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Cities along the lower reaches of the Yangtze River (CLRYR) have highlighted
human-land conflicts with their rapid urban expansion. Fully assessing the
landscape ecological risk (LER) of the region and its response in the context
of urbanization is of great significance for regional sustainable development. To
address this issue, this study explores the spatiotemporal evolution of LER in
CLRYR from the perspective of “production-living-ecological” space (PLES), and
evaluates the decoupling status of urbanization processes and LER in different
cities, aiming to provide scientific reference for policymakers. The results indicate
that the mean LER value increased from 0.2508 in 2000 to 0.2573 in 2020, with
an increase in LER fluctuations. From a spatial distribution perspective, the
proportion of medium risk is the highest, consistently above 30%; The lowest
risk proportion is less than 3%. From 2000 to 2020, the Moran’s I values for LER in
the CLRYR were 0.4773, 0.4014, 0.3326, 0.2462, and 0.4779, respectively,
indicating a significant positive correlation. Through decoupling model
analysis, it was found that only Wuxi, Suzhou, and Changzhou achieved strong
decoupling between economic growth and LER between 2010 and 2020. The
findings of this study provide an important scientific basis for a deeper
understanding of the complex relationship between urbanization and
ecological risks in CLRYR and also lay a theoretical foundation for promoting
the implementation of green development strategies in the region.
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1 Introduction

In recent years, there has been a significant surge in the urban
population and the proliferation of cities and towns, concurrent with
rapid economic development (China, 1994; Yi et al., 2021; Yu, 2021).
Urbanization has conferred numerous benefits upon populations,
including enhanced material living standards and the fulfillment of
diverse cultural needs (Zhu et al., 2023). However, the traditional
urbanization model in its early stages was predominantly fueled by
land finance and industrialization. This approach led to an irrational
spatial distribution and inefficient utilization of regional land,
placing significant pressure on ecosystems and giving rise to
numerous associated risks, both direct and indirect (Li, Zhou,
and Yi, 2022; Xu et al., 2021). Effective avoidance, active
adaptation, and comprehensive management of ecological risks
first require a scientific and accurate assessment of ecological
risks in a specific region (Cao and Shen, 1991).

Landscape ecological risk (LER) assessment can reveal the
potential adverse outcomes resulting from the interaction
between landscape patterns and ecological processes under the
influence of natural or human factors (Zhang et al., 2024; Qian
et al., 2022). In recent years, the means of LER assessment have been
diversified, and the results are of great practical significance for the
development of risk mitigation strategies and the allocation of
limited resources, which has become one of the hot topics in
ecology and geography (Peng et al., 2015; Fagiewicz, 2014).
Special attention should be paid to the fact that land, as a
macro-representation of the surface landscape, carries the dual
importance of human activities and ecosystem functions (Xu and
Yang, 2024). LER assessment, grounded in landscape patterns,
identifies land use change as the causal factor and constructs a
regional-scale LERmodel using landscape pattern indexes (Du et al.,
2023; Li et al., 2020; Wang W. et al., 2023; Zeng et al., 2022). This
approach can effectively illustrate the influences of anthropogenic
disturbances on landscape structure, functions, and processes within
a specific region, providing a comprehensive evaluation of LER
across multiple scales. Ai et al. (2022), Wang et al. (2021a), Ju et al.
(2021) evaluated LER and gave possible corresponding measures for
land use in different character areas of islands, nature reserves, and
peninsulas, respectively. Gao et al. (2022) used the PLUS model to
simulate land use in Nanjing 2025 under multiple scenarios and
assessed LER under multiple scenarios through a comprehensive
indicator system.

To address spatial incoherence in land use, China introduced the
concept in 2012 of creating intensive and efficient production areas,
suitable living environments, and ecologically pristine spaces
characterized by scenic landscapes (Wang et al., 2022; Huang
et al., 2024)—termed as “production-living-ecological” space
(PLES). This initiative aims to achieve harmonious coexistence
between humanity and nature (Wu et al., 2021). The
introduction of the PLES concept, structured around distinct
land use functions, has spurred the emergence of related research
findings (Zhang and Li, 2022; Liu C. et al., 2024; Zhang, Zheng, and
Qin, 2023; Zhang S. et al., 2022). Wang J. et al. (2023), Zhang R. et al.
(2022) analyzed land pattern changes and their drivers from a PLES
perspective. Wang et al. (2022) assessed the spatiotemporal
dynamics of ecosystem service values in the Dongliao Basin and
revealed the mechanisms of its response to changes in PLES.

However, research integrating LER with PLES perspectives
remains relatively sparse. In contrast to studies focusing solely on
land use types, an approach rooted in PLES can effectively
demonstrate the holistic nature and distinctions among
production, living, and ecological spaces, thereby enhancing the
spatial portrayal of land use functionalities (Liang et al., 2022).

During urbanization, there exists a reciprocal influence and
constraint between urban development and the ecological
environment (Zhao et al., 2017). On one hand, various pollutants
generated during urbanization can damage the ecological
environment, leading to ecological challenges. Conversely, the
degradation of the ecological environment can impede the pace
of urbanization. The harmonious development of urbanization and
the ecological environment is crucial for achieving sustainable
development in cities and regions. Presently, research
predominantly concentrates on LER conditions and their
spatiotemporal variations in specific locales such as watersheds,
provinces, and mining areas. However, there is limited exploration
regarding the specific interplay between these factors and urban
development. Thus, the adoption of the “decoupling” theory aids in
precisely describing the correlation between urbanization levels and
LER. Coined initially by the Organization for Economic Co-
operation and Development (OECD) towards the close of the
previous century, the “decoupling” concept delineates the process
of disentangling economic growth from environmental stresses
(Kong et al., 2021). In 2005, Tapio expanded on the concept of
“decoupling elasticity” derived from decoupling theory, advancing
an elasticity decoupling model (Tapio, 2005). Compared with the
OECD decoupling model, Tapio’s theory is characterized by its
enhanced objectivity and accuracy. It underscores absolute
decoupling scenarios and further distinguishes between weak and
strong decoupling scenarios depending on the elasticity coefficients
and accordingly (Yang and Li, 2023).

The cities along the lower reaches of the Yangtze River (CLRYR)
are located in the central core of the Yangtze River Delta, renowned
as China’s most economically dynamic region and a prominent
example of rapid urbanization (Tan et al., 2021). Against the
background of rapid socio-economic development, the region
faces significant challenges of landscape fragmentation and
escalating human-land conflicts (Yang et al., 2022). Owing to
their distinctive geographical placement, the ecological condition
of these cities exerts a direct impact on the ecosystem of the Yangtze
River Basin. Therefore, CLRYR was chosen as the study area to
quantitatively evaluate its LER and comprehensively investigate the
correlation between urbanization levels and LER. These findings will
hold significant practical implications for enhancing land resource
management, safeguarding ecosystem stability and security, and
fostering harmonious coexistence between humanity and nature.
They will serve as a scientific foundation for pursuing sustainable
development in the CLRYR region and provide a theoretical
framework for exploring the interplay between societal
development and natural ecosystems.

The subsequent structure of this study unfolds as follows:
Section 2 provides a brief overview of the current situation and
the supporting data within the study area. Section 3 outlines the
methodological framework and theoretical principles that underpin
this study. Section 4 presents the analysis of the results, offering a
comprehensive assessment of the functional spatial changes in the

Frontiers in Environmental Science frontiersin.org02

Guo et al. 10.3389/fenvs.2025.1589832

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1589832


CLRYR area from the perspective of PLES, alongside an exploration
of the spatiotemporal dynamics of LER. This section also examines
the region’s urbanization development and analyzes its
interconnected relationship with LER. In Section 5, suggestions
for the development of CLRYR were proposed and the
limitations of this study were discussed. Finally, Section 6
summarizes the main findings of this study.

2 Study area and data sources

2.1 Study area

The Yangtze River, the largest river in China, has a total length of
over 6,300 km. Originating from Tanggula Mountain in Qinghai
Province, the mainstream flows from west to east through
11 provincial administrative regions and finally flows into the
East China Sea on Chongming Island in Shanghai (Liu L. et al.,
2023). The main channel of the Yangtze River flows from west to
east, encompassing numerous tributaries and characterized by
distinctive geographical features and considerable developmental
opportunities (Kong et al., 2019). The Yangtze River region
encompasses three major urban agglomerations in China, with
particular emphasis on the downstream Yangtze River Delta
region, which holds a crucial role in China’s economic
advancement. Known for its high economic activity, urbanization
rate, and innovation capacity, it ranks among the nation’s leaders in
these aspects and occupies a strategic position in China’s
comprehensive modernization and opening-up efforts.
Nevertheless, the region grapples with significant challenges
related to land use conflicts, and the ecological health directly
impacts the broader Yangtze River Basin ecosystem.

Therefore, this study mainly focuses on cities in the CLRYR
region covered by the Yangtze River Delta (as shown in Figure 1),
including Shanghai City; Anqing, Chizhou, Tongling, Ma’anshan,
and Wuhu in Anhui Province; as well as Nanjing, Zhenjiang,
Yangzhou, Taizhou, Changzhou, Nantong, Wuxi, and Suzhou in
Jiangsu Province. The downstream area features a blend of hills and
plains that are conducive to agriculture and habitation. It is the
longest and most mature area for land development and utilization
in the Yangtze River Basin.

2.2 Data sources

The research object of this study is 14 cities located in CLRYR
and the research period is from 2000 to 2020. This study mainly
relies on land use data and statistical yearbook data for analysis. The
land use data, which is the basis for constructing the LER model, is
derived from the China multi-period land use dataset (CNLUCC)
from the resource and environmental science data platform (http://
www.resdc.cn/). This dataset employs a two-level classification
system. At the first level, it categorizes land into six types:
cropland, forest, grassland, water, built-up land, and unused land.
Subsequently, the second level refines these categories into 25 types
based on the initial classifications. Based on the secondary
classification criteria and the differentiation between land use
functions and land use types, drawing on existing research results

(Deng and Yang, 2021; Li and Wu, 2022), a connection table
between the PLES structure and land use types is established (as
shown in Table 1). To investigate the spatiotemporal dynamics of
LER amidst urbanization, this study references prior research and
data comprehensiveness to select pertinent urbanization assessment
indicators. These indicators are chosen based on the four principal
dimensions of population, spatial configuration, economic
development, and societal factors (Yi et al., 2024; Geng and Han,
2020). The statistical yearbook data spanning 2000 to 2020 from
each city constitute crucial foundational data for constructing this
indicator framework.

3 Methodology

The technical approach comprises several key components,
outlined in Figure 2. Firstly, based on the reclassification tool in
ArcGIS software, land use data is reclassified according to three
functional categories: production, living, and ecological spaces.
This facilitates analysis of the spatiotemporal evolution and
transitions among different functional land types. Secondly, a grid-
based approach divides the study area into equal-sized fishing net
units, enabling the classification of land use data into units for risk
assessment. The landscape ecological risk index (LERI) for each unit is
computed using an assessment model, and the spatial distribution of
LER across the CLRYR area from 2000 to 2020 is derived through
kriging interpolation. Concurrently, specific spatiotemporal
assessments of LER within each city are conducted using mean
statistics and Moran’s I. Subsequently, multidimensional indicators
are selected to construct an urbanization assessment system for
evaluating urbanization levels. Moreover, the migration of the
center of gravity and standard deviation ellipse (SDE) are
employed to illustrate changes in the urbanization direction of
CLRYR. Finally, by analyzing the ratio of LERI change rates to
urbanization change rates, the study assesses the decoupling
relationship between urbanization and ecosystems, proposing
targeted ecological protection measures accordingly.

3.1 LER assessment model

The LER value quantifies the resistance of an area to external
disturbances. A higher LER indicates lower resistance to
disturbances, and conversely. According to the principles of
landscape ecology, the minimum unit for evaluation should be
2–5 times the average patch area. Considering the average patch
size and characteristics of the study area, the CLRYR region was
divided into 4,029 risk units using the ArcMap fishing net tool, with
each unit measuring 5 km × 5km (Li S. et al., 2024). Finally, using
Fragstats and Excel software, the LER assessment model was
constructed based on the area ratio of land use types, landscape
interference index, and landscape vulnerability index (as shown in
Equation 1) (Kang et al., 2024):

LERIk � ∑n
i�1

Aki

Ak
· Ii · Vi (1)

where Aki represents the total area of the i-th landscape type in the
k-th risk unit, and Ak is the total area of the k-th risk unit; The
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calculation formulas for the landscape interference index (Ii) and
landscape vulnerability index (Vi) are as follows.

3.1.1 Landscape interference index (Ii)
The calculation principle of landscape interference index can be

found in Equations 2–5:

Ii � a ·Fi + b · Si + c ·Di (2)
Fi � ni

Ai
(3)

Si �
��
ni
A

√
2Pi

(4)

Di � Mi +Ni + 2Pi

4
(5)

Where a, b, and c are the weights of the landscape fragmentation
index (Fi), landscape separation index (Si), and landscape
dominance index (Di). Based on previous research results

(Ran et al., 2022; Li et al., 2020), the weights a, b, and c are set
to 0.5, 0.3, and 0.2, respectively; ni is the number of i type patches;Ai

represents the total area of the i type of landscape; A is the total area;
Pi is the ratio of i type patch area to total area;Mi represents the ratio
of risk units in the i type of landscape to the total number of risk
units; Ni is the ratio of the number of patches of type i to the total
number of patches (Li, et al., 2024; Wang et al., 2023).

3.1.2 Landscape vulnerability index (Vi)
The landscape vulnerability index reflects the sensitivity of

different landscape types to external disturbances, where higher
values indicate greater vulnerability. Referring to the results of
existing studies (Du et al., 2023), this study assigns weights to
eight land use types, which are urban living space, rural living
space, forest ecological space, grassland ecological space, agricultural
production space, water ecological space, industrial production
space, and other ecological space in ascending order. By
normalizing the weights using the arctangent function, the

FIGURE 1
The geographical location of the study area.

TABLE 1 PLES classification system of the CLRYR.

Primary classification Secondary classification Land use type

Production space Agricultural production space Paddy fields, dry land

Industrial production space Other construction sites such as factories, mines, quarriesetc.

Living space Urban living space Townsite

Rural living space Rural settlements

Ecological space Forest ecological space Woodland, shrubland, open woodland, and other woodland

Grassland ecological space High-cover grassland, medium-cover grassland, and low-cover grassland

Water ecological space River canals, lakes, reservoirs and ponds, permanent glacial snowfields, mudflats, and beaches

Other ecological spaces Unutilized land such as marshland
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vulnerability indexes were obtained as 0.5000, 0.7048, 0.7952,
0.8440, 0.8743, 0.8949, 0.9097, and 0.9208, respectively. The
calculation principle of landscape vulnerability index can be
found in Equation 6:

Vi � 2 arctan xi( )
π

(6)

Where xi represents the weight of each landscape type.

3.2 Urbanization level evaluation system

The entropy value method provides an objective approach by
calculating entropy weights for each indicator, thereby effectively
quantifying and assessing the significance and impact of various
indicators (Wang et al., 2021b). Hence, this study adopts Shannon’s
entropy concept to develop an urbanization index system tailored
for the CLRYR area, with the resulting weights of each index
presented in Table 2. Given that the selected indicators vary in
scale and units but are all positively oriented, standardization is
necessary before weight calculation. The standardized formula is
shown in Equation 7.

xij
′ � xij −min xij( )

max xij( ) −min xij( ) (7)

Where xij is the j-th (j � 1, 2, 3, . . . ,m) evaluation index value for
the i-th (i � 1, 2, 3, . . . , n) evaluation object; xij

′ represents the

corresponding positive normalized value; max(xij) and min (xij)
are the corresponding maximum and minimum values, respectively.

To avoid extreme values of the weights, such as 0 and 1, the
normalized indicator values are shifted, i.e., the overall normalized
value is made to add 0.0001 before the subsequent weights are
calculated (as shown in Equation 8):

xij
″ � xij

′ + 0.0001 (8)

Calculate the proportion of the j-th index in the i-th year (as shown
in Equation 9):

pij � xij
″

∑n
i�1
xij
″

(9)

Calculate the information entropy of the j-th index (as shown in
Equation 10):

ej � − 1
ln n

∑n
i�1

pij · ln pij( ) (10)

Calculate urbanization index (as shown in Equation 11):

Ui � wi · xij
″ � 1 − ej

∑n
i�1

1 − ej( ) · xij
″ (11)

Where pij is the weight of the i-th evaluation object under the j-th
evaluation index; ej is the entropy value with the range [0, 1]; wi

represents the entropy weight; Ui is the final urbanization value.

FIGURE 2
The workflow of this study.
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3.3 Spatial autocorrelation

In this study, global Moran’s I was employed to evaluate the
spatial correlation across the entire CLRYR region, aiming to
identify any global spatial clustering phenomenon (Liu et al.,
2023a). Concurrently, local spatial autocorrelation analysis was
utilized to examine spatial correlation within specific regions,
providing further insights into local spatial clustering patterns
(Liu Y. et al., 2024).

3.4 SDE method

SDE is a statistical tool used to accurately characterize the spatial
distribution of study elements (Lefever, 1926). In this study, the
parameters such as coordinates of the center of the ellipse, azimuth,
and the standard deviation of the long and short semi-axes are
employed to reflect the spatial change trend of the urbanization level
in the CLRYR. The specific calculation formula can be found in the
reference (Zhang Y. et al., 2022).

3.5 Tapio decoupling model

In this study, the tapio decoupling model was introduced to
analyze the relationship between urbanization level and LER in the
CLRYR region, to measure the resilience of LER to change in the
urbanization process, i.e., the degree of decoupling between the two.
The method is based on the ratio of the rate of change in LER to the
rate of change in urbanization level, termed the decoupling index, to
quantitatively describe this relationship (Dong et al., 2021). Based on
the value of the decoupling index and its positive and negative
situations, the type of decoupling state and its trend can be
determined (Kong et al., 2019). The specific formulas and
classification criteria of the model are shown in Equation 12 and
Table 3, respectively.

ω � rLERI
rUI

� LERIend − LERIstart( )/LERIstart
UIend − UIstart( )/UIstart (12)

Where ω represents the decoupling index; rLERI and rUI are the rate
of change of LERI and Urbanization index (UI), respectively;
LERIend and UIend denote the end values of the two; LERIstart
and UIstart are the initial values of the two, respectively.

4 Results

4.1 The spatiotemporal distribution of PLES

Land use types are the product of the interaction between
human activities and natural environmental factors, reflecting the
impact of human social activities on ecosystems. This study explores
the spatiotemporal evolution law of land use in CLRYR from the
perspective of PLES from 2000 to 2020 in terms of spatial
distribution (as shown in Figure 3), quantity structure (as shown
in Figure 4) and type transfer (as shown in Figure 5). The production
space forms a wide distribution in the eastern part of CLRYR, which
is the dominant area of PLES. In the secondary production space,
agricultural production areas notably exceed industrial zones.
Nevertheless, there has been a declining trend in the agricultural
production space over the years, while the industrial production
space shows a corresponding increase. The living space exhibits a
radial distribution pattern, primarily concentrated near the Yangtze
River coast, with a noticeable trend of outward expansion. This
expansion is particularly pronounced in Shanghai, where the
concentration of living space is most prominent. Guided by
national policies, the extent of each ecological space type remained
relatively stable from 2000 to 2020. Forest and grassland ecological
spaces predominated during this period concentrated notably in
Anqing, Chizhou, and Tongling. Water ecological space was
primarily observed along the main branches and tributaries of the
Yangtze River, as well as in areas surrounding Taihu Lake.

TABLE 2 The evaluation index system for the urbanization of CLRYR.

Target layer Subsystem Weight Indicator layer Weight

Urbanization Population urbanization (PU) 0.2274 Population density (PD)-People per square kilometer 0.0671

Employed personnel (EP)-10000 people 0.0826

Permanent population (PP)-10000 people 0.0777

Spatial urbanization (SPU) 0.1866 Per capita road area (RD)-m2 0.0506

Built-up area (BA)-km2 0.1075

Per capita park green area (GA)-m2 0.0285

Economic urbanization (EU) 0.1684 Per capita regional gross domestic product (GDP)-Yuan per person 0.0599

Proportion of tertiary industry output value (TI)-% 0.0288

Per capita disposable income of urban residents (DI)-Yuan 0.0797

Social urbanization (SOU) 0.4176 Number of beds in health institutions (NB)-10000 0.1110

Total collection of books in public libraries (CB)-1,000 volumes, items 0.2233

Number of schools (NS) 0.0833
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Using GIS spatial analysis techniques, we computed the land
use transfer matrix for PLES classification maps annually from
2000 to 2020, quantitatively exploring changes between each land
use type, depicted in Figure 5. Regarding the types of transfers

both into and out of various categories, the complexity has
increased notably from 2000 to 2020, particularly accelerating
between 2015 and 2020. In quantitative terms, the number of
transfers of each type rose from 2015 to 2020, with the transfer of

TABLE 3 Types of decoupling states.

Decoupled model state rLERI rUI ω

Negative decoupling Expansive negative decoupling + + ω≥ 1.2

Strong negative decoupling + - ω< 0

Weak negative decoupling - - 0≤ω≤ 0.8

Decoupling Weak decoupling + + 0≤ω≤ 0.8

Strong decoupling - + ω< 0

Recessive decoupling - - ω≥ 1.2

Coupling Expansive coupling + + 0.8<ω< 1.2

Recessive coupling - - 0.8<ω< 1.2

FIGURE 3
Spatial distribution of PLES in CLRYR region in 2000 (a), 2005 (b), 2010 (c), 2015 (d), and 2020 (e).
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agricultural production space to living space being more obvious.
This trend underscores the accelerated urbanization within the
CLRYR, driven by substantial demands for land resources for
urban development. Collectively, these shifts illustrate the rapid

urbanization and restructuring of PLES within the CLRYR region
over the past two decades, with significant implications for local
development strategies, resource management, and
social stability.

FIGURE 4
Area changes of each PLES type. Note: APS, IPS, ULS, RLS, FES, WES, GES, and OES represent agricultural production space, industrial production
space, urban living space, rural living space, forest ecological space, water ecological space, grassland ecological space, and other ecological spaces,
respectively.

FIGURE 5
Change matrix PLES in CLRYR from 2000 to 2020.
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4.2 The spatiotemporal dynamics of LER

4.2.1 LER characteristics of the CLRYR region
To explore the heterogeneity of LER within the CLRYR, this

study adopts the establishment of risk units to evaluate the risk of the
whole. The results show that the mean LER value within the region
from 2000 to 2020 is 0.2508, 0.2524, 0.2547, 0.2576, and 0.2573 in
order. The LER of the CLRYR region shows a slightly increasing
trend and is more stable from 2015 to 2020. Based on the 2000 LERI,
the natural breaks method was used to classify five risk levels: [0,
0.1901] for lowest risk, (0.1901, 0.2362] for lower risk, (0.2362,
0.2670] for medium risk, (0.2670, 0.3053] for higher risk, and
(0.3053, 0.4897] for highest risk. In this way, the spatial

distribution of LER levels from 2000 to 2020 (as shown in
Figure 6) and the area proportion of each level (as shown in
Figure 7) were obtained. In the spatial distribution of LER levels
in the CLRYR region, regions categorized as lower risk, medium risk,
and higher risk predominate. Specifically, higher risk areas are
mainly located in several cities in the southwestern part of the
study area, whereas lower risk is primarily centered in Nantong City
in the northeastern part. Over time, there has been varying growth in
the proportion of lowest and highest risk areas: lowest risk areas are
notably concentrated in cities such as Shanghai, Nanjing, Nantong,
Suzhou, Changzhou, and Anqing, whereas highest risk areas have
expanded annually from their initial base and are dispersed among
multiple cities.

FIGURE 6
Distribution of LER levels in the CLRYR region in 2000 (a), 2005 (b), 2010 (c), 2015 (d), and 2020 (e).
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4.2.2 Comparison of LER in various cities in CLRYR
The overall spatial distribution of LER does not sufficiently

capture the disparities in LERI among different cities.
Consequently, this study undertook a detailed analysis of LER
across these cities, aiming to delineate their spatial distributions,
and trends, and provide a foundational framework for
formulating effective management and control strategies
tailored to varying risk levels. Through a statistical
examination of the mean LERI in each city, the study
identified a general upward trend in LER across most cities (as
shown in Figure 8). For example, Tongling, Wuhu, Ma’anshan,
and Chizhou in Anhui Province, as well as Zhenjiang, Nanjing,
Yangzhou, Taizhou, and Nantong in Jiangsu Province and
Shanghai, exhibited consistent annual increases in the LERI.
Conversely, certain cities maintained relatively stable LER
levels, exemplified by Anqing City in Anhui Province, possibly
influenced by regional environmental protection policies and
urban development strategies. Moreover, specific cities
experienced periods of decreased LER, including Changzhou,
Wuxi, and Suzhou in Jiangsu Province, observed particularly in
2020, indicative of the efficacy of localized ecological restoration
and environmental management initiatives.

4.2.3 Spatial autocorrelation analysis
To explore the spatial distribution pattern of LER from 2000 to

2020 in CLRYR, this study analyzed its spatial autocorrelation.
Table 4 illustrates that the autocorrelation analysis of LER from
2000 to 2020 in CLRYR passed the significance test, and the global

Moran’s I of 0.4733, 0.4014, 0.3326, 0.2462, and 0.4779 were all
greater than 0 indicating that the spatial showed significant positive
autocorrelation. Over time, Moran’s I showed a decreasing and then
increasing trend, reflecting the dynamic evolution of the clustering
effect of LER in the region. From 2000 to 2020, the clustering effect
of the spatial distribution of LER decreased, followed by a resurgence
to its peak in 2020. To further explore the spatial clustering
characteristics of LER, local spatial autocorrelation analysis
was conducted.

Figure 9 depicts the local indicators of spatial association
(LISA) clustering map of LER from 2000 to 2020. The findings
highlight Wuhu as consistently demonstrating high-high
agglomeration, indicating persistent spatial clustering of LER in
the region over the entire period. In response to the current
situation where land use in Wuhu is mainly based on
agricultural production space, it is urgent to strengthen the
protection and efficient utilization of cropland, and strictly limit
the occupation of cropland by the urbanization process. Therefore,
measures should be taken to optimize the land use structure and
ensure the sustainability of agricultural land and its compatibility
with ecological functions. In addition, by increasing green space
coverage and constructing ecological corridors, the urban
ecological environment can be effectively improved, ecosystem
service functions can be enhanced, landscape fragmentation can be
reduced, and the connectivity and stability of regional ecosystems
can be improved. In contrast, cities situated near the Yangtze River
estuary, such as Nantong and Shanghai, predominantly exhibit
low-low agglomeration characteristics, suggesting sustained

FIGURE 7
The proportion of areas with different LER levels.
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stability in ecological risk within these areas. It is noteworthy that
the occurrence of low-high agglomeration was uniquely observed
in Anqing in 2015, whereas high-low agglomeration was noted in
Suzhou. This shift may be attributed to local environmental
policies, shifts in economic structures, and natural geographic
factors. The implementation of ecological restoration measures
in Anqing from 2000 to 2020 contributed to stabilizing LER levels
in that area, contrasting with neighboring cities where LER
continued to increase. This dynamic underscores the low-high
agglomeration pattern of Anqing distinct in LER during the
specified period. Conversely, in regions like Suzhou, known for

its picturesque landscapes and thriving tourism economy, the
enhancement of LER may correlate closely with robust
economic activities. Economic development typically coincides
with urbanization and extensive infrastructure projects, factors
that could potentially amplify the accumulation and
dissemination of LER.

4.3 The response of LER in the context of
CLRYR urbanization

4.3.1 Evolution of the spatiotemporal dynamics of
the level of urbanization in the CLRYR region

The comprehensive evaluation of the urbanization level of the
CLRYR region from 2000 to 2020 could reveal the characteristics
of the spatial distribution of the urbanization process in the
CLRYR region and its trends in different years. The results in
Figure 10 show that the spatial urbanization index (SPUI),
economic urbanization index (EUI), and UI of all cities show a

FIGURE 8
LERI values of 14 cities in the CLRYR region from 2000 to 2020.

TABLE 4 Moran’s I result for LERI in CLRYR region.

Index 2000 2005 2010 2015 2020

I 0.4773 0.4014 0.3326 0.2462 0.4779

p-value 0.0025 0.0081 0.0221 0.0722 0.0028

Z 3.0241 2.6496 2.2800 1.7980 2.9848
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steady increase year by year, albeit with a few cities experiencing
declines in population urbanization index (PUI) and social
urbanization index (SOUI). The sudden epidemic in 2019 (Liu
et al., 2023b) caused a serious impact in all aspects, especially the
employment-population was seriously affected, resulting in a
decline in PUI in most cities. Compared with the period from
2000 to 2010, the increment of cities with rising PUI between
2010 and 2020 is significantly smaller. Based on the raw statistical
yearbook data, certain components of the SOUI exhibit consistent
growth, such as the number of beds in health institutions and the
total library collections across cities. However, China’s policies on
school consolidation and the reduction of rural schools have led to
varying declines in the number of schools, particularly elementary

schools, annually across different cities. Consequently, this has
resulted in diverse changes in each city’s SOUI. Nevertheless,
overall urbanization levels in the region continue to
ascend steadily.

Utilizing the quantile method to categorize the comprehensive
index of urbanization development in CLRYR and its four
subsystem indexes, each of which was segmented into five levels,
which in turn led to the spatial visualization results (as shown in
Figure 11). Figure 11 reveals that cities situated near the mouth of
the Yangtze River, particularly centered around Shanghai, exhibit
higher urbanization levels, with urbanization levels gradually
decreasing towards the west in 2000 compared to the east. The
spatial distribution illustrates a progressive increase in urbanization

FIGURE 9
Spatial autocorrelation of LERI in 2000 (a), 2005 (b), 2010 (c), 2015 (d), and 2020 (e).
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from lower to higher grades across most cities, notably with a
notable rise in the number of cities in the higher-grade
categories. Referring to Figures 11m-o, it is evident that as of
2020, only Chizhou, Anhui Province remains classified in the
lowest urbanization grade, whereas all other cities have moved
into middle and upper grades.

4.3.2 Distribution characteristics of urbanization
level direction in the CLRYR region

This study depicts the evolution of CLRYR urbanization from
2000 to 2020 through the visualization of SDEs and the trajectory
of the center of gravity migration. Figure 12 provides a spatial
representation of this evolution, while Table 5, 6 analyze the

FIGURE 10
Urbanization level of various cities in CLRYR region from 2000 to 2020. (a) PUI; (b) SPUI; (c) EUI; (d) SOUI; (e) UI; (f) Index.
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spatial distribution and dynamic characteristics of urbanization
in CLRYR using the center of gravity and SDE parameters. The
center of gravity of urbanization in CLRYR shifted from

2000 to 2020 between 119.78°E~119.82°E and 31.51°N~31.58°E.
Specifically, the center of gravity migration went through two
stages: in the first stage (2000–2010), it moved northwestward by

FIGURE 11
Spatial evolution of urbanization levels in various cities in CLRYR region from 2000 to 2020. (a) PUI in 2000; (b) PUI in 2010; (c) PUI in 2020; (d) SPUI
in 2000; (e) SPUI in 2010; (f) SPUI in 2020; (g) EUI in 2000; (h) EUI in 2010; (i) EUI in 2020; (j) SOUI in 2000; (k) SOUI in 2010; (l) SOUI in 2020; (m) UI in
2000; (n) UI in 2010; (o) UI in 2020.

Frontiers in Environmental Science frontiersin.org14

Guo et al. 10.3389/fenvs.2025.1589832

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1589832


3.880 km, consistently situated in Wuxi; in the second stage
(2010–2020), the migration accelerated northeastward from
Wuxi to Changzhou. Overall, the center of gravity of
urbanization in the CLRYR region demonstrated a
predominant northward movement, reflecting the pronounced
development of cities in the northern part of CLRYR as
urbanization progressed.

From a spatial distribution perspective, the SDEs of urbanization
in the CLRYR region from 2000 to 2020 are primarily concentrated
in the eastern part of the area. These ellipses show a clear

directionality, and their total area shows a trend of shrinking
from 61,916.413 km2 in 2000 to 51,242.005 km2 in 2020, which
reflects the phenomenon of increasing urbanization with more
aggregated regional urban space. In terms of spatial distribution
direction, the dominant azimuth of the SDE of urbanization in the
CLRYR region has a maximum range of 2.358°, with urbanization
predominantly following a “northeast-southwest” orientation. This
spatial pattern underscores the increasingly concentrated urban
growth in specific areas of the CLRYR region over the
studied period.

FIGURE 12
Directional distribution of urbanization index.

TABLE 5 Shift of urbanization index center of gravity in the CLRYR region during 2000–2020.

Year The center of gravity coordinate Displacement (km) Movement direction

2000 (119°48′58″, 31°30′26″) — —

2010 (119°47′01″, 31°31′43″) 3.880 northwestern

2020 (119°48′08″, 31°34′37″) 5.649 northeastern
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4.3.3 Evolution of the decoupling relationship
between urbanization and LER in the CLRYR region

The existence of developmental diversity in urbanization levels
and spatial heterogeneity in LER among cities in the CLRYR region
led to different performances in the state of decoupling among cities
(as shown in Table 7). Generally, the decoupling relationship
between LER and urbanization development in the CLRYR
region manifests predominantly in two primary patterns: weak
decoupling and strong decoupling, with strong decoupling
representing the optimal state. In the first stage, the rate of
change of both the ecological risk index and the urbanization
index is greater than 0. However, the decoupling index of the
municipalities from 2000 to 2010 is less than 0.8, indicating a
state of weak decoupling. This suggests that during this period,
urbanization levels in these cities increased while ecological risks
persisted, albeit with a lower rate of change in LER compared to
urbanization development. In the second stage, a majority of cities
continue to exhibit weak decoupling. Differently, while the
urbanization trend in Wuxi, Suzhou, and Changzhou continues,
LERI showed negative growth from 2010 to 2020, with decoupling
indexes of −0.0600, −0.0615, and −0.0323, respectively, indicating a
transition from weak decoupling to a strong decoupling state.
Among various decoupling relationships, strong decoupling is
considered an ideal state. Based on the discussion of the
relationship between LER and urbanization in this study, strong
decoupling means a separation trend of positive and negative growth
between the urbanization process and LER, that is, the increase of
urbanization is accompanied by the decrease of LER. This
achievement can be attributed to the continuous strengthening of
rational land use planning in these cities, which has achieved
significant results through promoting agricultural land
consolidation and measures centered on efficient and intensive
land use, strictly controlling the scale of construction land. These
cities represent a minority achieving the ideal state, highlighting that
in most others, urbanization progress likely continues at the expense
of ecological concerns. Consequently, concerted efforts are essential
in the CLRYR region to enhance LER management and foster
sustainable, harmonious development between urban areas and
ecosystems.

5 Discussion

5.1 Inspiration for urban planning

Drawing upon the established framework laid out in previous
research (Hui et al., 2024; Vadén et al., 2020; Xin et al., 2023),
studying the correlation between LER and urbanization from the
perspective of PLES can provide a deeper understanding of the

degree of disconnect between economic expansion, resource
consumption, and environmental burden in the process of
urbanization. The decoupling results show that only Wuxi,
Suzhou, and Changzhou have shifted from weak decoupling to
the ideal state of strong decoupling, highlighting the common
challenges faced by most cities in ecological risk management
during urbanization. Drawing upon these findings, several
recommendations can be proposed.

5.1.1 Strengthening the integration of spatial
planning and ecological protection

In response to the abundant wetland resources in the lower
reaches of the Yangtze River, measures such as ecological red line
delineation and wetland restoration should be taken to protect the
key ecological functions of wetland ecosystems, such as water
purification and carbon storage. In the planning, ecological
protection zones and wetland protection belts can be established
to prevent large-scale urban development from encroaching on and
damaging wetlands. Based on the natural conditions of the lower
reaches of the Yangtze River and the existing ecological network,
plan an integrated green infrastructure system. For example, by
restoring and connecting ecological environments such as forests,
wetlands, and water bodies around cities, ecological corridors at the
watershed scale can be formed to promote biodiversity conservation
and enhance the adaptive capacity of urban ecosystems.

5.1.2 Promote the construction of ecological
compensation mechanisms

Given that the lower reaches of the Yangtze River involve
multiple administrative regions, it is possible to promote
ecological compensation agreements between provinces or cities.
By establishing unified compensation standards and funding
allocation mechanisms, we can promote ecological cooperation
between different cities and regions, and reduce the imbalance of
ecological protection. Enterprises in the Yangtze River region,
especially those involved in high ecological risks such as water
resources and land development, can be incentivized to fulfill
their ecological protection responsibilities through tax incentives,
financial subsidies, and other means. It is suggested to introduce
targeted incentive policies to encourage enterprises to carry out
ecological restoration and green technology innovation and enhance
their environmental awareness and social responsibility.

5.1.3 Strengthen environmental monitoring and
assessment

In response to the ecological risks faced by cities along the lower
reaches of the Yangtze River, such as water pollution and floods, it is
recommended to establish an intelligent ecological risk warning
system that utilizes technologies such as big data and the Internet of

TABLE 6 SDE parameters of urbanization index in CLRYR region.

Year Long semi-axis (km) Short semi-axis (km) Area (km2) Azimuth (°)

2000 218.676 90.138 61916.413 71.396

2010 202.103 86.102 54661.979 73.754

2020 189.745 85.971 51242.005 73.147
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Things to monitor environmental changes in real-time, predict and
respond to potential ecological risks in advance, and enhance the
city’s emergency response capabilities. Based on environmental
monitoring, regular evaluations of urban ecological carrying
capacity should be conducted to clarify the maximum carrying
capacity of ecosystems in various regions, and plans for land use,
urban expansion, resource development, and other aspects should
be adjusted based on the evaluation results. This mechanism ensures
that the urbanization process does not exceed the limit of ecological
carrying capacity, thereby promoting the harmonious unity of the
ecological environment and urban development.

5.2 Limitations and future research
directions

In this study, we first proposed a land use classification system
from the perspective of PLES and analyzed the spatiotemporal
evolution of the PLES employing the transfer matrix model. The
results of the study reveal that industrial production space and living
space have shown a continuous growth trend in the past few years,
reflecting the expansion of industrialization and urbanization scale
in the urbanization process. In contrast, the area of agricultural
production space has markedly diminished, potentially attributable
to urban encroachment or conversion to alternative uses. The
fluctuating pattern observed in ecological spaces underscores
their susceptibility to the combined pressures of urbanization,
industrialization, and environmental conservation policies.
Secondly, building upon this foundation, the LER evaluation
model was developed using a 5 km × 5 km grid as the

assessment unit, employing landscape pattern indexes. It is found
that the overall LER of the CLRYR area is rising and the highest-risk
area is expanding, which means that the ecological ability of the area
to resist external disturbances is poor and the ecological
environment is more fragile. Finally, through the application of
the Tapio decoupling model to dynamically analyze the interplay
between urbanization and LER.

There is still some room for improvement. While previous
scholars have explored various aspects of PLES classification, a
standardized system remains elusive. With the help of related
studies, this study reclassified the CNLUCC based on
performance functions classified at the secondary level. However,
whether this classification optimally serves LER evaluation in the
CLRYR area warrants further investigation. In addition, the LER
assessment model of this study relies too much on the status of land
use functions. Yet, LER assessment is inherently intricate, involving
uncertainties such as precipitation, soil quality, and socio-economic
factors, which were not fully addressed. In addition, the LER
assessment model is susceptible to the influence of landscape
scale changes when combined with landscape ecology theory, and
current research has not fully addressed the issue of scale selection.
Therefore, future research should focus on exploring the optimal
scale setting to improve the accuracy and reliability of evaluation
results. Finally, the urbanization indicator system proposed in this
study (including population, space, economy, and social
subsystems) can provide a macro evaluation framework for the
level of urbanization. However, it fails to fully reflect the complex
informal urbanization patterns in China’s urbanization process,
especially in areas such as suburbanization and land speculation.
These informal urbanization models have had a significant impact

TABLE 7 Decoupling index of urbanization and LER in CLRYR regional from 2000 to 2020.

City 2000–2010 2010–2020

rLERI rUI Decoupling
elasticity

Decoupling
states

rLERI rUI Decoupling
elasticity

Decoupling
states

Zhenjiang 0.0247 0.4705 0.0525 weak decoupling 0.0163 0.5821 0.0279 weak decoupling

Yangzhou 0.0148 0.5689 0.0261 weak decoupling 0.0356 0.4380 0.0814 weak decoupling

Wuxi 0.0186 0.5032 0.0370 weak decoupling −0.0386 0.6427 −0.0600 strong decoupling

Nanjing 0.0266 0.9840 0.0270 weak decoupling 0.0086 0.2847 0.0303 weak decoupling

Taizhou 0.0149 0.2335 0.0636 weak decoupling 0.0122 0.7735 0.0158 weak decoupling

Nantong 0.0061 0.2322 0.0262 weak decoupling 0.0220 0.7323 0.0300 weak decoupling

Suzhou 0.0293 1.4145 0.0207 weak decoupling −0.0403 0.6556 −0.0615 strong decoupling

Changzhou 0.0223 1.1346 0.0197 weak decoupling −0.0202 0.6238 −0.0323 strong decoupling

Shanghai 0.0437 0.3679 0.1188 weak decoupling 0.0494 0.1565 0.3160 weak decoupling

Tongling 0.0049 1.4429 0.0034 weak decoupling 0.0162 1.1275 0.0144 weak decoupling

Chizhou 0.0039 0.2496 0.0155 weak decoupling 0.0266 0.2378 0.1117 weak decoupling

Ma’anshan 0.0084 2.2320 0.0037 weak decoupling 0.0418 0.3995 0.1045 weak decoupling

Anqing 0.0042 0.0648 0.0647 weak decoupling 0.0019 0.0202 0.0955 weak decoupling

Wuhu 0.0056 1.1189 0.0050 weak decoupling 0.0200 0.2110 0.0949 weak decoupling

Note: Bold font indicates cities that have transitioned to a strong decoupling state.
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on the spatial layout, social structure, and economic development of
cities, and are worthy of attention in future research. Overall, to
achieve sustainable development and ecological security of cities in
the Yangtze River Basin, it is necessary to further deepen the
research on the balance mechanism between urban development
and ecological protection, to more accurately guide the formulation
and implementation of regional ecological compensation policies.

6 Conclusion

To explore the spatiotemporal evolution of LER in the context of
urbanization, this study focuses on the economically dynamic CLRYR
region. We examined the evolving relationship between LER and
urbanization, as well as emphasizing decoupling dynamics. Firstly, the
spatiotemporal process of land function change in CLRYR is
summarized using PLES as the study perspective. Secondly, the
spatial distribution characteristics and patterns of ecological risk in
CLRYR from 2000 to 2020 are revealed by constructing a LER
assessment model. Lastly, the decoupling status between
urbanization and LER is explored based on measurements of
urbanization levels. The conclusion of this study is as follows:

(1) In the CLRYR region, production space and ecological space
are the predominant types of PLES, with living space
following closely. From 2000 to 2020, the area of industrial
production space and living space steadily increased. On the
contrary, the agricultural production space shows a
downward trend, while the ecological space presents a
fluctuating pattern.

(2) From 2000 to 2020, the LER in the CLRYR region showed an
upward trend of 0.2508, 0.2524, 0.2547, 0.2576, and 0.2573,
respectively, characterized by an increasing proportion of
high-risk areas with wide spatial distribution. Results of
Moran’s I indicated a significant positive spatial
autocorrelation of LER across the CLRYR region.

(3) Assessing the decoupling dynamics, only three cities—Wuxi,
Suzhou, and Changzhou—transitioned from a period of
unsustainable development between 2000 and 2010 to a
mutually beneficial scenario for urbanization and the
environment from 2010 to 2020. Conversely, other cities in
the region have largely maintained a less favorable
developmental trajectory during this period.

The study findings indicate that cities experiencing rapid social
development also encounter elevated ecological risks, underscoring the
critical need for monitoring and managing land use changes. These
results offer a scientific foundation for regional policymakers to refine
policies aimed at mitigating ecological risks and overcoming various
challenges on the path to sustainable development in CLRYR. In
addition, the construction of an LER assessment model based on the
PLES analysis framework provides a scalable methodological tool for
analyzing the ecological effects of urbanization, especially for exploring
the balance between economic growth and ecological protection in
ecologically sensitive urban agglomerations in developing countries.
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