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Tropical peatland ecosystems significantly influence Earth’s climate through their
greenhouse gas exchange. Permanently wet peatlands take up carbon dioxide in
plants and accumulate organic carbon in soil but release methane. Man-made
drainage of peat releases carbon dioxide and nitrous oxide. Exchange of the
greenhouse gases in relationship with tropical conditions are poorly understood.
This is a global-scale field study of fluxes of three greenhouse gases – carbon
dioxide, methane and nitrous oxide – and their environmental drivers across the
full moisture range of tropical peatlands. We show that net emission of carbon
dioxide dominates greenhouse gas budgets in drained tropical peatlands while
nitrous oxide emission is the second most important contributor. Tropical peat
swamp forests in their natural wet states are large greenhouse gas sinks and
should be a global conservation and restoration priority.
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1 Introduction

Peatlands function as a substantial reservoir of carbon (C) and nitrogen (N)
(Leifeld and Menichetti, 2018; Loisel et al., 2021). In undisturbed conditions,
specifically within permanently waterlogged peat swamp forests, C accumulates in
the peat over extended periods, spanning tens of thousands of years (Mell et al., 2005;
Ruwaimana et al., 2020). Natural and anthropogenic disturbances have a potential to
release the stored C and N as greenhouse gases (GHG). This potential is particularly
high in tropical peatland (IPCC Masson-Del et al., 2021). Drought, an increasingly
prevalent ecological change in tropical zones, accelerates ecosystem alterations by
shortening the growth period (IPCC Masson-Del et al., 2021), and elevating ecosystem
respiration (ER) of carbon dioxide (CO2) (Karhu et al., 2014; Jassey et al., 2021). In dry
seasons, ER may surpass gross primary production (GPP) by an average of
600 mg C day-1, even when the soil is still wet (Griffis et al., 2020; Pärn et al.,
2023). Severe drought, inundation or the alteration between these may intensify the C
losses. Thus, we are still short of fully understanding the total effect of soil-moisture
variations on the net ecosystem exchange (NEE) of CO2 in low-latitude peatlands
(Zhao et al., 2023). In addition to the aerobic C exchange pathways, water regime and
peat O2 limitation determine anoxic decomposition of peat, producing methane (CH4)
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(Melling et al., 2005; Teh et al., 2017; Hergoualc’h et al., 2020). It
is a potent greenhouse gas, exhibiting a global warming potential
equivalent to 28 times that of CO2 (IPCC Masson-Del et al.,
2021). The CH4 generated in deep peat escapes to the topsoil,
where it may be either consumed by methanotrophs or be
emitted. The latter can happen in the tropics either directly
through the peat or facilitated through plant conduits (Pangala
et al., 2017; Soosaar et al., 2022). As a result, the hydroclimate,
biogeochemistry of distinct peat layers, as well as the type of
vegetation and land use, emerge as potential influencing factors
for CH4 emissions in tropical peatlands. In addition to the
C-based GHG fluxes, variations in soil water content
influence dynamics of nitrous oxide (N2O) emissions.
Specifically, suboxic processes occurring within N-rich peat
under moderate water content (50%–60%) lead to production
of N2O (Pärn et al., 2023; Hergoualc’h et al., 2020; Melillo et al.,
2001; Jauhiainen et al., 2012; Melling et al., 2007; Ru et al., 2012;
Hu et al., 2015; Pärn et al., 2018). Globally, regions like the
Amazon rainforest, Congo, and Southeast Asia exhibit the
highest N2O emissions (Pärn et al., 2018; Ricaud et al., 2009).
Amazonia alone yields 1,300 Gg N2O-N yr-1 (Melillo et al., 2001).
Conversion of peatlands for agriculture, particularly in Southeast
Asia, produces huge amounts of N2O (Melling et al., 2007; Hadi
et al., 2000). Brazil, with its high fertilization rates, is another
major contributor to the global rise in N2O emissions
(Thompson et al., 2019). The role of tropical peatlands in
global N2O emissions remains poorly understood (van Lent
and Verchot, 2015; Guilhen et al., 2020; Swails et al., 2024).
Peat swamps in Peru and Southeast Asia exhibit varying N2O
emissions, with a Peruvian palm peat swamp producing
0.5–2.6 kg N2O-N ha-1 yr-1 and Southeast Asian peat swamp
forests producing 2.7 ± 1.7 kg N2O-N ha-1 yr-1 (average ±
standard deviation) (van Le et al., 2019). However, the source
of N2O (nitrate (NO3

−) or ammonium (NH4
+)) and their

susceptibility to climatic changes, such as water table, oxygen
(O2), and temperature fluctuations, remain unclear.

Studies on mineral soil are deemed unreliable for comprehending
the impact of climate change on peatlands due to their fundamentally
different biogeochemistry (Rydin and Jeglum, 2013). Where
undrained, peatlands are water-saturated throughout the year,
shielding the C and N stocks (Turetsky et al., 2015). However,
deforestation, often with fire, jeopardizes the C and N stocks
(Swails et al., 2024; Turetsky et al., 2015; Lilleskov et al., 2019). Few
studies have compared greenhouse gas fluxes across different land uses

and water regimes in tropical peatlands (Swails et al., 2024). Here, we
analyse GHG exchange based on field chamber measurements of ER,
N2O and CH4 fluxes and satellite data of gross primary production
(GPP) in 12 tropical peatlands in South America, Africa and Southeast
Asia (Figure 1) during the wet and dry seasons (Pärn et al., 2018;
Bahram et al., 2022; Pärn et al., 2025). We further investigate
explanatory factors of the GHG fluxes across full tropical ranges of
soil temperature, drainage intensity, and soil chemistry.

2 Methods

2.1 Field sampling and analyses

We conducted a survey of CO2, CH4 and N2O fluxes and
potentially controlling environmental variables at peatland sites
in French Guiana, Uganda, Burma, and the Malaysian Borneo
state of Sabah during a dry season (i.e., water table below annual
average) of each site between 2013 and 2016 (Pärn et al., 2018;
Bahram et al., 2022; Pärn et al., 2025), and the Peruvian Amazon
(Pärn et al., 2023) and theMalaysian Borneo state of Sarawak during
both a dry and rainy season (water table above annual average) of
each site between 2019 and 2022. We selected a total of 12 forested,
fen, grassland, arable and oil palm plantation sites in the rainy
tropical (A) climate zones of the Köppen classification from our
global wetland soil database (Pärn et al., 2023; Pärn et al., 2018;
Bahram et al., 2022; Pärn et al., 2025) (Figure 1). The hydrology and
trophic status of the natural sites ranged from groundwater-fed
swamps and fens to rain-fed peat swamp forests. We also selected
the sites to represent the full typical range of land uses of the rainy
tropical belt. Accordingly, our sites represent peatlands that have
been arable for >5 years (Borneo, Burma, Peru and Uganda),
intensively (more than once a year) grazed peat pastures (French
Guiana, Uganda and Burma), and swamp forests (Peru and Borneo)
under no direct human influence in each study region.

To capture the full variety of ER (in mg CO2 m
-2 h-1), CH4 and

N2O fluxes (both in mg m-2 h-1) fluxes at a site, we set up study sites
equipped with 8–10 opaque chambers each, arranged along 100 m of
terrain. The gas concentrations were sampled using the static
chamber method with PVC collars of 0.5 m diameter and 0.1 m
depth installed in the soil. We used white 65 L PVC truncated
conical gas sampling chambers. We did not use extra cover against
sunlight, but the chamber design is still generally regarded as opaque
(Pärn et al., 2025). We calculated individual CO2, CH4 and N2O

FIGURE 1
Location of peatland study sites. Each location contains at least one natural peatland and an equivalent peatland under direct human impact. Data
from (Pärn et al., 2025; Bahram et al., 2022). Global peatland map: (Leifeld and Menichetti, 2018).
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fluxes using changes in concentration during 1 hour within the
chamber. To that end, the gas was sampled at 20-min intervals (0, 20,
40 and 60 min) and the fluxes calculated from the samples using a
Shimadzu (Japan) GC-2014 gas chromatograph, instrumented with
Loftfield-type autosamplers at the University of Tartu. An individual
gas flux was calculated from linear regression obtained from
consecutive concentrations. We collected soil samples of
150–200 g from the chambers at 0–10 cm depth after the final
gas sampling and transported them to laboratories in Tartu (Pärn
et al., 2018; Bahram et al., 2022; Pärn et al., 2025).

As the estimate of ER in the study locations with trees (Peru
swamp forest and all Borneo sites), we used the ER data from
representative eddy covariance flux towers (PE-QFR: Quistococha
for the Peruvian swamp forest, MY-MLM: Maludam for the Borneo
swamp forests and MY: Betong for the Borneo oil palm plantations).

2.2 GPP calculation

As the estimate of GPP in the study locations with trees (Peru
swamp forest and all Borneo sites), we used the GPP data from
representative eddy covariance flux towers (PE-QFR: Quistococha
for the Peruvian swamp forest, MY-MLM: Maludam for the Borneo
swamp forests and MY: Betong for the Borneo oil palm plantations).

As the estimate of GPP in the non-forested (i.e., fen, pasture and
arable) study locations, we used the MOD17A2H V006 product
(Running et al., 2015) developed from the MODIS sensor onboard
the Terra and Aqua remote sensing satellites synchronously with the
study weeks (Watts et al., 2021; Dąbrowska-Zielińska et al., 2022).
MOD17A2H V006 is based on the radiation use efficiency concept
(Monteith, 1972) with three major components. The first
assumption is that GPP is directly related to the solar energy
absorbed by plants. Second, the concept assumes a connection
between absorbed solar energy and satellite-derived spectral
indices such as NDVI. The third assumption is that for
biophysical reasons, the actual conversion efficiency of absorbed
solar energy is lower than the theoretical value. The calculation of
GPP (Equation 1) requires radiation use efficiency and absorbed
photosynthetically active radiation (APAR) measurements. APAR
calculates the available leaf area index (LAI) to absorb incident solar
energy. This estimate is then converted into GPP by multiplying
APAR with radiation use efficiency (ε) (Equations 1,2, ). Remote
sensing data usually provide the fraction of photosynthetically active
radiation (FPAR; Equation 3). APAR can be calculated by Equation
4 (Sellers, 1987). This requires estimation of incidental
photosynthetically active radiation (IPAR) (Equation 5), which is
extracted from the GMAO/NASA dataset (Friedl and Sulla-
Menashe, 2020).

GPP � ε* APAR (1)
ε � εmax* Tminscalar* VPDscalar (2)
FPAR � APAR / PAR ≈ NDVI (3)

APAR � IPAR* FPAR (4)
IPAR � SWRrad* 0.45 (5)

ε max is the maximum radiation conversion efficiency in
kg C MJ-1 which is obtained from the Biome Properties Look-Up
Table (BPLUT) of the at-launch land cover product of MODIS

(MOD12). Tmin scalar and VPD scalar are the ramp functions of
Tmin and VPD.

This calculation requires the following parameters extractable
from the GMAO/NASA dataset (Running et al., 2015):

Tminmax (°C) – the daily minimum temperature at which ε = ε
max for an optimal VPD.

Tminmin (°C) – the daily minimum temperature at which ε =
0 at any VPD.

VPDmax (Pa) – the daylight average vapor pressure deficit at
which ε = ε max for an optimal Tmin.

VPDmax (Pa) – the daylight average vapor pressure deficit at
which ε = 0.0 at any Tmin.

SWRrad – incident shortwave radiation used for
calculating IPAR.

We extracted GPP values for our sites from the dataset (kg C m-2

8 days-1) for the ground measurement dates and expressed the
values in mg Cm-2 h-1. A >50% underestimate of the negative effect
of drought on the MODIS GPP product has been suspected
(Stocker et al., 2019). We tested the significance of this possible
underestimate by multiplying the GHG exchange values from our
dry (<0.4 m3 m-3 SWC) by a factor of 0.5 and using them in the
regression analyses. The patterns of GHG exchange values vs SWC
after this reduction became less pronounced but retained their
significance.

2.3 NEE calculation

Net ecosystem exchange (NEE) is the integral parameter for the
fluxes of CO2 into and out of terrestrial ecosystems. Combination of
satellite-based GPP products with synchronous ground chamber-
and flux tower-based ERmeasurements is a widely applied approach
to gauge NEE over landscapes (Watts et al., 2021; Dąbrowska-
Zielińska et al., 2022) as was the objective here. As the estimate
of NEE in the study locations with trees (Peru swamp forest and all
Borneo sites), we used the NEE data from representative eddy
covariance flux towers (PE-QFR: Quistococha for the Peruvian
swamp forest, MY-MLM: Maludam for the Borneo swamp
forests and MY: Betong for the Borneo oil palm plantations). For
the open peatlands in Peru, French Guiana, Uganda and Burma we
calculated NEE from the synchronously measured chamber-based
ER (Section 2.1) and remotely sensed GPP product (Section 2.2) as
follows (Equation 6):

NEE � ER –GPP (6)
GHG exchange was calculated for each chamber

following Equation 7.

GHG exchange � CH4 · GWPCH4 +N2O · GWPN2O +NEE, (7)
where:

GHG exchange was the greenhouse gas exchange in CO2

equivalents (CO2eq), CH4 was the field-observed methane flux,
mg CH4 m-2 h-1, GWPCH4 was 27 CO2eq = the 100-year global
warming potential of non-fossil CH4 (IPCC Masson-Del et al.,
2021), N2O was the field-observed nitrous oxide flux, mg N2O
m-2 h-1, GWPN2O was 273 CO2eq = the 100-year global warming
potential of N2O (IPCC Masson-Del et al., 2021), and NEE was the
net ecosystem exchange of CO2 (Equation 6).
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We considered carbon, N2O and CH4 runoff as insignificant
(Taillardat et al., 2022) although they may evade in drained
peatlands (Taillardat et al., 2022; Wilson et al., 2016; Nishina
et al., 2023).

2.4 Laboratory soil chemical and
physical analyses

Soil pH was determined using a 1M KCl solution; soil NH4 and
NO3 were determined on a 2M KCl extract of soil by flow-injection
analysis (APHA, 2005). Total N and C contents of oven-dry samples
were determined by a dry-combustion method on a varioMAX CNS
elemental analyser (Elementar Analysensysteme GmbH, Germany).
Organic matter content of dry matter was determined by loss on
ignition (McLaren and Cameron, 2012). We determined SWC from
gravimetric water content (GWC), dry matter content and empirically
established bulk densities of mineral and organic matter fractions

(Pärn et al., 2018) and calibrated them with field measurements using
a handheld GS3 sensor connected to a ProCheck handheld reader
(Decagon Devices, Pullman, WA, United States) and a Teros
12 sensor (METER Group, United States).

2.5 Relationships between GHG and
environmental factors

We calculated correlations between our individual GHG fluxes and
their total CO2eq exchange values, environmental factors, relative
abundances of functional groups of microbes and ratios between
them. We used linear and non-parametric GAM models applying
variable smoothness factors (starting from minimal smoothness k = 3).
We assessed normality of our data using visual approaches and the
Shapiro-Wilk test.Where necessary, we log-transformed the values. For
the GHG flux rates, we considered the following environmental
predictor variables: soil temperature, water table, volumetric SWC,

FIGURE 2
Principal component plot of study sites, GHG fluxes and environmental factors. SWC, soil water content. WT, water table height. GPP, gross primary
production. TN, total soil nitrogen. TIN, total inorganic nitrogen. SOM, soil organic matter content. TC, total soil carbon content. NH4, soil ammonium
content. Soil_temp, soil temperature at 10 cm depth. C/N, carbon to nitrogen ratio. Agricultural_intensity, intensity of agricultural land use at a discrete
scale of 0 . . . 3: (0) no agriculture (Leifeld and Menichetti, 2018), moderate grazing or mowing (Loisel et al., 2021), intensive grazing or mowing and
(Mell et al., 2005) arable. NO3, soil nitrate content. N2O, N2O emission. NEE, net ecosystem exchange of CO2. ER, ecosystem respiration of CO2. CH4,
methane emission. See Supplementary Data for the source data.
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soil chemistry (pH, total C %, organic matter, total N %, C:N ratio,
ammonium, nitrate), water oxygen content. We calculated Pearson
correlations using the R programming language (stats and mgcv
packages).We reported correlations with a significance level of p = 0.05.

3 Results and discussion

The CO2 and N2O fluxes did not show a clear pattern with soil
temperature (Figure 2) within the 15°C–29°C range of our
observation, with the highest ER fluxes measured in the swamp
forests with ~26°C soil temperature (Supplementary data). This is
lower than textbook knowledge on a soil temperature optimum of
30°C for the soil microbial processes (Voroney, 2007). The root

cause of ER and N2O emissions seems to be loss of soil water content
and elevated water O2 with intensive agricultural drainage (Figures
2–4). High (neutral) soil pH was the third independent driving
factor behind the high ER rates (Figure 2), probably supporting high
bacterial activity and plant respiration (Voroney, 2007).

CO2 dominated the GHG budgets (Figures 3, 4). The wetter
(SWC >0.6 m3 m–3) peat swamp forests were net CO2 and thus
overall GHG sinks. This corroborates the IPCC (IPCC Masson-Del
et al., 2021) and several global studies (Swails et al., 2024) reporting
CO2 as the dominant GHG (excluding water vapour and ozone).
The moderately and severely drained pastures and arable were
mostly sources of CO2 (Figure 3). This broadly follows the
known pattern of CO2 and total GHG emissions along the global
soil moisture gradient (Pärn et al., 2025).

FIGURE 3
GHG exchange in peatland sites between ecosystem and atmosphere along the soil water content gradient. Breakdown of GHG budgets into
individual fluxes along soil water content gradient. Site average (bars for individual gases and points for total GHG budget) and standard error (whiskers)
are shown.

FIGURE 4
GHG fluxes and land use along the soil water content gradient.
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N2O emission contributed overall 88 mg CO2-equivalent
m–2 h–1. The moderately drained pastures and arable lands
contributed the largest N2O fluxes (Figures 3, 4). The peak N2O
emissions in moderately drained peat soils is well known (Pärn et al.,
2018). At the two extremes of the SWC spectrum, the dry Peruvian
arable field (<0.25 m3 m–3 SWC) and the wet but aerobic NH4-rich
Peruvian swamp forest emitted considerable amounts of N2O,
41 and 90 mg CO2-equivalent m–2 h–1, respectively. Our N2O
emissions contrasted the earlier-reported negligible emissions
from a Peruvian palm peat swamp forest (Teh et al., 2017) and
were relatively high compared to the average 31 ± 22 µg N2O-N
m–2 h–1 (average ± standard deviation across studies) from the 410 ±
120mg dry kg–1 soil NH4

+-N in Southeast Asian wetland forests (van
Lent and Verchot, 2015). Our measured fluxes were higher than
model-predicted emissions of 21 µg N2O-N m–2 h–1 for the Amazon
Basin (Guilhen et al., 2020). Our N2O emissions were log-log linear
positively related to soil nitrate content and formed a unimodal
relationship with SWC (Pärn et al., 2018). However, a large part of
the soil N2O never leaves the forest canopy space (Mander et al.,
2021), either due to physical processes or the canopy microbiome
(van Groenigen et al., 2015; Guerrieri et al., 2021). Alternatively,
nitrogen-fixing cryptogamic covers on forest canopy surfaces can
add NH4

+into the budget as a source of N2O (Lenhart et al., 2015).
Surprisingly for peatlands, CH4 comprised only a minor share of

the GHG budgets–on average, 35 mg CO2-equivalent m
–2 h–1 across

the full soil moisture spectrum. The emissions followed SWC in a
unimodal GAM function that peaked at 0.8 m3 m–3 SWC (k = 6; R2 =
0.51), which corresponded to anoxic conditions created by stagnant
ground-level water table, and decreased again towards the fully
submerged peatlands under mobile water. Turetsky and colleagues
(53) have shown a similar distribution in extratropical peatlands.
Similarly, our wetter peat soils (>0.76 m3 m–3 SWC) produced
practically all the CH4 while the drier peat soils (<0.6 m3 m–3

SWC) emitted CH4 negligibly (<4 mg CO2-equivalent m
–2 h–1) or

took it up (Figures 3, 4). Our observed CH4 fluxes agreed with reports
from Brazilian swamp forest soils (igapo and varzea) (Pangala et al.,
2017). The moderate explanatory power of our GAM model can be
explained by the intrinsic confinement of CH4 emissions to individual
emission hot spots (Becker et al., 2008). However, as CH4 is a minor
component of GHG exchange (Figure 2), the >40% uncertainty in
CH4 flux estimates does not translate into large uncertainty in GHG
exchange across the tropical belt. Permanently anoxic environments
normally show high CH4 production (Pärn et al., 2025; Turetsky et al.,
2014). In the forests, however, tree trunks and leaves can conduct or
produce additional CH4 into the atmosphere (Pangala et al., 2017;
Soosaar et al., 2022).

4 Conclusion

The tropical peatlands showed high GHG turnover rates, varying
between mostly sinks of CO2 in the wet peatlands and mostly sources
of CO2 in the drained peatlands. N2O was the second most important
part of the GHG budgets, particularly in the moderately drained
nitrogen-rich peatlands. The resulting high GHG emissions demand
close monitoring of soil moisture and nitrogen in tropical peatlands.
We highlight the need to consider not only carbon but all three main
greenhouse gases (CO2, N2O and CH4) in tropical peatland GHG

budgets. Management of tropical peatlands should be aware of the
impact changes in soil moisture and nitrogen availability have on
GHG emissions. Conservation of swamp forests is the safest way to
keep up the carbon uptake and minimise the GHG emissions. Future
impacts of global change on GHG exchange and the state of peatland
ecosystems will be accordingly determined by drying and
mineralisation of peat. Future studies will have to account for the
production and consumption rates of CH4 as well as N2O in all parts
of the soil–tree–atmosphere continuum.
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