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Estimating criteria pollutants is crucial due to their continuous increase and
impact on respiratory health. To mitigate the impact of air pollution on human
health, it is essential to understand the concentration of air pollutants at specific
locations. This study aims to evaluate the variation, estimate the levels of criteria
pollutants, and assess their potential health risks in the vicinity of a coal mine
complex and a thermal power plant situated in an eastern coastal state of India.
The pre-existing hot spot regions—Talcher (T) and Brajrajnagar (B)—which host
many coal-fired power plants and clusters of coal-mining blocks in the coastal
state of Odisha, are considered. Talcher consistently shows higher levels of
particulate matter (PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2),
reflecting a greater industrial impact. Brajrajnagar, while also impacted,
exhibits comparatively lower pollutant concentrations. The observed seasonal
trends highlight the necessity for targeted mitigation strategies to address
pollution levels and associated health risks in these regions. Novel machine
learning (ML) models, including independent component regression (ICR),
ElasticNet (ENET), and boosted tree (BT), are applied to estimate criteria
pollutants. Statistical analyses highlight BT as the superior model,
outperforming ENET and ICR in pollutant estimation, particularly in Talcher.
Taylor plots and statistical evaluations further validate the BT model’s
robustness in air pollutant estimation. Additionally, the study assesses the
associated health risks posed to nearby populations of Talcher and
Brajrajnagar. The analysis highlights significant spatial disparities in pollution
levels, with Talcher consistently recording higher concentrations of PM10,
NO2, and SO2 and poorer air quality index (AQI) than Brajrajnagar. Talcher also
shows greater health risks, with pollutant exposure linked up to 6% higher risks for
PM10, 5% for NO2, and up to 3% for SO2. The health risk-based air quality index
(HAQI) reveals an underestimation of health risks by the current AQI, emphasizing
the need for improved metrics to address the impacts of multi-pollutant
exposure.
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1 Introduction

The insufficient control of emissions resulting from rapid population
growth, industrial expansion, urbanization, and increased energy
consumption is responsible for severe health issues in Asian countries
(Cohen et al., 2005; Choudhary et al., 2022). In 2010, air pollution from
particulate matter (PM2.5) was attributed to approximately 3.3 million
deaths worldwide, with India accounting for 0.65 million of these
fatalities, highlighting the country’s significant burden of air
pollution-related mortality (Lelieveld et al., 2015). According to the
Global Burden of Disease Study 2016 (GBD, 2016), India accounted for
1.034 million of the 4.093 million global premature deaths attributed to
ambient PM2.5 exposures. Coal is considered a means to economic
security, and its role in climate change and health risks underscores the
urgent need for sustainable energy transitions (Choudhary et al., 2023).
The country, one of the largest consumers of coal, faces heightened
health risks due to inadequate control of sulfur dioxide (SO2) and
nitrogen oxides (NOx), making it a significant contributor to coal
combustion-related health impacts (Oberschelp et al., 2019;
Choudhary et al., 2022). The rapid growth of coal power in
developing nations, including India, heightens health externalities and
economic policy challenges (Gupta and Spears, 2017). Modeling
exercises indicate that coal-related health impacts in India are
immense (Cropper et al., 2012; Greenstone and Jack, 2015). The coal
mine complexes and thermal power plants in the eastern coastal region
of India are significant sources of air pollutants, including PM, SO2,NOx,
carbonmonoxide (CO), volatile organic compounds (VOCs), and heavy
metals. These pollutants are associated with respiratory and heart
diseases, inflammation throughout the body, and neurodegenerative
conditions (Gasparotto andMartinello, 2021). Beyond combustion, coal-
related activities such as extraction, transportation, and handling release
considerable amounts of coal dust, exposing workers and nearby
communities to xenobiotic effects (Espitia-Perez et al., 2018; Oliveira
et al., 2018; Rovira et al., 2019).

The application of machine learning (ML) in air pollution
impact analysis in coal mine complexes within the Indian context
provides an innovative approach to addressing environmental
challenges in these regions. In India, where coal mining is
extensive and regulatory compliance is often limited, ML can be
instrumental in real-time monitoring, forecasting pollution levels,
and implementing mitigation strategies. These methods are
instrumental in investigating, simulating, and analyzing intricate
phenomena, offering solutions to real-world challenges and
informing policy decisions for better environmental management
in mining zones (Guttikunda et al., 2015). Researchers worldwide
have used ML techniques to predict air pollutant concentrations,
including SO2, CO, ozone (O3), nitrogen oxides (NO and NO2), and
PM (Liu et al., 2019; Gariazzo et al., 2020).

Independent component regression (ICR) has been explored
and adopted in various fields of engineering; for example, Westad
(2005) applied ICR to sensory data, Kaneko et al. (2008) used the
technique to model aqueous solubility, and Lu et al. (2009) used ICR
in financial prediction. The boosted tree (BT) model, a
nonparametric approach, combines regression trees with a
boosting algorithm, improving prediction accuracy compared to
single models (Elith et al., 2008). For instance, Pan et al. (2019) used
the BT model to estimate emissions from LNG buses, while Sayegh
et al. (2016) used it to study roadside NOx concentrations influenced

by traffic density and meteorological factors. Unlike conventional
models, the BT model fits an ensemble of predictions, delivering
more robust and reliable results (Linard et al., 2013). Li et al. (2020)
compared ICR with ElasticNet (ENET) and BT models for
estimating NO2 concentrations in an urban-industrial region in
China. ICR performed well in scenarios with limited data, achieving
R2 = 0.78, but underperformed compared to ENET (R2 = 0.82) and
BT (R2 = 0.89) in larger datasets due to its linear assumptions. Zou
and Hastie (2005) highlighted ENET’s ability to outperform ridge
and LASSO regression in PM2.5 and O3 prediction tasks. It achieved
superior results in mid-sized datasets with moderate complexity
(R2 = 0.85). However, its performance decreased compared to BT’s
in highly non-linear scenarios (R2 = 0.90 for BT). The improvement
was attributed to BT’s ability to handle non-linear dependencies and
interactions among predictors.

The primary novelty of this study lies in its innovative
adaptation of the robust attributes inherent to ML models to
address air quality management challenges. Hence, this
investigation endeavors to delve into the novel application of the
ICR, ENET, and BT models for predicting air quality. Despite their
potential, limited studies have investigated the combined use of
these models for air pollutant estimation. Therefore, this study aims
to (i) analyze the variation in criteria pollutants during 2019–2023;
(ii) estimate criteria pollutants using ICR, ENET, and BT models;
and (iii) assess the human health risks due to criteria pollutants. Air
pollutants are estimated using ML models, and the performance of
these models will be beneficial for quantifying and predicting air
quality in different parts of the world. Mitigating the health impacts
of air pollution necessitates a thorough understanding of pollutant
concentrations at specific locations, including coal mine complexes
and thermal power plant belts. These localized data are essential for
developing and implementing targeted mitigation strategies to
effectively reduce pollutant exposure and associated health risks.

2 Study area

This study examines the Talcher (T) and Brajrajnagar (B) coal
mine regions in Odisha, India (Figure 1). Odisha, an eastern coastal
state, stands out for its intensive manufacturing and mining
activities. The state hosts significant industrial centers, including
Talcher in Angul district and Brajrajnagar in Jharsuguda district,
both of which are prominent hubs of industrial operations. These
towns are at the core of Odisha’s industrial landscape, hosting
numerous mining, manufacturing, and power generation units.
The Angul–Talcher industrial area is recognized as a major
global emission hot spot, underscoring its substantial impact on
air pollution. Talcher, located at 20.95°N latitude and 85.23°E
longitude, stands at an elevation of 92 m. It experiences a
tropical climate with an annual average temperature of 26.8°C
and rainfall of 1,306 mm. The region is 42.16% forested, offering
diverse forest produce. Talcher encompasses 11 coal mines covering
10,474.34 ha, one sand mine (17.5 ha), and one quartz mine
(10.744 ha). The region’s key industrial centers include Mahanadi
Coalfields Limited (MCL), Talcher Thermal Power Plant, and
National Aluminium Company Limited (NALCO), along with
various coal-fired thermal power plants and other heavy
industries. Brajrajnagar, situated in the Jharsuguda district at
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coordinates 21.82°N and 83.92°E, with an elevation of 216 m, is
located on rocky terrain by the Ib River. This region is renowned for
its coal mining activities, particularly the Orient Colliery area, which
is managed by Mahanadi Coalfields Limited. The Ib Valley region is
home to three major opencast coal mines—Lajkura, Samleswari, and
Lilari—which play a crucial role in supporting the area’s coal
production operations.

3 Materials and methodology

3.1 Data collection and quality control of
pollutants

In 2020, the Central Pollution Control Board (CPCB) launched a
widespread initiative through its National Air Quality Monitoring

Programme (NAMP), which established 804 monitoring stations
across 344 cities in 28 states and 6 Union Territories to track
ambient air quality throughout India (CPCB, 2020). Among
these, continuous air quality monitoring stations are situated in
Talcher and Brajrajnagar, located in Angul and Jharsuguda districts,
respectively. The substantial influence of industrial emissions and
mining activities in these regions underscores the critical need for
advanced monitoring tools and effective mitigation strategies to
address local air quality challenges. Air quality data on PM2.5, PM10,
NO2, NOx, O3, and SO2 were collected from CPCB monitoring
stations in these areas during 2019–2023 (https://app.cpcbccr.com/
ccr/#/caaqm-dashboard-all/caaqm-landing/data). The relative
humidity (RH), temperature (°C), wind speed (WS), and
precipitation data were collected at a spatial resolution of 0.5° ×
0.5° using the Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2) model. These datasets were

FIGURE 1
Location map of the study area.

FIGURE 2
Variation in criteria pollutants in Talcher and Brajrajnagar during 2019–2013.
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TABLE 1 Spatio-temporal concentrations (μg/m3) of criteria pollutants along with their regulatory standards.

Concentration/
annual standard (µg/m3)

Annual/
seasonal

PM2.5 (µg/m
3) PM10 (µg/m3) NO2 (µg/m

3) SO2 (µg/m
3) O3 (µg/m

3)

NAAQS 40 60 50 40 100b

USEPA 5 20 10 40a 100b

2019 47.78 165.86 9.59 26.31 6.95

58.49 117.26 17.11 8.92 7.40

2020 44.94 98.68 19.04 24.86 29.78

56.00 106.64 7.65 8.04 27.50

Annual 2021 41.05 84.36 24.85 16.86 23.34

33.30 67.95 10.56 24.43 31.46

2022 38.87 75.84 23.98 31.35 27.86

34.41 70.18 17.33 24.97 25.98

2023 56.13 103.92 33.09 27.83 16.87

30.50 68.02 20.48 20.23 32.66

2019 22.54 77.50 7.79 28.25 2.62

24.75 58.94 12.58 5.89 7.26

2020 20.20 59.59 23.73 22.48 30.17

42.70 81.76 4.65 8.82 22.53

Monsoon 2021 23.68 43.57 33.89 13.42 17.98

12.98 30.63 7.00 27.05 10.35

2022 16.82 29.15 21.18 13.40 20.36

20.66 39.48 20.64 11.36 6.65

2023 22.14 41.80 29.62 17.18 13.76

31.35 65.34 12.50 26.74 12.25

2019 44.47 133.83 7.55 33.43 12.56

51.68 113.03 10.69 10.93 5.28

2020 35.84 95.35 19.48 20.34 25.90

63.16 112.05 11.61 10.20 23.92

Post-monsoon 2021 44.27 86.42 21.73 18.27 20.59

29.01 57.49 9.45 28.15 48.33

2022 54.32 104.70 28.19 67.23 33.94

44.30 78.90 13.45 52.76 8.64

2023 64.46 122.52 39.86 29.96 13.85

29.62 68.87 10.38 25.57 20.78

2019 82.11 271.34 9.59 23.28 10.89

89.06 162.89 20.38 13.47 7.09

2020 84.50 171.13 21.04 22.83 19.29

71.36 132.16 11.44 8.36 25.11

Winter 2021 59.74 128.18 19.86 18.17 24.62

(Continued on following page)
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sourced from the National Aeronautics and Space Administration’s
(NASA) Prediction of Worldwide Energy Resource (POWER)
platform, hosted by NASA, Washington, DC, United States
(https://power.larc.nasa.gov/).

Air quality data from January 2019 to December 2023 were
extracted from CPCB-installed continuous air quality monitoring
stations in Talcher and Brajrajnagar, focusing on pollutants like
PM2.5, PM10, NOx, NO2, SO2, and O3. Hourly data were converted to
24-h averages for time series analysis. Quality control involved
filtering out zero, negative, and erroneous values, along with
outliers, with manual inspection to ensure accuracy (Saini and
Sharma, 2020). Missing data were most significant for NO2 and
NOx at Brajrajnagar and SO2 at both sites. Daily meteorological data
underwent similar screening. Approximately 75% of valid data
points were used for analysis.

3.2 Machine learning models for estimating
criteria pollutants

3.2.1 Independent component regression model
The ICR model combines the principles of independent

component analysis (ICA) and regression modeling to analyze
and interpret complex multivariate data (Hyvärinen et al., 2001).
It is particularly useful in scenarios where the underlying sources of
variability in the data are independent and may influence a response

variable of interest (Tong et al., 2021). The ICR process can be
summarized in three stages:

(i) The observed predictor variables are decomposed into
independent components using ICA. This process
converts the original data matrix X into a new matrix S,
with each column corresponding to an independent
component, as given in Equation 1:

X � AS, (1)

where A is the mixing matrix and S is the matrix of independent
components.

(ii) All independent components may not have an effect on the
response variable. The model selects the subset of
components that are the most relevant for predicting
the response Y.

(iii) The regression model can be represented in different forms,
such as linear regression, logistic regression, or other types of
generalized linear models, depending on the characteristics
of the response variable Y, as given in Equation 2:

Y � f Sselected( ). (2)

The ICR model can be mathematically presented as follows.
Consider a dataset with predictors X ∈ Rn×p and response Y ∈ Rn.

Using ICA, we decompose X into independent components S

TABLE 1 (Continued) Spatio-temporal concentrations (μg/m3) of criteria pollutants along with their regulatory standards.

Concentration/
annual standard (µg/m3)

Annual/
seasonal

PM2.5 (µg/m
3) PM10 (µg/m3) NO2 (µg/m

3) SO2 (µg/m
3) O3 (µg/m

3)

NAAQS 40 60 50 40 100b

USEPA 5 20 10 40a 100b

51.00 103.36 13.56 27.45 40.66

2022 77.73 141.41 43.78 55.72 31.54

38.58 83.60 14.04 39.88 25.93

2023 97.66 175.92 38.32 46.76 17.42

38.68 89.94 17.40 20.49 25.84

2019 42.40 177.29 12.22 26.61 5.74

70.88 148.52 21.46 6.90 8.84

2020 32.60 63.01 13.08 33.59 44.18

54.32 113.89 4.38 4.99 44.50

Pre-monsoon 2021 40.24 82.40 20.90 19.74 29.07

39.02 76.29 12.31 16.02 40.99

2022 32.16 76.59 7.44 25.01 33.54

46.22 100.98 15.83 21.27 56.82

2023 53.11 100.67 32.21 17.69 20.61

28.88 67.16 27.05 10.19 22.48

a24 h standard.
b8 h standard; italic numerals represent pollutant concentrations in Brajrajnagar, and non-italic numerals represent pollutant concentrations in Talcher.
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(Hyvärinen, 1999). A regression model is then fitted, as shown in
Equation 3:

Y � β0 +∑k
i�1
βiSi + ϵ, (3)

where k is the number of selected independent components, βi is the
regression coefficient, and ϵ is the error term. Root mean square
error (RMSE) was used to select the optimal model, using the
smallest value. The final value used for the model was n.comp = 4.

FIGURE 3
Meteorological correlation with criteria pollutants at Talcher (a1–f1) and Brajrajnagar (a2–f2).
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3.2.2 ElasticNet model
The ENET model offers a robust framework and is effective in

air quality modeling for handling datasets with multi-collinearity
and sparsity. It is useful when dealing with high-dimensional
datasets with highly correlated features. This model is
computationally efficient and can handle datasets with
thousands of features (Zou, and Hastie, 2005). The ENET
model combines two regularization methods, namely, LASSO
(L1) and ridge (L2) regressions. It aims to enhance model
performance by preventing overfitting and improving feature
selection (Li et al., 2020). ENET incorporates two penalty terms
into the loss function of linear regression, as shown in Equation 4:

Loss Function � 1
2n

∑n
i�1

yi−ŷi( )2 + λ1‖ β‖1 + λ2‖ β‖22, (4)

where yi is the actual target value, ŷi is the predicted value; ‖β‖1: L1
norm (absolute values of coefficients) encourages sparsity by
shrinking some coefficients to 0, effectively performing feature
selection; ‖β‖2: L2 norm (squared values of coefficients) penalizes
large coefficients and handles multi-collinearity by distributing
weights among correlated features; and λ1 and λ2 are the
regularization parameters that control the contribution of L1 and
L2 penalties, respectively. ENET uses a mixing parameter, α, to
balance between L1 and L2 penalties, as shown in Equation 5:

FIGURE 4
Comparative analysis of ICR, ENET, and BT models for training
and testing data on PM2.5 and PM10 in Talcher (a1–a2) and Brajrajnagar
(b1–b2) using a Taylor diagram.

FIGURE 5
Comparative analysis of ICR, ENET, and BT models for training
and testing data on SO2 and CO in Talcher (a1–a2) and Brajrajnagar
(b1–b2) using a Taylor diagram.
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Penalty � α‖ β‖1 + 1-α( )‖ β‖22. (5)

ENET performs automatic feature selection by shrinking less
important feature coefficients to 0 (via the L1 penalty). For highly
correlated features, it shares weights among them instead of
selecting one (via the L2 penalty). Regularization terms prevent
overfitting in complex models or when working with small sample
sizes relative to the number of features. The ENET model requires
careful tuning of λ1, λ2, and α, which can increase computational
costs. By combining L1 and L2 regularization, it provides a balanced
approach to feature selection and model generalization (Friedman
et al., 2010). RMSE was used to select the optimal model, using the
smallest value.

3.2.3 Boosted tree model
The BT model is a combination of regression trees and a

boosting algorithm. The principle of boosting increases the
efficacy of regression trees. Boosting is an ensemble learning
technique that combines multiple weak learners (e.g., shallow
decision trees) to create a strong learner (Carty, 2011). In the BT
model operation, first of all, a regression tree was built, and input
data were weighted in subsequent trees. After fitting the initial
tree, the model evaluates the prediction errors and uses this
information to construct the subsequent tree, iteratively refining
its predictions to improve overall accuracy (Main et al., 2015).
Due to the boosting algorithm (Friedman, 2002), numerous trees
are created, with each new tree being developed using a random
subset of the observations. A loss function calculates the
residuals, representing the difference between tree predictions
and target values. The boosting algorithm minimizes this loss by
iteratively adding trees to the regression model (Elith et al., 2008).
BT models improve iteratively, focusing more on samples that
were previously misclassified or had high residual errors. This
model can correct errors iteratively and leverage multiple weak
learners, making them particularly effective for complex
prediction tasks (Müller et al., 2013). Some of the
disadvantages of BT include the time-intensive training
process, especially with large datasets and many trees. The
model may overfit if the number of trees or tree depth is too
large or if the learning rate is set too high. However, the
effectiveness of the model is contingent upon meticulous
parameter tuning and the availability of substantial
computational resources.

The key parameters required for specifying the BT model
include the bag fraction (bf), learning rate (γ), and tree
complexity (tc). The γ parameter decides the contribution of each
tree to the BT model (Shabani et al., 2017). The bf is the BT
parameter that controls the randomly selected observations for
each new tree. tc determines the maximum order of interaction
in each tree. The γ and tc parameters together determine the number
of iterations, which corresponds to the number of trees needed for
most favorable estimation. Low learning rates, typically within the
range of 0.001–0.01, necessitate an increase in the number of trees to
achieve optimal performance (Elith et al., 2008). For air quality
estimation, the optimal parameter combination was determined to
be γ = 0.01, tc = 5, and bf = 0.5.

3.3 Performance investigation metrics

In order to make a reasonable evaluation for each prediction
model, commonly used error standards are proposed to measure the
prediction accuracy, including correlation coefficient (R), RMSE,
and %Bias, as shown in Equations 6–8.

R �
∑n
i�1

Cp − Cp( ) Co − Co( )����������������������∑n
i�1

Cp − Cp( )2∑n
i�1

Co − Co( )2√ , (6)

RMSE �
�������������
1
n
∑n
i�1

Cp − Co( )2,√
(7)

FIGURE 6
Comparative analysis of ICR, ENET, and BT models for training
and testing data on NO2 and O3 in Talcher (a1–a2) and Brajrajnagar
(b1–b2) using a Taylor diagram.
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TABLE 2 Statistical analysis between ICR, ENET, and BT models for Talcher and Brajrajnagar.

Talcher

Model PM2.5 (µg/m3) PM10 (µg/m3) CO (ppm) NO2 (ppb) O3 (ppb) SO2 (ppb)

Training
data

Testing
data

Training
data

Testing
data

Training
data

Testing
data

Training
data

Testing
data

Training
data

Testing
data

Training
data

Testing
data

ICR R 0.748 0.783 0.654 0.653 0.273 0.195 0.161 0.222 0.185 0.190 0.251 0.145

RMSE 20.157 20.767 58.263 60.006 0.556 0.561 10.011 9.785 13.739 12.918 9.504 9.405

PBias −2.151 −3.361 7.615 −1.876 4.758 1.020 7.106 4.853 −5.760 1.304 6.484 5.200

ENET R 0.748 0.783 0.654 0.654 0.272 0.192 0.151 0.244 0.180 0.122 0.250 0.138

RMSE 20.171 20.872 58.299 60.053 0.557 0.561 10.047 9.839 13.763 13.063 9.510 9.399

PBias 8.903 −3.450 3.986 −1.965 4.679 0.951 −1.541 5.044 1.333 1.435 2.084 5.264

BT R 0.834 0.848 0.732 0.713 0.379 0.285 0.768 0.469 0.638 0.174 0.749 0.309

RMSE 16.799 17.834 52.586 55.729 0.548 0.550 7.498 8.867 13.445 13.039 8.391 9.086

PBias −2.101 −3.445 6.957 −2.747 2.907 1.243 4.753 0.322 −1.293 2.074 1.371 6.203

Brajrajnagar

ICR R 0.600 0.598 0.526 0.590 0.132 0.157 0.435 0.362 0.426 0.339 0.319 0.258

RMSE 23.334 22.693 45.948 40.918 0.905 0.935 5.008 5.249 14.605 16.590 5.035 4.925

PBias 5.055 2.051 −5.201 3.509 4.077 3.709 −8.013 1.727 5.219 −10.607 −6.972 2.427

ENET R 0.600 0.597 0.525 0.588 0.141 0.111 0.431 0.353 0.424 0.338 0.329 0.266

RMSE 23.348 22.641 45.978 40.974 0.907 0.941 5.017 5.273 14.618 16.602 5.021 4.907

PBias 9.092 2.025 −5.120 3.451 −7.133 3.229 3.009 1.668 4.984 −10.846 −1.759 2.072

BT R 0.755 0.686 0.697 0.659 0.519 0.280 0.558 0.452 0.538 0.387 0.702 0.347

RMSE 19.277 20.476 38.939 38.024 0.801 0.908 4.663 5.014 13.779 16.243 3.949 4.841

PBias −1.087 1.633 2.983 2.859 2.669 1.903 9.989 0.286 4.250 −10.666 −1.211 1.281
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%Bias � ∑n
i�1 Cp − Co( ) p 100∑n

i�1Co
, (8)

where n is the number of data points to be tested. Cp and Co are the
estimated andobserved values, respectively.Cp andCo are their respective
means. In general, good predictive models are associated with the smaller
values of %Bias and RMSE. RMSE provides a comprehensive idea of the
difference between the observed and predicted values. %Bias is used for
identifying details regarding over- and underestimated values (Chang and
Hanna, 2005; Salazar-Ruiz et al., 2008).

3.4 Air quality index

CPCB (2015) introduced an updated real-time air quality index
(AQI) framework based on themost probable health breakpoints across
six sub-indices. The cut-off levels for these sub-indices were determined
to reflect expected health impacts corresponding to 24-h pollutant
concentrations (8-h for O3) recorded at monitoring stations. The AQI
calculation methodology adopted in this research follows CPCB (2015)
guidelines, requiring data for at least three pollutants, with PM2.5 or
PM10 beingmandatory. Standard permissible limits for all six criteria air
pollutants have been established by the CPCB, alongside six AQI
categories ranging from “good” to “severe,” each associated with
specific health implications. The sub-indices for n pollutants are
computed using their respective sub-index functions, as illustrated in
Equations 9, 10:

Ii � f Xi( ), i � 1, 2, . . . .n, (9)

I � F I1, I2, I3, . . . .In( ). (10)
The computation of sub-indices involves operations such as

addition and/or multiplication, as detailed by Das et al. (2022). The
calculation of Ii (Sahu and Kota, 2017; Das et al., 2022) is illustrated
in Equation 11.

Ii � IHI − ILO( )
BHI − BLO( ) x CP − BLO( ) + ILO, (11)

where IHImeans theAQI value equivalent toBHI, IL0means theAQI value
equivalent to BL0, and CP indicates pollutant concentration. BHI means
breakpoint concentration ≥ known concentration; BL0 stands for
breakpoint concentration ≤ known concentration. The overall AQI is
determined by identifying the maximum sub-index among the
constituent pollutants, which is referred to as the dominating pollutant
(Hu et al., 2015; Sahu and Kota, 2017), as illustrated in Equation 12:

AQI � MAX I1, I2, I3, . . . .In( ), n � 1, 2, 3, . . . .6. (12)

3.5 Health risk and health risk-based indices

The study analyzes health risks associated with criteria pollutants
(PM10, PM2.5, NO2, SO2, CO, and O3). Mortality or the health endpoint
is considered in health risk evaluation studies because death is the most
clearly defined health endpoint. It assumes that all incidences are the
result of exposure concentration in any area. The relative risk (RRi) for
each pollutant is obtained from health impact studies and determined
using Equation 13. The excess risk (ERi) is subsequently computed

FIGURE 7
Variation in the AQI and key air pollutants in Talcher and Brajrajnagar during 2019–2023.
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using Equation 14. The attribution factor (AFi) to estimate the impact of
exposure variations is calculated using Equation 15 (Hu et al., 2015).

RRi � exp βi × Ci − Ci,0( )[ ], Ci > 0, (13)
ERi � RRi − 1, (14)
AFi � RRi − 1( )

RRi
, (15)

where βi is the exposure–response (ER) relationship coefficient,
representing the ER of the health effect (such as mortality) per unit
increase in pollutants (i.e., 1 μg/m3 of PM2.5), Ci is the actual
concentration of pollutant i, and C0 is the threshold
concentration below which the pollutant shows no significant
adverse health effects (i.e., RRi = 1). For all pollutants, C0 is
assumed to be 0. Air pollutants contribute to the exerted ER of
mortality only when their concentrations exceed the specified
thresholds, defined as RRi−1. This study used β values obtained
from daily mortality data for all age groups. These β values are
0.38%, 0.32%, 0.81%, 1.30%, and 0.48% for each 10 μg/m3 increase in
PM2.5, PM10, SO2, NO2, and O3, respectively (Hu et al., 2015). ER of
each pollutant, which is defined as RR−1, is summed up to calculate
the total excess risk (ERtotal) for simultaneous exposure to several air
pollutants, as illustrated in Equation 16. Elevated ERtotal values
indicate greater health risks.

ERTotal � ∑n
i�1
ERi � ∑n

i�1
RRi − 1( ). (16)

Although the AQI considers the combined health effects of
multiple pollutants, it lacks explicit incorporation of
exposure–response relationships. Several studies have proposed
health risk-based indices to address this limitation (Cairncross
et al., 2007; Sicard et al., 2012; Stieb et al., 2008; Wong et al.,
2013). A health risk-based AQI can be developed using the total ER
framework outlined by Cairncross et al. (2007). In this approach, the
RR for each pollutant is calculated based on health effect studies,
using Equations 17–21.

RR* � ERTotal + 1 � exp β C − C0( )[ ], (17)
C*

i �
ln RR*( )

βi
+ C0,i, (18)

HAQIi � IHI − ILO
BHI − BLO

( )x C*
i − BLO( ) + ILO, > 1, (19)

HAQIi � IH1
C*

i

BH1
, (20)

HAQI � MAX HAQI1, HAQI2, . . . ..HAQIn( ), n � 1, 2, . . . ., 6,

(21)

FIGURE 8
Comparing the frequency of daily criteria pollutant concentrations in Talcher and Brajrajnagar for the period of 2019–2023.
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where RR* represents the relative risk calculated based on the
equivalent pollutant concentration.

Using the RR* value determined from ERtotal via Equation 16,
the equivalent pollutant concentration of the ith criteria pollutant
(Ci*) can be determined using Equation 18. βi and C0,i are the β and
C0 values of the i-th pollutant, respectively. The equivalent
concentration of the ith criteria pollutant (Cip) can be calculated
from the RRp value derived using ERtotal in Equation 16 and
Equation 18. Here, βi and C0,i represent the β coefficient and C0

of the ith pollutant, respectively. The health risk-based indices
(HAQIs) based on the equivalent concentration of the ith criteria
pollutant (sub-HAQI, or HAQIi) can then be determined using Ci*,
as shown in Equation 20, instead of the actual concentration Ci in
Equation 11.

4 Results and discussion

4.1 Spatio-temporal variation in air
pollutants over eastern coast coal mine
complex belts

Figure 2 illustrates trends in air quality parameters, including
PM2.5, PM10, NO2, NOx, SO2, and O3, for a period of
2019–2023 over east coast coal mine stations Talcher and

Brajrajnagar. The Talcher station shows that PM10 concentration
was found 2–4 times higher than PM2.5, both annually and
seasonally, indicating an abundance of re-suspended dust or
construction emissions (Kumar et al., 2020). Annual peaks of
PM10 frequently exceeded 300 μg/m3 and 250 μg/m3 in the
Talcher and Brajrajnagar stations, respectively, suggesting the
dominance of construction and resuspension of PM10 (Wang
et al., 2024). The annual average of NOx was found to be 31.69 ±
21.97 μg/m3, with minimum and maximum values of 0.78 and
150.58 μg/m3, respectively, and was consistently higher than the
annual average of NO2, which was 23 ± 17 μg/m3, with minimum
and maximum values of 0.10 and 123.52 μg/m3, respectively.
However, a progressive annual decrease in NOx concentration
was observed, suggesting regulatory improvements or reduced
emissions (Lu et al., 2023). The annual SO2 concentration ranged
from 0.29 to 11.66 μg/m3 (mean: 24.34 ± 18.43 μg/m3), with
occasional spikes likely due to local industrial activities, such as
coal combustion or power generation (Diksha et al., 2024). These
spikes are common in the city’s day-to-day or commercial practices.
O3 concentrations typically remain below 100 ppb but occasionally
reach peak values near 140 ppb. The O3 overall trends suggest
episodic pollution spikes interspersed with periods of reduced
concentrations. Variations across years result from the combined
influence of industrial activity, meteorological conditions, and
regulatory interventions (Singh et al., 2021; Patel and Sharma,

FIGURE 9
Correlation between the HAQI (lower and upper bound) and AQI for the years 2019–2023.
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2022) at the Talcher station, located in the coal mine belts of the
eastern coast (Rajput et al., 2022). The Brajrajnagar station depicts
annual and seasonal PM10 concentrations twice those of PM2.5,
which may be re-suspended dust. Since the Brajrajnagar station has
comparatively less industrial and thermal power setup, the PM2.5/
PM10 ratio is 1:2. Annual peaks of PM10 frequently exceeded 250 μg/
m3, with maximum and minimum values of 269.85 μg/m3 and
1.90 μg/m3, respectively, in the Brajrajnagar station. The annual
average of NOx was found to be 30.84 μg/m3, with minimum and
maximum values of 0.65 and 135.15 μg/m3, consistently higher than
the annual average of NO2, which was 14.21 ± 9.30 μg/m3, with
minimum and maximum values of 0.09 μg/m3 and 57.47 μg/m3,
respectively. However, a progressive annual decrease in NOx
concentration was observed, suggesting regulatory improvements
or reduced emissions (Lu et al., 2023). The annual SO2

concentration ranges (16.84 μg/m3, with maximum and
minimum concentrations of 85.30 and 1.03 μg/m3, respectively)
are caused by local industrial activities such as coal combustion or
power generation (Diksha et al., 2024), which is the usual practice of
the city in their day-to-day or commercial practices. O3

concentrations rarely exceed 100 ppb but show occasional spikes.
The data exhibit recurring pollution events, with variability across
different years. The increases in O3 highlight photochemical smog
episodes. The different sources include industrial emissions,
vehicular traffic, and seasonal variations in atmospheric
conditions. These increases in pollutants underscore the need for
effective emission controls and policies to improve air quality and
reduce associated health risks (Choudhary et al., 2022).

The seasonal cycle showed higher PM2.5, PM10, NO2, and NOx

concentration levels during winter months (December–February)
due to shallow boundary layers that lead to lower dispersion.

Additionally, temperature inversion and higher emissions from
industrial thermal power plants (particularly in Talcher), along
with day-to-day biomass and coal burning activities, contribute
to the pollutant concentration (Bozhkova et al., 2020). The
parallel occurrence of post-harvest stubble burning and industrial
activities leads to significant spikes in pollutant concentration levels
along the eastern coast (Pratap et al., 2020; Gulia et al., 2022; Kumar
R.P. et al., 2024). Talcher exhibits higher PM levels than
Brajrajnagar, possibly due to its dense industrial setup and coal-
fired power plants. Brajrajnagar shows relatively lower levels than
Talcher, due to differences in emission intensity and source
contributions. Elevated SO2 concentration levels near industrial
hubs during winters are evident, driven by coal combustion in
power plants and industries. Similarly, high SO2 levels have been
reported in other industrial clusters worldwide, emphasizing the role
of coal combustion (Bozhkova et al., 2020; Gulia et al., 2022). O3

concentrations increase during summer (April–June) and pre-
monsoon seasons, correlating with increased solar radiation and
photochemical activity. The patterns align with findings in urban-
industrial regions, where O3 formation is influenced by NOx and
VOCs. The pollutant levels exceed WHO air quality guidelines,
comparable to other industrial cities in India and developing
nations, but are significantly higher than those in developed
countries (Bozhkova et al., 2020).

Table 1 provides the comparison of pollutant concentrations for
Talcher and Brajrajnagar during different years and seasons,
referencing the annual standards set by the National Ambient
Air Quality Standards (NAAQS) and WHO. PM2.5 and PM10

concentrations in both Talcher and Brajrajnagar consistently
exceed WHO standards and often surpass NAAQS limits
(particularly during winter and post-monsoon seasons). SO2 and

FIGURE 10
Variability in the AQI and HAQI with HAQI_UB and HAQI_LB in 2019–2023 for (a) Talcher and (b) Brajrajnagar. Shaded regions between HAQI_LB
and HAQI_UB illustrate the range of variability in health risks due to air quality.
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O3 lie within the permissible limits of both WHO and NAAQS, with
minor seasonal fluctuations.

4.2 Correlation between meteorological
variables and criteria pollutants

Figure 3 illustrates the relationship between meteorological
variables and criteria pollutants in Talcher and Brajrajnagar. In
Talcher, precipitation has a poor correlation with PM2.5 and PM10,
indicating wet deposition, as precipitation washes out PM during
rainy seasons from the atmosphere, similar to the monsoon effect
reported by Bozhkova et al. (2020) and Sharma et al. (2025). RH has
a positive correlation, which suggests that high humidity promotes
the hygroscopic growth of particles, leading to higher PM
concentrations. WS has a moderate correlation (R = 0.36 for
PM2.5 and R = 0.33 for PM10), suggesting that higher wind
speeds facilitate pollutant dispersion. Temperature has a weak

positive correlation with PM, suggesting that higher temperatures
increase photochemical activity; therefore, the formation of
secondary pollutants occurs (Kumar et al., 2022). In Brajrajnagar,
precipitation shows a similar correlation with PM as in Talcher, but
weaker, indicating lower precipitation efficacy in particle removal
due to regional meteorological differences. RH and WS have a good
positive correlation with precipitation and temperature, showing a
weak positive correlation compared to Talcher, possibly due to
differences in emission sources and local meteorological conditions.

In both stations, CO shows minimal reduction with
precipitation due to its gaseous nature and low solubility.
Temperature showed a good positive correlation, RH depicted a
weak positive correlation, while WS showed a poor correlation with
CO. NO2 also depicts a poor correlation with precipitation and WS
in both the stations. The positive correlation of temperature and RH
may result from NO2 accumulation under moist conditions, where
dispersion is limited. The pollutant O3 also exhibits similar
correlations for both sites with all the meteorological variables.

FIGURE 11
%ER due to criteria pollutants in Talcher (T) and Brajrajnagar (B) during 2019–2023.
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RH and WS showed a poor correlation with temperature, reflecting
the role of temperature in accelerating photochemical reactions. The
pollutant SO2 also showed a poor correlation with precipitation,WS,
and RH at both stations, indicating that SO2 is effectively scavenged
by rainfall, as noted in studies on industrial areas. However,
temperature depicted positive correlations at both locations. The
consistent WS and temperature trends confirm similar emission
sources and meteorological influences. Positive correlations for PM
and O3 highlight the role of RH in promoting particle growth and
photochemical activity. Temperature has positive correlations for
most pollutants; particularly O3 and NO2 reflect the influence of
temperature on emission rates and photochemical reactions.

4.3 Relative performance of machine
learning ICR, ENET, and BT models

The ML performance metrics ICR, ENET, and BT were
evaluated for both training and testing datasets using Taylor
plots in Talcher and Brajrajnagar (Figures 4–6). Across both
locations, the BT model consistently achieves higher R values,
indicating better predictive accuracy for most of the pollutants.
In Talcher, for PM2.5 (training data), BT achieves R = 0.834,
surpassing ICR (R = 0.748) and ENET (R = 0.748). For
Brajrajnagar, BT also outperforms other models, particularly for
CO (R = 0.519 in training) and SO2 (R = 0.702 in training). The
results are consistent with the findings reported by Gulia et al.
(2022), demonstrating the superiority of BT in capturing complex
relationships in air quality data.

Table 2 summarizes the predictive performance of all three ML
models for estimating PM2.5, PM10, CO, NO2, O3, and SO2. The BT
model demonstrates lower RMSE for most pollutants in both
locations, suggesting improved model accuracy. In Talcher, PM2.5

RMSE for training data is 16.799 (BT), compared to 20.157 (ICR)
and 20.171 (ENET). In Brajrajnagar, the trend persists with the BT
model, showing lower RMSE for PM2.5 (19.277 vs 23.334 for ICR).
These values are within the typical range reported in air quality
modeling literature studies for regions with comparable pollution
levels. PBias indicates the model’s tendency to overestimate or
underestimate values. BT generally has lower PBias in both
training and testing, reflecting fewer systematic errors. In
Talcher, NO2 (testing data) has a PBias value of 0.322 (BT)
versus 4.853 (ICR). In Brajrajnagar, SO2 (training data) shows a
PBias value of −1.211 (BT), indicating closer alignment with
observed values compared to −6.972 (ICR). This aligns with the
recommendations ofWillmott andMatsuura (2005), suggesting that
a PBias value within ±10% is ideal for environmental modeling.

Models performed better overall in Talcher than in Brajrajnagar,
with higher R values and lower RMSE. The BT model shows
particularly strong performance for NO2 and O3, both pollutants
of high interest due to their health impacts (World Health
Organization, 2021). In Brajrajnagar, model performance, as
indicated by lower R values and higher RMSE for certain
pollutants like CO and NO2, suggests greater variability or
complexity in air quality data at this location. BT still remains
the best-performing model but shows reduced efficacy compared to
its performance in Talcher. This is consistent with studies that
highlight challenges in areas with heterogeneous emission sources

(Bozhkova et al., 2020). R values for pollutants such as PM2.5

(0.834 in Talcher with BT) align with studies worldwide that
often report R > 0.8 for well-performing models in air quality
prediction. Lower R values for pollutants like CO in Brajrajnagar
(R = 0.519) highlight challenges in modeling gases with more
localized and transient sources. RMSE values for PM2.5 and PM10

are comparable to global benchmarks, where values typically range
between 10 and 50 μg/m3, depending on regions and pollution levels
(Gulia et al., 2022). For CO, RMSE values in the study
(approximately 0.5–0.9 ppm) are consistent with other studies,
indicating similar accuracy (Bozhkova et al., 2020). PBias values
generally fall within acceptable limits (−10% to 10%), according to
global standards for air quality model evaluation, although some
exceptions exist, such as Brajrajnagar’s CO (Willmott andMatsuura,
2005). As anticipated, performance is typically better for the training
dataset than the testing dataset, likely due to overfitting or the
complexity of the model. Lower R values for CO and O3 indicate that
these pollutants are harder to predict accurately, possibly due to high
variability in data for model training.

4.4 Assessment of the AQI and air
pollutant trends

Figure 7 illustrates the annual trends of various air pollutants
and the AQI for the locations of Talcher and Brajrajnagar during
2019–2023. In Talcher and Brajrajnagar, both pollutants PM2.5 and
PM10 significantly decreased from 2019 to 2021, demonstrating
improved air quality during these years. This significant decrease in
PM was due to the COVID-19 lockdown. However, there is a slight
increase observed between 2022 and 2023. PM2.5 and PM10 are the
primary contributors to air quality degradation in both Talcher and
Brajrajnagar. The AQI trends in both regions are closely linked to
variations in PM levels, indicating that particulate matter is a critical
determinant of air quality. NO2 and SO2 remain relatively stable
throughout the time period, with minor fluctuations. O3 levels are
minimal, showing negligible variations across the years. The AQI
followed the trend of PM10 and PM2.5, decreasing from 2019 to
2021 and slightly increasing from 2022 onward.

The annual mean AQI in Brajrajnagar depicted a progressive
decrease year-by-year, with a stabilization observed between
2021 and 2023. Notably, the AQI showed a decreasing trend
from 2019 to 2022, followed by a slight increase in 2023. In
Brajrajnagar, NO2 levels remain stable, while SO2 is nearly
negligible and shows no substantial changes. Ozone levels are
relatively low, with no major seasonal or annual variability. The
AQI decreases from 2019 to 2021 but increases slightly in 2023,
mirroring the trend in particulate matter. NO2, SO2, and O3 exhibit
minimal variations, suggesting that these pollutants have a less
significant impact on AQI in these locations.

4.5 Pollutant frequency of occurrence over
coal mine complex belts

Figure 8 demonstrates the frequency of occurrence matrices by
six subplots, each representing a specific pollutant: PM2.5, PM10,
NO2, NOx, SO2, and O3. Brajrajnagar exhibits comparatively higher
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frequencies of days with PM2.5 concentrations of 50 μg/m3 than
Talcher. Talcher has a broader distribution with higher percentages
and a higher frequency of days with elevated PM10 concentrations,
whereas Brajrajnagar shows a narrower distribution but a higher
frequency of days with a concentration range of 100–200 μg/m3.
This trend suggests comparatively higher industrial and coal-related
activities in Talcher (Guttikunda and Jawahar, 2014). Both locations
show similar trends for NO2, with the highest percentage of days
occurring at lower concentrations (0–40 μg/m3) However, the higher
frequency of days is observed in the 20–30 μg/m3 and 40–60 μg/m3

ranges in Brajrajnagar and Talcher, respectively. NOx also reported a
comparatively higher frequency of days in Talcher (80–100 μg/m3),
but at lower concentrations, NOx distribution was found more or
less similar in both sites. Brajrajnagar has higher frequencies at lower
SO2 concentrations (0–30 μg/m3), while Talcher exhibits a higher
proportion of days with elevated levels (40–100 μg/m3). SO2 is a
marker for emissions from coal combustion in power plants and
industrial operations (Lelieveld et al., 2015). Talcher has a higher
proportion of days with elevated SO2 levels, justifying comparatively
intense coal-based activities. Talcher appears to have higher O3

concentrations (20–40 μg/m3) with high frequency, whereas
Brajrajnagar shows a broad distribution range (50–100 μg/m3)
with a higher frequency of days overall. O3 is a secondary
gaseous pollutant formed through photochemical reactions
involving NOx and VOCs (Seinfeld and Pandis, 2016). Talcher
shows slightly higher O3 concentrations, possibly due to higher
precursor emissions and favorable atmospheric conditions.

The frequency distribution indicates significant spatial
variations in air quality due to local and regional anthropogenic
sources and meteorological variability in the eastern coal mine
complex. Talcher showed consistently higher pollutant
concentrations across most metrics. A similar conclusion
reported in prior studies indicates the role of industrial and
mining activities in elevating air pollution levels in Talcher
(Mishra and Das, 2017) compared to Brajrajnagar.

4.6 Correlation between the air quality index
and health-based air quality index

Figure 9 demonstrates a comparative analysis of AQI and
HAQI for two eastern coast coal mine complex stations from
2019 to 2023. The red dots signify upper bounds (HAQI_UB),
and the black dots represent lower bounds (HAQI_LB). The
spread of red dots indicates uncertainty in health impacts
attributed to AQI levels. In Brajrajnagar, the AQI values tend
to be lower overall than in Talcher, particularly in later years
(2022 and 2023). However, HAQI values remain distributed,
suggesting moderate air quality impacts on health. In Talcher,
AQI values are more dispersed, with higher upper bounds
observed in 2019 and 2020, correlating to larger HAQI
variation. Across both regions, it was observed that at lower
ranges, the AQI and HAQI demonstrate good correlation, but for
higher ranges of concentration, the AQI underestimates the
health risk severity. The year-wise variability demonstrated
that in 2019, both regions showed higher AQI values, with
Talcher reaching up to 350. In 2020, a slight reduction in AQI
was observed in Brajrajnagar. However, Talcher maintains a

higher range of AQI than Brajrajnagar. In 2021–2023, there
was a steady decrease in AQI levels, with a corresponding
stabilization of HAQI values, particularly in Brajrajnagar.
Higher AQI levels in 2019 and 2020 align with potential
public health concerns in Talcher, given the elevated HAQI
and its bounds. The WHO highlights the relationship between
air pollutants (as represented by AQI) and adverse health
outcomes, which are reflected in the HAQI metric (World
Health Organization, 2021). As outlined by Murray et al.
(2015), HAQI captures the health-adjusted quality of life
influenced by environmental, social, and behavioral factors,
with air quality being a significant determinant. Previous
studies on industrial areas, such as Talcher and Brajrajnagar,
have documented the impact of industrial emissions on air
quality and health outcomes (Sharma et al., 2020).

4.7 Comparative assessment of the AQI with
the HAQI array

A comparative assessment of the AQI and HAQI, including
their upper and lower boundaries, was performed to understand the
health risks in two different indices across the two locations.
Figure 10 represents the variability in AQI and HAQI with upper
and lower bounds (HAQI_UB and HAQI_LB) during
2019–2023 for two locations. Shaded regions between HAQI_LB
and HAQI_UB illustrate the range of variability in health risks due
to air quality. The present study demonstrates that the AQI has
increased over the years in both locations, signifying worsening air
quality. HAQI values (both upper and lower bounds) increase over
time for both locations, reflecting an increase in health risks from air
pollution. The range between HAQI_LB and HAQI_UB is wider in
Talcher. Talcher shows higher HAQI values (greater health risks)
than Brajrajnagar across all years.

In the AQI, the health risk of exposure to criteria pollutants is
based solely on the pollutant with the highest AQI value. However,
in the HAQI, each sub-HAQI considers the RR due to multiple
pollutants. Using the highest sub-HAQI as the overall HAQI
provides a cautious approach to estimating multi-pollutant health
risks, focusing on the pollutant with the greatest impact on health.
When the AQI is ≤100, indicating healthy air quality, the HAQI
aligns with the AQI, reflectingminimal health risk. Therefore, HAQI
values should be considered an upper-bound estimate of health
risks, reflecting the most harmful pollutant without inflating the
overall risk. Although some studies aggregate various pollutants to
estimate total risk, this study adopts the lower bound of the HAQI by
calculating the combined impact of PM2.5, O3, SO2, and NO2, which
is considered the lower bound for the HAQI. The comparison shows
that multi-pollutant air pollution indices (HAQI) are elevated and
pose significant health risks, while the AQI approach tends to
underestimate these health risks.

4.8 Excessive risks over coal mine
complex belts

Figure 11 demonstrates the percentage of ER for T and B, across
criteria pollutants and ERtotal from 2019 to 2023. Talcher

Frontiers in Environmental Science frontiersin.org16

Kumar et al. 10.3389/fenvs.2025.1589991

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1589991


consistently showed a higher ER than the Brajrajnagar region across
the years for most pollutants, such as up to 6% higher risks for PM10,
5% for NO2, and up to 3% for SO2. The trend in ER varies for
different pollutants over the years. NO2, PM10, and PM2.5 contribute
significantly to the overall ER (Pathi et al., 2023). A number of
previous studies highlighted the similar severity of industrial
emissions on air quality and human health in coal mining and
thermal power plant regions (Mishra and Das, 2017; Chowdhury
and Paul, 2024). The findings enhance the understanding of air
quality subtleties in industrial regions and offer crucial insights for
policymakers and public health authorities to effectively mitigate
potential health risks.

5 Conclusion

The study highlights the critical role of ML models in estimating
criteria pollutants and assessing their health risk in an industrialized
coal mine and a thermal power plant region in eastern India. The
analysis of time series trends, seasonal and annual spatio-temporal
variations, and the percentage of days with poor air quality reveals
significant spatial disparities in pollution levels. Talcher consistently
demonstrates higher pollutant concentrations across most metrics,
highlighting the substantial impact of industrial and mining
activities on air quality with a broader frequency distribution of
elevated levels for PM10, NO2, and SO2 (>100 μg/m3, >40 μg/m3,
and >40 μg/m3, respectively). In contrast, Brajrajnagar, despite its
industrial activity, records comparatively lower pollutant levels.
Talcher consistently records poorer AQI values with greater
spatial variation. At lower AQI levels (good to satisfactory
categories, AQI >100), both sites show minimal deviation. The
BT model consistently demonstrated superior performance over
ICR and ENET models in both Talcher and Brajrajnagar. However,
results were found to be better, particularly in Talcher, whichmay be
due to better input data and pollution source uniformity. The
findings align with global standards, although localized
variability in pollutants like CO and NO2 indicates areas for
improvement, such as incorporating additional predictors. This
study highlights the importance of integrating ML with health risk
assessments to develop effective, tailored mitigation measures for
air pollution hotspots, advocating for targeted interventions to
safeguard public health. ER analysis highlights health concerns,
and Talcher shows greater health risks, with pollutant exposure up
to 6% higher risks for PM10, 5% for NO2, and up to 3% for SO2.
These findings underscore the critical health implications of air
quality disparities in these regions. The HAQI reveals that health
risks are often underestimated by at least one category compared to
the current AQI. The disparity between AQI and HAQI indicates
that the AQI by itself does not adequately capture the health risks
associated with exposure to multiple pollutants. Given these
results, it is imperative for the public—particularly sensitive
groups such as children, older adults, and individuals with lung
or heart conditions—to adopt stricter measures to mitigate the
adverse effects of air pollution. This need is especially urgent in
highly polluted cities, hot spot areas, and during the winter season,
when pollution levels peak.
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