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In recent years, the emergence of sensor technologies has highlighted the key
role of in situ soil moisture measurement in various hydrological, agricultural, and
ecological applications. However, the widespread adoption of technology is
hindered by the costs and accessibility of existing sensor devices. This study
aims to bridge a significant research gap by designing an economical and user-
friendly handheld device, a Low-Cost Soil Moisture (LCSM) sensor ensuring
reliable in situ measurements. This study has two main objectives: developing
the LCSM sensor and establishing robust calibrations to ensure accuracy.
Calibration experiments were conducted to develop generalized and soil-
specific calibrations for the LCSM sensor across various field sites,
encompassing diverse soil types (mineral-rich and forest organic soil) and land
cover conditions. A total of 408 soil samples were collected from 83 locations
(70 mineral soil sites- 301 samples; 13 organic soil sites- 107 samples) for the
LCSM sensor calibration. All samples were collected from the same general fields
during sampling period with similar experimental conditions. At each location,
three LCSM readings were taken in a triangular configuration, and a gravimetric
sample was extracted from the center using a coring method. The arithmetic
average of the three sensor readings was used as the representative value for
calibration against the corresponding gravimetric measurement, ensuring
consistency and reliability. For generalized calibration in mineral soils, we
observed an overall Root Mean Square Error (RMSE) of 0.035 m3m−3 and a
bias of <0.001 m3m−3 along with a strong correlation (R = 0.90). Conversely,
soil-specific calibration for mineral soils yielded a lower RMSE of 0.031 m3m−3 for
loam soil and 0.034 m3m−3 for sandy loam soil. In the context of forest organic
soil, the LCSM sensor exhibited a higher RMSE of 0.078 m3m−3 with a moderate
correlation (R = 0.80). Furthermore, the comparison of calibrated LCSM sensor
soil moisture readings with commercially available handheld soil moisture
sensors (HydraProbe and ThetaProbe) demonstrated a strong agreement, with
a high correlation (R > 0.90) and minimal difference in soil moisture
measurements. These statistical findings highlight that the LCSM sensor
measures soil moisture as accurately as commercially available sensors,
strengthening its credibility and reliability for diverse conditions.
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1 Introduction

Accurate soil moisture measurements are crucial for
hydrological, agricultural, and ecological uses. In agriculture, it
guides irrigation and crop water estimates (Datta and
Taghvaeian, 2023; Dong, 2023; Singh and Das 2022), while
studies also link soil moisture to crop growth and yield (Deryng
et al., 2011; Mane and Kadam, 2021). From a hydrological
perspective, soil moisture aids in understanding rainfall-runoff
dynamics (Rowlandson et al., 2013), while ecological context, it
plays a vital role in shaping the diversity and structure of dryland
ecosystems. Despite constituting a small proportion of soil moisture
with the hydrological cycle (0.05%), it significantly influences
precipitation distribution, energy balance, and microbial activity,
impacting processes like nitrification and CO2 production. Given its
extensive implications, continuous monitoring of soil moisture is
essential. This importance becomes even more pronounced in the
context of climate change and extreme weather events, which
emphasize the need for ongoing observation to understand soil
moisture’s effects on hydrology, agriculture, and ecology (Seo et al.,
2025; Yao et al., 2025). Hence, the measurement of soil moisture is
becoming increasingly necessary.

Nevertheless, for accurate soil moisture measurement, the
gravimetric soil moisture method remains the most reliable
approach in various hydrological, agricultural, and ecological
applications (Gardner, 2018). However, it is important to note
that the gravimetric soil moisture measurement includes tedious
steps and requires substantial physical effort, being both labour and
time-intensive (Singh et al., 2021; Dong et al., 2020; Mwale et al.,
2005). In fact, the gravimetric method is not able to provide real-
time soil moisture measurements. Thus, in situ soil moisture
measurements become practically infeasible for large field and
regional/watershed-scale studies (Singh et al., 2019), prove
destructive when employed in a controlled environment, and
impossible for continuous soil moisture monitoring in agriculture
(Mwale et al., 2005; Singh et al., 2021).

Introducing soil moisture sensors has revolutionized themethod
of indirectly measuring volumetric water content (VWC), effectively
overcoming the limitations associated with directly measuring soil
moisture (Abdulraheem et al., 2024; Mane et al., 2024). Soil moisture
sensors use various principles to estimate soil moisture, such as
neutron, electromagnetic, electromagnetic induction (Badewa et al.,
2018; Basterrechea et al., 2021), tensiometric, hygrometric, and
remote sensing processes (Nagahage et al., 2019). Among them,
electromagnetic-based dielectric soil moisture sensors are highly
favoured due to their ease of use and safety. The popular dielectric
soil moisture sensors like HydraProbe, ThetaProbe, and TDR
100 are commonly employed for measuring VWC. In the past
several research studies (Kim et al., 2020; Rowlandson et al.,
2013; Singh et al., 2021; Tehrani et al., 2023; Vaz et al., 2013)
have demonstrated the reliability of these sensors, reported a Root
Mean Square Error (RMSE) of less than ± 0.04 m3m−3, indicating a
good level of accuracy in soil VWC measurements. Nevertheless,
achieving even higher accuracy is recommended through site-
specific or soil-specific calibrations (Datta and Taghvaeian, 2023;
Mane et al., 2024).

As a result, in recent years, there has been a rising demand for
soil moisture sensors, primarily driven by the need to monitor the

spatial and temporal distribution of soil moisture at a small scale as
well as in larger areas or regions, including watersheds and
agricultural fields (Ochsner et al., 2013; Tehrani et al., 2023).
This surge in demand has led to the emergence of innovative
approaches, some of which involve citizen participation in data
collection and reporting to effectively monitor soil moisture over
wide areas (Paul and Buytaert, 2018). Citizen science programs such
as NASA’s Global Learning and Observations to Benefit the
Environment (GLOBE) and the Community Collaborative Rain,
Hail and Snow Network (CoCoRaHS) are increasingly
incorporating low-cost sensor observations into their
environmental monitoring efforts. GLOBE, one of the longest-
running international citizen science platform, engages students,
educators, and community volunteers to participate in gathering in
situmeasurements of environmental parameters (i.e., soil moisture)
at quality levels acceptable for scientific research (Butler and
MacGregor, 2003). CoCoRaHS similarly mobilizes volunteers to
monitor precipitation across the United States, while in Australia,
the Terrestrial Ecosystem Research Network (TERN) links local
communities with national-level ecosystem research. By
participating in these initiatives, citizen scientists not only
enhance our understanding of hydrological processes and
agricultural sustainability but also gain a deeper sense of
belonging, responsibility, and collective action toward climate
resilience. Such engagement fosters environmental awareness,
strengthens communities to address hydrological and agricultural
challenges.

However, when addressing agriculture and hydrology,
monitoring soil moisture remains less advanced compared to
other disciplines (Buytaert et al., 2014). This is due to the
difficulties in comprehending soil moisture data easily, the
necessity for frequent measurements, and the costs and
complexity associated with utilizing advanced and expensive tools
(Kukal et al., 2020; Maraveas et al., 2022). Nonetheless, recent
technological advancements have significantly improved the in
situ measurement of soil moisture over the past decade. Despite
these advancements, the availability of affordable devices that can be
easily adopted by citizen scientists and farmers remains a challenge.
In the agriculture industry, cost constraints are a significant concern.
In the era of precision agriculture, current efforts are focused on
integrating low-cost sensors with smartphones, which are
extensively connected to the internet and feature user-friendly
applications (Mane et al., 2019; Ullo and Sinha, 2020). These
low-cost soil moisture sensors will play a crucial role in precision
agriculture by allowing farmers to monitor their fields efficiently
without incurring substantial expense. Additionally, low-cost
sensors will play a pivotal role in facilitating the participation of
citizen scientists and farmers in soil moisture monitoring.

The integration of citizen research with the Low-Cost Soil
Moisture Measurement (LCSM) sensor shows promising
potential for advancing soil moisture measurement (Paul and
Buytaert, 2018; Robinson et al., 2008). However, assuring the
accuracy and performance of these LCSM sensors is crucial. A
robust calibration of the LCSM sensor is a critical step in achieving
accurate soil moisture measurements. This is especially important
due to the significant variability of soil properties within the same
area, including type and texture (Parvin and Degré, 2016;
Rowlandson et al., 2013; Spelman et al., 2013). This variability in
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soil properties necessitates the development of soil-specific
calibration of LCSM sensor to account for the unique
characteristics of the soil being measured. Nevertheless,
conducting soil-specific calibration for larger areas can be
challenging and time-consuming (Singh et al., 2021).
Consequently, in many cases, a general calibration is employed,
aiming to provide acceptable accuracy levels for various soil types
worldwide. While general calibration may not capture the specific
characteristics of each soil type, it offers a practical solution for
achieving reasonable accuracy across a wide range of soil conditions
(Singh et al., 2021).

The merging of citizen science with the advancements in
sensor technologies provides a prospect to examine how they
might be integrated into the monitoring of soil moisture. While
previous studies have predominantly concentrated on the
automation of irrigation and sensor-based approaches in
agricultural water management (Datta and Taghvaeian, 2023;
Hamami and Nassereddine, 2020), there is a notable lack of field
evaluation and field calibration of low-cost sensors, particularly
handheld soil moisture measurement sensors, in especially
organic soil (Nagare et al., 2011; Vaz et al., 2013). Several
research studies on the performance evaluation and calibration
of low-cost sensors in mineral soil have been conducted in
laboratory settings using low-cost capacitive soil moisture
sensors (Adla et al., 2020; Bogena et al., 2017; Schwamback
et al., 2023). Very few studies have used Frequency Domain
Reflectometry (FDR) or Transmission Line Oscillometer (TLO)-
based (Briciu-Burghina et al., 2022; Li et al., 2022) or any other
type of low-cost sensors (Adla et al., 2024) and those that have
still lack testing across multiple locations and the full spectrum of
soil moisture variability (Pramanik et al., 2022; Songara and
Patel, 2022). These studies recommend standardizing low-cost
sensors at the field scale to achieve robust estimates of
soil moisture.

Despite the potential advantages of low-cost sensors, there has
been a notable lack of research comparing these low-cost sensors
with commercially available sensors in diverse field conditions.
Furthermore, there is a lack of field calibration and performance
evaluation, particularly for forest organic and mineral soils.
Calibrating sensors in organic soils is especially challenging due
to their high porosity, high organic matter content, which
significantly influences dielectric permittivity, and their large
specific surface area. Much of the existing research and
calibration efforts for low-cost sensors have focused primarily on
mineral soils, often overlooking or inadequately addressing organic
soils. Although some studies, such as those by Bircher et al. (2016)
and Kassaye et al. (2019), have conducted calibrations for sensors
like the Decagon 5TM and the ThetaProbe in organic soils, further
research is still necessary to fully understand low-cost sensor
performance and improve calibration methods. This research gap
creates uncertainty regarding the reliability of these sensors under
diverse field conditions. Consequently, both farmers and researchers
often express scepticism about using low-cost soil moisture sensors.
Hence, it is imperative to understand how accurate the low-cost
sensors are in real-world field conditions, indicating a significant gap
in the current knowledge and application of these technologies.
Addressing these significant gaps in current knowledge and
application, this study aims to following objectives:

• Development of an affordable, durable, and user-friendly
handheld LCSM sensor, complemented by a simple mobile
application to enable widespread use by farmers and citizen
scientists globally.

• Establishing generalized and soil-specific calibrations for the
LCSM sensor to ensure reliable accuracy in the VWC
measurements across diverse soil types.

• Comprehensive performance evaluation of the LCSM sensor
accuracy and reliability with commercially available and
widely used handheld soil moisture sensors.

The overarching goal of this study is to develop and provide an
affordable, reliable low-cost sensor that enables accurate in situ
VWC measurements across diverse soil types. By advancing our
understanding of soil moisture dynamics, this low-cost sensor aims
to support the implementation of sustainable land
management practices.

2 Study area

To achieve a robust calibration for the LCSM sensor, a series of
field experiments were carried out across a range of sites,
encompassing a variety of soil types and land cover conditions.
These sites included the agricultural research farms of Michigan
State University (MSU), USA, characterized by mineral-rich soils, as
well as the SMAP Validation Experiment in 2022 (SMAPVEX 22)
field campaign, which primarily focused on forest organic soil of
Millbrook and Massachusetts areas of USA. The selection of field
sites was guided by web-based soil survey maps of USDA (Web Soil
Survey, 2022), focusing on fields with relatively uniform soil texture
and organic matter content. Additionally, we have selected different
fields with varying soil types to have a spatial variability in soil
properties for developing robust generalized calibration. The
geographical locations of these experimental sites are illustrated
in Figure 1, while a summary is presented in Table 1 along with
corresponding soil types and texture information. Detailed
descriptions of the experimental sites are provided in the
subsequent subsections.

2.1 Agricultural field sites

Extensive soil moisture sampling was conducted across various
agricultural farms associated with MSU in the USA as shown in
Figure 1. The study encompassed two public farms with crops of
soybean and corn along with two research farms 1) the MSU
agronomy farm, and 2) the W. K. Kellogg Biological Station
(KBS) agricultural research farm as illustrated in Figure 1b. The
public agricultural farms are situated in distinct locations of N 42°

00′37.2″, W 85° 32′57.3″, and N 42° 04′24.0″. W 85° 09′17.8″. The
MSU Agronomy Farm is located to the south of the main university
campus, East Lansing (N 42° 42′ 37.519″, W 84° 28′ 16.849″), while
the KBS research farm is located between Kalamazoo and Battle
Creek, Michigan (N 42° 24′ 18.761″, W 85° 24′ 4.468″) and about
65 miles west of MSU campus. These agricultural farms were
selected to conduct extensive soil moisture sampling within
specific fields to facilitate the calibration of the LCSM sensor

Frontiers in Environmental Science frontiersin.org03

Mane et al. 10.3389/fenvs.2025.1590662

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1590662


FIGURE 1
Geographical locations of the experimental sites. (a) Overview of the sites across the USA where LCSM sensor calibration experiments were
executed. This includes (b) the agricultural farms characterized bymineral-rich soils of Michigan State University (MSU), as well as SMAPVEX 22 forest sites
with organic soil (c) Millbrooks and (d) Massachusetts study site (e) A zoomed view of public and research agricultural farms of MSU highlighting the
selected fields for sampling.
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device. A view of selected fields for sampling in each agricultural
farm is shown in Figure 1e. A total of two and four large agricultural
fields were chosen for intensive sampling in the public farms and
MSU’s KBS research farms, respectively (see Figure 1e). Conversely,
a total of sixteen smaller agricultural fields were selected for
sampling at the MSU agronomy farm (see Figure 1e).

The selected agricultural fields consist of varying soil textures,
with sandy loam dominant in public farms, loam in the MSU KBS
farm, and a combination of loam and sandy loam in the MSU
agronomy farm. The predominant crops in these agricultural fields
are primarily corn and soybean. The field study takes place from
June to October (2022–2023), with a mean temperature ranging
from 11°C to 22°C and relative humidity between 63% and 80%. To
capture the diverse range of soil wetness conditions, ranging from
dry to wet and back to dry, sampling was conducted at different
periods throughout the years 2022 and 2023, considering both
cropping and fallow land conditions.

2.2 Forest field sites

NASA’s SMAPVEX 2019-2022 was conducted at two distinct
forest sites located in New York and Massachusetts, USA. The core
objective of this experiment was to collect both remote sensing and
in situ soil moisture data to facilitate the retrieval and validation of
soil moisture using microwave measurements within temperate and
boreal forests. Exploiting the opportunities presented by the
SMAPVEX 22 field campaigns held in April-May and July-
August of 2022, measurements were collected concurrently using
the developed LCSM sensor, commercially available HydraProbe
sensor, and gravimetric sampling. For this purpose, a total of three
sites within the Millbrook (MB) study site and ten sites within the
Massachusetts (MA) study site were chosen for sampling, as
depicted in Figures 1c,d. These sites were selected specifically
within forested areas characterized by organic soil composition.
The mean relative humidity of the study area ranged from 80% to
90% and the mean monthly temperature ranged from 20°C to 22°C.
The measurements collected during the SMAPVEX 22 campaign
played a pivotal role in calibrating the LCSM sensor for organic soil,
as well as in evaluating its performance against commercially
available soil moisture sensors.

3 Material and methods

3.1 Development of LCSM sensor

3.1.1 Working principle
A large number of commercial soil moisture sensors are

available, offering accurate measurements of soil moisture levels.
Out of these, resistance-based soil moisture sensors stand out as
cost-effective, responsive to changes in water content, and easy to
incorporate into do-it-yourself projects. However, resistance-based
sensors lack reliability in producing soil VWC measurements for
scientific purposes (Sunil Kumar et al., 2021). The most popular and
scientifically tested method for measuring soil moisture, found in
numerous studies, is dielectric permittivity-based soil moisture
sensing. This includes techniques such as Time Domain
Reflectometry (TDR), capacitance sensor, TLO, and FDR. The
advantages and disadvantages of each of these sensor
technologies are reviewed by Mane et al. (2024) and Kukal et al.
(2020). They also reported the cost of sensors and sensor
dataloggers, along with their accuracy in soil VWC
measurements. While all the soil moisture sensors have their own
advantages and disadvantages, they all operate within an acceptable
accuracy of ± 0.040 m3m−3 with proper calibration. For this study,
the objective is to develop an LCSM sensor to measure soil moisture
with acceptable accuracy. For developing the LCSM sensor, a low-
cost soil moisture probe we found, based on the dielectric
permittivity principle, utilizes the TLO technique.

The TLO technique-based soil moisture probe has the potential
to measure soil moisture content accurately and reliably (Caldwell
et al., 2018). The TLO sensor consists of a specialized probe designed
for insertion into the soil, as shown in Figure 2. Within this sensor,
an electromagnetic (EM) wave with a frequency typically below
60 MHz is generated and transmitted into the surrounding soil. As
the EM wave propagates through the soil, it encounters variations in
the real component of soil dielectric permittivity or dielectric
constant, denoted as ε. Dielectric permittivity is an electrical
property of the soil that is highly influenced by the soil moisture
content. Notably, ε for water is significantly higher ~80 than for air
(ε is ~1) or for soil minerals or dry soil (ε ranging from 2 to 5). In a
soil-water mixture, where the main components that change are
water and air, any change in soil moisture directly impacts the ε of

TABLE 1 Summary of experimental sites, including geographical locations, soil types, sampling method, and number of samples collected during field
experiment.

Sr
No

Soil
type

Experimental
site

Geographical location Soil
texture

Sampling method Number of
samplesa

1 Mineral Public farm 1 N 42° 00′37.2″, W 85° 32′57.3″ Sandy loam Cylinder core method for bulk density
and Gravimetric soil sampling for soil
sampling

35

Public farm 2 N 42° 04′24.0″. W 85° 09′17.8″ Sandy loam 16

MSU Agronomy farm N 42° 42′ 37.519″, W 84° 28′ 16.849″ Sandy loam
and Loam

130

W.K KBS N 42° 24′ 18.761″, W 85° 24′ 4.468″ Loam 120

2 Organic Millbrook and
Massachusetts

Refer to Supplementary Table S1 for
geographical locations details of
13 different sites

Forest
Organic

Excavation or USDA method for bulk
density measurement and gravimetric
method for soil sampling

107

Where, MSU, Michigan State University; W.K KBS, W. K. Kellogg Biological Station (KBS).
aEach sample consists of three measurements.
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the soil-water mixture. After interacting with the surrounding soil,
the EMwave influenced by the soil-water mixture reflects toward the
sensor unit. This reflected wave carries information about the ε and
is typically translated into a voltage signal. Simultaneously, a data
logger records the associated voltage changes, which directly
correspond to variations in the soil moisture content (Skierucha
and Wilczek, 2010). This technology is highly effective in
quantifying soil moisture levels due to its sensitivity to changes
in soil dielectric permittivity, which, in turn, are indicative of
variations in soil moisture content.

3.1.2 LCSM sensor design
The LCSM sensor was carefully designed to prioritize simplicity,

affordability, and ease of use for farmers and citizen scientists. The
LCSM sensor consists of several key components including the TLO
probe (Beijing Guoxinhaiyuan Tec. Co. Ltd. CH), data acquisition
unit, user interface, and power supply as illustrated in Figure 3. Each
of these components plays a specific role in the process of measuring
soil VWC. The device’s compact size, lightweight build, and
straightforward user-friendly interface make it highly accessible
for a wide range of applications in agricultural and hydrological
research. In our pursuit of cost-effectiveness without sacrificing
measurement accuracy, we placed significant importance on
selecting affordable and reliable components for the entire sensor
design. Notably, we chose to utilize a TLO probe sourced from
Beijing Guoxinhaiyuan Tec. Co. Ltd. The TLO probe operates
optimally within a temperature range of −40°C to +80°C and is
suitable for soils with a salinity level of less than 10 dS/m and
pH below four and has operating frequency of 50 MHz. Because of

this lower frequency, the probe may exhibit heightened sensitivity to
salinity and temperature variations compared to higher-frequency
devices, potentially affecting measurement accuracy under certain
field conditions. However, this study tested the TLO probe within
the manufacturer’s recommended parameters. Thus, more extensive
research across a wider range of conditions is necessary to fully
assess its performance. The probe has an overall length of 126 mm,
including three metallic rods each 60 mm long. It requires a power
supply of 5–24 V DC, with a power consumption of approximately
0.4 W during sample collection. The response time of the probe is
less than 1 s. This TLO probe is remarkably cost-effective, priced at
only 12 USD per unit. The TLO technology-based probe leverages
the transmission line oscillator principle, employing three metallic
rods for robust calibration in measuring soil VWC. Further details
regarding the other key components of the LCSM sensor are
outlined in the following subsections.

3.1.2.1 Data acquisition unit and sensor hardware
TheTLO sensor is controlled by a data acquisition unit developed at

the NASA Jet Propulsion Laboratory (JPL), California Institute of
Technology, USA. This unit consists of both hardware, specifically a
Programmable Circuit Board (PCB), and software that operates
through a mobile application. The PCB is powered by a 9 V battery
and is designed to simplify the sensor’s architecture, eliminating the
need for internal wiring within the device container. The
microcontroller used in the PCB is the ATmega328p, and it is
powered by 9 V batteries. The data from the PCB is converted
using FT321Xs, which acts as a USB to serial converter. The
NRF8001 facilitates the connection between Arduino and the

FIGURE 2
Working principle of Low-Cost Soil Moisture (LCSM) sensor.
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Android or Apple OS device via Bluetooth. Figure 4 also provides
details on the ports used for connecting the TLO sensors. The receiver
captures both the magnitude and phase of the reflected EM wave,
influenced by the soil-water mixture, which carries information about
the soil dielectric permittivity (ε). These measurements subsequently
need to undergo a sophisticated calibration process to accurately derive
soil moisture content (Seyfried et al., 2005). Recognizing the critical role
of calibration procedures in ensuring the reliability and accuracy of soil
moisture measurements, this study conducts a detailed analysis to
develop a robust calibration process. To provide user-friendly access
to these soil VWC measurements, the device is typically paired with a
straightforward mobile application (mobile app). The mobile/
smartphone app reads observations from the PCB and converts
them into soil VWC values using the calibrations provided within
the app. The mobile/smartphone app assists users in conveniently
viewing real-time soil VWC data displayed on their screens and storing
the measured dataset (see Figure 3). This user interface enhances the
device usability and accessibility, enabling individuals tomake informed
decisions related to soil moisture management.

In addition to soil moisture measurement, the device has the
potential to connect various sensors, such as a humidity sensor, air
and soil temperature sensor, and solar radiation sensor, to measure
basic meteorological parameters. These parameters can be valuable in

estimating evapotranspiration. Figure 4 also provides details on the
various ports used for connecting these sensors. The cost of producing
the PCB was ~50 USD for a limited number of units, and it is expected
that the cost may decrease with higher production quantities.

3.1.2.2 User interface
A simple interface has been developed to provide user-friendly

access to measurements obtained through the LCSM sensor device
as shown in Figure 5. The device is typically paired with a mobile app
developed at NASA JPL, USA and it is available on Google Play Store
(LcSM mobile app: https://shorturl.at/bgO02). The mobile
application utilizes Bluetooth connectivity to establish a seamless
connection with the PCB, which serves as the data acquisition unit.
This enables users to wirelessly record the voltage changes
(associated with dielectric permittivity that is directly influenced
by soil moisture) on their smartphones or tablets. This mobile app is
available exclusively for both Android and iOS devices. The mobile
app enhances the usability and functionality of the device by
providing a user-friendly and intuitive interface, along with
additional features to facilitate data management and analysis
(see Figure 5). These features include the selection of appropriate
calibration (i.e., generalized or soil-specific), various data storage
options, real-time visualization, and more.

FIGURE 3
The design of the handheld Low-Cost Soil Moisture (LCSM) sensor consists of several key components including the TLO probe, data acquisition
unit, user interface, and power supply.
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One of the key features of the mobile app is its ability to store data
along with corresponding latitude and longitude information and
export it to.txt and.csv files. This feature allows users to geotag their
soil moisture measurements, providing valuable spatial context for
future analysis and decision-making. Additionally, the application
offers the capability to save and display both the voltage output and
the corresponding soil moisture content. This flexibility allows users to
choose their preferred unit of measurement and visualize the data in a
way that suits their needs. Themobile application provides a convenient
interface for users to select the appropriate soil type as shown in
Figure 5. Additionally, we have incorporated functionality for location-
specific calibrations and the ability to add custom calibration
coefficients in addition to generalized calibration, to enhance soil
moisture measurement accuracy.

This feature empowers users to tailor the device’s measurements
to their specific requirements and ensures accurate soil moisture
assessments across a wide range of soil compositions.

The specifications and costs of each component used for this device
are detailed in Table 2. The current cost to build a LCSM sensor stands
at $80, which is well below the $100 threshold and the cost of various
commercial sensors. The cost details of commercially available soil
moisture sensors are outlined in Mane et al. (2024), Maraveas et al.
(2022) and Kukal et al. (2020). It is important to note that the LCSM
sensor is developed specifically for citizen scientists and farmers for
non-commercial purposes. Thus, the given cost does not include
manufacturing labor costs, profit margin, or additional expenses
such as promotion and servicing. The repair and servicing of the
developed LCSM sensor can be carried out by the users with

minimal hassle due to its simple design. Both the PCB and TLO
probe are easily made available components that can be assembled with
just three simple connections, ensuring that users can address any
potential issues swiftly. The device also includes a detailed manual that
comprehensively covers all repair and maintenance procedures. The
simple design and affordable cost make the developed LCSM sensor a
viable option for citizen scientists and farmers worldwide.

3.2 Calibration of LCSM sensor for accurate
soil VWC measurement

The LCSM sensor requires a robust calibration to accurately
convert recorded voltage, based on the soil-water mixture’s dielectric
permittivity into soil VWC. Calibration is a critical step in obtaining
accurate soil VWC readings. To achieve this, extensive field
experiments were conducted across diverse soil types and land
cover conditions as discussed in Section 2. These experiments
covered two distinct sites, each with specific soil categories such
as mineral soil and organic soil. Each soil category possesses unique
characteristics and necessitates specific considerations and sampling
methods for effective calibration. To establish a robust calibration
that ensures reliability and accuracy, sampling activities were carried
out across a range of sites, encompassing various soil textural classes
and soil wetness conditions. As detailed in Sections 2.1 and 2.2, the
experimental sites included agricultural farms with mineral-rich
soils and forested areas with organic soil. The sampling strategies
employed in these sites are described in the following sub-sections.

FIGURE 4
Programmable Circuit Board (PCB) illustrating the electrical circuitry, connectivity for various sensors and data acquisition.
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3.2.1 Sampling design in agricultural farms
Intensive soil sampling was conducted in twenty-two

agricultural fields, comprising two public farms and twenty
research farms affiliated with MSU, as detailed in Section 2.1.
This sampling effort encompassed 70 distinct locations, capturing
a wide range of soil textures and land cover conditions, with the
primary objective of establishing a robust calibration dataset. The

field experiments were carried out from June 2022 to June 2023 at
regular intervals. Throughout the field experiment, utmost care was
taken to achieve comprehensive coverage of soil wetness conditions,
encompassing the entire spectrum from dry to saturated and back to
dry as suggested by Singh et al. (2019).

Within each selected field, multiple sampling locations were
strategically chosen to capture spatial variability. Additionally, soil

FIGURE 5
A view of the mobile/smartphone application interface showcasing real-time measurements, selection of suitable soil types, custom calibration
options, and storage functionality.

TABLE 2 List of components and cost for the Low-Cost Soil Moisture (LCSM) sensor.

Description Part number Manufacturer/supplier Cost (USD)

PCB N.A. Michigan State University 50.00

TLO probe BGT-SM Beijing Guoxinhaiyuab Tec. Co. Ltd 12.00

9 V battery (×2) N.A. Duracell 3.20

Connectors Housing 28C6963 JST (Japan Solderless Terminals) 0.10

Plastic Enclosure 34M2409 BUD Industries 1.30

External Switch GRS-2011-2000 BUD Industries 1.00

9 V Battery Connector T-Type Amazon (any company) 1.00

14/2 Gauge Red Black Cable N. A Amazon (Tyumen) 0.20

Mobile application development and maintenance N.A. iOS and Android Play Store 11.25a

Total cost of the LCSM sensor 80.05 ≈ 80

aApple Store = $100/year + Google Play Store = $25 one-time → $125 total. Split across 100 devices → $1.25 each, and the mobile application development cost is 1000 USD., Split across

100 devices → $10 each.
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moisture samples were systematically collected from each sampling
location. The selection of the sampling locations was based on
careful consideration of the field’s area and topography. During
the field experiment the number of samples collected per site varied,
ranging from aminimum of two to a maximum of ten, depending on
the size of the field to cover the spatial variability in soil properties.
Following Singh et al. (2021), three measurements of the LCSM
sensor (in voltage) were acquired at each selected location, forming a
triangular configuration. Simultaneously, a gravimetric sample was
collected at the center of the triangle using a coring method, as
illustrated in a representative sampling design presented in Figure 6.
Collecting three samples from each location allowed us to account
for local spatial variability while ensuring a representative sampling
of the overall soil conditions.

As suggested by Singh et al. (2021), the arithmetic average of the
three measurements was considered a representative value
corresponding to the gravimetric sample. A similar protocol is
followed for measuring soil moisture content using widely used
commercially available handheld sensors such as HydraProbe
(Stevens Water Monitoring Systems, Inc. USA) and ThetaProbe
(Delta-T Devices, Ltd. UK). The corresponding soil VWC
measurements were recorded at various locations alongside the
LCSM to facilitate a comparison with commercially available and
widely used soil moisture sensors. A soil coring tool with a fixed
volume of 154.103 cm3 and a depth of 6 cm matching the sensing
depth of the TLO sensor, was employed to obtain gravimetric
samples (see Figure 6). The gravimetric soil moisture content on
a mass basis was determined using an oven-drying technique at a
temperature of 105°C for a duration of 48 h. Further, the gravimetric
soil moisture content on amass basis was converted into VWC using
dry bulk density estimated using the known volume of the soil
sample. Throughout the experiment, careful attention was devoted
to accounting for variations in both topography and land use to
ensure the accuracy and comprehensiveness of the results.

3.2.2 Sampling design in forest fields
The scarcity of literature regarding the influence of organic

matter on EM-based dielectric soil moisture sensor response was
observed by both Vaz et al. (2013) and Nagare et al. (2011). This
observation emphasizes the critical need to investigate the
relationship between dielectric soil moisture sensor response,

especially considering the prevalence of organic soils in natural
ecosystems and agricultural practices. Various research studies have
calibrated commercially available sensors such as ECH2O 5TE and
the Delta-T ThetaProbe specifically for organic soil (Bircher et al.,
2016; Nagare et al., 2011; Vaz et al., 2013). These sensors are
renowned for their reliability and accuracy but also known to be
expensive. Interestingly, despite the availability of these costly
sensors, the utilization of other low-cost soil moisture sensors for
organic soil has not been extensively explored. Therefore, in this
study, we also calibrate the LCSM sensor for the organic soil and
evaluate its performance against gravimetric-based VWC, as well as
measurements based on commercially available sensors.

To develop the calibration of the LCSM sensor for organic soils,
experiments were conducted in forest fields enrichedwith organicmatter
soils. Taking advantage of the opportunities presented by the SMAPVEX
22 field campaigns, sampling was carried out in 13 fields at Millbrook
and Massachusetts forests study sites during April and November 2022.
In each field, measurements of the LCSM sensor were taken at
14 locations in two transects, where each transect containing seven
sampling locations, as shown in Figure 7. Notably, at each sampling
location, three measurements of the LCSM sensor were taken coinciding
with the widely used commercially available HydraProbe soil moisture
sensor. The HydraProbe is an FDR similar to the TLO sensor operating
at 50 MHz, with a reported sensor accuracy of ±0.03 m3m−3 (Stevens
Water Monitoring Inc, 2018). For this study, we utilized the relative soil
dielectric permittivity measured using the HydraProbe and factory-
supplied soil-specific calibration for reliable soil VWC measurements
in forest organic soil. The HydraProbe measurements were taken to
inter-compare measurements with the LCSM device. Gravimetric
samples for developing the LCSM sensor’s calibration were taken at
four locations in each field through a scooping method, as illustrated in
Figure 7. A total of 107 gravimetric samples along with measurements
from the HydraProbe were collected over a range of soil wetness
conditions, synchronising with the LCSM sensor measurements.

The SMAPVEX-22 field experiments also included estimating
the dry bulk density of each sampled field to calculate collected
gravimetric soil moisture on a volume basis. Notably, an excavation
method, also known as the USDA method, was used to estimate the
dry bulk density of forest organic soil as recommended by Al-
shammary et al. (2018). This is because the coring method for
determining bulk density is widely utilized only in agricultural soil

FIGURE 6
Sampling design for collecting LCSM sensormeasurements and corresponding gravimetric samples for soil VWCmeasurement in agricultural farms.
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or mineral soils (Brahim et al., 2012). The excavation method
consists of a plexiglass ring that is securely fixed in the soil, as
shown in Figure 8. A thin plastic bag (50-micron polythene bag) is
then used to determine the volume of the space between the soil
surface and the bottom of the hook hanging from the “hook gauge.”
By filling the bag with measured volumes of water until the water
level reaches the bottom of the hook, the total amount of water used
represents the volume of the space. Once the plastic bag is removed,
the desired layer of soil for characterization is excavated from inside
the plexiglass ring. The excavated soil is then carefully transferred to
a container, such as a zip lock, to measure its mass. To determine the
volume of the excavated soil, another thin plastic bag and the hook
gauge are employed. By placing the bag in the excavated soil and
measuring the volume it occupies, the difference between this
volume and the initial water-filled volume provides the total
volume of the excavated soil. Each soil sample is transported to
the laboratory to estimate the mass of dry soils using an oven-drying
technique at a temperature of 105°C for a duration of 48 h. Further,
the mass of dry soils was used to estimate dry bulk density using the
known volume of the excavated soil sample. Finally, the gravimetric
soil moisture content was calculated on a volume basis using
estimated dry bulk density.

FIGURE 7
Sampling design followed during NASA’s SAMPVEX - 22 field campaign in forest fields predominantly with organic soil. The blue arrow shows the
direction of the sampling.

FIGURE 8
USDA method for calculation of soil dry bulk density.
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3.2.3 LCSM sensor calibration procedure
As discussed in Section 3.1.1, the LCSM sensor operates on the

TLO principle, providing voltage-based output readings by
analysing the reflected frequencies based on soil dielectric
permittivity. To accurately interpret and relate these voltage
measurements to actual soil VWC, it is imperative to calibrate
the sensor in terms of soil VWC (Seyfried et al., 2005).
Calibration ensures that the voltage readings obtained from the
sensor in the soil are aligned with the corresponding soil VWC. In
this study, we established a robust calibration for the LCSM sensor
device, by correlating the voltagemeasurements with the gravimetric
method-based soil VWC (GVWC). In the past, several studies on
soil moisture sensor calibration have used linear regression and
reported a RMSE of less than ± 0.005 m3m−3. Since linear
relationships are straightforward, easily interpretable, and possess
high transferability, our primary focus was on developing linear
calibrations for the LCSM sensor. The general form of the sensor
calibration using a linear relationship is expressed as follows:

θ � a0V + a1 (1)
where θ represents soil VWC, V denotes the sensor output in volts,
and a0 and a1 represent coefficients often referred to as calibration
coefficients, which are determined empirically.

In this study, our primary focus was on the development of
two types of calibrations: (i) generalized calibration and (ii) soil-
specific calibration. The generalized calibration was specifically
designed for broader applications, where calibration was
performed on all sampled data within each specific soil group
as a whole. For the LCSM sensor we developed a separate
generalized calibration for mineral soil and organic soil. It is
essential to highlight that all the datasets collected from
agricultural fields were utilized to derive the general
calibration coefficients for mineral soil. Conversely, all the
datasets gathered from forested areas were employed in the
development of generalized calibrations for organic soil. The
soil-specific calibrations were developed based on the textural
classification of the locations from where samples were collected
during various field experiments. This approach allowed us to
consider the distinct properties and characteristics of each soil
type and improve the accuracy of the calibration
development process.

We established a linear regression (Equation 1) to relate GVWC
to the corresponding LCSM sensor readings (in volts) for each type
of calibration. Notably, to ensure the accuracy of the calibration all
the sampled datasets comprising GVWC and coincident LCSM
sensor measurements were first analysed to detect the outliers
within the dataset before proceeding with the calibration
development process as suggested by Singh et al. (2021) and
Rowlandson et al. (2013). Outliers within the sampled dataset
may arise from various sources, including errors introduced
during sample collection, transportation, and laboratory
procedures such as weighing and oven drying (Singh et al.,
2021). This rigorous data cleaning process was undertaken to
ensure the integrity and reliability of the data for developing
robust calibration for the LCSM sensor. Further, the calibrations
of the LCSM sensor were evaluated based on the established
practices as adopted in previous studies (Cosh et al., 2005;
Rowlandson et al., 2013; Singh et al., 2021).

3.3 Comparative performance evaluation of
LCSM sensor with commercially
available devices

In this study, we also conducted a comprehensive comparative
performance evaluation of the soil VWC measurements obtained
through the LCSM sensor in comparison to other commercially
available and widely used handheld soil moisture devices, namely,
the HydraProbe and ThetaProbe. To assess the reliability and
accuracy of the LCSM sensor, we performed various statistical
analyses, as described in subsequent Section 3.4. These tests were
utilized to ascertain whether significant differences existed between
themean soil moisture readings obtained from the LCSM sensor and
those obtained from the commercially available HydraProbe and
ThetaProbe sensors. Additionally, we determine both the strength
and direction of the relationship between the soil moisture readings
derived from the LCSM sensor and those obtained from the
commercial sensors. Furthermore, we presented the analysis to
represent the degree of agreement between the measurements
obtained by the LCSM sensor and commercially available
sensors. By doing so, we aimed to gain insights into any
systematic biases or discrepancies between the different sensors.
Through the combination of these statistical analysis, the research
aimed to provide a comprehensive and robust assessment of the
LCSM sensor’s performance and accuracy in estimating soil VWC in
comparison to the HydraProbe and ThetaProbe sensors.

3.4 Statistical analysis

In this study, various statistical methods were employed to
ensure a robust performance evaluation of the developed LCSM
sensor to offer valuable insights into its suitability and reliability for
wider applications. Before developing calibrations for the LCSM
sensor, outliers were identified and removed using the statistical
criterion that sampled datasets falling outside of two times the
standard deviation (SD) of the residuals were classified as outliers
(Singh et al., 2021). This threshold is commonly employed in sensor
calibration studies to remove extreme deviations caused by sensor or
procedural anomalies while preserving the core variability inherent
to diverse soil types. Applying the same ±2 SD criterion consistently
across organic and mineral soils ensures fairness, prevents soil-type
bias, and facilitates standardized quality control. Moreover, because
the SD is inherently linked to each dataset’s variability, highly
heterogeneous soils still maintain broader acceptable range. To
assess the accuracy of the LCSM sensor’s calibrations, we utilized
standard goodness-of-fit indices (GFI), including RMSE and bias
(Cosh et al., 2005; Rowlandson et al., 2013; Singh et al., 2021). For a
comparative performance analysis of LCSM sensors with
commercially available devices, we used independent sample
t-tests to determine significant differences between the mean soil
moisture readings from different sensors. Additionally, the
correlation coefficient (R-value) was calculated to evaluate the
strength and direction of the relationship between soil moisture
readings of different sensors. To evaluate the adequacy of the sample
size, a power analysis was conducted for the calibration slope test.
Statistical power was defined as the probability of correctly rejecting
the null hypothesis (β = 1) for a range of effect size (δ) at a
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significance level of α = 0.05, using a two-tailed t-test. The δ was
defined as the absolute deviation of the slope from ideal slope, i.e., 1
(δ = |β − 1|). A sample size was considered adequate if the estimated
power (1 − β) exceeded 0.80. Additionally, Bland-Altman plots were
used in the comparative performance analysis to visually assess the
degree of agreement between different sensor measurements and to
highlight any systematic differences.

4 Results and discussion

4.1 Calibration for mineral soils

4.1.1 Generalized calibration
The scatter plots, as illustrated in Figure 9, highlight a linear

relationship between the output of a newly developed LCSM sensor in
voltage [V] and the GVWC. This linear relationship is aligned with a
study conducted by Seyfried et al. (2005), where linear regression was
employed to calibrate a soil moisture sensor using the TLO technique
across various soil textures, strengthens the robustness of our findings.
Additionally, Rowlandson et al. (2013) also compared the
effectiveness of linear regression with a third-order polynomial
relationship for calibrating the soil moisture sensor utilizing the
TLO technique. Notably, their findings indicated that there was no
statistically significant difference in the values of R2 (coefficient of
determination) and RMSE between these two calibration methods.
These results imply that the linear regression approach may be just as
effective as the more complex polynomial model for mineral soil.
Furthermore, a study conducted by Singh et al. (2021) supported the
superiority of a linearly developed general calibration equation over
manufacturer calibrations. This suggests that a simplified linearmodel
can yield comparable results to a more complex equation for
calibration purposes. Therefore, in this study, a linear regression
analysis using 301 data points was employed for developing

calibration coefficients of the LCSM sensor using GVWC and the
output of the LCSM sensor in V. While the GVWC measurement
might have some errors, which might arise from various sources as
suggested by Singh et al. (2021), there is a possibility of outliers
occurring in the calibration dataset (as shown in Figure 9a). During
the soil moisture sensor calibration study, prior to calibration, the data
collected from field campaigns underwent pre-processing to detect
and identify outliers. By adopting the outlier removal methodology
described in Section 3.3, a total of 32 outliers were removed from the
calibration dataset and the linear relationship is presented in
Figure 9b. Thereafter, using 269 data points, a linear
regression–based generalized calibration of the LCSM sensor was
developed for mineral soils as given in Equation 2. The removal of
outliers is often considered as a separate calibration technique to
emphasize the influence that erroneous samples can have on the error
estimation of a calibration technique (Rowlandson et al., 2013).

θ � 0.550 × V– 0.059 (2)
A linear regression-based generalized calibration (Equation 2) for
mineral soil was determined with calibration coefficients of 0.550
(a0) and −0.059 (a1). The application of these generalized calibration
coefficients resulted in a RMSE value of 0.035 m3m−3 and high
correlation (R = 0.90) as shown in Table 3. Although the overall
average bias is less than 0.0001 m3m−3, it is also important to note
that some samples exhibited a higher absolute bias of 0.06 m3m−3.
Similar high R-values and a large bias were also seen in the studies
conducted by Cosh et al. (2005) and Singh et al. (2021). To evaluate
the adequacy of the sample size used for developing the calibration, a
power analysis was conducted as explained in Section 3.4. Based on
the datasets used for sensor calibration in mineral soil, we calculated
the statistical power for various effect sizes (δ = 0.2, 0.3, 0.4, and 0.5).
The actual effect size (δ = 0.2) for the calibration analysis was defined
using the absolute deviation of the calibration regression coefficient
(R2) from the ideal slope of 1.0 (see Figure 9; R = 0.90 or R2 = 0.80).

FIGURE 9
Linear regression between the voltage output of LCSM sensor and gravimetric-based VWC for mineral soil (a) with all datasets (b) with outlier
removed datasets (c) a box plot of the standard deviation of collocated LCSM sensor voltagemeasurements (i.e., three samples at each location) collected
during the field experiments.
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This deviation (δ = 0.2) was considered to represent a moderate but
practically meaningful calibration offset. Despite this deviation, the
performance remained consistent across different soil textures, with
a δ value of 0.2 (see Table 3). Using δ = 0.2 yielded a statistical power
of 1.0, indicating that the sample size used is adequate for developing
a robust generalized calibration of mineral soil.

We have also evaluated the measurement uncertainties of the
LCSM sensor by repeating measurements at the same location.
Using the database of collocated LCSM sensor voltage
measurements (i.e., three samples at each location) collected
during the field experiments, we computed the standard
deviation statistics of repeated LCSM sensor voltage
measurements at each location. The range of standard deviation
statistics for all collocated LCSM sensor voltage measurements in
volt [V] is shown through a box plot, presented in Figure 9c. The
narrow range of standard deviations in LCSM sensor measurements,
with a median value of less than 0.01 V, confirms lower
measurement uncertainties in LCSM sensor sampling.

It is interesting to note that in Table 3 the RMSE of the newly
developed soil moisture measurement device is less than 0.04 m3m−3

and the overall bias is less than 0.001 m3m−3. Overall, these findings
emphasize the sensor’s effectiveness and reliability for the intended
purpose of validating soil moisture data derived from remote
sensing techniques (Entekhabi et al., 2010). Kukal et al. (2020)
and Dong et al. (2020) evaluated commercially available soil
moisture sensors used for agricultural applications. Their findings
revealed a wide range of RMSE values, varying from 0.06 m3m−3 to
0.005 m3m−3 of commercially available soil moisture sensors. This
comparison highlights the potential suitability of the newly
developed LCSM measurement device for agricultural use, given
its comparable performance to the commercially available sensors
based on past studies.

4.1.2 Soil-specific calibration
The soil textural information for developing soil-specific

calibration was acquired from the Web Soil Survey, which is
managed by the USDA Natural Resources Conservation Service,
USA. The soil samples were categorized based on their textural
classification for developing soil-specific calibrations. Through
linear regression analysis, calibration coefficients were obtained
for the loam soil (Equation 3), while Equation 4 was derived for
the sandy loam soil. The calibration coefficients obtained for the

loam soil were 0.560 (a0) and −0.058 (a1), while for the sandy loam
soil, the coefficients were 0.501 (a0) and −0.062 (a1).

θ � 0.560 × V–0.058 (3)
θ � 0.501 × V–0.062 (4)

FromTable 3, it is observed that there was an improvement in the R
and RMSE values when compared to the generalized calibration
(Equation 2). Furthermore, the power analysis revealed that both
Equation 3 and Equation 4 were highly sensitive to detecting
calibration deviations, achieving statistical powers of 0.99 and 1.0 for
Sandy Loam and Loam, respectively, at δ = 0.2. These results confirm
the reliability and adequacy of the sample sizes for developing specific
calibrations for both soil textural class. This suggests that the calibration
equations, specific for loam and sandy loam soil, provided a better fit for
the data than the generalized equation. The relationship between the
LCSM sensor calibrated VWC and GVWC is presented as a scatter plot
for loam and sandy loam soil is shown in Figure 10. Similar
improvements in the soil-specific calibration were observed in
studies conducted by Cosh et al. (2005), Rowlandson et al. (2013),
and Singh et al. (2021), which aligns with the findings mentioned in this
study. In the RMSE, comparable improvements were also observed for
loam (0.031 m3m−3) and sandy loam soil (0.034 m3m−3). However, it is
interesting to note that despite the improvements in R and RMSE, bias
remained relatively unchanged when comparing the soil-specific
calibration coefficients for loam and sandy loam soil to the
generalized calibration (Equation 2). These results are consistent
with the findings of Cosh et al. (2005) and Vaz et al. (2013). Also,
in the study conducted by Singh et al. (2021), it was found that there was
no significant statistical difference in the calibration coefficients of soil-
specific to the general equation, except for fine-textured soils. This
suggests that while soil-specific calibration coefficients may improve the
correlation, they may not have a substantial impact on reducing the
RMSE and bias, particularly for loam and sandy loam soil.

4.2 Calibration for organic soils

The LCSM sensor was calibrated for organic soil using collected
GVWC data and corresponding LCSM sensor reading in volts at
13 distinct forest fields enriched with organic matter soils during the
SMAVEX-22. Linear regression analysis was conducted on outlier-
removed datasets, comprising 107 data samples, to obtain

TABLE 3 Calibration performance and power analysis for generalized and soil-specific models.

Calibration
equation

No of locations Calibration
coefficient

R RMSE
(m3m−3)

Bias
(m3m−3)

Effect
size (δ)

Power
(1 - β)

a0 a1

Generalized 24 (269) 0.550 −0.059 0.90 0.035 <0.0001 0.2 1

Soil-specific (Loam) 14 (199) 0.560 −0.058 0.90 0.031 <0.0001 0.2 1

Soil-specific (Sandy Loam) 6 (70) 0.501 −0.062 0.92 0.034 < −0.0001 0.2 0.99

Generalized Organic soil 13 (107) 0.860 −0.076 0.80 0.078 <0.0005 0.3 0.92

Note: Number of samples used in the development of the LCSM, sensor calibration is presented in parenthesis as bold text. Effect size (δ) is defined as the absolute deviation of the calibration

slope from the ideal slope (i.e., 1.0) and was used as the basis for power analysis at a significance level of α = 0.05. A sample size was considered adequate if the estimated power (1 − β)
exceeded 0.80.
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calibration coefficients for the LCSM sensor in organic soil
(Figure 11). These calibration coefficients for organic soil are as
a0 = 0.860 and a1 = −0.076. The analysis demonstrated promising
results, with an R-value of 0.80 and a RMSE of 0.078 m3m−3 for
organic soil, as presented in Table 3. A reasonably high correlation
coefficient indicates a good fit of the regression model to the data.
Furthermore, the statistical power for detecting this effect was 0.92,
confirming that the sample size was adequate to perform robust
calibration in organic soils. However, in the case of organic soil, a
higher RMSE and bias were observed compared to mineral soil (see

Table 3). This indicates that predictions within the organic soil
exhibited scattered around the actual values of soil moisture as seen
in Figure 11. This disparity between organic and mineral soils can be
attributed to the complex nature of forest organic soil, characterized
by very high porosities which increase the bound water, and large
specific surface areas which decrease the portion of free water
(Bircher et al., 2016; Kassaye et al., 2019; Park et al., 2019).
When a probe is inserted in organic soils, a common challenge is
the formation of air gaps between the probe and the surrounding
soil. Air gaps often form around probes in organic soils due to their
loose, porous structure. These gaps disrupt contact between the
probe and soil, leading to either under or over estimation (Mane
et al., 2024; Susha et al., 2014). These characteristics influence the
distribution of differences between LCSM sensor VWC and GVWC
values in the organic soil. As shown in Figure 11 the wide spread of
values is likely influenced presence of soil organic matter, which
plays a significant role in affecting the measurements (Li et al., 2022).
The presence of soil organic matter introduces a nonlinear dielectric
response in soils, especially when EMwaves interact with soil surface
ions. This interaction can cause changes in how the soil responds to
the sensor, especially at certain frequencies (1–500MHz). Because of
this, the relationship between the sensor, the frequency used, and the
soil’s properties becomes unpredictable (Bakian-Dogaheh et al.,
2025; Park et al., 2019) and does not always follow a clear
pattern. This can be easily observed from Figures 9, 11. Studies
have shown that organic soils exhibit lower and more variable
responses compared to mineral soils at the same moisture
content, due to the unique water retention and binding
characteristics of organic matter (Szypłowska et al., 2021; Zhang
et al., 2023). As a result, the response in organic-rich soil often
deviates from the general trends observed in inorganic soils (Kargas

FIGURE 10
Scatter plot between gravimetric-based VWC and the LCSM sensor calibrated VWC for sandy loam and loam soil.

FIGURE 11
Linear regression between the outlier removed voltage output of
LCSM sensor and gravimetric-based VWC in forest organic soil.
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et al., 2011). This behavior is also consistent with observations from
TDR readings conducted in various studies (Kellner and Lundin,
2001; Park et al., 2019).

Furthermore, in a comparative laboratory study of various
impedance soil moisture sensors conducted by Vaz et al. (2013)
and Kassaye et al. (2019), a high RMSD (Root Mean Square
Deviation) value of 0.060 m3m−3 and 0.090 m3m−3 was observed
respectively. In a field study conducted by Park et al. (2019) and
Kassaye et al. (2019) involving soil with high organic matter content,
a significantly high RMSE value of 0.12 m3m−3 and 0.153 m3m−3 was
observed, respectively, for the dielectric soil moisture sensor. This
result is consistent with the challenges associated with and observed
during our field study of the performance of the dielectric sensor in
soil moisture measurements. It is also emphasized by Kargas et al.
(2011) in their laboratory-based study that further research is
required to improve the accuracy of soil moisture measurements
of dielectric soil moisture sensors, especially in organic soil with
their unique complexities such as high porosity and high surface
area. Thus, a comparative analysis of the performance of different
soil moisture sensors is presented in a further section.

4.3 Comparison of LCSM sensors with
commercially available soil moisture sensors

In this study, we also assessed the performance of the
developed LCSM sensor for measuring soil moisture content

against commercially available and widely used sensors such
as HydraProbe and ThetaProbe. Figure 12 shows a
comparison between calibrated LCSM sensor-based VWC and
GVWCmeasurements for mineral soils, along with a comparison
against HydraProbe and ThetaProbe VWC measurements.
Similarly, Figure 13 illustrates the comparison of LCSM
sensor-based VWC measurements against GVWC and
HydraProbe-based VWC measurements for organic soil. An
independent sample t-test was also performed to find if the
difference in soil moisture measurements of different soil
moisture sensor pairs with GVWC is statistically significant at
the 5% level of significance. Results of the t-tests statistics are
summarized in Table 4 for both mineral and organic soils.
Additionally, the comparison of p-values from the t-test for
different soil moisture sensor pairs and GVWC in both
mineral and organic soils is presented in Figure 14.

As shown in Table 3, except for three cases (i.e., ThetaProbe
versus GVWC for mineral soil, HydraProbe versus GVWC, and
LCSM sensor versus HydraProbe for organic soil, where the p-value
is found to be 0.011, 0.013, and 0.040, respectively), no significant
difference was observed among different pairs of soil moisture
sensors with GVWC. In these three specific cases p-value
associated with the t-test is less than 0.05 (5% significance level),
leading to the rejection of the null hypothesis and conclude that
there is a significant difference between the pairs of soil moisture
measurements. Considering the overall statistics, it is found that
there is less than a 5% chance that the observed difference may have

FIGURE 12
Scatter plots showing the comparison of gravimetric-based VWC (GVWC) and calibrated LCSM sensor-based VWC pairs with commercially available
soil moisture sensors (HydraProbe and ThetaProbe) VWC for mineral soils.
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FIGURE 13
Comparison between LCSM sensor-based VWC and Gravimetric-based VWC (GVWC), as well as HydraProbe, in organic soil.

TABLE 4 Statistical comparison of soil VWCmeasurements conducted using LCSM sensor and commercial sensors with GVWC in mineral and organic soils
based on t-test statistics, with p-values at a 5% significance level.

Sensor GVWC ThetaProbe HydraProbe

p-value for mineral soil

LCSM sensor 0.998 0.90 0.499

HydraProbe 0.062 0.59 NA

ThetaProbe 0.011 NA NA

p-value for forest organic soil

LCSM sensor 0.941 NA 0.040*

HydraProbe 0.013* NA NA

Note: GVWC, refers to gravimetric-based VWC. p-value >0.05 indicates that the null hypothesis cannot be rejected (i.e., the difference between the measurements of different soil moisture

sensor pairs and GVWC, are not statistically different from each other at a 5% significance level). Significant values are denoted with an asterisk symbol (*).
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occurred by randomness alone for making a difference between the
means of soil moisture among different pairs of measurements.

Despite these statistics, the correlation between ThetaProbe and
GVWC for mineral soil remains high with an R-value of 0.92 (see
Figure 12), along with a reasonable correlation (R = 0.66) between
GVWC and HydraProbe for organic soil (see Figure 13). These
t-tests statistics suggest that the developed LCSM sensor,
ThetaProbe, and HydraProbe provide comparable estimates of
soil moisture. The correlation analysis presented in Figures 12, 13
supports the robustness of the developed calibrations for the LCSM
sensor for mineral and organic soil, respectively. In fact, the high
correlation (R > 0.93) between the LCSM sensor and GVWC
measurements, shows a high agreement of developed LCSM
sensor readings with the GVWC measurements in mineral soil.
On the other hand, VWC measurements in mineral soil using
HydraProbe and ThetaProbe were also found to have a strong
linear relationship with the developed LCSM sensor, with a very
high correlation of 0.99 and 0.98, respectively.

In addition, the results of the Bland-Altman analysis, with a specific
focus on the LCSM sensor, reveal promising findings formineral soil, as
shown in Figure 15. The LCSM sensor demonstrates a narrow range of
agreement with the GVWC measurements (black dotted lines),
indicating relatively consistent differences and high accuracy. Its
mean difference line closely aligns with the zero line, suggesting
minimal systematic bias and a high level of agreement with the true
values of VWC measurements. The fact that all three sensors
(HydraProbe, LCSM sensor, and ThetaProbe) exhibit mean
difference lines between 0 and 0.05 m3m−3 signifies a general
consistency and accuracy in their measurements for mineral soil.
Similarly, the 95% confidence intervals (CI) for the limits of
agreement (LoA) were relatively narrow across all sensors. Among
them, the LCSM sensor represented by the black error band, showed the
narrowest CI, suggesting slightly greater consistency and a more precise
estimation of its LoA compared to the HydraProbe and ThetaProbe

sensors. Moreover, the consistent pattern of points for all three sensors
implies a stable level of agreement across the measurement range. In
conclusion, the LCSM sensor demonstrates excellent agreement with
the gravimetric method, making it a promising sensor for reliable soil
moisture measurements in mineral soil. However, careful consideration
and understanding of the characteristics of all soil moisture sensors are
necessary before making a final selection for future measurements.

Throughout this study, generalized calibration coefficients were
utilized for measurements taken through the HydraProbe,
ThetaProbe, and the newly developed LCSM sensor. The lack of
significant differences among the sensors suggests that, under the
specific conditions of loam and sandy loam soil, along with the
environmental settings examined, all three sensors perform similarly
in estimating soil moisture content. The observed similarities in the
performance of these sensors are promising, as it implies that researchers
and practitioners can confidently choose LCSM sensor based on other
factors such as cost, ease of installation, and compatibility with data
logging systems, without compromising the accuracy of soil moisture
measurements. However, it is essential to acknowledge the limitations of
this study. The conclusions drawn from our findings are specific to the
dataset and experimental conditions utilized. Further investigations
across various soil types, geographic regions, and environmental
settings may yield different results. Additionally, factors such as
sensor calibration and maintenance should be carefully considered
when deploying these sensors in practical applications.

For the forest organic soil, the outcomes of the t-test provide crucial
insights into the comparability of soil moisture readings with the
HydraProbe sensor pairs. The significant differences observed in the
mean soil moisture readings between the LCSM sensor and HydraProbe
sensor (p-value = 0.040) and between HydraProbe and GVWC (p-
value = 0.013) indicate that these sensors may not provide consistent
estimations of soil moisture content in forest organic soil. The presence of
statistically significant differences between these sensor pairs implies that
caution should be exercised when directly comparing or interchanging

FIGURE 14
Comparison of p-values from t-test for various soil moisture sensor pairs-based VWC and gravimetric-based VWC (GVWC) in both mineral and
organic soils.
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the readings of this sensor in forest organic soil applications.However, the
lack of significant difference between LCSM sensor and GVWC sensors
(p-value = 0.94) suggests that they may exhibit relatively similar
performance characteristics in the forest organic soil. Nonetheless, it is
important to approach this finding with caution, as the p-value is
relatively high, indicating the possibility of random variations
influencing the results. Consequently, while the LCSM sensor and
GVWC may not show significant differences in mean soil moisture
readings, further investigation is warranted to determine the extent of
their agreement and the potential sources of variability.

Further, the correlation coefficients provide valuable insights into
the strength and direction of the linear relationships between sensor
pairs. The moderate correlation coefficient between LCSM sensor and
HydraProbe sensors (R = 0.77) indicates a positive but not perfect linear
relationship between their measurements. Similarly, the moderate
correlation coefficient between LCSM sensor and GVWC sensors
(R = 0.80) suggests a positive association between their readings.
The lower but still moderate correlation coefficient between
HydraProbe and GVWC sensors (R = 0.66) indicates a relatively

weaker linear relationship. Furthermore, the moderate correlation
suggests that there is a degree of agreement between the sensor
pairs, but some variability exists in their measurements. This
variability may be influenced by factors such as differences in sensor
technology, calibration, or sensitivity to organic soil characteristics
(Bircher et al., 2016; Kassaye et al., 2019). As a result, while the
correlations are positive, the scattered nature of the data points in
the Bland-Altman plot (Figure 16) raises questions about the
consistency of the LCSM sensor performance in providing accurate
and reliable soil moisture measurements. The Bland-Altman analysis
reveals that both the LCSM sensor and HydraProbe exhibit differences
from the gravimetric measurements in organic soil. The HydraProbe
demonstrates better agreement overall, with a mean difference close to
zero and more consistent points around the mean line. In contrast, the
LCSM sensor shows a systematic bias, as indicated by its mean
difference line being away from zero. Additionally, the larger limits
of agreement for both sensors suggest that their measurements may
have higher variability and less precision in forest organic soil. However,
the 95% CI for the LoA were found to be relatively wide for both

FIGURE 15
Bland-Altman plot showing a comparison of VWC soil moisture measurements between HydraProbe, LCSM sensor, and ThetaProbe in mineral soil
(where A is gravimetric-based volumetric water content). The vertical bars represent the 95% confidence interval (CI) of limits of agreement (LoA).
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sensors. This indicates acceptable precision, but the wide spread of
individual data points suggests potential variability in sensor accuracy
under organic soil conditions. Further investigation and consideration
of the specific characteristics and limitations of each sensor are crucial
for the accurate interpretation and selection of the most suitable sensor
for soil moisture measurements in organic soil conditions.

Moreover, the significant differences observed between sensors,
the moderate correlation coefficients, and the scattered data in the
Bland-Altman plot for organic soil shown in Figure 16, collectively
highlight the need for further research to investigate the factors
influencing the performance of soil moisture sensors in forest
organic soil. Researchers should explore potential sensor-specific
calibration adjustments or consider soil characteristics in the
calibration to enhance the accuracy and reliability of soil
moisture measurements in the organic soil type.

While the temperature, salinity, and pH levels of soil samples
may not directly affect the functioning of the TLO soil moisture
probe, they can indirectly impact its performance by influencing the
dielectric constant, electrical conductivity, sensor calibration,

moisture distribution, and physical properties of the soil.
Therefore, it is crucial to consider soil temperature, salinity, and
pH levels in the calibration process when using TLO sensors for soil
moisture monitoring applications in diverse soil and agricultural
field conditions. Thus, to enhance the generalized capability of the
developed calibrations for the LCSM sensor, future research should
be carried out on a wider range of mineral and organic soils and
geographic locations with varying environmental settings, along
with the inclusion of soil temperature, salinity, and pH levels.
Additionally, increasing the sample size and conducting long-
term monitoring studies can provide more comprehensive
insights into the sensors’ performance over varying soil moisture
conditions.

4.4 Future scope and limitation

Given the demonstrated accuracy and reliability of the
developed LCSM sensor, this study highlights its strong potential

FIGURE 16
Bland-Altman plot showing the comparison of VWC obtained through LCSM sensor and HydraProbe in organic soil (where A is gravimetric-based
VWC). The vertical bars represent the 95% confidence interval (CI) of limits of agreement (LoA).
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for applications in agriculture, hydrology, and the validation of
remote sensing-based soil moisture products. The sensor operates
effectively within a specified temperature and pH range and has been
calibrated for use in different soil types. However, several practical
and environmental factors require further investigation to support
long-term uses and broader adoption. Although the sensor is tested
to operate in a specific range of soil types and environmental
conditions, its response to varying salinity and pH levels has not
yet been systematically tested. For instance, due to the use of low-
frequency EM waves (~50 MHz), the sensor may exhibit increased
sensitivity to changes in higher soil salinity and temperature ranges.
These factors can influence the sensor’s dielectric response and
overall accuracy. Future studies should therefore investigate the
sensor’s performance across different salinity gradients and
pH levels to fully understand its adaptability and potential
calibration needs in diverse soil environments. Furthermore,
LCSM sensor’s performance could be impacted by prolonged
exposure to environmental fluctuations, including ambient
temperature and humidity, which also need to be investigated.

The current sensor design utilizes only four readily available
components (PCB, soil moisture sensor, 9V battery and enclosure),
making it suitable for mass manufacturing and potentially reducing
the cost per unit. To enhance its usability, future versions may
incorporate a 3V solar panel paired with a two 3.3V rechargeable
battery and a display screen for monitoring battery status. These
enhancements would increase the sensor’s autonomy and make it
more user-friendly for continuous soil moisture monitoring in both
professional and community-based applications. Although the
LCSM sensor was used during the NASA’s SMPVEX field
campaigns in 2022, where it demonstrated satisfactory durability,
consistent battery performance, and feasibility for large-scale use, a
comprehensive testing is required to assess sensor’s usability and
reliability in practical applications. In this context, future work will
be focused on pilot testing of this LCSM sensor with farmers and
citizen scientists. These participatory evaluations will provide
valuable feedback on ease of handling, data interpretation, and
maintenance requirements, helping identify any operational
challenges and improve the design for real-world use and wider
adoption in various community.

5 Conclusion

In conclusion, this study successfully achieved its aim of
developing an affordable, durable, and user-friendly LCSM sensor
for global use by citizen scientists and farmers. Emphasizing both
cost-effectiveness and robust calibration, the device demonstrated
excellent performance in mineral soil, with an overall RMSE of less
than 0.04 m3m−3 and strong correlations above 0.90 for both
generalized and soil-specific calibration approaches. Comparisons
of the developed LCSM sensor with commercially available sensors,
HydraProbe and ThetaProbe, showed high correlations, and the
t-tests indicated no statistically significant differences in soil
moisture measurements between the LCSM sensor and these
established commercially available devices in mineral soil. This
validates the LCSM sensor as a reliable and cost-effective
alternative for soil moisture measurements. For forest organic
soil, the RMSE of LCSM sensor measurements was low at

0.0786 m3m−3, indicating promising performance with a good
correlation (R = 0.80). Despite the low RMSE of LCSM sensor
measurements, the accuracy aligned with previous research on
organic soil calibration (Kassaye et al., 2019; Park et al., 2019;
Vaz et al., 2013). In fact, the high organic content in the soil
resulted in a large surface area and greater porosity, which might
be contributing to the high RMSE in LCSM sensor measurements in
organic soil. Nonetheless, there is still room for improving the
accuracy of LCSM sensor in forest organic soil, as very few
research studies focus on field calibration of soil moisture sensors
in organic or forest soils. Future studies could focus on exploring
advanced calibration techniques, such as Artificial Neural Networks
(ANNs) and machine learning, to further enhance accuracy in forest
organic soil. While this study encompassed wider field conditions,
including forests and agricultural environments with various
temperature and soil moisture levels, further specific
investigations are needed to comprehensively evaluate the
sensor’s performance across a broad range of soil texture,
temperature, salinity, and pH levels. Overall, the affordability and
reliability of the handheld LCSM sensor, with a total cost under
100 USD, emerges as an attractive option for citizen scientists,
researchers, and farmers, providing comparable estimates of soil
moisture content alongside widely used commercial handheld
sensors. This affordability and reliability position the LCSM
sensor as a valuable tool for soil moisture monitoring under
specified conditions.
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