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Floods are among the most destructive natural disasters, threatening people, the
economy and cultural heritage. In Beni-Mellal, mountainous topography
accentuates this risk by promoting the rapid flow of water to low-lying areas,
where it accumulates more easily. This study maps the flood risk using three
statistical methods: Information Value (IV), Weighting Factor (WF) and Weight of
Evidence (WoE). A detailed database was built, combining an inventory of floods
and key environmental variables, such as slope, proximity to rivers, land use and
the Topographic Humidity Index (TWI). The database was built on pre-processed
and standardized Sentinel-2 and Landsat 8 satellite images, as well as geological
and soil maps, ensuring full coverage and high-definition resolution of 12.5 m to
ensure optimal spatial accuracy. The results show that 4.4%–13.6% of the region
is classified as very high risk, 13.8%–31.1% at high risk, and 24.5%–31.2% at
moderate risk, with increased vulnerability in the southern areas, where land
slope and occupation play a major role. The evaluation of model performance
reveals that WoE has the highest accuracy and Kappa coefficient, demonstrating
its robustness for flood classification. However, WF scores the best AUC scores
(88.23% in training, 86.77% in test), making it the most effective model for
prediction. The IV approach, although effective, is in third place. These results
provide key information for policymakers and urban planners to improve flood
risk management and develop appropriate planning strategies to limit flood
impacts and build urban resilience to extreme weather events.
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1 Introduction

The population explosion in urban areas, in conjunction with climate change, is
compounding conditions for natural hazards and leading to increased risks for extreme
consequences in the form of loss of lives, injuries, health impact, loss of property,
disturbance in society and economy, and ecosystem loss (Saleh et al., 2020). The floods
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are noteworthy in this context as some of the most recurring and
economically expensive natural calamities. They affect tens of
millions of lives globally, and it is estimated that in 2050, close
to 1.3 billion people would be living in Flood-prone zones (Rozalis
et al., 2010).

Floods cause major socio-economic and ecological damage.
They destroy infrastructure, cause asset loss, and harm societies
and ecosystems. Managing resources, especially water, helps prevent
floods. This is vital in urban areas facing development and climate
change (Lama et al., 2021). Flood management strategies prevent
immediate loss. They also reduce wider social, economic, and
ecological harm. Integrated solutions like nature-based solutions
(NBS) offer benefits. Urban reforestation helps control flood flows
and can restore habitats. Reservoir use reduces peak flows,
potentially lessening downstream erosion (Pirone et al., 2024).

Challenges like the water-induced soil erosion in Brazil’s Cantareira
system illustrate why sustainable water and soil resource use is essential
for preventing flood threats (Lense et al., 2023). These strategies also
help ensure ecosystem resilience to climate change (Pirone et al., 2024).
Technology is also rapidly advancing. Geographic Information Systems
(GIS), remote sensing, and geophysical tools transform flood risk
management. For example, UAV-acquired multispectral imagery
assesses how riparian vegetation affects stream flow. This helps
understand how plants control water dynamics (Crimaldi and Lama,
2021). Additionally, the combination of geophysical methods,
piezometry, and hydrochemical data is being used to map seawater
intrusion in coastal aquifers, providing valuable insights that can also be
applied to flood risk management in other areas (Bechkit et al.,
2024).Advanced tools like fisheye lenses are even being used to
estimate the Leaf Area Index (LAI) of riparian vegetation, helping us
understand how plants influence local water systems (Lama and
Crimaldi, 2021).These technologies make it easier to predict floods
and create hazard maps, which are vital for proactive risk management
(Rahmati et al., 2018). Since the 1970s, the increasing use of such
systems has significantly improved our ability to forecast floods,
especially in urban areas where the risks are high (Bui et al., 2019).

Despite technological progress, flood hazardmappingmethods face
challenges. Data resolution often limits accuracy. Including climate
change and urban growth effects remains difficult (Cea and Costabile,
2022). Continued urban and farm expansion onto floodplains disrupts
natural river processes. This requires specific actions to manage flood
risks (Soussa, 2010). Recent studies show effective new practices for
flood hazard management. These apply in areas like the Middle East
(Salimi and Al-Ghamdi, 2020). Studies discuss better flood modeling
and the importance of managing infrastructure well (Guo et al.,
2021).They affirm the need for multidisciplinary solutions in
managing emerging flood hazard concerns in a warmer world.

To address these challenges and leverage technological
advancements, various methodologies have been developed for flood
hazard and susceptibility modeling. Broadly, these can be categorized
into several main types. Physically-based models, encompassing
hydrological and hydraulic approaches (e.g., HEC-RAS, SWAT), aim
to simulate the actual physical processes of rainfall-runoff, channel flow,
and inundation, often requiring detailed meteorological, topographical,
and hydrological data but providing high process fidelity. Statistical
susceptibility models, such as those employed and compared in this
study (InformationValue,Weighting Factor,Weight of Evidence), along
with others like Frequency Ratio or Logistic Regression, identify

potentially hazardous areas by establishing statistical correlations
between historical flood occurrences and various geo-environmental
conditioning factors; these are particularly useful in data-scarce regions
or for initial susceptibility assessments. More recently, machine learning
algorithms (e.g., Random Forest, Artificial Neural Networks, Support
Vector Machines) have gained prominence, using data-driven
techniques to learn complex, non-linear patterns and predict flood-
prone areas, often achieving high accuracy but sometimes lacking direct
physical interpretability. Each approach has its strengths and limitations
regarding data requirements, computational cost, process representation,
and applicability depending on the study’s objective and scale.

This study provides a detailed mapping of flood susceptibility,
using three proven statistical methods: Information Value (IV),
Weighting Factor (WF) and Weight of Evidence (WoE). These
approaches make it possible to analyze differently the influence of
environmental variables and to establish a classification of areas at
risk according to the specificities of the territory.

This research assesses three methods for mapping flood-prone
areas. It compares their effectiveness. The study provides a decision
support tool for local authorities and planners. Detailed flood hazard
maps help optimize planning. They support strategies like
improving drainage or developing natural areas. This approach
can be used in similar regions. It improves flood management in
urban semi-arid areas.

2 Materials and methods

2.1 Study area and data description

The study area is the city of Béni Mellal, an urban center located
in the central part of Morocco (Figure 1) covering a surface area of
53,32 km2.Béni Mellal city serves as the capital of both Béni Mellal
Province and the wider Beni Mellal-Khenifra Region. The city plays
an important economic, cultural, and social role in the region
(Barakat et al., 2019). Béni Mellal is characterized by rapid urban
growth and a concentration of population, infrastructure,
agricultural, and industrial activities. This expansion presents
challenges for natural resource management and resilience to
events like flooding (Barakat et al., 2020).

Beni Mellal serves as the capital city of the Beni Mellal-Khenifra
region in Morocco. and is located at the outlet of four watersheds that
seasonally trigger sudden, brief, and intense floods (Werren et al., 2016).
These watersheds, from East to West, are Sabek (20.8 km2), Aïn el
Ghazi (15.8 km2), Handak (29.7 km2), and Kikou (54 km2).
Topographically, The Beni Mellal region is a mountainous area with
altitudes ranging between 470 m and 2247 m, with the highest point
called Tassemit. The climate of the area is classified as semi-arid, with
continental influences, with an average temperature around 18°C. The
average annual rainfall is 490 mm, with July being the driest month and
March the wettest month, during which average precipitation can reach
79 mm (Barka et al., 2022).

Béni Mellal is located in the Atlas of Béni Mellal, a vast flattened
anticlinal structure that rises abruptly from the plain of Béni
Moussa, due to a fault system, the most important of which is
the Nord-Atlas fault (Boutırame et al., 2019). The geological history
of this region is linked to the formation of an intracontinental chain,
resulting from geodynamic processes that took place between the
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end of the Paleozoic and the Mesozoic. The subsoil consists mainly
of mesozoic formations based on a paleozoic base (Guezal et al.,
2013). There are carbonate deposits of the middle and lower Jurassic,
covered with detritic and carbonate deposits of the Cretaceous,
followed by Cretaceous terrigenic deposits.

The geographical, geological, topographical and climatic
characteristics of the region favour the floods. Unplanned
urbanization, changes in river systems and population growth
have disrupted the natural hydrological regime. This has led to
an increase in flood frequency and intensity, impacting the daily
lives of the inhabitants and putting pressure on sewerage and
rainwater management networks.

2.2 Methodology

In this study, a comprehensive methodology (Figure 2) was
adopted to assess flood hazards by integrating remote sensing, GIS,
and statistical modeling. Historical flood data were compiled using
Sentinel-2 and Landsat imagery, along with 12.5 m Digital Elevation
Model (DEM), soil and geological maps, and road network data
from OpenStreetMap (OSM). Key flood-conditioning factors
including topographic, hydrological, land cover, pedologic,

anthropogenic, and geological components were extracted. The
dataset was split into 70% training data and 30% validation data.
Three models Information Value (IV), Weighting Factor (WF), and
Weight of Evidence (WoE) were applied to assess Flood hazard.
Model performance was evaluated using AUC/ROC, RMSE, MAE,
KAPPA, and Accuracy metrics, ensuring a reliable flood
prediction system.

The methodology of this research is outlined in the following
flowchart and consists of the following steps:

⁃ Mapping the flood inventory
⁃ Identifying flood-conditioning factors
⁃ Determining the key factors for each model
⁃ Modeling and validating flood hazards

2.2.1 Urban flood inventories
We created the flood inventory for Beni Mellal using Google

Earth Engine (GEE). This inventory maps flooded locations
between 2000 and 2022. It served as the basis for model
training and validation. We used two main satellite data
collections.

First, we utilized the Landsat 7 ETM+Collection 2 Tier 1 Surface
Reflectance dataset (LANDSAT/LE07/C02/T1_L2). We filtered this

FIGURE 1
The geographical localization of the study area in Moroccan and regional context.
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collection for images between June 1, 2000, and July 1, 2010.
Standard scaling factors were applied to the surface
reflectance bands.

Second, we used the Sentinel-2 MSI: Multispectral Instrument,
Level-2A dataset (COPERNICUS/S2_SR). This collection was
filtered for images between January 1, 2019, and December 1,
2022. We applied a cloud filter, keeping only images with less
than 20% cloudy pixel percentage. This common threshold
improves data quality.

For both collections, we created cloud-reduced composite
images. We calculated the median value for each pixel across all
selected images. These median composites represent typical
conditions for the respective periods. The composites were then
clipped to the study area boundary.

To identify water bodies related to floods, we calculated the
Normalized Difference Flood Index (NDFI). The NDFI (Equation 1)
was calculated using the equation used by (Boschetti et al., 2014)
determines the index values:

NDFI � Red − RSWIR2
Red + SWIR2

(1)

For Landsat 7, we used bands SR_B3 (Red) and SR_B7 (SWIR2).
For Sentinel-2, we used bands B4 (Red) and B12 (SWIR2).

We then generated a binary flood map from the NDFI
composites. Pixels with NDFI values greater than or equal to
0 were classified as “Flood” (value 1). All other pixels were
classified as “non-flood” (value 0). These points are in a then we
converted them to raster format in a GIS environment. Therefore,
we prepared a flood inventory map (Figure 3), 3112 observed points
were selected from Sentinel-2 and Landsat 7. Data are typically
divided into two categories: training and testing. Our literature
review revealed that approximately 70% of random subsets were
selected for training and calibration, with 30% for
validation (Figure 4).

Additionally, we conducted a field survey during heavy rainfall
periods to provide ground validation. Figure 5 shows photographs
from this survey, illustrating observed flooding. This fieldwork
identified more than 30 specific flood locations. These
independently observed field points coincided well with flood
locations identified from the Sentinel-2/Landsat NDFI analysis.
This congruence enhances the accuracy assessment and validates
the satellite-derived inventory points.

2.2.2 Conditioning factors
Flood hazard assessment depends on multiple factors. These

include soil (pedologic), terrain (topographic), water (hydrological),

FIGURE 2
Flow chart of Methodology developed in this study.
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land cover, human activity (anthropogenic), and geological
components. We obtained data for these factors from several
sources. Key terrain data came from the ALOS PALSAR
Radiometrically Terrain Corrected (RTC) High Resolution Digital
ElevationModel (DEM). This product has a 12.5 m resolution and is
provided by the Alaska Satellite Facility (ASF). The specific DEM
used was based on data acquired July 8, 2007 (accessed on 8 August
2024). We also used Landsat 8 remote sensing data. the Geological
Map of Beni Mellal (scale 1:100,000) and the Soil Map of Morocco
Cavallar, W. (1950). Esquisse préliminaire de la carte des sols du
Maroc au 1: 1.500. 000. Service de la Recherche Agronomique). Road
network data from OpenStreetMap (OSM) provided spatial
vector data.

Continuous variables required classification into intervals
for the models. We used the Natural Breaks (Jenks)
classification method for this purpose. This was performed
using ArcGIS software. The Natural Breaks method groups
similar values together effectively. It minimizes variation
within classes while maximizing differences between classes.
This approach is commonly applied in hazard mapping studies.
Factors classified using this approach include Slope, Curvature,
TWI, NDVI, NDBI, Distance to Rivers, Stream Density, and
DRO. Table 1 presents the final class intervals derived for
each factor.

2.2.2.1 Pedological and geological factors
Soil (Figure 6L) properties are fundamental in regulating

infiltration and runoff, which in turn affect Flood hazard. This
study utilizes pedologic factors from the Soil Map of Morocco
Cavallar, W. (1950). Esquisse préliminaire de la carte des sols du
Maroc au 1: 1.500. 000. Service de la Recherche Agronomique) to

assess how various soil types influence water retention and
permeability, shaping the area’s flood risk. The study area
includes a variety of soil classifications, such as podzolic soils,
podzolized red and brown soils, red soils, brown soils, and
humus-carbonate soils, each with distinct hydrological properties
that affect how water interacts with the landscape (Luong
et al., 2021).

Similarly, geological factors were analyzed using the
Geological Map of Beni Mellal (scale 1:100,000) (Barka et al.,
2022), as geological formations significantly impact surface
permeability and runoff behavior (Yang et al., 2020). The
region consists of diverse geological structures (Figure 6M),
including pink-brown carbonated cement deposits, travertines,
Paleocene beige limestone, Middle Quaternary scree deposits,
Recent Quaternary piedmont cones, and Middle Quaternary
Tadla silts, all of which influence water flow and flood
dynamics in different ways.

2.2.2.2 Topographic factors
Topographic factors strongly influence flood behavior. They

control water flow, accumulation, and runoff intensity. We extracted
several key parameters from the 12.5 m ALOS PALSAR RTC DEM
(acquired 2007) described earlier. These parameters included:

• Slope (Figure 6A): This regulates runoff velocity. Steeper
slopes accelerate water movement, increasing flood hazard
(Nguyen et al., 2020).

• Curvature (Figure 6F): This affects erosion and flow patterns
(Baiddah et al., 2025). Profile curvature influences flow speed
changes. Plan curvature affects water convergence or
divergence (Raja et al., 2017).

FIGURE 3
Inventory of training and testing data for flood prediction models.
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• Aspect (Figure 6B): This impacts sun exposure, soil moisture,
and precipitation patterns. These factors indirectly affect
runoff water (Peng et al., 2020).

• Topographic Position Index (TPI) (Figure 6H): TPI identifies
relative elevation, aiding detection of ridges and valleys. This
helps locate potential flood-prone areas (Avand et al., 2022).

FIGURE 4
Flood inventory data (A) Training (70%) and (B) validation (30%) – Randomly divided.
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• TopographicWetness Index (TWI) (Figure 6J): TWI estimates
potential soil wetness. It combines slope and upstream
contributing area (Winzeler et al., 2022).

2.2.2.3 Hydrological factors
Hydrological factors are important for flood assessment. We

analyzed stream density (Figure 6K) and distance to rivers
(Figure 6I). We first derived the river network from the 12.5 m
ALOS PALSAR RTC DEM. This involved standard GIS procedures:
filling DEM sinks, calculating flow direction, and determining flow
accumulation. We then applied a threshold to the flow accumulation
raster to define stream channels.

Stream density was calculated from this derived network. We
divided the total stream length within the basin by the basin area.
Higher densities indicate greater surface runoff potential (Bogale, 2021).
Distance to rivers was calculated using Euclidean distance analysis. This
measured the distance from any point to the nearest DEM-extracted
river channel. Proximity to rivers increases vulnerability during floods
(El Bouzekraoui et al., 2024; Ibrahim et al., 2024).

2.2.2.4 Land cover factors
Land cover factors influence infiltration and runoff. We derived

land use/land cover (LULC) data from Landsat 8 imagery. We
performed a supervised classification to create the LULC map
(Figure 6D). This involved:

• Defining Classes: Identifying key LULC types: built-up areas,
agricultural land, arboriculture, and bare ground.

• Collecting Training Samples: Selecting representative pixel
samples for each class directly from the Landsat 8 imagery
based on visual interpretation and ground knowledge.

• Applying Algorithm: Using the Maximum Likelihood
Classification algorithm in ArcGIS to assign all image pixels
to one of the defined classes based on the training samples.

The resulting map shows how different covers, like impermeable
built-up areas versus absorbent agricultural land, affect water behavior.

We also calculated the Normalized Difference Vegetation Index
(NDVI) from the Landsat 8 imagery (Figure 6E). NDVI measures

vegetation density (Ismaili et al., 2024). Higher NDVI values mean
denser vegetation. Dense vegetation increases infiltration and
reduces runoff, thus mitigating flood hazards (Atefi and Miura,
2022). We calculated NDVI (Equation 2) using the
standard formula:

NDVI � NIR − R
NIR + R

(2)

NIR is the reflectance in the Near-Infrared band (Landsat
8 Band 5). Red is the reflectance in the red band (Landsat
8 Band 4). Healthy vegetation strongly reflects NIR and absorbs
Red light used for photosynthesis. Conversely, NDBI (Normalized
Difference Built-Up Index) (Figure 6C), also derived from Landsat 8,
highlights urban areas with impervious surfaces that intensify runoff
and exacerbate flood hazards (Khan et al., 2021). NDBI (Equation 3)
is computed using:

NDBI � SWIR − NIR
SWIR + NIR

(3)

The Normalized Difference Built-up Index (NDBI) values range
from −1 to +1. When identifying water bodies, NDBI values are
negative, whereas higher values correspond to built-up areas. In
contrast, vegetation exhibits low NDBI values.

2.2.2.5 Anthropogenic factors
Anthropogenic factors, particularly distance to roads (DRO),

were derived from spatial vector data (SHP of roads). DRO,
established using Euclidean distance analysis in GIS (Figure 6G),
evaluates the impact of road networks on flood hazards. Roads
increase runoff by reducing infiltration, contributing to localized
flooding, particularly in urban areas (Aboutaib et al., 2023; Baiddah
et al., 2023). Continuous variables required classification into
intervals for the models. We used the Natural Breaks (Jenks)
classification method for this purpose. This was performed using
ArcGIS software. The Natural Breaks method groups similar values
together effectively. It minimizes variation within classes while
maximizing differences between classes. This approach is
commonly applied in hazard mapping studies. Factors classified
using this approach include Slope, Curvature, TWI, NDVI, NDBI,

FIGURE 5
Ground validation photographs illustrating flooded watercourses in Beni Mellal city during the March 26, 2024 event.
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TABLE 1 Spatial relation between thematic layers and historic floods using FR, WOE, IV and WF Models.

Factor Class Nombre
of Pixiel

Percentage of
domain (PD)

Number of
inundation points

Wfi index WoE IV

Aspect North to East 93,350 27.68 533 −0.37 −0.45 −0.05

East to South 39,590 11.74 213 −0.55 −0.31 −0.08

South to West 47,047 13.95 198 −1.29 −0.58 −0.19

Southwest 68,096 20.19 280 −1.36 −0.68 −0.20

West to North 89,171 26.44 955 1.53 0.21 0.22

Slope (%) 0 to 3.37 216,201 64.11 883 −2.86 −1.50 −0.20

3.37 to 7.49 86,644 25.69 542 −0.20 −0.33 −0.01

7.49 to 14.79 18,986 5.63 85 −2.32 −0.42 −0.16

14.79 to 24.33 9,864 2.92 141 5.02 0.79 0.34

24.33 to 47.73 5,559 1.65 528 17.00 2.86 1.17

Curvature −10.24 to −1.29 56,699 16.81 395 0.19 −0.10 0.03

−1.29 to −0.67 161,642 47.93 947 −0.24 −0.75 −0.04

−0.67 to 0.03 63,508 18.83 395 −0.09 −0.24 −0.02

0.03 to 0.65 47,764 14.16 291 −0.15 −0.21 −0.03

0.65 to 9.60 7,641 2.27 151 2.78 1.13 0.49

Soil Poorly developed erosional
soils with crude mineral

inclusions

269,635 79.95 1,411 −0.57 −1.84 −0.09

Isohumic soils with
calsimagnesic inclusions

67,619 20.05 768 1.53 0.35 0.24

TPI −5.50 to −0.65 19,438 5.76 109 −0.42 −0.20 −0.06

−0.65 to −0.27 88,554 26.26 407 −1.02 −0.65 −0.15

−0.27 to 0.11 121,760 36.10 665 −0.50 −0.62 −0.07

0.11 to 0.49 89,179 26.44 628 0.26 −0.22 0.04

0.49 to 5.25 18,323 5.43 370 3.41 1.12 0.49

TWI 2.51 to 4.98 51,729 15.34 884 3.59 0.83 0.42

4.98 to 6.19 175,009 51.89 837 −1.11 −1.04 −0.13

6.19 to 7.72 84,166 24.96 352 −1.61 −0.72 −0.19

7.72 to 10.19 18,280 5.42 69 −1.99 −0.59 −0.23

10.19 to 15.92 8,070 2.39 37 −1.27 −0.36 −0.15

Distance to rivers (m) 0 to 98.37 133,496 39.58 624 −1.18 −0.83 −0.14

98.37 to 210.16 102,770 30.47 512 −0.94 −0.62 −0.11

210.16 to 357.72 60,860 18.05 309 −0.87 −0.44 −0.10

357.72 to 567.89 27,446 8.14 396 2.92 0.74 0.35

567.89 to 1,140.24 12,682 3.76 338 5.14 1.43 0.62

Land use Built-up 132,323 39.24 1,367 1.48 −0.02 0.20

Arboriculture 181,601 53.85 756 −1.38 −1.22 −0.19

Agricultural Land 22,042 6.54 54 −3.05 −1.04 −0.42

Bare ground 1,288 0.38 2 −4.49 −1.43 −0.62

(Continued on following page)
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Distance to Rivers, Stream Density, and DRO. Table 1 presents the
final class intervals derived for each factor.

The IG analysis revealed positive values for all 13 factors. This
included TPI, Curvature, and TWI. This result indicated that each
factor contributed unique predictive information. Therefore, we
retained all factors for the modeling phase.

The correlation matrix (Figure 11) appears later in the Results
(Section 3.5). Its primary purpose there is to visualize relationships
between factors, after their individual predictive relevance was
established via IG. It was not used for initial variable selection in the

modeling process. The matrix also visually confirms that correlations
among TPI, Curvature, and TWI were not excessively high. This
provides secondary support for their inclusion.

2.2.3 Flood modeling methods
2.2.3.1 Weighting factors

The Weighting Factor (WF) method assesses flood hazard. It
adapts the Statistical Index (SI) model (Oztekin and Topal, 2005;
Yalcin, 2008; Khosravi et al., 2016). This approach assigns weights to
conditioning factors based on their link to flood occurrences.

TABLE 1 (Continued) Spatial relation between thematic layers and historic floods using FR, WOE, IV and WF Models.

Factor Class Nombre
of Pixiel

Percentage of
domain (PD)

Number of
inundation points

Wfi index WoE IV

Stream density (Km/Km2) 0 to 0.67 73,600 21.82 907 1.97 0.41 0.28

0.67 to 1.70 61,794 18.32 365 −0.27 −0.29 −0.04

1.70 to 2.70 96,653 28.66 406 −1.31 −0.77 −0.19

2.70 to 3.85 72,262 21.43 334 −1.02 −0.58 −0.15

3.85 to 6.37 32,945 9.77 167 −0.74 −0.34 −0.11

Geology travertines 21,224 6.29 171 −0.56 0.16 0.10

Recent Quaternary (piedmont
cones. encrusted)

5,255 1.56 3 7.98 −2.45 −1.05

Paleocene (Beige limestone) 9,096 2.70 153 −0.91 0.96 0.42

Middle Quaternary (scree
spreading)

4,092 1.21 23 6.76 −0.15 −0.06

Pink-brown carbonated
cement powders/Pink-brown
carbonated cement powders

7,057 2.09 332 1.04 2.05 0.86

Middle Quaternary (Tadla
silts)

290,530 86.15 1,497 −2.50 −2.24 −0.10

NDVI −0.19 to 0.13 36,687 10.88 1,275 15.08 1.63 0.73

0.13 to 0.24 58,162 17.25 487 2.32 0.08 0.11

0.24 to 0.36 90,248 26.76 313 −5.57 −0.94 −0.27

0.36 to 0.49 93,618 27.76 99 −16.22 −2.14 −0.79

0.49 to 0.76 58,539 17.36 5 −38.76 −4.52 −1.88

NDBI −0.35 to −0.16 24,976 7.41 16 −22.34 −2.39 −1.00

−0.16 to −0.09 60,064 17.81 97 −13.40 −1.59 −0.60

−0.09 to −0.03 72,531 21.51 557 1.67 −0.06 0.08

−0.03 to 0.02 100,035 29.66 940 3.62 0.03 0.16

0.02 to 0.16 79,648 23.62 569 0.97 −0.16 0.04

DRO (m) 0 to 10 213,902 63.42 1,641 1.09 −0.84 0.07

10.00 to 50 97,360 28.87 508 −1.36 −0.55 −0.09

50.00 to 100 23,871 7.08 30 −10.43 −1.72 −0.71

100.00 to 200 2,121 0.63 0.00 None −0.01 0.00

200.00 to 800 0.00 0.00 0.00 None 0.00 0.00

Note: Continuous variables were classified using the Natural Breaks (Jenks) method in ArcGIS.
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First, an SI value (Equation 4) is calculated for each class i within
each factor. This reflects the flood density within that class
compared to the study area. It uses the following formula:

Si � ln
NFi
NPi
NFt
NPt

( ) (4)

where:

• NFi = number of flood pixels in class i
• NPi = total number of pixels in class i
• NFt = total number of flood pixels in the study area
• NPt = total number of pixels in the study area

Higher SI values indicate a stronger association between the
factor class and flooding.

Next, these SI values are used to determine the final Weighting
Factor (Wf) for each class. This involves calculating a total SI score
(T (SI)) for each factor by summing the SI values weighted by the
number of pixels in each class (Yalcin et al., 2011) (Equation 5):

T SI( ) � ∑n
i�1

SI( )*S.pix (5)

where:

SI represents the flood hazard index per factor.
S.pix represents the number of pixels in that factor class.

The Wf value is then derived by normalizing these T (SI) scores
and scaling them to range from 1 to 100 (Yalcin et al., 2011)
(Equation 6):

Wf � TSI value( ) −Min TSI value( )
MaxTSI value( ) +Min TSI value( ) (6)

where Min (T (SI)) and Max (T (SI)) are the minimum and
maximum T (SI) values across all factor classes. This formula
scales the results linearly to the range [1, 100].

The resulting Wf values represent the relative importance of
each factor class, scaled between 1 and 100. Higher Wf values
indicate a stronger influence on flood hazard. The specific
calculated SI values and resulting Wf index values (scaled 1–100)
for each factor class in this study are presented later (Table 1).

The Flood Hazard Map of WF Model is generated by the
following (Equation 7) in ESRI ArcGIS:10.8 software:

FloodHazard WF( ) � WFAspect +WFSlope +WFCurvature +WFSoil

+WFTPI +WFTWI +WFDistance to rivers

+WFLandUse +WFStreamDensity +WFGeology

+WFNDVI +WFNDBI +WFDRO

(7)

2.2.3.2 Weight of evidence
The Weight of Evidence method is frequently employed for

evaluating flood hazard susceptibility (Gayen and Saha, 2017;
Costache and Tien Bui, 2019). This bivariate statistical approach
calculates the weights based on Bayesian probability. These weights
reflect the association between each factor class and the presence or

absence of flooding. The method calculates positive weights (W+)
(Equation 8) and negative weights (W-) (Equation 9). These indicate
the strength of evidence for flood presence or absence, respectively,
given a factor class (Costache and Tien Bui, 2019), While minor
variations in factor classification or handling zero counts exist in
literature, this study uses the standard formulation. The calculation
relies on the number of flood pixels within a class relative to the total
flood pixels and the total area, as shown below:

W+ � ln
p B S|{ }
p B −S|{ } (8)

W− � ln
p {−B− S| }
p {B ∣∣∣∣−S−} (9)

where P is the probability, S and -S are the presence and absence of
flooding, respectively. and B and −B are the presence and absence of
flood conditioning factors, respectively.

W+ �
Npix1

Npix1+Npix2
Npix3

Npix3+Npix1

(10)

W− �
Npix2

Npix1+Npix2
Npix4

Npix3+Npix1

(11)

In the study by Costache and Tien Bui (2019) the Weight of
Evidence (WOE) coefficient is calculated using a specific formula
that quantifies the predictive influence of different spatial data layers
based on their association with flood events. TheWeight of Evidence
approach is a bivariate statistical method commonly used in spatial
analysis, particularly in environmental and geological assessments.

TheWOE coefficient for each factor is calculated using Equation
12 below:

WOE � W+( ) − W−( ) (12)

The Flood Hazard Map of WOE Model is generated by the
following Equation 12 in ESRI ArcGIS:10.8 software:

FloodHazard WOE( ) � WOEAspect +WOESlope +WOECurvature

+ WOESoil +WOETPI +WOETWI

+WOEDistance to rivers +WOELandUse

+WOEStreamDensity +WOEGeology

+WOENDVI +WOENDBI +WOEDRO

(13)

2.2.3.3 Information value (IV)
The Information Value Model (IV) is another statistical

approach often used for the analysis of Flood hazard (Addis,
2023; Rojas et al., 2023). It calculates an index reflecting the
influence of different factor classes on flood occurrence. The IV
method uses statistical indices to assess the predictive power of each
class based on the proportion of floods occurring within it.

The Information Value (IV) for a class i of a specific factor is
calculated as follows (Equation 14):

IV � log
Di

Ni
( )/ Dt

Nt
( )( ) (14)

where:
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FIGURE 6
Flood contributing factors analyzed in this study (A) slope; (B) Aspect; (C)Normalized difference BUILT-up index (NDBI); (D) land use; (E)Normalized
difference vegetation index (NDVI); (F) curvature; (G) distance to roads (DRO); (H) topographic position index (TPI); (I) distance to rivers; (J) Topographic
wetness index (TWI); (K) stream density; (L) soil TYPE; (M) geology.
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Di: Number of pixels (or points) of floods in class i.
Ni: Total number of pixels (or points) in class ii.
Dt: Total number of pixels (or points) of floods throughout
the study area.
Nt: Total number of pixels (or points) throughout the study area.

The higher the IV, the more the class contributes to the
occurrence of floods.

Flood Hazard Map of IV Model is generated by the following
Equation 15 in ESRI ArcGIS:10.8 software:

FloodHazard IV( ) � IVAspect + IVSlope + IVCurvature + IVSoil

+ IVTPI + IVTWI + IVDistance to rivers

+ IVLandUse + IVStreamDensity + IVGeology

+ IVNDVI + IVNDBI + IVDRO

(15)

2.2.4 Calculation of information gain (IG)
In the context of flood prediction, Information Gain (IG) is a key

metric used to assess the influence of environmental factors on flood
occurrence. It quantifies the reduction in uncertainty (entropy)
about flood events when data is split based on a specific
environmental variable.

Information Gain (IG) was used to measure the importance of
13 environmental factors influencing floods.

The IG (Equation 16) for a given environmental factor X is then
computed as:

IG S,X( ) � H S( ) −H S|X( ) (16)
where:

H(S) is the initial entropy (Equation 17) before splitting the data.

The IG method is based on Shannon’s entropy theory, where
entropy measures the degree of randomness in a dataset. The
formula for entropy is:

H S( ) � −∑n
n�1

P Ci( )log 2P Ci( ) (17)

where:

S represents the dataset containing flood and non-
flood locations.
Ci denotes the class labels (flooded or non-flooded).
P(Ci) is the probability of each class in the dataset.
n is the number of classes.
H(S|X) is the conditional entropy (Equation 18), calculated as:

H S|X( ) � ∑
v∈Values X( )

P v( )H Sv( ) (18)

where:

P(v) represents the proportion of data in each category
of factor X.
H(Sv) is the entropy within each category after partitioning.

A higher IG value indicates that the factor significantly reduces
uncertainty, meaning it has a stronger influence on flood prediction.

2.2.5 Prediction performance methods
In this study, we used RStudio to evaluate how well the

prediction models performed. By using different metrics like
AUC/ROC, Cohen’s Kappa, RMSE, MAE, and accuracy, we were
able to get a clear picture of each model’s strengths and weaknesses.
This comprehensive approach helped us compare the models and
better understand their overall reliability and effectiveness.

2.2.5.1 AUC/ROC
Before building the models, the predictive performance of

various methods was assessed using the receiver operator
characteristic-area under the curve (ROC-AUC) metric based on
test data (Ismaili et al., 2023). The ROC curve is a fundamental tool
in spatial modeling, which effectively visualizes the trade-off
between specificity and sensitivity. Here’s a breakdown of the key
elements involved:

Specificity: This is plotted on the x-axis and refers to the ability
of the model to correctly identify non-flood locations as such. It is
calculated as the proportion of true negative results (TN) among all
non-flood observations.

Sensitivity: Also known as recall or true positive rate, this is
plotted on the y-axis and measures the proportion of actual flood
locations that are accurately predicted. It represents the model’s
ability to detect all relevant instances.

The Area Under the Curve (AUC) is a crucial metric that
quantifies the overall ability of the ROC curve to distinguish
between the classes—flood and non-flood in this context. An
AUC value ranges from 0 to 1, where:

0 represents a model with no discriminative ability,
0.5 suggests a performance no better than random chance,
1 indicates perfect classification.

The AUC is calculated using Equation 19 below:

AUC � ΣTP + ΣTN( )
P + N

(19)

where:

ΣTP (Sum of True Positives): The total number of flood locations
correctly identified as flood.
ΣTN (Sum of True Negatives): The total number of non-flood
locations correctly identified as non-flood.

P (Positives): The total number of actual flood locations (pixels
with torrential phenomena).

N (Negatives): The total number of actual non-flood locations
(pixels without torrential phenomena).

This formula essentially captures the proportion of true results
(both true positives and true negatives) among the total cases
examined, providing a measure of the model’s accuracy in
classifying each pixel correctly. This comprehensive evaluation
helps in determining the most effective models to include in an
ensemble for improved predictive performance.
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2.2.5.2 MAE (Mean Absolute Error)
Mean Absolute Error (MAE) is valuable when predicting

quantitative aspects of flooding, such as water levels or flow rates
at specific gauge stations. It gives an average of the absolute errors
between predicted values and observed values, providing a clear
measure of prediction error in the same units as the prediction itself
(Haghizadeh et al., 2017; Janizadeh et al., 2021).

The MAE (Equation 20) is calculated using the equation below:

MAE � 1
n
∑n

i�1 yi − ŷi
∣∣∣∣ ∣∣∣∣ (20)

where:

n is the number of observations.
yi is the actual (observed) value for the i-th observation.
ŷi Is the predicted value for the i-th observation.
| yi − ŷi | is the absolute difference between the actual and
predicted values.

2.2.5.3 RMSE (Root Mean Square Error)
Root Mean Square Error (RMSE) is particularly effective for

quantitative forecasts, such as predicting water levels or flow rates.
Its value lies in the way it disproportionately penalizes larger errors
over smaller ones. This attribute is critical in flood prediction, where
underestimating the impact of an event can have more severe
consequences than overestimating it (Haghizadeh et al., 2017;
Janizadeh et al., 2021).

These metrics can help determine how reliable and accurate a
flood prediction model is in practical scenarios. Moreover, they can
guide improvements in model development and deployment,
ensuring better preparedness and response strategies for flood-
prone areas (Haghizadeh et al., 2017; Janizadeh et al., 2021).

The RMSE (Equation 21) is calculated using the equation below:

RMSE �
													
1
n
∑n

i�1 yi − ŷi( )2√
(21)

where:

n is the number of observations.
yi is the actual (observed) value for the i-th observation.
ŷi Is the predicted value for the i-th observation.
(yi − ŷi)2 is the squared difference between the actual and
predicted values.

2.2.5.4 Kappa
Cohen’s Kappa is a statistical tool. It measures agreement

between two sets of predictions (e.g., model output vs. reality),
(Equation 22) It accounts for agreement occuring by chance alone
(Feuerman and Miller, 2008). Kappa is useful for evaluating
prediction models. This is especially true for models producing
categories, like flood versus non-flood areas Cohen’s Kappa can be
used to assess the performance of different models and measure
inter-rater reliability.

The equation for Kappa (Cohen’s Kappa) is:

k � p0 − pe
1 − pe

(22)

where:

p0 is the observed agreement, which is the proportion of times the
two raters (or the model and ground truth) agree.
pe is the expected agreement, which is the proportion of times the
two raters (or model and ground truth) would agree by chance.

2.2.5.5 Accuracy
Accuracy is a straightforward measure (Equation 23) when

predicting whether a flood will occur or not (binary classification:
flood/no flood). It provides a quick snapshot of overall model
effectiveness (El Haou et al., 2025) but can be misleading if the
data set is unbalanced (e.g., very few flood events compared to non-
flood days).

The equation for Accuracy is:

Accuracy � TP + TN
TP + TN + FP + FN

(23)

where:

TP (True Positives): The number of correctly predicted
flood events.
TN (True Negatives): The number of correctly predicted non-
flood events.
FP (False Positives): The number of non-flood events incorrectly
predicted as floods.
FN (False Negatives): The number of flood events incorrectly
predicted as non-floods.

3 Results

3.1 Classification of classes influencing flood
hazards according to prediction models

The analysis of flood hazard involves various factors that contribute
to the overall risk. Table 1 provides a comprehensive breakdown of
these factors, categorized by classes such as Aspect, Slope, Curvature,
Soil, TPI, TWI, Distance to Rivers, Land Use, Stream Density, Geology,
NDVI, NDBI, and DRO. Each class is analyzed based on theWeighting
Factor (WF), Weight of Evidence (WOE), and Information Value (IV)
index. These indices help to normalize the data and provide a clear
picture of the relative importance of each class in predicting flood
hazards (El Haou et al., 2025). In the following sections, we will classify
and discuss these classes according to the three different prediction
models used in this study.

3.2 Classification of key factors in the
information value (IV) model

The analysis of the information value (IV) highlights the main
factors influencing flood Hazard (Figure 7). The dominant factor is the
slope (24.33%–47.73%) with the highest information value, confirming
its essential role in runoff and flood dynamics. The steeper the slopes,
the faster the runoff, reducing infiltration and increasing the
concentration of downstream flows. The second most influential
factor is the curvature (0.65–9.60), which represents the
characteristics of the shape of the terrain and its influence on the
accumulation or disposal of water. Higher curvature indicates convex
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areas promoting flow, while negative curvatures are associated with
water-retaining depressions. The aspects of the field also play an
important role, in particular the West-North orientation, which
appears to be a key direction influencing flood Hazard. Other slope
classes, including (14.79 per cent to 24.33 per cent) and (7.49 per cent to
14.79 per cent), as well as specific terrain orientations (South-West,
East-South, North-East) are also identified as having a moderate to low
impact on floods. Finally, specific classes of curvature (−1.29 to 0.67),
(−10,24 to −1.29), (0.03–0.65), (−0.67 to 0.03) and slope (3.37%–7.49%)
have lower information values, indicating a secondary role in the
determination of flood Hazard.

3.3 Classification of key factors in weight
factor (WF) model

The analysis of the WF Model highlights the main factors
influencing the risks of flooding in the study area (Figure 8). The
most important factor is the slope (24.33 per cent to 47.73 per cent),
stressing that steep slopes promote increased susceptibility to
flooding. This correlation indicates that the inclined terrain
facilitates the rapid flow of runoff, thereby reducing infiltration
and increasing downstream water accumulation. In second place,
the NDVI (−0.19 to 0.13) plays a key role in flood regulation,
highlighting the importance of vegetation cover. A higher plant
density promotes infiltration, limits runoff and thus contributes to
the reduction of the risk of flooding.

Geological factors also occupy a preponderant place, with
Recent Quaternary deposits (piedmont cones, encrusted) and
Middle Quaternary deposits (scree spreading), which influence
the permeability of the soil and modulate the behavior of the
flows. In addition, the proximity of rivers (567.88–1,140.24 m) is
proving to be a key factor, with areas near rivers being more exposed
to floods due to potential overflows and lateral water expansion.

Other influential parameters include NDBI (0.03–0.08), TWI
(1.51–4.98) and IPT (0.9–5.85), which reflect the hydrological and
geomorphological characteristics of floods. The curvature
(0.165–0.960), the stream densnity (km/km2: 0–0.67) and the
orientation of the terrain (West to North) provide further details
to the flood risk assessment model.

3.4 Classification of key factors in weight of
evidence (WOE) model

The analysis of the Weight of Evidence (WoE) highlights the
main factors influencing Flood hazard in the study area (Figure 9).
The slope (24.33%–47.73%) is the dominant factor, highlighting its
key role in the dynamics of runoff and infiltration. The steeper
terrain accelerates the runoff of rainwater, increasing the risk of
flooding downstream.

Geological factors also play a important role, including the
presence of formations such as pink-brown carbonate powders
and beige Paleocene limestones. These structures influence soil
permeability and water infiltration capacity, thereby altering
accumulation and flow conditions.

NDVI (−0.19 to 0.13) is another key factor, highlighting the role
of vegetation cover in flood regulation. Dense vegetation improves

infiltration and reduces surface run-off, while stripped areas are
more vulnerable to rapid run-off.

Hydrological factors are also predominant, with distance to
rivers (567.89–1,140.24 m) indicating that areas close to rivers
have a higher probability of flooding. In addition, parameters
such as curvature (0.65–9.60), IPT (0.9–5.25) and TWI
(1.51–4.98) confirm the influence of terrain morphology on water
accumulation and distribution.

Secondary factors, such as the density of the hydrographic
network (0–0.67 km/Km2), the orientation of the terrain (West
to North), and certain soil types (isohumous soil with callimagnesic
inclusions), complete the analysis model. Finally, the presence of
travertines and NDVI classes (0.13–0.24) shows a minor but
nevertheless significant effect on the dynamics of floods.

3.5 Information gain analysis of flood
conditioning factors

The analysis utilizing the Information Gain for the IV, WF, and
WoE approaches is shown in (Figure 10) reveals the differing
significance of environmental variables in Flood hazard mapping.
The NDVI (Normalized Difference Vegetation Index) showed the
highest IG for all three approaches, with an especially high
weighting in the WF approach (77.95), indicating the importance of
vegetation cover in controlling surface runoff and infiltration. Slope also
showed a high impact on Flood hazard, with IG values of 27.4 (WF) and
4.44 (WoE), attesting to the effect of topography on water flow patterns.
Other significant factors include geology, river proximity, and NDBI
(Normalized Difference Built-up Index), which together attest to the
multifaceted interaction between natural and anthropogenic factors in
controlling flood-prone zones. TheWF approach consistently allocated
higher IG values, indicating a high differentiation between flood-prone
and non-flood-prone zones, while the WoE approach yielded more
even weighting across variables. All 13 factors demonstrated positive
Information Gain and were included in the analysis (Tehrany
et al., 2019).

To identify which variables are significantly related to each other
and to understand the interplay between different factors in
assessing flood hazards we used a correlation matrix (Figure 11)
that visualizes the relationships between various factors influencing
flood hazards (Mahdizadeh Gharakhanlou and Perez, 2023). Each
cell in the matrix represents the correlation coefficient (ranging
from −1 to 1) between two variables, indicating the strength and
direction of their relationship.

Factors such as NDBI, DRO, and TWI appear to have several
positive correlations with other variables, indicated by the darker red
boxes. For example, TWI has a strong correlation with DRO. Other
pairs of factors, such as CURVATURE and DISTANCE TO
RIVERS, appear to have little or no significant correlation, as
indicated by the lighter boxes.

3.6 Models’ predictive capability

3.6.1 ROC curves analyze performances
The Comparison between training and test data (Figure 12)

ROC curves analyze performances of the three methods utilized in
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FIGURE 7
Top 15 factors (classes) influencing flood hazard based on information value (IV) Model.

FIGURE 8
Top 15 factors (classes) influencing flood hazard based on weight factor (WF) Model.

FIGURE 9
Top 15 factors (classes) influencing flood hazard based on weight of evidence (WOE) Model.
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flood modelling: Weight of Frequency (WF), Information Value
(IV), and Weight of Evidence (WOE).

For training data, the area under the curve (AUC) is the highest
for the WF method (88.23%), followed by IV (86.07%) and WOE
(83.96%). This indicates that the WF method has the best predictive
capacity on the learning set.

For test data, the trend is similar with an AUC of 86.77% forWF,
84.18% for IV, and 83.27% for WOE. Although performance is
slightly reduced on the test set, the WF method remains the most
effective in predicting Flood hazard.

Analysis of the ROC curves shows that all methods offer good
discrimination between the prone and non-flooded areas. However, the
WF method demonstrates better stability and higher accuracy both on
the training package and on the test set.

3.6.2 Performances metrics
In The comparative evaluation of the Weight of Evidence

(WoE), Weight of Frequency (WF) and Information Value (IV)
models was performed using several performance metrics: Accuracy,
Kappa, RMSE and MAE (Figure 13).

Accuracy: TheWoEmethod achieves the best accuracy, followed
by IV and WF. This indicates that WoE performs better at properly
classifying flood-prone areas.

Kappa: The Kappa Index, which measures the agreement
between prediction and reality by taking into account
randomness, is the highest for WoE, followed by IV and WF.
This confirms that WoE has greater consistency in its predictions.

RMSE (Root Mean Square Error): The WF method has the
highest mean square error, indicating a greater dispersion of
prediction errors. WoE displays the best performance with the
lowest RMSE, followed by IV.

MAE (Mean Absolute Error): the results are similar for all
models, suggesting that the mean amplitude of prediction errors
is similar to each other, however with slight WoE superiority.

3.7 Urban flood hazard probability mapping

3.7.1 Flood hazard map using IV method
The map of flood hazard using IV model (Figure 14) show that

28.5% of the territory is classified as high or very high, with a high
concentration in the south and south-east areas, where
topographical conditions increase vulnerability to floods.
Moderate areas (24.5%) are located in transition regions between
steep slopes and plains, while low- and very low-risk areas (47%)
occupy the North and West sectors, where conditions favour better
water infiltration.

High-risk areas are dominated by steep slopes (more than 24%),
an unfavorable terrain and strong curvature, which intensifies runoff
and reduces infiltration. Proximity to rivers is also a key factor, with
more than 50% of floods recorded within 600 m of rivers. The effects
of terrain morphology (high TWI, high curvature and specific slope
exposure) reinforce these phenomena by creating conditions
conducive to the accumulation of rainwater.

3.7.2 Flood hazard map using WF model
Flood hazard map generated by WF Model (Figure 15) reveal

a concentration of high and very high-risk areas (44.7%) mainly
in the south and south-east of the study area. This trend is
strongly linked to the slope, where 45% of high-risk areas are
located on high-density terrain, promoting rapid runoff and
limiting infiltration. Moreover, the recent and middle
Quaternary geological formations, covering almost 50% of
flood-prone areas, have a low permeability which accentuates
the accumulation of surface water.

Urbanization also plays a key role, with 26% of moderately to
heavily flood-prone areas in high NDBI-index sectors.
Waterproofing of soils reduces infiltration and promotes run-off.
In addition, the presence of travertines in the city center influences
the dynamics of water, making some areas more vulnerable. The

FIGURE 10
Comparison of information gain (IG) across models.
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topographical humidity index (TWI) shows areas of stagnation,
corresponding to 31% of high-risk areas, especially in natural
depressions and alluvial plains. Finally, proximity to watercourses
remains a critical factor, with more than 50% of flood-prone areas
less than 600 m from rivers, exposing these areas to floods
and overflows.

3.7.3 Flood hazard map using WoE method
The map of WoE model (Figure 16) shows that 18.2% of the

territory is classified as high or very high, mainly located in the South
and Southeast, where topographical and geological conditions
increase vulnerability to floods. Moderately exposed areas
(31.2%) are distributed in the transition zones between reliefs
and plains, while 50.6% of the territory is low to very low,
especially in the West and North, where infiltration conditions
are more favorable.

The most sensitive areas are characterized by a high slope (more
than 24%), a proximity to rivers (50% of floods less than 600 m from
a river) and poorly permeable geological formations (cemented

carbonate-based powders and formations of the recent and
medium Quaternary). Urbanization also plays a key role, with
26% of flood-prone areas in NDBI-indexed areas, where soil
sealing accentuates runoff. The topographical humidity index
(TWI) shows areas of stagnation in alluvial depressions and
plains, coinciding with 31.2% of areas classified at moderate
to high risk.

4 Discussion

4.1 Influence of key factors on flood hazard

Our results with the WF, WoE and IV models confirm that
several factors play a key role in Flood hazard, in agreement with
studies by Suppawimut (2021), Mousavi et al. (2022), Islam (2024).
The impact of slope is particularly significant: areas with steep slopes
promote rapid runoff, limiting infiltration and increasing the risk of
flooding downstream. This observation is shared by Suppawimut

FIGURE 11
Correlation matrix of the flood influencing factors considered in the present study.
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(2021), Islam (2024), who emphasize the importance of topography
in the distribution of water flows. Further supporting slope’s
relevance, studies using multi-criteria decision-making (MCDM)
approaches, such as Goumghar et al. (2025) inMorocco andHossain

and Mumu (2024) in Bangladesh, identified slope as a critical factor.
This confirms its importance across different modeling methods and
regions. However, our results show that low-slope areas are also
vulnerable, in particular due to the prolonged accumulation of

FIGURE 13
Bar chart comparing three predictive models using multiple performance metrics: Accuracy, Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE).

FIGURE 12
ROC Curves for Training and Testing Data using WF, IV, and WOE Models.
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surface water, a trend also identified by Mousavi et al. (2022) with
the WoE model.

Another key factor is proximity to rivers, which strongly influences
the spatial distribution of floods. Our results indicate that more than
50% of floods occur within 600m of rivers, confirming the observations
of (Mousavi et al., 2022; Islam, 2024). This consistency extends to
studies using MCDM approaches ((Hossain and Mumu, 2024;
Goumghar et al., 2025) and statistical methods like FR and SE
(Chetia and Paul, 2024). These methods generally rank river
proximity or related metrics highly. Riparian area vulnerability is
increased by rapid soil saturation and inadequate channel capacity
during extreme rainfall. This highlights the need to integrate
hydrodynamic models into risk assessment.

On the other hand, a notable divergence with previous studies lies
in the importance given to vegetation cover (NDVI) (El Haou et al.,
2025). While (Suppawimut, 2021) puts more emphasis on land use, our
results demonstrate that vegetation plays a key role in soil stabilization
and precipitation absorption, thus helping to reduce surface runoff. This
finding is supported by (Hossain and Mumu, 2024), who included
NDVI in their MCDM assessment, and (Chetia and Paul, 2024), who
linked specific NDVI ranges to flood susceptibility. Studies like
(Mentzafou et al., 2017) also highlight specific land use
vulnerabilities (e.g., agricultural areas), aligning with the idea that
land cover influences flood dynamics. Accounting for both

ecological (NDVI) and anthropogenic (land use, identified by
(Chetia and Paul, 2024; Hossain and Mumu, 2024; Goumghar et al.,
2025) factors could refine model accuracy. Another factor that is often
underestimated is soil moisture, assessed via the Topographic Moisture
Index (TWI) in the WoE model. Our results show that 31% of floods
occur in areas with high TWI, confirming that soil moisture plays a
major role in precipitation retention and runoff. This observation is
consistent with the findings ofMarchandise and Viel (2009), who noted
that soil moisture strongly influences seasonal variations in flooding.
Including TWI as a key factor (Chetia and Paul, 2024; Hossain and
Mumu, 2024) reinforces its importance. Integrating TWI improves
identification of water stagnation areas and flood prediction when soils
are saturated. Finally, the analysis of the curvature of the ground reveals
that convex zones facilitate the rapid evacuation of water, while concave
zones act as natural retention basins, thus modifying local flood
dynamics. The interplay between topography (elevation, slope,
curvature, TWI, flow accumulation) (Goumghar et al., 2025),
hydrology (river proximity, drainage density) (Chetia and Paul,
2024; Hossain and Mumu, 2024), geology (Mentzafou et al., 2017),
land cover/vegetation, and rainfall (common factors in most studies)
confirms risk mapping requires multiple factors. Increasing
urbanization and the effects of climate change, it is more important
than ever to take these dynamics into account in order to better manage
risks and adapt infrastructure to local hydrological realities.

FIGURE 14
Flood hazard map generated IV method.

FIGURE 15
Flood hazard map generated WF method.
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4.2 Comparison of models based on
performance

Evaluation of the performance of our models shows that WoE
and IV offer more stable and accurate results than WF. Our
analyses indicate that the AUC of the Model IV reaches 86.07% in
training and 84.18% in testing, while WoE shows 83.96% and
83.27%, respectively. These values are comparable to those
obtained by Mousavi et al. (2022), Islam (2024), reinforcing
the validity of the models in different geographical areas.
Interestingly, our statistical models’ performance metrics are
comparable to those reported for MCDM models in similar
contexts. For instance, Goumghar et al. (2025) reported an
AUC of 0.882 using their multi-criteria model in Morocco,
while Hossain and Mumu (2024) achieved 0.848 using their
approach in Bangladesh. This suggests well-calibrated
statistical models can match expert-driven MCDM approaches
in predictive performance for flood susceptibility. On the other
hand, although the WF model has high AUCs (88.23% in training
and 86.77% in testing), they are still lower than those obtained by
Suppawimut (2021) (93.06% for WF), suggesting potential
improvement by integrating real-time hydrodynamic or
climate data (Chetia and Paul, 2024). found lower AUCs for
FR (0.748) and SE (0.761) models in Assam, possibly due to data
differences or regional complexity (Mentzafou et al., 2017). using

a GIS-based multi-criteria model, reported satisfactory
performance, indicating the general utility of integrating
multiple factors.

Analysis of error metrics confirms. WoE’s robustness, showing
the lowest RMSE andMAE values, indicating better robustness and an
ability to reduce extreme errors. The Kappa index is also higher for
WoE, reflecting better consistency in the classification of flood zones.
Conversely, WF shows the lowest scores in terms of accuracy and
Kappa agreement, suggesting increased sensitivity to imbalances
in the data.

4.3 Improved models and perspectives

Although our models capture major flooding types, limitations
exist, especially in urban areas. TheWoEmodel analysis (26% of floods
in urban zones) indicates ignoring drainage infrastructure may
overestimate risk. Stormwater systems significantly alter flood
dynamics compared to natural areas. Integrating data on urban
water infrastructure is needed for more precise urban flood assessment.

Furthermore, this study evaluated only three statistical
techniques. A direct comparison with machine learning
algorithms (Random Forest, SVM, Neural Networks) was not
performed. ML models might better capture complex factor
interactions and could improve predictive accuracy. Future
research comparing statistical and ML methods in Béni Mellal is
recommended to identify optimal modeling strategies.

Another key limitation is the focus on hazard susceptibility.
Comprehensive risk assessment requires integrating our hazard
maps with socio-economic vulnerability data (population density,
building types, poverty, etc.). This would quantify potential damages
(costs, displacement) and identify the most vulnerable communities,
following approaches similar to Hossain and Paul (2018). Future work
should prioritize this integration.

The assessment is also static, based on historical data. It lacks
real-time data for forecasting and climate change scenarios for
projecting future risks. While dynamic analyses require different
approaches beyond this study’s scope, our susceptibility maps
provide a needed baseline for such future work.

Additionally, advanced indices like TWI appear essential. Our results
confirm TWI’s utility in identifying water stagnation areas. Combining
TWI with curvature analysis could improve water accumulation
prediction and vulnerable area mapping. Exploring methods like
Geographically Weighted Regression (GWR) (Mentzafou et al., 2017)
could reveal spatial variations in factor importance.

Finally, results indicate local conditions strongly influence risk
distribution. Our finding that 28.5% of the area is high/very high risk
(IV model) differs from Islam (2024) 49.82% in another region and
Goumghar et al. (2025) approx. 27% using a multi-criteria approach.
This underscores the need to tailor models to regional specifics and
acknowledges variability between modeling techniques.

4.4 Specific recommendations for flood
management in Béni Mellal

Based on the flood hazard maps generated and the analysis of key
contributing factors, several specific recommendations can enhance

FIGURE 16
Flood hazard map generated WOE method.
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flood risk management in Béni Mellal. Firstly, land-use planning and
zoningmust be strictly aligned with flood risk. This involves prohibiting
new residential development and critical infrastructure within “Very
High” and “High” hazard zones, particularly in the vulnerable southern/
southeastern areas and near rivers. Mandatory vegetated riparian buffer
zones should be established and enforced to reduce erosion and limit
exposure. In areas slated for urban expansion, particularly those with
high NDBI, promoting flood-resilient urban design through permeable
surfaces, green roofs, and integrated green spaces is essential to
counteract increased runoff. Crucially, these hazard maps must be
formally integrated into the municipal master plan, guiding all future
development permits and planning processes.

Secondly, infrastructure development and retrofitting
strategies should prioritize enhancing resilience. Investment is
needed to upgrade, clear, and maintain stormwater drainage
systems, especially in urban areas and locations with high
TWI values prone to water stagnation, following detailed
capacity assessments. Nature-Based Solutions (NBS), such as
retention ponds in flood accumulation zones, wetland
restoration, and slope stabilization measures like terracing or
check dams on steep slopes, should be actively explored and
implemented. Existing critical infrastructure in moderate-to-
high hazard zones requires assessment for flood-proofing or
potential relocation, while targeted riverbank stabilization
projects are needed where erosion poses a threat.

Thirdly, flood mitigation policies and preparedness measures
require strengthening. Updated, flood-specific building codes
should be developed and enforced in hazard zones, mandating
appropriate construction standards based on risk levels and local
geology. Early Warning Systems (EWS) must be enhanced
through denser monitoring networks (rainfall, river levels,
potentially soil moisture/TWI) and effective, timely
dissemination to vulnerable communities. Targeted awareness
campaigns focusing on risks and preparedness, alongside clear
evacuation routes and shelter plans, are vital, particularly for
residents in the most susceptible zones. Additionally, sustainable
vegetation management, including reforestation on slopes with
low NDVI, can significantly contribute to natural water retention
and soil stability.

Finally, further assessment is necessary to refine understanding
and response. Detailed hydrodynamic modeling should be
conducted for high-risk areas to simulate flood characteristics
like depth and velocity under various scenarios. Furthermore, as
highlighted previously, a comprehensive socio-economic
vulnerability assessment is crucial to quantify potential losses,
identify the most vulnerable populations, and prioritize
interventions effectively, thereby transitioning from hazard
susceptibility to a full risk assessment framework. Implementing
these interconnected recommendations through an integrated,
participatory approach will be key to building sustainable flood
resilience in Béni Mellal.

5 Conclusion

This study successfully mapped flood susceptibility in Béni
Mellal. It used three statistical models: Information Value (IV),
Weighting Factor (WF), and Weight of Evidence (WoE).

Topography, hydrology, and environment factors were key
inputs. The results show vulnerability depends on complex
interactions between these factors. Soil moisture and terrain
shape significantly influence flood likelihood. These factors
are often less emphasized in standard assessments. The WoE
and IV models provided more accurate and stable results than
WF. However, WF was better at identifying high-risk
areas overall.

The study’s main contribution is its comparative analysis of
these three models. This analysis was performed using high-
resolution data. It focused specifically on the urban semi-arid
setting of Béni Mellal. This provides valuable insights into model
performance in such environments. It also highlights the specific
factors driving flood hazard in this region. These findings directly
support better local planning.

However, certain limitations should be noted. The study focused
on hazard. It did not assess socio-economic vulnerability or calculate
potential damages. Therefore, it does not represent a full flood risk
assessment. Furthermore, the models did not explicitly include
urban drainage infrastructure; this omission might affect accuracy
within the built-up city center. The assessment is also static, relying
on historical data. It does not incorporate real-time data for
forecasting or future climate change scenarios. Additionally, this
research compared only statistical methods; a comparison with
machine learning models was beyond the current scope but
represents an area for future investigation. Finally, statistical
models show correlations but do not simulate physical flood
processes like hydraulic models do.

Despite these limitations, the research confirms the
importance of specific factors. Advanced indices like TWI are
useful for refining analysis. The hazard maps provide essential
information for decision-makers. They can help guide land-use
planning and mitigation efforts (as detailed in the specific
recommendations in Section 4.4). Integrating these findings
with socio-economic data, detailed drainage information,
dynamic modeling, and comparisons with other model types
are key next steps. Better data and models will improve flood
prediction and infrastructure management. An interdisciplinary
approach, considering both natural and human factors, is needed
for effective flood management.
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