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Introduction: In recent years, with the intensification of climate change, reducing
greenhouse gas emissions has become a necessary measure to address climate
change. The carbon trading policy, as an effective policy to promote carbon
reduction, has been accepted and implemented by many countries.

Method: This study employs the twofold difference approach and synthetic
control method to evaluate the impact of carbon trading policies on air
pollutant emissions.

Result: Results showed that implementing carbon trading could lead to an
average reduction of 54.13 million tonnes of CO2 annually, alongside
decreases of 176.1 thousand tonnes of SO2 and 112.5 thousand tonnes of
NOx. Among the six pilot regions—Hubei, Guangdong, Shanghai, Beijing,
Tianjin, and Chongqing—Hubei exhibited the most significant CO2 reduction,
approximately 66.25 million tonnes. Hubei and Beijing also showed notable
synergistic effects for SO2 reduction. The synergistic emission reduction effect
of NOx was more evident in Chongqing, Shanghai, and Hubei.

Discussion: These findings highlighted the effectiveness of carbon trading in
mitigating CO2 and related air pollutants. To enhance and optimize the carbon
trading market, the study recommends increasing the clean energy share in the
energy mix, improving market management systems, enforcing reasonable
penalties for defaults, and developing tailored carbon trading mechanisms for
different industries.
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1 Introduction

Carbon emissions (CEs) from the agricultural, industrial, service, and transportation
sectors have become a major global concern (Abbas et al., 2022; Huang et al., 2024;
Solaymani, 2019). Since the Industrial Revolution, the intensification of the greenhouse
effect has resulted in more frequent extreme weather events, earthquakes, tsunamis, and
other natural disasters. These events pose serious challenges to human survival. According
to a report published by the World Meteorological Organization, there has been a 1.2°C
increase in the worldwide average temperature in 2020 when compared to the period
between 1850 and 1900. Therefore, it is essential to minimize greenhouse gas (GHG)
emissions, such as CO2, in order to adapt to climate change and slow down global warming
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(Yang and Yao, 2023). The United Nations Framework Convention
on Climate Change was signed by more than 150 countries and the
European Economic Community in 1992. At the same time, in order
to further limit the GHG emissions of developed countries to curb
global warming, the Kyoto Protocol to the United Nations
Framework Convention on Climate Change was adopted in 1997.
The international emissions trading mechanism (IETM), the joint
implementation mechanism (JI), and the clean development
mechanism (CDM) are the three adaptable cooperation
instruments that the Convention developed to minimize GHG
emissions (Qi and Han, 2020). Among them, the core of the
IETM is to allow developed countries to trade CE credits with
each other, and after the construction of the CE trading mechanism,
European and American countries have established carbon trade
(CT) markets. Moreover, China approved seven pilot regions to
establish CT market in 2011 to promote GHG emission reduction
(ER) (Hao et al., 2021). Due to the homology between carbon
dioxide and atmospheric pollutants (AP), and the fact that their
production processes often interact with each other, it is necessary to
coordinate and manage them. Therefore, in order to reduce the
difficulty of realizing the expected CE reduction effect and to analyze
the ER effect of carbon trading policies, it is necessary to analyze in
depth the synergistic ER effect of carbon trading policies. This can
optimize the carbon trading policy and enhance its synergistic ER
effect. Among various statistical methods, difference in differences
(DID) and synthetic control method (SCM) are used for impact
analysis in multiple fields due to their simplicity and ease
of operation.

DID is a statistical method commonly used in policy evaluation
and causal inference. It is used to evaluate the causal effects of
policies and interventions and has been widely adopted in many
fields. Callaway et al. recognized that differences in the program
processing effects of identification, estimation, and inference can
occur over multiple time periods, therefore, DIDwas used to identify
the parameters of treatment effect. It was demonstrated
experimentally that a family causality can be recognized for
parameters in a staggered setting. A number of different
aggregation schemes were proposed through regression results
and used to deal with the heterogeneity of different dimensional
effects. Through asymptotic properties it was finally found that the
experimentally proposed method was effective in guiding the
program to correct reasoning (Callaway and Sant’ Anna, 2021).
Athey et al. suggested a staggered method to estimate and infer the
average treatment impact in a setting with panel data by utilizing
difference-in-difference settings. The process analyzed the nature of
the given values and quantities from a design perspective. The results
demonstrated that the estimates of the standard deviation could be
obtained by weighting the mean causality when the dates used were
randomly assigned, precisely giving the corresponding numerical
variations (Athey and Imbens, 2022). Researchers such as
Venkataramani identified the closure of automobile assembly
plants as a significant cause of local economic decline. The study
synthesized data from the beginning of 1999 to the end of 2016 and
found that adjusted counties were more economically impacted
compared to manufacturing counties that were not affected by plant
closures. County workers died in larger numbers during the 5-year
period of plant closures. This side effect indicated that the closure of
automobile factories and the irrational use of drugs were the main

reasons for the decline of the local economy (Venkataramani et al.,
2020). Fan et al. analyzed the pollution caused by highways on
industrial emissions based on data from 2004 to 2016. Multi-period
difference modeling was used throughout to address issues related to
endogenous nature. Robustness tests proved that the suggested
strategy was well-validated and may successfully minimize
emissions produced by industrial pollution. Cities with HSR were
found to be more polluted compared to other cities (Fan et al., 2020).

SCM is a ubiquitous method for estimating the impact of
treatments on individual units in a panel data setup. Ben-Michael
et al. proposed augmented SCM as an extension of SCM for cases
where preprocessing was not feasible. Experimental results revealed
that augmented SCM limited the estimation error of this method
under different data generation processes, including linear factor
models, and showed how regularization could help avoid overfitting
noise (Ben-Michael et al., 2021). An SCM-based analysis was
suggested by Tian et al. for a study on the efficacy and timing of
a moderate COVID-19 intervention. The findings indicated that the
new Crown pneumonia outbreak might be contained by the early
application of modest treatments. In the hardest-hit areas, the
epidemic worsened the later the intervention was put into place
(Tian et al., 2021). An SCM-based computation technique for the
straightforward determination of the synthetic jet exciter’s
momentum coefficient was presented by Liu et al. However, this
method was empirically proven to be ineffective at large stall angles
(Liu et al., 2020). Cole et al. proposed an SCM-based analytical
method for the effect of the Wuhan New Crown Pneumonia
blockade on the concentration of four air pollutants. According
to the experimental findings, there was no discernible impact of the
blockade on the sulfur dioxide concentration (Cole et al., 2020).

In summary, the parallel trend hypothesis has not been fully
validated by existing studies using the DID method, which results in
biased estimates of the policy effects of DID. At the same time,
overfitting the data during the preprocessing stage of constructing
the synthetic control group poses a problem. This affects the model’s
ability to generalize and the robustness of the estimation results.
Therefore, in order to analyze the synergistic emission reduction
(SER) effect of AP, the study analyzed the ER effect by DID and
SCM. Air pollution is taken into consideration when analyzing
China’s present CT strategy, which serves as a guide for
improving the regional carbon trading (RCT) system. The
average treatment effect and path of collaborative ER in pilot
carbon markets are analyzed using DID, and the theoretical
model of the carbon market collaborative ER mechanism is
empirically validated. Then, SCM is used to analyze the SER
effects of APs in various pilot carbon markets. When conducting
empirical analysis, the study utilizes non pilot areas (PAs) to
synthesize PAs and determine the weights of each province and
city in the composite control group. The determination of weights
aims tominimize themean square prediction error. A virtual control
group, called a “synthetic control,” is constructed by assigning
different weights and linearly combining them. To verify the
robustness of the results, the study also conducts a placebo test
by shuffling the groups.

The study is broken up into four sections. The first section will
give a quick overview of the previous research onDID and SCM. The
second section will design an empirical study on the SER effect of
RCT. The third section will analyze the results of the study. The
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fourth section is a discussion, which will explain and elaborate on
the research results. The fifth section will summarize the full study.

2 Empirical study design of the
synergistic emission reduction effect of
regional carbon trading

In order to study the synergistic effect of regional CE trading on
reducing APs and promoting low-carbon development of
enterprises, an empirical model based on DID and SCM is
designed and analyzed.

2.1 Design of empirical models

DID is a particularly useful technique for evaluating the effects
of policies since it can mostly avoid the endogeneity issue and has a
simplifiedmodel configuration. In themeantime, DID’s model setup
is more scientific. It can estimate the effects of policies more
accurately than the usual approach because it establishes a
dummy variable that indicates whether or not the policy
occurred before performing a regression. DID is used under the
following conditions: (1) Parallel Trend Hypothesis: in the absence
of a policy intervention, the trends in the outcome variables of the
treatment and control groups should be parallel. (2) Ideally, the
assignment of treatment and control groups should be randomized
to reduce selection bias. (3) Its necessary to have sufficient time
points and groups to estimate policy effects. Its robustness is tested
by changing the model settings or using different estimation
methods to verify the robustness of the results. The principle of
DID as follows: Assuming there are two regions, one implementing a
certain policy as the experimental group and the other as the control
group. Prior to the policy intervention time point, the two districts
exhibit parallel patterns; however, following the policy intervention,
the experimental group’s path diverges. In a continuous data
timeframe, the figure shows the impact of a non-targeted policy
on the experimental and control groups at each time point following
the policy intervention. The impact is represented in blue. The effect
of a focused policy is represented in green. To obtain the effect of the
target policy, only two differencing is required. The DID modeling
formula is shown in Equation 1.

Yit � α0 + α1du + α2dt + α3du · dt + εit (1)

In Equation 1, α0 denotes the effect of the control group before
the implementation of the target policy. α1 denotes the difference
between the experimental and control groups, and α2 denotes the
difference between the experimental group before and after policy
implementation (PI). α3 denotes the interaction term regression
coefficient, which captures the net effect of PI. du denotes the
grouping dummy variable (Denton et al., 2022; Bhaktikul et al.,
2021; Wu et al., 2022). To examine the impact of RCT on AP
emissions, the effect of the CT market policy can be analyzed using
the DID model. Now, taking the time of CT PI as the cut-off point,
the change of air pollution emissions before and after the PI can be
obtained by subtracting the AP emissions before and after the PI.
However, since there are many factors influencing AP emissions in

practice, the effects of other influencing factors on AP emissions
need to be eliminated. Therefore, when evaluating the impact of the
RCT policy on AP emissions, it is necessary to perform two
differentials according to pilot/non-pilot cities and before/after
the policy in order to exclude other influencing factors. The
formula for calculating the changes in regional CO2 and AP
emissions before and after the implementation of the RCT policy
is shown in Equation 2.

ΔPi � Pi,1 − Pi,0 (2)

In Equation 2, ΔPi represents the change in CO2 and AP
emissions in region i. Pi,1 denotes the AP emissions of region i
after the PI, and Pi,0 denotes the AP emissions of region i before the
PI. Equation 3 calculates the effect of the RCT policy on the variation
of CO2 and AP emissions.

ΔΔPi � 1
N1

∑
N1

ΔPi Xi � 1|( ) − 1
N2

∑
N2

ΔPi Xi � 0|( ) (3)

In Equation 3, ΔΔPi denotes the effect of the policy on CO2 and
AP emissions in region i. Xi denotes the regional dummy variable,
which takes the value of 1 for pilot regions and 0 for non-pilot
regions. The DID model for the SER effect of the RCT policy is
shown in Equation 4.

Pi,t � α + β1 · CMi,t +∑ β2Zi,t + ui + ut + εi,t (4)

In Equation 4, Pi,t denotes CO2 and AP emissions of region i in
year t, and α is a constant term. β1 denotes the core explanatory
variables and CMi,t denotes the double difference term for the pilot
cities of the RCT policy.Zi,t denotes control variables and ui denotes
fixed differences across regions. ut denotes time fixed effects and εi,t
denotes the error term of the model. Although DIDmodel can assess
the effects of RCT policies, it is difficult to reflect the SER effects of
individual pilots. Therefore, the study uses SCM to investigate the
SER effects of each pilot. The SCM only needs to find a potential
control group that is highly similar. Then, it can construct a virtual
control group by assigning different weights to several test units
similar to the test group. The virtual group formed by this set of
weights is called a “synthetic control.” The applicable conditions for
SCM are as follows: (1) Before PI, it is necessary to find or construct
a control group similar to the treatment group. (2) The data from the
control and treatment groups must be comparable to ensure the
validity of the comparison. (3) There must be sufficient data to
accurately estimate the weights of the control group. Assume that
the CE of several regions since year T is known, where region 1 is a
pilot region and all regional regions are non-pilot regions (Pan et al.,
2021; Eyuboglu and Uzar, 2020; Nokhrina et al., 2022; Mordue et al.,
2020; Yang et al., 2021). The suppression effect of RCT policy on
CO2 and AP emissions is shown in Equation 5.

αit � YI
it − YN

it (5)

In Equation 5, αit represents the suppression effect of RCT
policies on CO2 and AP emissions. YI

it denotes the CO2 and AP
emissions of region i in the case of CT in period t. YN

it denotes the
CO2 and AP emissions of region i in period t without CT. Since the
AP emission environments are basically the same in each region
without initiating the RCT policy, the differences are negligible.
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Therefore, YI
it � YN

it before RCT is not carried out. If the regional
dummy variables are introduced into the calculation of the realistic
values of CO2 and AP emissions in the pilot regions, the formula is
shown in Equation 6.

Y1t � YN
1t +X1tα1t (6)

In Equation 6, Y1t represents the realistic values of CO2 and AP
emissions in the pilot region. After starting the RCT, only the CO2

and AP emissions in the pilot region when no more CTs are
conducted are required to be calculated to obtain the actual CT
market treatment effect in the pilot region. The SCM calculation
formula is shown in Equation 7.

∑J+1
j�2

wjY
N
jt � ut + θt ∑J+1

j�2
wjzj + λt ∑J+1

j�2
wjuj +∑J+1

j�2
wjεjt (7)

In Equation 7, wj denotes the vector of weights of the SCM, and
the sum of the weights is 1. θt denotes the unknown parameter, and
zj denotes the control variable that is not affected by the RCT policy.
uj denotes area fixed effects and J + 1 denotes the number of
observed areas. The suppression effect of RCT policy on CO2

and AP emissions is obtained from Equation 7.

YN
1t −∑J+1

j�2
wjY

N
jt � θt z1 −∑J+1

j�2
wjzj⎛⎝ ⎞⎠ + λt u1 −∑J+1

j�2
wjuj

⎛⎝ ⎞⎠
+∑J+1

j�2
wj ε1t − εjt( ) (8)

When Equation 8 satisfies certain conditions, there exists a
weight vector such that its value tends to zero. Therefore,∑J+1

j�2w*
jY

N
jt can be used as an unbiased estimator of CO2 and AP

emissions in the pilot region without CT. At this point, the policy
effects of the CT market are shown in Equation 9.

α̂1t � Y1t −∑J+1
j�2

w*
jY

N
jt (9)

In Equation 9, α̂1t denotes the unbiased estimator of the CT
market policy effect in the pilot region. wp

j denotes the vector of
weights for the control group.

2.2 Variables and data sources

In conducting the empirical analysis of the SER effect of RCT
policies, the study takes China as an example. The data used are
obtained from the National Bureau of Statistics, Wind database,
China Urban Statistical Yearbook, China Energy Statistical
Yearbook, China Environmental Statistical Yearbook,
Environmental City Statistical Bulletin, and National Economic
Development and Statistical Bulletin. Since the RCT PAs include
not only cities but also provinces, the study uses municipal panel
data from 2010 to 2017 and provincial panel data from 2007 to 2017.
In addition, in order to avoid interference, the study excludes the
data related to the second RCT policy pilot regions (Zhang and
Umair, 2023; Okafor et al., 2022; Deng and Shangguan, 2021; Shi
et al., 2023). The data analysis software used in the experiment is
EViews. The explanatory variables of the study contain CO2

emissions, SO2 emissions, and NOx emissions. SO2 and NOx are
chosen as the objects of SER because the emission data of SO2 and
NOx are more sufficient and homologous to CO2 compared with
those of airborne particulate matter, O3, and other pollutants. The
control variables selected for the study include per capita GDP,
industrial structure, urbanization rate, population density, and
energy consumption. These control variables are chosen to
ensure that the model’s estimated results accurately reflect the
impact of carbon trading policies on SER effects while
controlling for other factors that could affect the outcome
variables. The selection of the variables controlled above is based
on their impact on regional CEs. The National Bureau of Statistics,
local statistical yearbooks, environmental statistics bulletins, and
other sources provided the SO2 and NOx emissions. Due to the lack
of a uniform calculation method for CO2, the study calculates
provincial CO2 emissions using the IPCC National GHG
Inventory Guidelines and the China Energy Statistics Yearbook.
Additionally, Equation 10 displays the calculating formula.

CO2 � ∑8
q�1

Eq × Sq (10)

In Equation 10, Eq denotes the consumption of energy in
category q and Sq denotes the CO2 emission factor
corresponding to the eight FF. The study uses electricity
consumption, CO2 emission coefficients, natural gas, raw coal,
and LPG consumption, as well as electricity consumption to
calculate municipal CO2 emissions. Equation 11 provides the
calculation formula. This is because it is difficult to obtain
complete energy consumption data at the municipal level.

CO2 � ∑3
q�1

Eq × Sq + EepSe (11)

In Equation 11, Ee denotes urban electricity consumption, and
Se CO2 electricity emission factor, which is derived from the baseline
emission factor published by the National Grid. As the CTmarket in
each region confirmed that the opening time is not consistent, the
Shenzhen market was opened in June 2013, the earliest. The
Chongqing market was opened in June 2014, the latest.
Therefore, for the convenience of calculation, the study choose
2014 as the launch time of the RCT policy. In addition, due to
the large overlap in location and data between Shenzhen and
Guangdong Province, and the relatively close opening time of the
CT market, the two are combined for the study. In the actual study,
since AP emissions are not only affected by RCT policies, but also by
the total energy effect, population, economic development effect and
industrial results (Shi et al., 2023; Li et al., 2023; Zhang et al., 2021).
Therefore, to reduce the estimation error of the ER effect, the study
includes other control variables in the DID and SCM models. These
variables includes per capita GDP, industrial structure, urbanization
rate, per capita energy consumption, population density,
environmental protection financial expenditures, and per capita
sewage costs. Since the environmental Kuznets curve theory
suggests that CO2 emissions and economic growth have an
inverted U-shaped relationship, the study includes the quadratic
term of GDP per capita in DID and SCM (Xia and Yang, 2022;
Kreibich and Hermwille, 2021). While in the DID and SCM models
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for SO2 and NOx, per capita emissions costs are introduced to
minimize the interference of regional pollution reduction policies.
Additionally, the study uses dummy variables to eliminate the
interference of fixed effects because DID must take into account
time fixed effects and regional fixed effects, which will cause bias in
the estimate results. The indicator system consists of the dependent
variable, core explanatory variable, and control variable, with the
dependent variables including CO2, SO2, andNOx.When analyzing
the ER and SER effects of RCT policies, the study standardizes
various types of data to avoid heteroscedasticity issues. In addition,
to verify the SER effect of carbon trading policies, the study also
introduces energy structure in the analysis, which is represented by
the proportion of coal in the conversion of energy to standard coal.
The descriptive statistics of the data are shown in Table 1.

According to Table 1, the smallest and maximum percentages of
coal in the energy structure are 4.41% and 72.41%, respectively, with
a mean value of 43.68%. The average amount of energy consumed
per person is 3.48 tonnes, with minimum and greatest values being
0.22 tonnes and 15.85 tonnes, respectively.

3 Empirical analysis and optimization
suggestions on the synergistic emission
reduction effect of regional
carbon trading

3.1 Empirical analysis of the synergistic
emission reduction effect of regional
carbon trading

The average treatment impact of AP abatement and the
abatement effect of individual pilots are examined using DID and
SCM, respectively, to examine the SER effect of the RCT policy.
Before conducting the analysis, the study uses the trend observation
method to perform a parallel trend test. This test is important for
verifying that the trends of the experimental and control groups are
parallel when using DID. Table 2 displays the DID analysis results.

As shown in Table 2, the implementation of CT policy can
reduce CO2 emissions by 54.13 million tonnes per year on average,
and reduce SO2 and NOx by 176, 100 tonnes and 112, 500 tonnes
each. Among the control variables of CO2 emissions, the coefficient
of GDP per capita is 44.40, indicating that CO2 emissions are
positively related to economic growth. The coefficient of
industrial structure is 1.96, which indicates that the higher the
production ratio of secondary industry, the higher the CO2

emission. The coefficient of urbanization rate is −0.78, meaning
that the quantity of CE decreases with increasing urbanization rate.
The coefficient of GDP per capita for SO2 emissions is −7.39,
indicating a negative correlation between economic growth and
SO2 emissions. With a correlation of 0.63 for NOx emission related
to urbanization rate, it can be concluded that NOx emissions
increase with urbanization rate. This is because urbanization
accelerates, leading to a significant increase in the number of
vehicles in cities and, consequently, an increase in NOx
emissions from transportation. Urbanization often accompanies
industrialization. Industrial production processes, especially those
involving fossil fuels, can generate large amounts of NOx emissions.
Power plants and factories are two examples of industrial facilities
that emit large amounts of NOx. The study uses a placebo test to
confirm the reliability of the findings. The study uses the non-pilot
regions to synthesize the pilot regions, excludes the provinces and
municipalities containing the second batch of pilot regions, and
establishes the weights of the provinces and municipalities in the
synthetic control group. This allows the study to investigate the
mitigating effects of CT policies on individual pilots. In determining
the weights, the goal is to minimize the mean square prediction
error. After the weights are determined, the counterfactual control
group can be synthesized according to the weights. The CO2

emissions of each pilot region and its control group are shown
in Figure 1.

In Figure 1a, among the three pilot regions of Hubei,
Guangdong, and Shanghai, Guangdong has the highest fit with
its control group. Among them, Hubei’s CO2 emissions before
2014 are similar to its control group. Moreover, after 2014, CO2

TABLE 1 Data are descriptive statistics.

Variable Symbol Observations Unit Mean value Variance Min Max

Carbon dioxide CO2 308 Megaton 297.72 194.69 19.40 768.39

Sulfur dioxide SO2 308 Ten thousand tonnes 60.93 43.36 0.47 182.75

Nitrogen oxide NOx 308 Ten thousand tonnes 61.45 42.76 4.01 180.12

per capita GDP pgdp 308 Ten thousand yuan/Person 3.99 2.25 1.05 13.61

Urbanization rate rcpop 308 % 58.12 21.11 31.59 169.55

Density of population popd 308 Ten thousand people/km2 462.75 695.73 7.64 3890.86

Industrial structure sec 308 % 42.95 8.87 16.89 61.95

Environmental protection fiscal
expenditure

ergov 308 % 3.03 1.08 0.84 6.73

Per capita discharge fee ppwf 308 Yuan/Person 17.61 13.39 1.55 3890.86

Energy structure rcoal 308 % 43.68 15.46 4.41 72.41

Per capita energy consumption ene 308 Tonnes/People 3.48 3.05 0.22 15.85
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TABLE 2 The DID analysis results.

Gas type CO2 SO2 NOx

Index

CM −54.13*** −17.61 −11.25

16.34# 9.07# 10.12#

Per capita GDP2 −0.05*** — —

0.00# — —

Per capita GDP 44.40*** −7.39*** −0.41

8.48# 1.22# 1.45#

Industrial structure 1.96** 1.71*** 1.97***

0.93# 0.31# 0.32#

Urbanization rate −0.78*** −0.31 0.63**

0.04# 0.22# 0.29#

Environmental protection financial investment 7.97 −0.60 −3.96***

4.93# 1.47# 1.44#

Density of population −0.05 0.02*** 0.04*

0.05# 0.00# 0.03#

Per capita energy consumption 32.96*** 1.06** 0.99**

3.46# 0.52# 0.41#

Per capita discharge fee — −0.62*** −0.51***

— 0.18# 0.18#

Constant term 257.53** 16.06 71.25***

88.61# 22.62# 27.79#

Area fixation effect ✓ ✓ ✓

Time fixed effect ✓ ✓ ✓

R-sq 0.731 0.643 0.612

Note: *, **, *** indicate significant at the 10%, 5%, and 1% levels, respectively; # indicates standard error.

FIGURE 1
The CO2 emissions of each pilot area and its control group: (a)CO2 emissions from pilot areas and their control groups; (b)CO2 emissions from pilot
areas and their control groups.
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emissions decreases significantly, with a reduction of about
66.25 million tonnes. Moreover, Guangdong’s CO2 emission after
2014 is close to that of the control group. Figure 1b shows that, both
before and after 2014, Beijing, Tianjin, and Chongqing has CO2

emissions that are consistently greater than those of their control
groups. Additionally, all of the fits are poor, making it impossible to
determine the ER effect of the CT policy. According to the
aforementioned findings, Hubei Province clearly benefits from

the CT policy’s ER effect. Figure 2 displays each pilot region’s
SO2 emissions along with those of the control group.

In Figure 2a, both Guangdong and Hubei have better fits.
Among them, Guangdong’s SO2 emissions begin to be lower
than the control group after 2010. Hubei’s SO2 emissions begin
to decline faster than the control group after 2015. Figure 2b shows
that after 2014, Beijing’s SO2 emissions all begin to fall more quickly
than those of the control group. Nevertheless, because to the poor fit,

FIGURE 2
SO2 emissions from each pilot area and its control group: (a) SO2 emissions from pilot areas and their control groups; (b) SO2 emissions from pilot
areas and their control groups; (c) SO2 emissions from pilot areas and their control groups.

FIGURE 3
NOx emissions from each pilot area and its control group: (a) NOx emissions from pilot areas and their control groups; (b) NOx emissions from pilot
areas and their control groups.
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it is not able to assess the SER effect of the CT strategy in the relevant
region. In Figure 2c, SO2 emissions in Shanghai, Tianjin, and
Chongqing all started to decrease faster than the control group
after 2014, but the fit is poor. Therefore, the SER effect of the CT
policy in the corresponding region can not be judged. The above
results indicate that the CT policy realizes the SER of SO2 in Hubei
Province with a synergy of about 0.0003. After the implementation
of carbon trading policies in 2014, it is worth noting that emissions
in various regions did not immediately show significant changes.
This is because companies need time to adjust their production
processes, invest in new technologies, and change their energy
structures. This results in a lag effect in their SER efforts.
Meanwhile, CEs in various regions have decreased year by year
within 4 years of the implementation of the carbon trading policy,
indicating its long-term effectiveness. The NOx emissions in each
PA and its control group are shown in Figure 3.

In Figure 3a, Hubei has a better fit and its NOx emissions are
basically consistent with the control group. Guangdong, on the other
hand, starts to emit less than the control group after 2010, and the fit
is poor. Therefore, it is difficult to judge the SER effect of its NOx. In
Figure 3b, Tianjin and Chongqing have a better fit, and their NOx

emissions basically start to decrease around 2012, which is earlier
than the CT time. The fits of Shanghai and Beijing are poor, and it is
difficult to judge their SER effects. The above results indicate that the
CT policy realized the SER of NOx in Hubei, Tianjin and Chongqing.
This is because the industrial structure in Hubei, Chongqing, and
other areas is primarily heavy industry. This type of industry often
involves large amounts of energy consumption and pollutant
emissions during the production process. The implementation of
carbon trading policies forces high-energy-consuming enterprises to
undergo technological transformation and adjust their energy
structures to reduce their CE intensity. This directly promotes
the coordinated reduction of CO2 and other APs. Before the
implementation of carbon trading policies, the pollution levels in
Hubei and Chongqing are relatively high, providing ample
opportunity for collaborative ER. Additionally, Hubei and
Chongqing have demonstrated exceptional performance in PI,
which is another key factor contributing to their substantial SER
effect. The local government has demonstrated strong
organizational and execution capabilities in promoting and

implementing carbon trading policies. To further explore the SER
effect of the CT policy, the study extended the SCM. The CO2

emissions of the extended SCM are shown in Figure 4.
Figure 4a shows the CO2 emissions of Beijing, Chongqing, and

Tianjin. Emissions in Beijing and Chongqing begin to decline after
2014, with respective reductions of 9.65 and 3.3 million tons
compared to the control group. Furthermore, Tianjin’s CO2

emissions are essentially in line with those of the control
group. Figure 4b shows that there is little difference in
Guangdong’s CO2 emissions before and after the CT policy is
put into place. After 2014, CO2 emissions in Shanghai and Hubei
decreased dramatically, by 7.55 million tonnes and 63.7 million
tonnes, respectively. The CT policy has obvious ER effects in Beijing,
Chongqing, Shanghai, and Hubei. The implementation of carbon
trading policies can achieve SERs such as SO2 and NOx. This is due
to the fact that the energy mix has changed significantly after the
implementation of carbon trading policies. With the promotion of
carbon trading policies, companies and regions may be encouraged
to use clean energy or improve energy efficiency. This would reduce
their dependence on fossil fuels. The optimization of this energy
structure can simultaneously reduce the emissions of CO2, SO2, and
NOx. Technological upgrading is another key driving force for
achieving collaborative emissions reduction. The implementation
of carbon trading policies has increased pressure on enterprises to
reduce emissions. This has prompted them to invest in advanced
pollution control technologies, such as flue gas desulfurization and
denitrification, to reduce SO2 and NOx emissions.

3.2 Suggestions for regional carbon trading
market optimization

In recent years, extreme weather and natural disasters have
occurred frequently around the world, indicating that it is urgent to
address climate change and reduce GHG emissions. According to
the above research results, it can be concluded that the energy
structure has a significant impact on the SER effect of the carbon
trading market. It can be concluded that regions with high coal
dependence have significant SER effects after implementing carbon
trading policies. It can be concluded that improving the energy

FIGURE 4
The CO2 emissions of the extended SCM: (a) CO2 emissions from pilot areas and their control groups; (b) CO2 emissions from pilot areas and their
control groups.
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structure, increasing the proportion of clean energy in the energy
structure, and gradually phasing out traditional coal fuels can
effectively enhance the SER effect. The main measures to
improve the energy structure are to promote the construction of
smart grids and strengthen the production, storage, sales, and use of
clean energy such as photovoltaics and wind power. In regions
highly dependent on coal, it is necessary to promote natural gas and
biomass energy alternatives, reduce coal dependence, and increase
investment in clean energy, such as photovoltaics and wind power,
to increase clean energy’s proportion in the energy structure.
Regions with abundant clean energy resources are encouraged to
develop and utilize clean energy, such as small hydropower and
geothermal energy. They should also invest in energy storage
technologies, such as battery storage and pumped storage, to
balance the intermittency of clean energy. In addition, the
increase in economic costs caused by carbon trading for
enterprises, although temporarily avoided through industrial
transfer and output adjustment, cannot guarantee the long-term
competitiveness and vitality of enterprises. Therefore, it is necessary
to improve the management system of the carbon trading market
and formulate reasonable default penalties. This will allow
enterprises to operate sustainably, maintain their competitiveness
and vitality, and achieve continuous carbon reduction and ER.
Finally, the operational mechanism of the carbon trading market
itself will determine its SER effect. Therefore, to ensure the SER
effect when promoting the carbon trading market, the operating
mechanism should be carefully considered. The operating
mechanisms of carbon trading markets with a synergy degree
greater than o, such as those in Beijing and Shanghai, should be
used as a reference. In addition, different industries have different
characteristics. When formulating the operating mechanism of the
carbon trading market, it is also necessary to fully consider the
characteristics of the emission control industry itself. Based on this, a
feedback mechanism is constructed to form a carbon trading market
environment with active trading, active participation and effective
emission control.

4 Discussion

A comprehensive analysis was conducted on the synergistic
effect of reducing APs through DID and SCM in RCT policies. The
research results indicated that carbon trading policies could not only
effectively reduce carbon dioxide emissions, but also synergistically
reduced sulfur dioxide and nitrogen oxide emissions. This discovery
was consistent with some research results in existing literature. The
study by Wei Y et al. showed that the tiered carbon trading policy
increased renewable energy consumption by 0.12% and reduced CEs
by 0.6% (Wei et al., 2023). The study by Kou P et al. showed that CEs
trading had significant synergistic benefits in reducing sulfur dioxide
emissions, and this benefit was mainly achieved by reducing fossil
energy consumption (Kou et al., 2021). Carbon trading policies
achieved coordinated ERs by adjusting the energy structure during
implementation. Due to the promotion of carbon trading policies,
enterprises and regions tend to increase their use of clean energy and
reduce their dependence on high-carbon energy sources, such as
coal. The optimization of this energy structure not only reduced CO2

emissions, but also reduced SO2 and NOx emissions. For example,

research in Hubei Province and Chongqing City indicated that the
implementation of carbon trading policies led to a significant
increase in the use of clean energy in these areas, thereby
achieving a coordinated reduction in various pollutants. The
uniqueness of the study lies in the following aspects: first, the
study not only evaluated the carbon dioxide ER effect of carbon
trading policies, but also examined their SER effects on sulfur
dioxide and nitrogen oxides. This comprehensive evaluation
method provides a more comprehensive perspective for fully
understanding the environmental benefits of carbon trading
policies. Second, this study conducted a detailed analysis of the
ER effects in different pilot regions, revealing the heterogeneity of
policies in different regions. This discovery helps to understand the
applicability and effectiveness of policies in different economic,
social, and environmental contexts, providing a scientific basis
for regional differentiated policy design. Through the above
research, it has been proven that carbon trading policies can
effectively reduce GHG and air pollutant emissions, providing
empirical support for the effectiveness of carbon trading policies.
This will help promote more regions and countries to adopt similar
policy tools to address global climate change and air pollution issues.
Although the research results of this article have important
enlightening significance, there are also some limitations: first,
this study incorporates Shenzhen into Guangdong Province for
analysis, which may to some extent affect the accuracy of the
results. Future research could consider more detailed regional
divisions to obtain more accurate evaluations of policy
effectiveness. Second, this study only analyzes the SER effect
from a theoretical perspective and do not quantitatively evaluate
the policy design mechanism. Future research can further quantify
key parameters in policy design, such as carbon prices, quota
allocation methods, etc., to more comprehensively evaluate the
effectiveness and efficiency of policies.

5 Conclusion

To cope with climate warming and reduce the emissions of GHG
and AP, all countries in the world have begun to realize CT policies.
Since GHG and AP are homologous, the CT policy is bound to have
some effects on the emissions of other APs when promoting carbon
ER. In order to explore the SER effect of RCT policy, the study
analyzed the SER effect of CT using DID and SCM. The main
findings were as follows: Implementing carbon trading policies
could significantly reduce annual CO2 emissions by about
54.13 million tons. These policies also had a synergistic effect on
reducing SO2 and NOx emissions by 176,100 and 112,500 tons,
respectively. Among the six PAs, Hubei Province had the most
significant CO2 ER effect, with a reduction of approximately
66.25 million tons. In addition, Hubei Province and Beijing
performed well in coordinating the reduction of SO2 emissions.
Chongqing, Shanghai, and Hubei Province, on the other hand,
performed more significantly in coordinating the reduction of
NOx emissions. The above results show that the CT policy can
effectively promote the reduction of GHG and AP. It can be inferred
that carbon trading PAs can adjust their energy consumption
structure by reducing total energy consumption and improving
enterprise energy utilization efficiency. Although this will increase
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the production costs of enterprises, it can encourage them to
promote economic growth through value enhancement and
technological innovation compensation, which is the key path for
carbon trading mechanisms to bring economic dividends. However,
due to limitations in data acquisition, the study is unable to consider
all factors that may affect ER. Additionally, incorporating Shenzhen
into the Guangdong Province analysis impacts the accuracy of the
results. Therefore, in the future, the effectiveness and efficiency of
the carbon trading policy will be evaluatedmore comprehensively by
quantifying and evaluating key parameters such as carbon prices and
quota allocation methods. At the same time, the study needs to
consider the characteristics of more regions and industries, and
explore the applicability and effectiveness of carbon trading policies
in different contexts.
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