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This study, under the context of a global perspective, focuses on the Indus Basin
Irrigation System (IBIS) of Pakistan specifically the Jhelum and Chenab rivers
inflows. The IBIS operation relies on seasonal planning strategies, informed by
forecasts of river inflows at key stations by the Indus River SystemAuthority (IRSA).
In this study, Artificial Intelligence (AI) models including Generalized Regression
Neural Network (GRNN), and Multi-Layer Feedforward Neural Network (MLFN)
along with the statistical model Autoregressive Integrated Moving Average
(ARIMA) were used to forecast the inflows of both rivers for 5 years
(2020–2024) with a lead time of 1 year. Historic flow data of 59 years
(10 daily from 1966 to 2024) were collected from IRSA. The collected data
from 1966 to 2014 are used for calibration/training and from 2015 to
2020 are used for validation/testing of selected models for both study
locations. The results of correlation and error estimation depicted that
Artificial Neural Network (ANN) models predicted better inflows than the
ARIMA model. The average RMSE and R2 of ANN models is 9.68 and 0.92 and
the average RMSE and R2 of ARIMA Model is 10.17 and 0.88, this results in
improvement of average RMSE and R2 by 4.82% and 4.35% in case of ANNModels
when compared with ARIMA Model. Qualitative analysis shows that ANN
techniques better predicted the high and low flows when compared with
statistical methods. Specifically, the application of the ANN models has
enhanced the precision of forecasted inflows assessment compared to the
probabilistic inflow forecasting methods used by IRSA. The average RMSE and
R2 in case of IRSA forecast is 11.47 and 0.88 and the average RMSE and R2 in case
of ANN Models is 10.30 and 0.92, this results in improvement of average RMSE
and R2 by 10.20% and 4.35% in case of ANN Models when compared with IRSA
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forecast. This study highlights the need for utilization of ANN models in place of
probabilistic inflow forecasting methods to improve the accuracy of time series
inflow forecasts.
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1 Introduction

Management of water resources is a universal challenge,
transcending geographical boundaries. It has been in the
limelight for decades due to climate and environmental changes
at the global level. The increasing demand for water from various
competing sectors also puts stress on available water resources,
particularly in developing countries. In the case of shared river
basins, the effective management of water resources is a key factor
for optimal resource utilization (Agnihotri et al., 2022; Araghinejad
et al., 2006; Danandeh Mehr et al., 2015). Indus Basin Irrigation
System (IBIS) is one of the shared river basins, that flows through
territories of India and Pakistan (Briscoe and Qamar, 2006). In the
year 1960, to resolve the interstate water conflicts between two
countries World Bank passed a treaty known as the Indus Water
Treaty. According to the treaty, complete water rights of western
rivers (Indus, Jhelum, and Chenab) are given to Pakistan, and rights
of eastern rivers (Ravi, Sutlej, and Beas) are given to India (Ahmad
et al., 2023). In Pakistan IBIS operates through intensive river
control structures including dams, barrages, headworks, and
interlinked canals to fully utilize the water potential of western
rivers. However, to avoid inter-provincial conflicts regarding water
distribution (Ahmad et al., 2021; Podger et al., 2021), the IRSA was
established in the year 1992. IRSA is responsible for monitoring and
regulating the IBIS within Pakistan and the distribution of water
shared among provinces following the Water Apportionment
Accord 1991 (Ahmad et al., 2023). The authority operates the
IBIS on seasonal strategies, based on river inflows forecast at rim
stations using probabilistic methods. It is based on the respective
previous season inflow volume as an indicator of forthcoming
season inflows. Therefore, to make informed decisions and
equitable water sharing among provinces, precise inflow
forecasting at rim stations is essential for avoiding conflicts and
enhancing the optimal use of water resources.

Accurate stream flow forecasting is a challenging process due to
its non-linear and multidimensional dynamics (Oyerinde et al.,
2017; Rauf and Ghumman, 2018; Remesan et al., 2010).
Numerous studies forecasted river inflow series through machine
learning techniques, but the extent of forecast accuracy plays a vital
role in the selection of specific techniques for a station. In literature,
the flow prediction process is broadly divided into two types,
namely, data-driven and physical base modeling approaches
(Hassan and Hassan, 2021; Wang et al., 2006; Yaseen et al.,
2018). Physical-based modeling approaches are complex but have
the advantage of incorporating physical observations during
prediction, however extracting accurate physical information of
the river watersheds is not simple (Hassan and Hassan, 2021;
Zhang et al., 2015). The data-driven methods majorly depend on
the input and output data features instead of physical-based
processes (Cui et al., 2020; Hassan et al., 2015). In data-driven

methods, a variety of input data combinations (river stage,
precipitation, temperature, and evaporation, etc.) can be used
coupled with main input data variables (Jajarmizadeh et al., 2015;
Wang et al., 2006). Many researchers have used the combination of
three input parameters, namely, precipitation, temperature, and flow
as reported in the literature. However, a commonly used
combination by the researchers consists of precipitation and flow
data together (Rauf et al., 2018).

A limited number of studies have used the single input data of
flow in their research (Danandeh Mehr et al., 2015; Yaseen et al.,
2018). The accuracy of traditional data-driven methods for flow
prediction is quite reasonable (Rauf et al., 2018; Awchi, 2014).
Traditional models include the Autoregressive (AR), the
Autoregressive Moving Average (ARMA), the Autoregressive
Integrated Moving Average (ARIMA) models, the probabilistic
method, Support Vector Machine (SVM), and Random Forest
(RF) (Nguyen et al., 2022). These methods are simple and unable
to capture the complex relationships and on the other hand, the
hydrological process that occurs in the watershed is a non-linear and
complex phenomenon. Therefore, to increase the accuracy of flow
prediction, non-linear models are necessary to accurately capture
the intricate connections among observed data.

In recent years, deep learning methods based on Artificial
Intelligence (AI) gained popularity among researchers, primarily
for their effectiveness in mastering non-linear hydrological data
behaviors and delivering high accuracy in prediction (Kisi and
Sanikhani, 2015; Nguyen et al., 2022; Uysal et al., 2016). Various
deep learning methods like Artificial Neural Network (ANN), Long
Short-Term Memory (LSTM), Convolutional Neural Network
(CNN), Multilayer Perceptron (MLP), Bidirectional Long Short-
Term Memory (STM), Support Vector Classifier (SVC), Support
Vector Regression (SVR), Adaptive Neuro-Fuzzy Inference System
(ANFIS), Radial Basis Function (RBF), Feedforward Neural
Networks (FFNN), General Regression Neural Network (GRNN)
and MLFN have been adopted by various researchers with various
input combinations (Afan et al., 2020; Cheng et al., 2020; Chu et al.,
2021; Ibrahim et al., 2022; Khosravi et al., 2020; Kovačević et al.,
2018; Le et al., 2019; Li et al., 2020; Rasouli et al., 2012; Wang
et al., 2006).

Several existing research studies have integrated these
techniques with various methods to enhance prediction accuracy
(Nguyen et al., 2022). Pan et al. (2020) combined the CNN and GA
to enhance the prediction accuracy of water level in the Yangtze
River. Shiri et al. (2016) utilized the Extreme Learning Machines
(ELM) approach to forecast the daily water level of Urmia Lake.

Choi et al. (2020) integrated ANN, RF, decision tree (DT), and
SVM to predict the water level in South Korea. Nguyen et al. (2022)
combine the three techniques LSTM, CNN, and Singular-spectrum
analysis (SSA) to predict discharge and water level at two
hydrological stations, Son Tay and Kon Tum, Vietnam. The
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author highlighted that predicting the discharge and water level is
challenging due to several fundamental issues including short-term
data for training and different hydrological behavior of each
watershed in terms of runoff.

Previous studies have shown that only a limited number of
research efforts have focused on predicting flow using a single input
variable. In addition to a few studies using single input variables, the
literature reveals a diverse range of data-driven methods and
integrated techniques to predict flows. The justification for using
single input variable of flow for inflow forecasting are the following.

1. Historic river inflow data shows strong temporal correlation.
2. The inflows capture Catchment response.
3. The inflows are recorded through accurate gauging stations

and the data is reliable.

The involvement of multiple variables as in case of rainfall-
runoff modeling for inflow forecasting would require complex
computations specifically when are dealing with huge catchment
area associated with Mangla and Marala Catchments. Moreover, the
application of the MLFN method has not been explored for flow
prediction with a single input variable. Therefore, in this study,
inflow forecasting for Mangla Dam situated at River Jhelum, and for
Marala Headworks located at Chenab River has been carried out
using a statistical model (ARIMA) and artificial neural network
models (GRNN and MLFN) and models’ performance has been
investigated to select the best model at the individual study location.
Further, a comparison has been made between the forecasted results
of selected models with the forecasted inflows of the probability
method adopted by IRSA, Pakistan. Utilizing the advanced methods

helps to understand the strengths and limitations of each model,
ultimately guiding future improvements in inflow prediction and
model selection for better water resource management.

2 Study area and data set

This study is carried out for Mangala Dam and Marala
Headworks located within the world largest contiguous irrigation
network called as Indus River System. In Pakistan, the Indus River
System consists of seven major rivers: Kabul, Indus, Jhelum, and
Chenab are located on the western side, and Ravi, Sutlej, and Beas
located on the eastern side. This largest system is regulated through
three major reservoirs (Tarbela, Mangla, and Chashma),
15 barrages, 45 main canals, and inter-river link canals to utilize
130 billion m3 (BCM) of river water annually. The selected study
locations play a vital role in the water resource management of the
country throughout the year, as shown in Figure 1.

Geographically, Mangla Dam has a catchment area of 33,490 km2

and is located at 33°08′31″N and 73°38′42″E. It regulates the flow of
the Jhelum River and flows into the Chenab River at a confluence
point upstream of Trimmu Headworks. Mangla Dam watershed area
consists of seven sub-basins namely,: Neelum, Poonch, Upper-
Jhelum, Kunhar, Kanshi, Lower Jhelum, and Kahan (Babur et al.,
2016). The major portion of inflows inMangla Dam are received from
March to August and 25% of inflows are received in the rest of the
months. Marala Headworks on the other hand located at 32°40′24″N
and 74°27′50″E. It regulates the flow of Chenab, a transboundary
river, and has a total catchment area of 67,430.34 km2. At Marala
Headworks 28,480.97 km2 of catchment area contributes to the river

FIGURE 1
Political boundary of Pakistan with major rivers (a) and aerial photographs of study area locations; mangala dam (b) and marala headworks (c).
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flow after traveling a distance of 506 km (Ali et al., 2021). The inflows
in the Chenab River are generated through snowmelt augmented by
runoff from precipitation during monsoon.

Historic flow data of 59 years (10 daily from 1966 to 2024) were
collected from IRSA. The ten daily flow data represents average flow

data on 10 daily basis. The construction of Mangla Dam was
completed in 1962 and IRSA started flow observation at Mangla
Dam since 1966 onward. Therefore, historic flow data from
1966 onwards till 2024 was used at both of the study locations
for the purpose of inflow forecasting. The flow patterns at both study

FIGURE 2
Mean monthly inflows at both study locations.

FIGURE 3
Flow Chart of methodology used in the present study for inflow forecasting.
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locations during the stated period of historic flow data showed
strong temporal correlation.

The collected data was averaged into twelve monthly flows for
both study locations and plotted for comparative analysis. Figure 2
depicts the sessional inflow pattern at both study locations. Mangala
station received the maximum inflows during March to August and
Marala station received the maximum inflows during June
to September.

3 Methodology

Historic flow data was collected from the Indus River System
Authority (IRSA) https://pakirsa.gov.pk/ and divided into various
lengths for calibration, validation, training, and testing purposes.
The flowchart of the methodology used in this study is presented
in Figure 3.

Analysis of historic data was carried out for the identification of
data nature and order of dependencies using the Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF). Both
functions play a vital role in understanding the relationships within
time series data and choosing appropriate parameters for the
ARIMA model. The ACF measures the correlation between a
time series and lagged values, moreover, detects repeating
patterns like seasonality and determines the order of moving
average (MA) component. The PACF assesses the direct impact
of each lag by eliminating the influence of intermediate lags,
moreover, helps to identify the order of autoregressive (AR)
component. The mathematical form of equations used for
determination of ACF for a given value of a lag “k” is given in
Equation 1 and for calculation of PACF at varying lags (2nd and 3rd

order) are given in Equation 2 and Equation 3.

ACF � ∑T
t�k+1 Xt − �X( ) Xt−k − �X( )∑T

t�1 Xt − �X( ) (1)

PACF2 � Covariance xt, xt−2|xt−1( )�������������������������������
Variance xt|xt−1( )Variance xt−2|xt−1( )√ (2)

PACF3 � Covariance xt, xt−3|xt−1, xt−2( )���������������������������������������
Variance xt|xt−1, xt−2( )Variance xt−3|xt−1, xt−2( )√ (3)

where X = time series data, k = lag. Figure 4 drawn between, ACF with
corresponding lag is called auto-correlogram and PACF with
corresponding lag is partial auto-correlogram. The comparative
auto-correlogram of the historic inflow series (1966–2024) of
Mangla Dam and Marala Headworks are shown in Figure 4. The
auto-correlogram of both inflow time series depicts that
autocorrelation is periodic and decreases slowly with damping
peaks which indicates the non-stationarity of time series. Figure 4
illustrates the partial auto-correlogram of the historic inflow series
(1966–2024) of both study locations and depicts that with increasing
lag PACF does not remain constant which indicates the non-stationary
nature of time series data. The historical inflow data revealed strong
seasonality, we opted to use the ARIMA model rather than SARIMA.
The justifications for opting the ARIMA model is as follows.

1. Model performance evaluation of ARIMA Model showed
satisfactory results, indicating that the added complexity of
SARIMA Model will not offer any significant improvement.

2. Furthermore, after applying appropriate transformations and
differencing, the time series data achieved stationarity without
the need for seasonal terms.

Therefore, ARIMAmodel parameters are selected accordingly to
predict the inflow forecast.

3.1 ARIMA model

Various research studies discussed the detailed theory of
ARIMA presented by (Box et al., 2015) and in this section, a
brief overview is presented. The model’s name consists of three
parts (a) AR (b) I and (c) MA. The “autoregressive (AR)” represents
the use of lagged values of the differenced time series in the
forecasting equations, capturing the influence of prior values on
the current observation. The “integrated (I)” part signifies the need
to differentiate the time series to make it stationary, ensuring that
statistical properties remain consistent over time. The “moving
average (MA)” component involves lagged forecast errors,
accounting for the relationship between forecast errors and the
observed data. It is simple to implement and effective for short-term
forecasting, especially when dealing with stationary or moderately
non-stationary time series (Wang et al., 2017; Yu et al., 2017). The
general form of ARIMA (p, d, q) in backshift notation is given in
Equation 4; denotation “p” represents the order of autoregressive
(AR), “d” represents the order of differencing operator, and “q”
represents the order of moving average (MA).

1 − ɸ1B − ɸ2B
2 − . . . . . . . . . .ɸpB

p( )∇dX t( )
� 1 − θ1B − θ2B

2 − . . . . . . . . . θqB
q( ) ε t( ) (4)

where: ɸi = Autoregressive Coefficient, for i = (1, 2, 3, . . . , p), B =
Backshift Operator. X (t) = nonstationary time series, ∇ = represents
differencing operation, d = order of differencing, ε (t) = uncorrelated
identically distributed error with zero mean, known as white noise.,
θi = Moving Average Parameter, for i = (1,2,3, . . . , q).

The significant parameter values of “p” and “q” are selected from
ACF and PACF time series analysis shown in Figure 4. The value of
the “d” parameters is selected after multiple trials to convert the non-
stationary time series data to stationary time series.

3.2 General regression neural network
(GRNN) model

This method is the type of artificial neural network (ANN)
model that is particularly well-suited to predict time series values
based on input time series. GRNN can handle non-linear
relationships without iterative training and derive function
directly from the training data (Kerem, 2005; Specht, 1991).
Moreover, estimation error converges to zero with the increase of
training data, imposing mild constraints on the function (Kerem,
2005). The fundamental idea behind GRNN is to model and
reconstruct the underlying regression function Y(X), which
defines the relationship between input variables and target
outputs, using the information contained in the training data
(Kopal et al., 2022). The Nadaraya–Watson kernel regression
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estimator used to predict the Y(X) for a single-bandwidth GRNN is
given in Equation 5 (Pernot and Savin, 2020).

Y X( ) � ∑n
i�1Yi exp

−Di
2

2σ2( )∑n
i�1exp

−Di
2

2σ2( ) (5)

Where

D2
i X, Xi( ) � ∑R

k�1
Xk −Xik‖ ‖2 � ∑R

k�1
Xk −Xik( )T Xk −Xik( ) (6)

X = Input Sample, Xi = Training Sample, Yi = Output of Input
sample Xi, Di

2 = Squared Euclidean distance between the training
sample Xi and input X, T =Matrix Transpose, Y = Estimated Output
of the input sample X, σ = standard deviation.

Equation 5 and Equation 6 show that predicted values Y(X) are
computed as a nonlinear weighted average of the target values Yi

associated with the training inputs Xi, where the weights are governed
by the Gaussian radial basis function (RBF) as given in Equation 7.

ψi X, Xi( ) � exp −D
2
i X, Xi( )
2σ2

( ) (7)

The procedure adopted for predictor selection in the GRNN
model involves following steps.

1. Normalization of predictors and handling of outliers and
missing values.

2. Using filters to reduce dimensionality.
3. Measure GRNN performance with different feature subsets

using suitable matrices (MAE, RMSE, etc.).
4. For feature selection the model applies forward or backward

wrapper method.
5. Finally, the programme models the forecast for testing and

training using selected predictors.

The architecture of the GRNN consists of four layers as shown in
Figure 5. The input layer for incorporation of data. The second layer
known as the pattern layer contains patterns that represent the learned
patterns from data. The third layer of summation, the output of the
pattern layer is the input of the summation layer which aggregates the
information. The output layer generates the network’s predictions
based on processed data from the summation layer (Kerem, 2005).

3.3 Multilayered feedforward neural
network (MLFN)

The MLFN is a type of artificial neural network and works on the
principle of feedforward networks (Tayfur et al., 2007). It is structured
with three primary components: (i) input layer, (ii) one or more
hidden layers, and (iii) output layer, as shown in Figure 5. All the
components are interconnected in a sequential, feedforward manner.
The input layer neuron receives data and passes it to the first hidden
layer neuron after multiplication with weight values. In case, multiple

FIGURE 4
(a) Autocorrelogram (b) partial autocorrelogram, for mangla and marala inflows.
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hidden layers are selected then each layer is sequentially connected
with other hidden layers neurons, the output of the one layer serves
the input of the subsequent layer. Moreover, hidden layer neurons
process information of weighted inputs received from input layer
neurons, perform bias correction, and transform the results using an
activation function. The neurons in the output layer execute the same
procedure and apply similar transformations to produce results (Chen
and Leung, 2005). The weight-related equation used in MLFN with
values function of n variables f (X1, . . . , Xn) with n+1 complex-valued
weight as parameters is shown in Equation 8.

f X1, . . . , Xn( ) � P W0 +W1X1 + . . . +WnXn( ) + bl1( ) (8)
where X = variable, W = weight, P = activation function, b = bias
correction for layer.

In MLFN model each predictor appear as a node in the input
layer and these nodes are connected to neurons in the hidden layers
through weights. Then the leaning algorithm make adjustments in
the weights to reduce the prediction error. The MLFN Model uses
filter methods including ANOVA, Chi square test, Correlation
method and Mutual Information method before training. Then
the model itself evaluate the subset of predictors using the
wrapper methods including backward elimination method,
forward selection method and Recursive feature elimination
method. During training of the model, the programme uses
embedded methods including Regularization method, Drop out
in neural netwroks and Permutation importance method.

3.4 Models performance evaluation

The evaluation of the model’s performance, during calibration/
training, validation/testing, and forecasting stages, to assess their
accuracy and reliability is one of the most important procedures. In
literature, various statistical measures are adopted by various
researchers to thoroughly assess the model performance. In this
study, the following statistical indicators are used to assess the
model’s goodness of fit.

3.4.1 Root mean square error (RMSE)
It represents the square root of the average of the squared

difference between the predicted and observed data.

RMSE �
�����������∑ X0 −Xf( )2

n

√
(9)

where, Xf = Forecasted Values, Xo = Observed Values
The higher the RMSE, indicates a greater discrepancy between

the forecasted and observed values, and the lower the RMSE
represents the better the model’s accuracy to predict.

3.4.2 Nash sutcliffe efficiency (NSE)
The model was first proposed by Nash and Sutcliffe and is one of

the important statistical parameters used to indicate the model’s
predictive accuracy.

NSE � 1 − ∑ Xo −Xf( )2∑ Xo −Xo( )2 (10)

The model accuracy indicators for NSE range from −1 to 1. A
higher NSE value indicates a better model performance and a lower
value indicates a worse performance. Value <0 indicates poor model
predictive ability.

3.4.3 Coefficient of determination (R2)
R2 is a statistical parameter that indicates the accuracy of model

predictions by comparing the difference between observed and
forecasted values in terms of average absolute deviation relative
to the observed values.

R2 � ∑ Xo − Xo( ) Xf − Xf( )��������������������∑ Xo − Xo( )2∑ Xf − Xf( )2√ (11)

The value range of R2 is between the values 0–1; higher model
accuracy is indicated if the value nears 1 and bad model accuracy is
indicated if the value is near zero.

4 Results

4.1 Models calibration, validations, training
and testing

Historic flow data of 59 years were collected from IRSA. The
collected data from 1966 to 2014 are used to calibration/training and

FIGURE 5
Schematics of (a) MLFN (b) GRNN.
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from 2015 to 2020 are used for validation/testing of selected models
for both study locations. We have used 49 years of historic flow data
for calibration/training purpose which constitutes about 89% of the
total length of historic flow data used. The calibration/training data
length should be of sufficient length so as to get reliable forecasting
results. We have used 6 years of historic flow data for validation/
testing purpose which constitute about 11% of the total length of
historic flow data used. The historic flow data from 1966 to
2024 were used for flow forecasting for the year 2020, 2021,
2022, 2023 and 2024 using lead time of 1 year and data of the
last 5 years (2020–2024) were used for performance evaluation of the
forecasted inflows for the year 2020–2024.

4.1.1 ARIMA model
The ARIMA model was calibrated and validated for the periods

between 1966 to 2014 and 2015 to 2020 respectively for both study
locations. The model was run with significant values of “p” and “q”
as per the PACF and ACF analysis (shown in Figure 4), and varying
values of difference operator “d”. The model performance was
evaluated using the RMSE, NE, and R2. Given the relatively low-
dimensional parameter space and the interpretability of time series
diagnostics, manual tuning based on statistical heuristics was
sufficient and computationally efficient. Hence, exhaustive
hyperparameter optimization was not necessary.

Table 1 shows the calibration and validation of the ARIMA
model for Mangala Dam. Table 2 shows the calibration and
validation of the ARIMA model for Marala Headworks. Multiple
model scenarios were performed and evaluated, to select the best-fit
model architecture and used for future forecasting of inflows.
Varying combinations of “p”, “d” and “q” were tested ranging
between 1–37, 0–1, and 1–30 respectively. The impact of various
combinations in terms of model prediction accuracy was assessed
and found that higher values in the case of p and q with difference
operator (d) one (1) performed better as compared to lower values
with d = 0. The detailed results are tabulated in Tables 1,2. The
selected model 37, 1, 21 for Mangala Dam outperforms the other
models’ scenarios during calibration with values of 9.0146,
0.8521 and 0.9231 for RMSE, NSE, and R2 respectively. In the
case of Marala Headworks, model 31, 1, 30 outperforms the
other models’ scenarios during calibration with values of 13.8290,
0.8198, and 0.9055 for RMSE, NSE, and R2 respectively. Moreover,
these models were validated (2015–2020) for both study locations
and results indicated improvement in the statistical performance
indicators (Tables 1, 2).

4.1.2 GRNN model
The model training and testing were carried out for both study

locations. GRNN has relatively few hyperparameters, with the
smoothing parameter (spread) being the primary one influencing
performance. In our case, we selected the spread parameter using a
trial-and-error approach combined with performance evaluation on
a validation set. Due to the simple architecture and the model’s
robustness to small variations in spread, hyperparameter
optimization will not provide a significant advantage and was
therefore not used.

In the training phase model was run with varying numbers of
trials ranges 250,000 to 5,000,000. Tables 3, 4 show the training and
testing of the GRNNmodel for Mangla Dam andMarala Headworks

respectively. Multiple model iterations were performed and
evaluated, to select the best fit model for future forecasting of
inflows. We studied the impact of several iterations on model
prediction accuracy and observed that in the case of Mangla
Dam lesser iterations showed better model precision as compared
to Marala Headworks which showed satisfactory results in the case
of higher iterations. Moreover, this trend in iterations indicated the
influence of seasonality in historic time series data during training as
depicted in Figure 3. The selected model with iterations 250,000 for
Mangala Dam (Table 3) and 5,000,000 for Marala Headworks
(Table 4) outperforms the other models’ scenarios during
training. The statistical indicators for selected models are
12.09 and 14.32 for RMSE, 0.7240 and 0.8050 for NSE, and
0.8511 and 0.8974 for R2. Moreover, testing (2015–2020) of both
selected models showed improved results regarding the statistical
performance indicators (Tables 3, 4).

TABLE 1 Calibration and validation of ARIMA (p, d, q) model for
Mangla Dam.

Model ARIMA model (p, d, q) RMSE NSE R2

Calibration (1966–2014)

S-1 (1,0,1) 10.2522 0.8086 0.9026

S-2 (4,0,2) 10.2507 0.8087 0.9028

S-3 (5,0,3) 10.2402 0.8091 0.9029

S-4 (6,0,4) 10.2118 0.8102 0.9037

S-5 (1,1,1) 10.3414 0.8053 0.9023

S-6 (4,1,2) 10.3095 0.8065 0.9042

S-7 (5,1,3) 10.3002 0.8069 0.9046

S-8 (10,1,8) 9.4510 0.8374 0.9163

S-9 (13,1,13) 9.1191 0.8486 0.9214

S-10 (37,1,21) 9.0146 0.8521 0.9231

Validation (2015–2020)

S-10 (37,1,21) 6.6532 0.8947 0.9465

TABLE 2 Calibration and validations of ARIMA (p, d, q) model for Marala
Headworks.

Model ARIMA model (p, d, q) RMSE NSE R2

Calibration (1966–2014)

S-1 (1,0,1) 16.9151 0.7304 0.8597

S-2 (1,1,1) 17.1302 0.7235 0.8595

S-3 (3,1,3) 17.0470 0.7262 0.8621

S-4 (31,1,30) 13.8290 0.8198 0.9055

S-5 (1,2,1) 17.1303 0.7235 0.8600

Validation (2015–2020)

S-4 (31,1,30) 7.9688 0.915 0.9554
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4.1.3 MLFN model
The hyperparameter optimization in fuzzy systems as in MLFN

Model can be computationally intensive with marginal gains,
especially when the model already demonstrates acceptable
performance, therefore hyperparameter optimization was not used.

Table 5, 6 presented the training of theMLFNmodel with a variety
of combinations of hidden layers with varying numbers of nodes and
testing of selectedmodels for both stations. In the training phasemodel
was run for hidden layers ranging from 1 to 2 and several nodes
ranging from 2 to 10 in the respective hidden layers. Althoughmultiple
combinations were run, only the model scenarios with satisfactory
results are presented in Tables 5, 6. The selected models based on
statistical performance indicators are highlighted in these tables. In the
case of Mangla Dam, the selected model with two layers coupled with
4 nodes in the first layer and 10 nodes in the second layer outperformed
others with values of 12.54, 0.7168, and 0.8466 for RMSE, NSE, and R2

respectively. For Marala Headworks, a selected model with two layers
coupled with 2 nodes in each outperformed the other models’
combinations with values of 13.61, 0.8177, and 0.9043 for RMSE,

NSE, and R2 respectively. Moreover, testing (2015–2020) of both
selected models showed satisfactory results.

4.2 Flow forecasting

Most of the forecasting models condition the forecast based on
previous observations. Like in ARIMA you are predicting future
values based on 1. Past observations (AR part) 2. Past forecast errors
(MA part) and 3. Differenced values if the original data is not
stationary. Similarly, the AI techniques also conditions on past
observations while forecasting.

TABLE 3 Training and testing of GRNN model for Mangla Dam.

Model Iterations RMSE NE R2

Training (1966–2014)

S-1 250,000 12.09 0.7240 0.8511

S-2 500,000 12.95 0.6966 0.8348

S-3 1,000,000 12.80 0.7119 0.8439

S-4 2,000,000 12.27 0.7214 0.8497

S-5 3,000,000 12.76 0.7043 0.8396

S-6 4,000,000 12.78 0.7067 0.8409

S-7 5,000,000 12.76 0.7059 0.8405

Testing (2015–2020)

S-1 250,000 11.45 0.7301 0.8772

TABLE 4 Training and testing of the GRNN model for Marala Headworks.

Model Iterations RMSE NE R2

Training (1966–2014)

S-1 250,000 15.02 0.7984 0.8937

S-2 500,000 14.75 0.8016 0.8955

S-3 1,000,000 14.34 0.8009 0.8951

S-4 2,000,000 14.89 0.7951 0.8918

S-5 3,000,000 14.49 0.8020 0.8957

S-6 4,000,000 15.35 0.7850 0.8862

S-7 5,000,000 14.32 0.8050 0.8974

Testing (2015–2020)

S-7 5,000,000 12.40 0.8204 0.9055

TABLE 5 Training and testing of the MLFN model for Mangla Dam.

Model Nodes in hidden
layers

RMSE NE R2

Training (1966–2014)

S-1 (2,2) 12.61 0.7141 0.8450

S-2 (2,4) 12.91 0.7048 0.8395

S-3 (2,6) 13.08 0.7074 0.8411

S-4 (4,6) 12.89 0.7022 0.8380

S-5 (4,10) 12.54 0.7168 0.8466

S-6 (6,2) 12.91 0.7051 0.8397

S-7 (10,2) 12.78 0.7075 0.8411

S-8 (10,4) 12.98 0.7020 0.8378

S-9 (10,10) 13.07 0.7037 0.8389

Testing (2015–2020)

S-5 (4,10) 11.67 0.6784 0.8348

TABLE 6 Training and testing of the MLFN model for Marala Headworks.

Model Nodes in hidden
layers

RMSE NE R2

Training (1966–2014)

S-1 (2,2) 13.61 0.8177 0.9043

S-2 (2,4) 15.19 0.7921 0.8900

S-3 (2,6) 14.89 0.7903 0.8890

S-4 (4,6) 14.53 0.8036 0.8964

S-5 (4,10) 14.70 0.7968 0.8926

S-6 (6,2) 14.53 0.8022 0.8956

S-7 (10,2) 14.67 0.7966 0.8925

S-8 (10,4) 14.70 0.7998 0.8943

S-9 (10,10) 14.02 0.8079 0.8958

Testing (2015–2020)

S-1 (2,2) 12.86 0.7811 0.9025
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In this section, the prediction capabilities of the three selected
models are assessed. The inflows at both stations were predicted for
5 years 2020–2024 with a lead time of 1 year. Moreover, the
performance of each model was compared through statistical
indicators, and analyzed the model’s output qualitatively. Based
on the indicators and qualitative analysis results, the best-suited
model for each study station was selected and their forecasted results
were compared with the IRSA forecasted inflow time series.

4.2.1 Mangla dam station
To evaluate the prediction capability of ARIMA (37, 1, 21),

GRNN (250,000), and MLFN (4.10), we compared the predicted
inflows with observed inflows as shown in Figure 6. The Artificial
Neural Network (ANN) techniques, i.e., GRNN and MLFN
outperform the statistical method, i.e., ARIMA. Figure 6 shows
prominent performance differences among these. Specifically,
GRNN and MLF models predicted the peak flows more accurately
while the ARIMAmodel underestimated the peak flows except for the
year 2022. Regarding the model performance evaluation through
statistical indicators as shown in Figure 8a, RMSE and R2 factors
for GRNN improved by 6.37% and 6.62%, and for MLFN improved
by 3.30% and 6.43% respectively as compared to ARIMA. Moreover,
the difference between GRNN and MLFN based on statistical
indicators is insignificant. Based on better-predicting capability
among the ANN models, the GRNN model has been selected as
the best-fit model for the Mangla Dam station. Moreover, the low
flows recorded in the year 2022 may be attributed to the influence of
climate-induced impact in the catchment.

4.2.2 Marala headworks station
Figure 7 depicts the predicted inflows vs. observed inflows and

highlights the prediction capability of ARIMA (31, 1, 30), GRNN
(5,000,000), and MLFN (2.2). The Artificial Neural Network (ANN)
techniques, i.e., GRNN and MLFN have demonstrated better-
predicting capabilities than the statistical method, i.e., ARIMA.
The prominent performance difference among these is shown in
Figure 7. Specifically, GRNN and MLFN models predicted the peak
flows more accurately while the ARIMA model underestimated the
peak flows. Regarding the model performance evaluation through
statistical indicators as shown in Figure 8b, R2 factors for MLFN are
improved by 1.87%, and for the GRNN method are improved by
1.61% respectively as compared to ARIMA Model. The RMSE for
the ARIMA model was found similar to the ANN techniques while
qualitative analysis of Figure 7 shows ANN techniques better
predicted the high and low flows. Moreover, the predicted flows
by GRNN and MLFN are more comparable with observed flows
with fewer prediction errors. Therefore, the MLFN Model has been
declared as the best-fit model for specific study locations based on
better performance indicators than GRNN.

4.3 Comparison of best fit models with
IRSA forecast

A good forecastingmodel should demonstrate both robustness and
reliability. In this study statistical performance indicators are used to
choose the best model for each study location and selected model
results are compared with the forecasted results of IRSA as shown in

Figure 9, 10. IRSA forecasted the inflows using the probabilistic method
and the lead time is 6 months as stated by various research studies
(Charles et al., 2018; Umar, 2020). The Taylor diagram shown in
Figure 11 summarizes forecasts of selectedmodels with IRSA forecasted
results in terms of statistical performance indicators. Figure 9 shows the
comparison of GRNN forecast; IRSA forecast and observed inflows at
Mangla Dam. Figure 11a depicted that the GRNN forecast shows the
best correlation as compared with the IRSA probabilistic approach. In
the case of Mangla Dam, the RMSE and R2 factors for the GRNN
forecast are improved by 15.52% and 5.70% as compared to the IRSA
forecast. The detailed comparison of forecasted results of MLFN with
IRSA drawn against the observed flows of Marala Headworks is shown
in Figure 10. Figure 11B presents a Taylor diagram that summarizes the
statistical performance of the selected MLFN model compared to the
IRSA forecasted results. As depicted in Figure 11Bb the MLFN forecast
exhibits the best correlation performance, surpassing the IRSA
probabilistic approach. Specifically, for Marala Headworks, the
MLFN forecast shows a 4.91% reduction in RMSE and 3.16%
improvement in R2 values, indicating a significant enhancement in
predictive accuracy over the IRSA forecast.

5 Discussions

Musarat et al. (2021) predicted the flows at Kabul River using the
Automated ARIMA forecasting model. The flows in the Kabul River
are prone to extreme floods and therefore it is of extreme importance
for better predicting the flood water levels and assessment of flood
discharge. The forecasted flows were assessed for their performance
with the observed flows using statistical performance indicators R2,
RMSE, MAE, and MAPE. Kerem (2005), studied the use of the
Generalized Regression Neural Networks (GRNN) model for
intermittent flow forecasting at three flow stations in the Thrace
region of the European part of Turkey. The GRNNmodel was found
superior to the traditional Feed-forward Back Propagation (FFBP)
Model in flow forecasting based on selected performance criteria. It
was found that GRNN does not forecast flows that are not physically
conceivable. Rauf et al., 2018 did a comparative analysis of three AI
models (Broyden-Fletcher-Goldfarb-Shannon, Conjugate Gradient,
and Back Propagation Algorithm) with four regression models for
streamflow forecasting in the Upper Indus Basin. The performance
of these models was evaluated by using mean bias error, NSE, R2, and
correlation coefficient. Long-term streamflow forecasting has been
made by using the best ANN Models.

Our study has evaluated inflow forecasting at Mangla Dam on the
Jhelum River and Marala Headworks on the Chenab River by using a
statical technique, i.e., ARIMA Model, and two Artificial Intelligence
(AI) techniques, i.e., GRNNModel andMLFNModel. The prediction
capabilities of the three selected models were assessed using statistical
performance indicators R2, RMSE, and NSE, and based on these
performance indicators and qualitative analysis results, the best-suited
model for each study station was selected. Our study has revealed that
AI models have outperformed the traditional statistical ARIMA
model when it comes to better flow forecasting capability. The
RMSE and R2 in the case of ANN models are improved in the
range of 3.30%–6.37% and 1.61%–6.62% respectively as compared to
the ARIMAmodel. Our study has revealed that the GRNNmodel and
MLFN model are the best-fit models for Mangla Dam on the Jhelum
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River and Marala Headworks on the Chenab River respectively.
Charles et al. (2018) assessed the streamflow forecasting at Tarbela
Dam on the Indus River and Mangla Dam on Jhelum using the
Bayesian Joint Probability (BJP) statistical approach, using climate

indices and antecedent flow conditions as predictors. In the case of
Mangla Dam the author has compared the BJP forecasts with (1)
Ensemble Streamflow Predictions (ESPs) from the snowmelt runoff
model (SRM), (2) a Hybrid approach using BJP with SRM-ESP

FIGURE 6
Comparison of predicted flow with the observed flows at Mangla Dam (year 2020–2024).

FIGURE 7
Comparison of predicted flow with the observed flows at Marala Headworks (year 2020–2024).

FIGURE 8
Statistical performance indicators of ARMIA, GRNN, and MLFN for (a) Mangla Dam and (b) Marala Headworks study locations.
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forecast. The BJP models were run with varying combinations of
predictors considering the antecedent flow conditions.

For assessing the performance of flow prediction models the
author has used skill scores based on the percentage reduction in the
inter-quartile range (IQR) between the observed flow historical
distribution and the forecasted flow distribution. The IQR is the

measure of statistical dispersion which is the spread of the data and
the skill scores were defined from http://www.bom.gov.au/water/ssf/
faq.shtml. The performance of the BJP forecast in the case of Tarbela
is poor as compared with forecasts at Mangla Dam and that can be
attributed to the differences in flow generation mechanism. IRSA
which is currently using a probabilistic method for the inflow

FIGURE 9
Comparison of predicted flows by GRNN Model and IRSA model with the observed flows at Mangla Dam (year 2020–2024).

FIGURE 10
Comparison of predicted flows by MLFN Model and IRSA model with the observed flows at Marala Headworks (year 2020–2024).

FIGURE 11
Comparative analysis of statistical performance indicators in case of (a) IRSA vs. GRNN for Mangla Dam and (b) IRSA vs. MLFN for Marala Headworks.
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forecasting at rim stations of the Indus River basin can also employ
the BJP forecasting model. However, assessment of the results of the
BJP model forecast would require informed and trained water
professionals in Pakistan (Pagano and Hartmann, 2002; Ramos
et al., 2013; Rayner et al., 2005; Sarah and Casey, 2015).

Our study has focused on the single input variable of flow
discharge for inflow forecasting and has assessed the performance
of inflow forecasting from the best suitable models at Mangla Dam on
the Jhelum River and Marala Headworks on the Chenab River. In
particular, when it comes to comparison with forecasted inflows of
IRSA, the statistical indicators for ANN models (GRNN and MLFN)
improved by an average of 4.43% in R2 and 10.22% in RMSE,
indicating a significant enhancement in predictive accuracy over the
IRSA forecast. To enhance the inflow forecasting accuracy, IRSA may
integrate the results from the current study into existing models.

6 Conclusion

This study investigates the inflow forecasting for Mangla Dam and
Marala Headworks using the latest ANN models (GRNN and MLFN)
and traditional statistical method (ARIMA) focusing on the forecasting
challenges of IRSA using single input variables. Concerning the
challenge of the single inflow variable, a comparative analysis was
performed among forecasted inflows by GRNN, MLFN, ARIMA, and
IRSA. The important conclusions are drawn as follows:

• Substantial improvement has been observed in the forecasting
of inflows at both study locations using ANN Models
compared to the statistical methods.

• The average RMSE and R2 for ANN models obtained by
GRNN and MLFN are improved by 4.84% and 4.15%
compared to the ARIMA model. Moreover, qualitative
analysis illustrated that ANN models are more capable of
predicting low and peak flows with better accuracy.

• In particular, when it comes to comparison with forecasted
inflows of IRSA, the statistical indicators for ANN models
(GRNN and MLFN) improved by an average of 4.43% in R2

and 10.22% in RMSE, indicating a significant enhancement in
predictive accuracy over the IRSA forecast.

Despite achieving high prediction accuracy by using ANNmodels
and outperforming the existing methods, future research may focus
on exploring alternative integrated approaches. To enhance the inflow
forecasting accuracy, IRSA may integrate the results from the current
study into existing models. This study shows that ANN models have
better accuracy in predicting inflows compared to traditional
forecasting methods and compel water managers to adopt the
latest techniques for sustainable water resource management.
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