EVI, (2) identifies dominant EVI-driven factors affecting ESV,
(3) explores the threshold characteristics of these factors, and (4)
proposes management strategies accordingly. By investigating the
constraint and threshold effects of ecological vulnerability drivers on
ESV, this study contributes to the theoretical understanding of the
interactions between ecosystem services and ecological risks in
fragile regions.

2 Materials and data acquisition

2.1 Study area overview

The ZC area, located in the northern part of Hebei Province
(39°18′-42°37′N, 113°50′-119°15′E), serves as a critical water source
and windward zone for Beijing and Tianjin. Covering an area of
7.63 × 104 km2 (Figure 1), the area features a variety of landforms,
including mountains, loess hills, and plateaus. It experiences a
temperate continental monsoon climate, with annual
precipitation ranging from 300 to 700 mm and average
temperatures between −1°C and 9°C. Due to its substantial
ecosystem service value, the ZC area plays an essential role in
water conservation, soil erosion control, and carbon
sequestration. However, according to the China Ecosystem
Assessment and Ecological Security Database (http://www.
ecosystem.csdb.cn/index.jsp), it is part of the agro-pastoral
transition zone, making the region highly ecologically fragile.
Water scarcity, overgrazing, and land degradation—further
intensified by climate change and unsustainable land use—pose
serious threats to the region’s ecological balance and compromise its
ability to deliver essential ecosystem services. These mounting
pressures underscore the urgent need for targeted restoration
efforts and sustainable management strategies.

2.2 Data sources and preprocessing

This study utilized a wide range of datasets, including land use,
meteorological, soil, vegetation index (NDVI), digital elevation
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model (DEM), and socio-economic data for the ZC area. Land use
data were obtained from the Resource and Environment Science
Data Center of the Chinese Academy of Sciences (https://www.
resdc.cn/), providing raster datasets for the years 2000, 2010, and
2020 at a spatial resolution of 30m. Land use was categorized into six
types: cropland, forest, grassland, water bodies, built-up areas, and
unused land. Meteorological data—including monthly precipitation
and potential evapotranspiration—were collected from
30 meteorological stations near the study area through the China
Meteorological Data Sharing Service (https://data.cma.cn/) for the
period 2000–2020. Soil data were derived from the Harmonized
World Soil Database (HWSD), using the “China Soil Dataset.”
NDVI data were sourced from the National Ecological Science
Data Center (http://www.nesdc.org.cn/), with a 30 m resolution.
DEM data were acquired from the Geospatial Data Cloud (http://
www.gscloud.cn/) at a spatial resolution of 90 m. Socio-economic
data were gathered from multiple sources, including the “China
Urban Statistical Yearbook,” “China County Statistical Yearbook,”

“Hebei Statistical Yearbook,” and statistical yearbooks of relevant
prefecture-level cities.

To eliminate the influence of data outliers and standardize
different data scales, the study area was divided into 1 km ×
1 km grid cells using the Fishnet tool in ArcGIS 10.8. The mean
value of each grid cell was extracted, resulting in a total of
76,200 cells (7.62 × 104), which were subsequently used for the
calculation and assessment of ESV and EVI.

3 Methods

The theoretical framework of this study is grounded in the
interaction between ESV and EVI, underpinned by the ecosystem
service cascade theory and vulnerability assessment frameworks.
This perspective posits that EVI, influenced by both natural and
anthropogenic drivers, can significantly affect the capacity of
ecosystems to deliver services. Accordingly, the workflow of this

FIGURE 1
Location of the study site. The base map is from the standard map of China issued by the Ministry of Natural Resources, with the review number GS
(2019)1822.
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study involves several key steps. It begins with the collection and
preprocessing of land use, climate, soil properties, and socio-
economic data. ESV is then assessed across four categories:
provisioning, regulating, supporting, and cultural services. To
evaluate EVI, the SRP model is applied, considering indicators
such as terrain, meteorological conditions, economic pressure,
ecological vitality, and human activities. Based on the theoretical
framework, the spatial coupling between ESV and EVI is analyzed to
reveal potential trade-offs or synergies. Subsequently, Geodetector is
used to identify the explanatory power and interactive effects of EVI
driving factors on ESV. Finally, the constraint line method is applied
to explore the thresholds and constraint effects of dominant EVI
factors on ESV (Figure 2).

3.1 ESV assessment

The Equivalent Factor Method is used to estimate the ESV for
the ZC area. The calculation formulas are Equations 1, 2 as follows
(Costanza et al., 2014; Xie et al., 2017):

ESV � ∑
n

i�1
Ai × Ei( ) (1)

E � 1
7
∑
m

j�1

Qj × Pj

Ctotal
(2)

Where: Ai represents the area of land type i, Ei is the unit area
ESV for land type i, and E is the standard equivalent, meaning one
unit of agricultural food production value for the ZC area is divided by
7. j represents crop types, Qj is the yield of crop j, Pj is the price per
unit weight of crop j, and Ctotal is the total planting area of all crops.

The average crop prices for wheat (2.66 CNY/kg), maize
(2.24 CNY/kg), and rice (3.17 CNY/kg) in 2020 are used as the base

prices for calculating food prices, based on the “China Agricultural
Product Price Survey Yearbook.” After calculation, the average food
price for the ZC area is determined to be 2.69CNY/kg. The average local
food yield for the years 2000, 2010, and 2020 in the study area is found
to be 3547.55 kg/hm2, and the final calculated ecosystem service value
equivalent factor for the ZC area is 1363.27 CNY/hm2.

Subsequently, the Net Primary Productivity (NPP) and
precipitation are used to further adjust the equivalent factor.
NPP is used to modify the coefficients for eight categories of
ecosystem services, including food production, raw material
production, gas regulation, climate regulation, environmental
purification, nutrient cycling, biodiversity maintenance, and
aesthetic landscape services. Precipitation is then used to revise
the water resource supply and hydrological regulation service values.
After calculations, the NPP mean values for 2000, 2010, and 2020 in
the ZC area are found to be 1.27 times the national average, while the
average precipitation is 0.64 times the national average. The final
ESV coefficient table for the ZC area is shown in Table 1.

The sensitivity analysis was employed to assess the accuracy of
ESV estimation (Kindu et al., 2016). The formula is Equation 3
as follows:

CS � ESVj − ESVi( )/ESVi

VCjk − VCik( )/VCik

(3)

Where: CS is the sensitivity coefficient, VC is the value
coefficient, ESV is the total ecosystem services value in the ZC
area. i and j represents the values before and after adjustment of ESV
or VC respectively, and k represents the land use type. When CS
greater than 1, the ESV is considered elastic with respect to the VC,
indicating lower reliability of the results. Conversely, if CS is less
than 1, the results are considered reliable. In this study, the VC for
each land use type was adjusted by ±50% to calculate the CS values.

FIGURE 2
Methodological flowchart for the study on the impact of ecological vulnerability on ecosystem service values and threshold identification.
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3.2 EVI assessment based on SRP model

The ecological vulnerability assessment is carried out in four
key steps: developing the indicator system, normalizing the
indicators, determining the weights of the indicators, and
calculating the EVI.

First, based on the Sensitivity–Resilience–Pressure (SRP) model
(Hong et al., 2016) and taking into account major ecological
challenges in the ZC area, such as climate aridity and severe soil
erosion, 13 relevant indicators were selected (Table 2), prioritizing
the timeliness and availability of data. Sensitivity refers to the extent
of an ecosystem’s instability when exposed to disturbances, both
natural and human-induced. Terrain and climate-related indicators
were used to capture this sensitivity. Resilience reflects the ability of

the ecosystem to recover from internal disturbances, and vegetation
cover and water system density were chosen as indicators of
resilience. Pressure refers to the impacts of external disturbances,
typically related to human activities and economic factors, and is
quantified through indicators like population density, land use
intensity index (Xu and Chi, 2019), and GDP.

To address discrepancies in the units and nature of the
indicators, a range normalization method was applied,
transforming all indicators into a uniform scale between 0 and 1.
The normalization are calculated by Equations 4, 5 as follows (Hong
et al., 2016):

X+
i � Xi −Xi,min

Xi,max −Xi,min
(4)

TABLE 1 Table of ESV coefficient per unit area in the middle reaches of the ZC area (CNY/hm2).

Primary Type Secondary Type Cropland Forest Grass Water Bareland

Provisioning Services Food Production 493.65 357.41 169.69 112.79 3.23

Raw Material Production 109.45 202.75 250.18 259.11 6.59

Water Resource Supply −583.01 934.59 138.49 2703.53 4.47

Regulating Services Gas Regulation 397.61 23344.01 880.09 852.17 29.04

Climate Regulation 207.74 13023.05 2327.55 549.81 22.34

Environmental Purification 60.31 2479.45 768.41 747.18 91.58

Hydrological Regulation 667.89 1668.39 1706.58 1675.44 53.61

Supporting Services Soil Conservation 232.31 1415.48 1072.19 1037.57 33.51

Nutrient Cycling Maintenance 69.25 31.27 80.41 79.29 2.23

Biodiversity 75.95 10139.76 973.91 944.87 31.27

Cultural Services Aesthetic Landscape 33.51 844.35 428.88 414.36 13.39

TABLE 2 Comprehensive ecological vulnerability evaluation indicator system for the ZC area.

Objective Standard
Layer

Characteristic
Layer

Indicator Direction Abbreviations

Ecological
Vulnerability

Sensitivity Terrain Indicators Elevation + ELV

Slope + SLP

Terrain Ruggedness + TRI

Meteorological Indicators Average Annual Precipitation - PRE

Average Annual Temperature + TMP

Potential Evapotranspiration + PET

Standardized Precipitation Evapotranspiration
Index

+ SPEI

Resilience Ecological Vitality Fractional Vegetation Cover - FVC

River Network Density - RND

Pressure Human Activity Pressure Population Density + POP

Land Use Intensity Index + LUDI

Economic Pressure GDP per Capita (in 100 million yuan) + GDPP

Nighttime Light Index + NTL
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X−
i � Xi,max −Xi

Xi,max −Xi,min
(5)

Where X+
i and X−

i are the normalized values for positive and
negative indicators; Xi is the raw value for indicator i; and Xi,max

and Xi,min are the maximum and minimum values of indicator i.
Subsequently, the Analytic Hierarchy Process (AHP) was applied to
determine the weights of each indicator (Nahuelhual et al., 2013). A
judgment matrix was developed based on existing literature, yielding
the following weight values for the sensitivity, resilience, and
pressure categories: 0.27, 0.42, and 0.31, respectively. After
normalizing the indicators corresponding to exposure, sensitivity,
and adaptability, each was weighted according to the criterion layer.

Finally, Principal Component Analysis (PCA) was used to select
the main components contributing to more than 85% of the
cumulative variance, which were then used to calculate the EVI
(Abson et al., 2012). The weight of each indicator was determined
through a mathematical model, and the formula for computing the
EVI is is Equation 6 as follows:

EVI � r1y1 + r2y2 + r3y3 +/ + rnyn (6)

Where yi represents the normalized value of the i-th indicator
factor, and ri represents the weight of the i-th factor. The natural
breaks method was applied to classify the EVI values into five
categories: 0.00-0.35 (Slight), 0.35-0.45 (Light), 0.45-0.60
(Medium), 0.60-0.70 (Heavy), and 0.70-0.90 (Very Heavy).

3.3 Spatial analysis

3.3.1 Cold and hot spot analysis
Cold and hot spot analysis is a local spatial autocorrelation

method widely used to identify regions with high spatial conflict of a
single factor (Li et al., 2019). The Getis-Ord Gi* (Gi*) statistic is
typically employed to perform quantitative analysis of hotspots in a
region, and the standardized value Z (Gi*) is used to test the
statistical significance of the cold and hot spot areas (Han et al.,
2020). If Z (Gi*) >0 and passes the significance test, the region is
considered a high-value cluster (hot spot); if Z (Gi*) <0 and passes
the significance test, the region is considered a low-value cluster
(cold spot). In this study, ArcGIS 10.8 was used for cold and hot spot
analysis to evaluate the spatial clustering of ESV and EVI. Based on
significance testing results at the p = 0.01, p = 0.05, and p = 0.1 levels,
the regions were classified into seven categories: Cold Spot - 99%
Confidence, Cold Spot - 90% Confidence, Cold Spot - 95%
Confidence, Hot Spot - 90% Confidence, Hot Spot - 95%
Confidence, Hot Spot - 99% Confidence, and Not Significant.

3.3.2 Bivariate spatial autocorrelation analysis
Bivariate spatial autocorrelation is widely used to explore the

spatial distribution relationship between two factors. In this study,
the global Moran’s I index (Chen et al., 2023) and the local spatial
association index (LISA) (Kowe et al., 2021) were calculated using
GeoDa 1.20.0 to analyze the global and local spatial autocorrelation
between ESV and EVI for the 76,200 grid cells in the ZC area. The
range of Moran’s I is [-1, 1], where Moran’s I >0 indicates that ESV
and EVI tend to spatially cluster, showing a positive correlation;
Moran’s I <0 indicates that ESV and EVI exhibit a dispersed

distribution, showing a negative correlation; and Moran’s I =
0 indicates that the two variables are spatially unrelated. If
LISA >0, it indicates that high or low-value grids of ESV and
EVI exhibit spatial clustering, resulting in the spatial distribution
of High ESV-High EVI or Low ESV-Low EVI. If LISA <0, it indicates
that high ESV and low EVI, or low ESV and high EVI, exhibit spatial
clustering, resulting in the spatial distribution of High ESV-Low EVI
or Low ESV-High EVI. If LISA = 0, it indicates that there is no
significant relationship between ESV and EVI.

3.4 Driver impact analysis based on
geodetector

This study utilizes the factor detector and interaction detector
from Geodetector (Gan et al., 2024) to quantitatively analyze the
impact of various driving factors of EVI on ESV. First, ESV was
selected as the dependent variable, while the 13 indicators from the
EVI evaluation system were considered as independent variables.
Each independent variable was classified into five categories using
the natural breaks classification method, converting continuous
numerical values into categorical factors. The factor detector was
then applied to calculate the explanatory power (q value) of the
independent variables on the dependent variable. A higher q value
indicates a stronger explanatory power of the independent variable,
and vice versa. The interaction detector was used to detect whether
the interaction between two independent variables increases or
decreases their explanatory power on the dependent variable. The
results were divided into five categories (Table 3).

3.5 Constraint effects and threshold
identification of influencing factors

The scatter data of ESV and its influencing factors do not always
follow a linear distribution but instead exhibit a scatter cloud pattern
with certain boundaries. This indicates that the explanatory
variables impose constraints on the response variable, limiting its
variation within a certain boundary range (i.e., the constraint line)
(Li et al., 2022). By extracting the boundary points and fitting a
constraint line equation, the relationship of constraint imposed by
the influencing factors on ESV can be identified.

In this study, the top four dominant factors, which have the
largest explanatory power based on the q values calculated by
Geodetector, were selected as the x-axis variables, while ESV was
chosen as the y-axis variable to construct a two-dimensional scatter

TABLE 3 Classification of interaction detector interaction types.

Criterion Interaction Type

q (X1∩X2) <Min (q (X1), q (X2)) Weaken, Nonlinear

Min (q (X1),q (X2)) <q (X1∩X2) <Max (q (X1), q (X2)) Weaken, Unidirectional

q (X1∩X2) >Max (q (X1), q (X2)) Enhance, Bidirectional

q (X1∩X2) = q (X1) + q (X2) Independence

q (X1∩X2) >q (X1) + q (X2) Enhance, Nonlinear
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plot. The x-axis data were then divided into 65 equal intervals, and
the boundary points for each interval were identified. Based on these
boundary points, local regression fitting was used to construct the
constraint line between ESV and the dominant factors. The
goodness of fit was tested using the coefficient of determination
(R2) (Hao et al., 2019). Finally, the inflection points of the constraint
line were used to identify the threshold values of the
dominant factors.

4 Results

4.1 Spatiotemporal distribution
characteristics of ESV and EVI

The total ESV of the ZC area was 1.75 × 1011 CNY in 2000, 1.85 ×
1011 CNY in 2010, and 1.94 × 1011 CNY in 2020. As shown in Figures
3a–c, the spatial distribution of ESV reveals a distinct pattern of
higher values in the eastern part of the area and lower values in the
west. High-value areas are primarily located in the Inner Mongolian
Plateau and the Yanshan Mountain hills in the east, while low-value
areas are concentrated in the western reclamation zones. To assess
the reliability of the ESV estimates, the VC was adjusted by ±50% to
calculate the CS for each land use type in the ZC area (Table 4). The
CS values were all below one across the 3 years, indicating that the
ESV estimates are inelastic to VC changes and thus considered
robust. This supports the validity of the selected value coefficients.

Figures 3d–f reveal significant cold spot clustering in the western
part of the area, while hot spot clusters are predominantly found in
the central and eastern areas. Notably, some cold spot areas
transitioned into hot spots over the study period, with 12.75% of
cold spot areas shifting to hot spots from 2000 to 2020. Hot spots in
the western area have expanded considerably, while the distribution
of hot and cold spots in the eastern area has remained
relatively stable.

Figures 4a–c demonstrate that the EVI in the ZC area followed a
spatial distribution pattern characterized by higher values in the
west and lower values in the east. From 2000 to 2020, the overall EVI
showed a significant decline. In the eastern area, ecological
vulnerability decreased from a medium to a light level, and in
the southeastern area, it dropped further to a slight level. In the
west, vulnerability decreased from a heavy to amedium or light level,
although certain areas still exhibited very high levels of vulnerability.
Figures 4d–f reveal pronounced hot spot clustering in the western
area, while cold spots were mainly concentrated in the southeastern
and northeastern parts. Both hot spot areas in the west and cold spot
areas in the east expanded during the study period. From 2000 to
2020, the cold spot area grew by 5,300 km2, while the hot spot area
expanded by 3,100 km2. As shown in Figure 5, the average EVI in the
ZC area was 0.59 in 2000, indicating a medium level of ecological
vulnerability. The most frequent EVI values occurred around 0.5. In
2010 and 2020, the average EVI values declined to 0.42 and 0.41,
respectively, corresponding to a light level of ecological vulnerability,
with the highest frequency of values falling within the 0.3–0.4 range.

FIGURE 3
Spatial distribution and cold/hot spots distribution of ESV in the ZC area in 2000, 2010, and 2020. Note: (a–c) Spatial distribution of ESV; (d–f) Spatial
distribution of ESV cold/hot spots.
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TABLE 4 Coefficient sensitivity of ESV.

Years Corpland Forest Grass Water Urban Bareland

2000 0.09 0.23 0.47 0.04 0.65 0.02

2010 0.08 0.24 0.43 0.03 0.68 0.02

2020 0.10 0.20 0.42 0.04 0.71 0.02

FIGURE 4
Spatial distribution and cold/hot spots distribution of EVI in the ZC area in 2000, 2010, and 2020. Note: (a–c) Spatial distribution of EVI; (d–f) Spatial
distribution of EVI cold/hot spots.

FIGURE 5
Temporal changes of ESV and EVI in the ZC area. In 2000, 2010, and 2020.
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Spatially, ESV and EVI exhibit contrasting distribution patterns
across the ZC area. Temporally, ESV increased by 5.98% from
2000 to 2010, while EVI declined by 28.81%. From 2010 to 2020,
ESV continued to rise by 4.88%, whereas EVI further declined by
2.38%. Overall, ESV and EVI display opposing trends in both spatial
and temporal dimensions.

4.2 Spatial clustering characteristics of ESV
and EVI

Figures 6a–c display the Moran’s I values for ESV and EVI in the
ZC area for the years 2000, 2010, and 2020, which
were −0.574, −0.534, and −0.602, respectively. These values
indicate a significant negative spatial correlation between ESV
and EVI. Figures 6d–f illustrate the spatial distribution of
bivariate clustering types for ESV and EVI. The results show that
the western area of the ZC area is predominantly characterized by
the Low ESV–High EVI type, whereas the eastern area is mainly
dominated by the High ESV–Low EVI type. Over time, the High

ESV–High EVI cluster has expanded westward, while the Low
ESV–Low EVI cluster has grown in the east. Concurrently, the
area classified as ‘Not Significant’ in the central area has gradually
diminished. Figures 6g–i further demonstrate that the spatial
autocorrelation of ESV and EVI has become more pronounced
over time in both the eastern and western areas, while remaining
relatively weak in the central part.

Figure 7 presents the transitions among different ESV and EVI
clustering types during the years 2000, 2010, and 2020. The results
reveal that the areas classified as High ESV–High EVI, Low
ESV–Low EVI, and High ESV–Low EVI increased steadily over
time. In contrast, the Low ESV–High EVI type first declined and
later experienced a resurgence, while the ‘Not Significant’ type
continuously decreased. From 2000 to 2010, the expansion of the
High ESV–High EVI cluster was primarily attributed to the
conversion from the Low ESV–High EVI type, accounting for
1,050 km2. During the same period, the growth of the Low
ESV–Low EVI and High ESV–Low EVI clusters was largely due
to the transformation from the Not Significant type, with conversion
areas of 2,631.25 km2 and 2,293.75 km2, respectively. From 2010 to

FIGURE 6
Bivariate spatial autocorrelation of ESV and EVI in the ZC area in 2000, 2010, and 2020. Note: (a–c) Morran scatter plots of bivariate spatial
autocorrelation of ESV and EVI; (d–f) Spatial distribution of bivariate spatial autocorrelation of ESV and EVI; (g–i) Significant spatial distribution of bivariate
spatial autocorrelation of ESV and EVI.
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2020, the High ESV–High EVI type continued to expand, again
mainly due to conversion from the Low ESV–High EVI type, with a
conversion area of 450.21 km2. The increase in Low ESV–Low EVI,
Low ESV–High EVI, and High ESV–Low EVI types was primarily
driven by transformation from the Not Significant type, with
respective conversion areas of 2,550 km2, 2,462.5 km2,
and 1,656.25 km2.

4.3 The impact of EVI driving factors on ESV

Figure 8 presents the explanatory power of 13 EVI driving
factors on the spatial differentiation of ESV. The results show
that in 2000, 2010, and 2020, FVC consistently exhibited the

highest explanatory power, with an average q value of 0.658. This
was followed by LUDI (0.622), PRE (0.571), and POP (0.433). The
remaining factors had average q values below 0.3, indicating
relatively low explanatory power. Over time, the influence of
FVC gradually declined, LUDI remained stable, PRE first
decreased and then increased, while the explanatory power of
POP steadily rose.

Figure 9 illustrates the interactive effects of the 13 EVI driving
factors on the spatial differentiation of ESV. Figures 9a–c reveal
three types of factor interactions: bidirectional enhancement,
independent enhancement, and nonlinear enhancement. These
results suggest that the interaction between two factors has a
greater impact on the spatial differentiation of ESV than each
factor acting independently. In 2000, the strongest interactions

FIGURE 7
Transition of correlation types between ESV and EVI from 2000 to 2020.

FIGURE 8
The impact of EVI driving factors on ESV from 2000 to 2020.
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were observed between FVC and LUDI (q = 0.794), FVC and SPEI
(q = 0.767), and FVC and slope (SLP) (q = 0.340). In 2010, the top
interactions were FVC∩LUDI (q = 0.715), LUDI∩SPEI (q = 0.700),
and LUDI∩SLP (q = 0.695). In 2020, the most significant
interactions included PRE∩PET (q = 0.713), LUDI∩SPEI (q =
0.706), and PRE∩SPEI (q = 0.705). As shown in Figure 9d,
bidirectional enhancement remained the predominant interaction
type throughout the study period. However, the proportion of
nonlinear enhancement interactions increased noticeably over
time, while the share of independent enhancement interactions
also rose slightly.

4.4 The constrained relationship and
thresholds of EVI driving factors on ESV

Based on the results of the factor detection analysis, this study
selects FVC, LUDI, PRE, and POP as the dominant factors influencing
ESV from among the 13 EVI driving factors, and further investigates
their constraint effects and threshold characteristics, along with those

of EVI, on ESV. Figures 10a–c show that FVC has an overall
promoting effect on ESV, meaning that ESV increases with the
increase of FVC. However, when FVC reaches 50%–60%, this
promoting effect begins to weaken. Figures 10d–f demonstrate that
LUDI shows a threshold effect on ESV, where ESV first increases with
LUDI, but starts to decline once a certain threshold is exceeded. The
threshold values of LUDI for 2000, 2010, and 2020 are 213.74, 215.75,
and 218.49, respectively, with a slight increase over time. Figures 10g–i
indicate that ESV increases with PRE initially, but then decreases. The
threshold values for PRE in 2000, 2010, and 2020 are 412.05 mm,
515.79 mm, and 607.03 mm, respectively, with a noticeable increase
over time. Figures 10j–l show that POP demonstrates a threshold
effect on ESV in 2000 and 2010, with the threshold values being
77.03 people/km2 and 81.45 people/km2, respectively. In 2020, POP
has amonotonous suppressive effect on ESV. Figures 10m–o show the
constraint effects and threshold characteristics of EVI on ESV. The
results indicate that EVI exhibited a threshold effect on ESV in
2000 and 2010, with threshold values of 0.41 and 0.36,
respectively. In 2020, however, EVI showed a consistently
suppressive effect on ESV without a clear threshold.

FIGURE 9
The impact of interactions between EVI driving factors on ESV from 2000 to 2020. Note: (a-c) Interactions between EVI driving factors and ESV from
2000 to 2020. (d) Proportion of interaction types.
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FIGURE 10
Constraint relationships between EVI and its dominant driving factors with ESV from 2000 to 2020. Note: (a–c) FVC and ESV; (d–f) LUDI and ESV;
(g–i) PRE and ESV; (j–l) POP and ESV; (m–o) EVI and ESV.
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5 Discussion

5.1 Temporal and spatial distribution
characteristics of ESV and EVI

The temporal and spatial patterns of ESV and EVI in the ZC area
from 2000 to 2020 reveal clear and significant trends. Over this period,
ESV increased steadily, while EVI declined overall. These trends align
with broader ecological improvements observed across the
Beijing–Tianjin–Hebei area, as documented in previous research (Xie
et al., 2018). The upward trend in ESV suggests that ecological
restoration initiatives—such as afforestation and soil conservation
programs—have positively influenced ecosystem functions, enhancing
services like water retention, soil preservation, and carbon sequestration
(Guo et al., 2022). Meanwhile, the downward trend in EVI reflects a
reduction in ecological vulnerability, indicating that the area’s resilience
to environmental stressors has improved (Fu and Liu, 2024).

Spatially, the ZC area exhibits a distinct east–west gradient in ESV,
with higher values concentrated in the eastern areas and lower values in
the west. This spatial disparity is primarily influenced by variations in
land use patterns, population density, and the implementation
effectiveness of ecological policies. The eastern area benefits from
favorable climatic conditions, greater vegetation coverage, and more
proactive ecological restoration efforts—such as the Grain-for-Green
Program—which have contributed to improved ecosystem functions
and increased ESV (Zhu et al., 2022). In contrast, the western region,
characterized by arid and semi-arid conditions, experiences greater
difficulty in sustaining ecosystem functions, leading to lower ESV
and higher EVI. These spatial findings are consistent with previous
research conducted in ecologically fragile regions of northern China,
where similar east–west gradients in ESV and EVI have been observed
(Hu et al., 2022; Tang et al., 2022). Furthermore, the growing prevalence
of both High ESV–High EVI and Low ESV–Low EVI clusters over time
reflects increasing spatial aggregation of ecological conditions. This
pattern highlights the dual effects of ecological restoration and
anthropogenic pressure: areas benefiting from effective ecological
governance tend to improve in both service provision and resilience,
while persistently vulnerable areas lacking adequate intervention remain
ecologically degraded. These results underscore the necessity of tailoring
restoration and management strategies to local ecological contexts in
order to achieve more balanced and sustainable regional outcomes.

The observed pattern of rising ESV alongside declining EVI
indicates a generally positive ecological trajectory in the ZC area.
This trend is likely the result of effective land management
interventions—particularly ecological restoration projects—combined
with broader influences such as climate change, evolving land-use
policies, and socio-economic development. These findings emphasize
the importance of maintaining and strengthening sustainable land use
practices and environmental governance to further enhance ecosystem
service delivery and reduce ecological vulnerability in the area
(Ahammad et al., 2021).

5.2 The impact of EVI driving factors on ESV
and threshold identification

This study investigates how key driving factors—namely forest
vegetation coverage (FVC), land use and development index

(LUDI), precipitation (PRE), population density (POP), and the
ecological vulnerability index (EVI)—influence ecosystem service
value (ESV), with a particular emphasis on their threshold effects.
Identifying and understanding these thresholds is crucial for
informing ecological management strategies and policy
interventions, particularly in ecologically sensitive areas such as
the ZC area.

FVC is a primary driver of ESV, as higher vegetation cover is
widely recognized to enhance ecosystem services such as carbon
sequestration, water yield, and soil retention (De Carvalho and
Szlafsztein, 2019). Although the relationship between FVC and
ESV is generally positive (Ashournejad et al., 2019), it is
nonlinear and exhibits a clear threshold effect. When FVC
exceeds a certain level, further increases in vegetation cover
contribute less significantly to ESV. This phenomenon can be
attributed to the principle of diminishing returns, whereby forest
ecosystems approaching maturity or saturation offer reduced
incremental benefits (Yamaura et al., 2021). This phenomenon is
largely due to ecological saturation, where nutrient uptake, water use
efficiency, and light interception rates reach physiological limits,
thereby constraining the marginal gains in ecosystem service
outputs. This threshold effect is evident in the ZC area, where
areas with high FVC no longer experience proportional increases in
ESV. Such patterns are consistent with the outcomes of national
ecological policies like the Grain-for-Green Program and the Three-
North Shelterbelt Project (Mu et al., 2022), which have successfully
expanded forest area but may yield diminishing marginal ecological
returns in already reforested zones (Zhang et al., 2025). These
findings underscore the importance of monitoring the long-term
effectiveness of afforestation initiatives. Moreover, it is important to
acknowledge that these threshold values are not static. They may
shift over time due to changing climatic conditions, land-use
dynamics, or socio-economic pressures. Therefore, the identified
thresholds in this study should be interpreted in the context of
current environmental settings and may require periodic
reassessment to remain effective in other regions or under
future scenarios.

LUDI is another critical factor influencing ESV, as land use
changes have a direct and profound impact on ecosystem service
provision (Chuai et al., 2016). Urbanization and intensive
agricultural activities generally reduce ESV by diminishing
natural habitats and accelerating land degradation (Yang et al.,
2020). While the relationship between LUDI and ESV is typically
negative, the effect is nonlinear. At low tomoderate levels of land use
intensity, ecosystem services can still be sustained. However, once a
certain threshold is exceeded, ESV declines sharply due to habitat
fragmentation, soil depletion, and loss of biodiversity (Jantz and
Manuel, 2013). In the ZC area, areas with moderate land
development tend to support higher ESV, while zones
experiencing excessive exploitation exhibit significant ecological
deterioration. As ecological zoning and sustainable land-use
policies are further refined, identifying and respecting these
thresholds will be vital to preventing irreversible ecological
damage (Yang et al., 2024). While our current analysis focuses
on single-factor thresholds, future research could benefit from
integrated models capable of capturing complex interactions
among multiple drivers (Hu et al., 2023). Agent-based models or
complex systems models, for instance, could provide more dynamic
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simulations of human–environment interactions and better reflect
nonlinear feedbacks across spatial and temporal scales.

PRE, as a key climatic factor, plays a significant role in shaping
ESV by influencing water availability within ecosystems (Jiang et al.,
2021). In the ZC area, increased precipitation generally enhances
ecosystem services by promoting vegetation growth and increasing
water yield. However, this relationship also exhibits a threshold
effect: beyond a certain point, additional rainfall no longer yields
proportional gains in ESV. In fact, excessive precipitation can lead to
soil erosion, surface runoff, or flooding, thereby reducing the
efficiency and sustainability of ecosystem functions. This
nonlinearity reflects the ecological carrying capacity of local
landscapes and regional climate variability (Feng et al., 2021).
Given the intensifying impacts of climate change and altered
precipitation regimes, it is crucial to incorporate threshold-
sensitive planning into adaptive management strategies.

POP is another key driver that directly affects ESV, as higher
human population concentrations often intensify pressures on
natural resources such as water, soil, and biodiversity (Liu et al.,
2024). The relationship between POP and ESV is generally
negative, especially in ecologically sensitive areas. In the ZC
area, lower population densities are associated with relatively
high ESV, whereas areas experiencing rapid population growth
tend to show notable declines in ESV due to resource overuse. This
may be due to ecosystem overexploitation, where increased human
activities surpass the regenerative capacity of natural resources,
leading to sustained ecological degradation. Interestingly, this
effect also demonstrates threshold behavior: beyond a certain
density, further increases in population may not significantly
deteriorate ESV, provided that effective environmental
management and urban planning are implemented (Zhao et al.,
2025). This nonlinear relationship highlights the importance of
managing demographic expansion in fragile ecological zones
(Jantz and Manuel, 2013). China’s policies on population
control, ecological resettlement, and sustainable urbanization
will be critical for mitigating these impacts and maintaining
ecosystem service capacity. In 2020, both POP and EVI showed
a monotonous suppressive effect on ESV, indicating that any
increase in these variables corresponded with a continuous
decline in ESV, without a detectable inflection point. This
suggests a sustained negative pressure rather than a threshold-
based shift, implying that strict controls on population growth and
ecological stress are essential across the entire range, rather than
only beyond certain levels.

The EVI itself plays a central role in determining the spatial
distribution of ESV. Higher EVI values, indicative of greater
ecological vulnerability, are generally associated with lower
ecosystem service capacity (Xie et al., 2021). This inverse
relationship is nonlinear and exhibits threshold effects,
particularly in areas facing severe ecological degradation. In
the ZC area, areas with elevated EVI often suffer from
depleted natural resources, reducing their ability to maintain
essential ecosystem services. This threshold phenomenon
underscores the importance of implementing targeted land
management and ecological restoration strategies aimed at
lowering ecological vulnerability and, in turn, enhancing
ecosystem service provision.

5.3 Theoretical contributions and practical
implications

This study provides both theoretical insights and practical value
for understanding ecosystem service dynamics and ecological
vulnerability in ecologically fragile regions.

Theoretically, this study enhances the analytical framework for
exploring the relationship between ecosystem service value (ESV)
and ecological vulnerability index (EVI) by integrating spatial
analysis, Geodetector modeling, and threshold effect
identification. Whereas previous research has often examined
ESV and EVI independently, this study advances the theoretical
understanding by systematically analyzing their spatiotemporal
coupling and mutual constraints. Moreover, the identification of
nonlinear threshold effects among key driving factors—such as
FVC, LUDI, PRE, POP, and EVI—introduces a new perspective
for assessing ecosystem service dynamics, enriching existing
literature on ecological response thresholds in fragile
environments. Additionally, the quadrant-based classification
system and spatial clustering approach using Z-score
normalization offer a replicable and scalable method for
identifying zones of synergy or mismatch between ESV and EVI,
thereby contributing to spatially explicit ecosystem
management theory.

From a policy and management standpoint, this study provides
actionable guidance for ecological restoration and land-use planning
in ecologically fragile areas. First, the identification of threshold
effects reveals critical ecological limits, enabling policymakers to
avoid exceeding tipping points in ecosystem degradation. Second,
areas characterized by high EVI and low ESV require prioritized
interventions, including targeted afforestation, soil stabilization, and
population relocation or resettlement strategies. Third, the
demonstrated effectiveness of national programs—such as the
Grain-for-Green initiative and ecological zoning policies—offers
empirical support for their continued implementation and
refinement. Furthermore, this study shows that well-balanced
restoration strategies, tailored to areaal ecological capacity and
development intensity, can enhance ecosystem service delivery
while mitigating ecological vulnerability. The insights derived
from the ZC area offer a valuable reference model for similarly
vulnerable areas in northern China and comparable global contexts
challenged by land degradation and climate change.

5.4 Limitations and improvements

Although this study has effectively identified key driving
factors—such as FVC, LUDI, and POP—and revealed their
associated threshold effects, several limitations remain. To
enhance the robustness and applicability of the findings, future
research should address the following areas.

5.4.1 Temporal variability of thresholds
The identified thresholds may not be static over time.

Ecosystems are inherently dynamic, and threshold values are
likely to shift in response to changing environmental conditions
(Xu et al., 2020). Future studies should incorporate longitudinal data
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to examine how these thresholds evolve across different
temporal scales.

5.4.2 Context-specific thresholds
The thresholds identified in this study may not fully capture

spatial heterogeneity. Ecological responses can vary significantly
across regions due to local biophysical and socio-economic contexts
(Jia et al., 2018). Future research should pursue area-specific
analyses to refine threshold estimates that are more locally relevant.

5.4.3 Policy and climate sensitivity
Current thresholds have not yet accounted for long-term

impacts of ecological policies or climate change. Investigating
how thresholds respond to policy interventions and climate
variability will deepen understanding of their stability and
sensitivity under future scenarios.

5.4.4 Model complexity and integration
There is a need for advanced models that can integrate multiple

driving factors and their interactions. Future models should move
beyond single-factor thresholds and consider how multiple
thresholds may interact or co-vary, thereby improving the
explanatory and predictive power of ecosystem service assessments.

5.4.5 Inclusion of socio-ecological variables
Incorporating more nuanced variables—such as socio-economic

development, governance, and land management practices—could
help capture a more holistic picture of ecological vulnerability and
ecosystem service dynamics.

By addressing these limitations, future studies can offer more
accurate insights and support the design of adaptive and context-
sensitive ecological management strategies, particularly in
ecologically fragile regions.

6 Conclusion

This study examines the spatial distribution patterns of ESV and
EVI in the ZC area, analyzing their temporal and spatial variations
from 2000 to 2020. The results emphasize the relationship between
ESV and EVI, as well as the key driving factors and threshold effects
that influence ecosystem services in ecologically fragile regions. The
main conclusions are as follows: (1) A significant negative spatial
correlation exists between ESV and EVI in the ZC area, with
prominent clusters of low ESV-high EVI in the western regions
and high ESV-low EVI in the eastern regions. (2) The four
primary driving factors, including fractional vegetation cover, land
use intensity index, average annual precipitation, and population
density, have the most significant impact on ESV. Their influence
is nonlinear and shows threshold effects, with ESV initially increasing
but starting to decline once certain limits are exceeded. (3) EVI
exhibits threshold effects on ESV. In 2000 and 2010, EVI had a
significant threshold effect, where ESV increased with EVI up to a
certain point, after which the relationship became negative. By 2020,
however, EVI showed a monotonous suppressive effect on ESV,
indicating a stronger influence of ecological vulnerability on
ecosystem services. (4) By identifying these critical thresholds, we
can better design targeted interventions to enhance ecosystem services

and reduce ecological vulnerability, particularly in ecologically fragile
regions such as the ZC area. These findings underscore the
importance of understanding threshold effects to inform ecological
management strategies aimed at enhancing ecosystem services and
mitigating ecological vulnerability in fragile regions.
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