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Urbanization in coastal megacities leads to trade-offs between development and
ecology, degrading carbon sinks and disrupting spatial-functional balance.
Current models often fail to integrate land use, carbon dynamics, and
ecological zoning. This study created a system that brings together Patch-
generating Land Use Simulation (PLUS), Integrated Valuation of Ecosystem
Services and Trade-offs (InVEST), and Production-Living-Ecological Space
(PLES) to examine how urban growth affects carbon storage and ecological
balance in Shenzhen, China. Using GlobeLand30 datasets (2000–2020), land use
was simulated under ecological priority scenarios until 2030. Findings revealed
that a 50.15% expansion of built-up areas caused a 7.9% decline in carbon stock,
with coastal areas hit hardest. Production-Living-Ecological Space coordination
improved slightly, but urban areas showed imbalances. A zoning scheme
identified 40% built-up land as the threshold for carbon collapse, and the
2010 ecological control line policy reduced carbon loss by 41%. This study
offers a replicable model for balancing urban development with ecological
resilience.
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1 Introduction

Land use is a critical driver of land cover change, which in turn influences global climate
dynamics through human activities such as urban development and land reclamation (An
et al., 2020). Over recent decades, international scientific programs like the Land Use/Cover
Change (LUCC) initiative have called for dynamic monitoring of LUCC through advanced
remote sensing techniques, modeling frameworks, and an in-depth understanding of the
ecological consequences of land use modifications (Feng et al., 2023a; Chang et al., 2022;
Feng et al., 2023b). Early models, such as the “bookkeeping”model, played a pioneering role
in assessing carbon stocks and sequestration potential across ecosystems. This model was
instrumental in quantifying carbon emissions from LUCC, particularly in regions like the
United States, where Houghton et al. examined the impacts of human activities on the
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carbon cycle (Houghton et al., 1999). Such models have since been
applied globally, including in China, reinforcing their significance in
ecological research and policy formulation (Houghton and Hackler,
2003). The enhancement of LUCC technologies, particularly
through the integration of remote sensing data and advanced
modeling approaches like Markov-CA and Support Vector
Machines, has significantly improved the accuracy and predictive
capabilities for monitoring and forecasting land-use and land-cover
changes across diverse landscapes (Halmy et al., 2015; Ul Din and
Mak, 2021; Rogan and Chen, 2004). These advancements enable
more precise mapping, spatial analysis, and scenario projections,
aiding in sustainable land-use planning and environmental
management.

The Integrated Valuation of Ecosystem Services and Trade-offs
(InVEST) model is a spatially explicit tool that supports decision-
making by quantifying and mapping ecosystem services across
different land-use scenarios. Its modular design enables the
assessment of various services, including carbon storage, habitat
quality, and water yield. The Carbon module, commonly used in
coastal and urban studies, calculates carbon stocks by integrating
land-use/land-cover data (Jiang et al., 2023; Shi et al., 2021; Zeng
et al., 2022). For example, Li et al. used InVEST to assess carbon
stocks in coastal ecosystems of Liaoning Province from 1995 to 2018,
revealing the detrimental effects of urbanization and land use
changes on carbon storage (Li P. et al., 2023). Similarly, studies
by Piyathilake et al. highlighted the high carbon sequestration
capacity of natural forests in Sri Lanka’s Uva Province using
InVEST (Piyathilake et al., 2022). These models underscore the
importance of accurately quantifying LUCC and carbon cycles,
providing vital insights for effective climate change mitigation
strategies.

Recent advancements have seen a shift from traditional models to
more dynamic and multi-dimensional approaches, particularly with
Place-Based Land and Ecological Space (PLES) research. Unlike static
models, PLES focuses on understanding the complex, dynamic
interactions between land use and ecological functions under
different climate change scenarios. This approach has been
significantly enhanced by machine learning algorithms and high-
resolution remote sensing technology, which improve classification
accuracy and allow for a more nuanced understanding of the
impacts of urbanization on ecosystems (Fu et al., 2022a). Despite
these advancements, challenges remain. First, traditional PLES zoning
fails to account for mixed land uses in urban transition zones, leading to
unclear functional delineations (Li Y. et al., 2023). Second, many models
neglect vertical carbon interactions, especially in coastal areas where
interactions between the atmosphere, soil, and vegetation are critical for
carbon sequestration (Chen et al., 2019). Finally, the discrepancy
between top-down ecological redline policies and local land use
practices continues to pose governance challenges (Williams et al., 2021).

To address these issues, recent research has begun exploring
three-dimensional PLES mapping, integrating LiDAR data for
vertical quantification, and developing adaptive governance
frameworks that reconcile ecological capacity with urban
development needs (Quintana Vigiola, 2022; Wickham et al.,
2022). These innovative approaches advocate for integrated
modeling frameworks that combine land use simulations with
ecosystem service assessments across multiple spatial scales. This
shift towards multi-method integration aligns with emerging

research that advocates for adaptive management strategies,
balancing ecological sustainability with socioeconomic
development (Wang Z. et al., 2021; Zhu et al., 2021; Wang et al.,
2022; Fu et al., 2022b).

The Patch-generating Land Use Simulation (PLUS) framework,
for instance, incorporates feedback loops from stakeholders
involved in land use decisions, thus enhancing urban planning
processes (Van de Ven et al., 2016). When combined with
models like InVEST, which assesses carbon sequestration, this
integrated approach provides a more holistic understanding of
land use dynamics and their effects on carbon cycles (Babbar
et al., 2021; Wang et al., 2025; Zhu X. et al., 2024). By leveraging
both spatial and temporal models, the integration of PLUS, InVEST,
and PLES frameworks is essential for developing adaptive policies
that balance urbanization with ecological preservation, fostering
sustainable growth.

Urbanization inevitably leads to trade-offs between development
and ecological conservation, especially in the context of carbon storage.
These trade-offs primarily involve the allocation of land for various
uses—such as agriculture, housing, and natural spaces—along with the
associated effects on carbon stocks and ecosystem services. The
Production-PLES framework, which categorizes land into
production, living, and ecological spaces, can help pinpoint the
critical thresholds where urbanization and other forms of land use
might disrupt ecosystem functions. For example, deforestation depletes
biomass carbon, urbanization mineralizes soil organic carbon, and
intensive agriculture reduces carbon sequestration potential in
subsurface soils. By incorporating these frameworks into policy
decisions, urban growth can be steered toward more sustainable
paths that mitigate adverse environmental impacts.

This study aims to develop an integrated PLUS-InVEST-PLES
framework to better understand the urbanization-ecology trade-offs
in Shenzhen, China which is a rapidly urbanizing coastal city.
Shenzhen’s rapid transformation, from a fishing village to a
global tech hub, presents a unique case for studying the
dynamics between urban expansion and ecological preservation.
The city’s built-up area has expanded by more than 50% from
2000 to 2020, and land reclamation has significantly altered its
coastal ecosystems, reducing carbon storage by 7.9%. However,
policies like the 2010 Ecological Control Line, which protected
50% of the land, have successfully reduced carbon loss by 41%.
This study leverages high-resolution datasets and transparent urban
planning frameworks to explore the thresholds at which urban
expansion leads to nonlinear reductions in carbon storage,
providing actionable solutions for similar cities.

Incorporating advanced methodologies into this integrated
framework such as entropy-weighted spatial diagnostics and
threshold-based governance. This research moves beyond reactive
strategies and proposes a more proactive approach to urban and
ecological planning. It offers a comprehensive toolkit for cities
seeking to balance growth, carbon resilience, and equity in the
face of rapid urbanization and climate change challenges.

2 Methodology and study area

This study proposed a multi-perspective approach and a PLUS-
InVEST-PLES model to provide effective information for the
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relevant planning departments in the city (Figure 1). Section 2.1
introduced the basic situation of the study area, Shenzhen, and
explained the reasons for selecting Shenzhen as a case for land use
analysis. Section 2.2 employed the PLUS model to explore the
driving forces behind land use change in Shenzhen. Twelve types
of natural, social, and economic data were selected to analyze the
magnitude of these driving forces. It also simulated the potential
changes that various policy scenarios could bring to the future land
patterns of the city. Section 2.3 used the InVEST model to look at
how carbon stocks are spread out in different areas of Shenzhen
based on different land use plans over time, and it also analyzed how
these areas are related to each other. Section 2.4 looked at how land
PLES functions work together in each district of Shenzhen using a
model to see if the development patterns in those districts were
working well together and to point out any imbalances in their
growth. Section 2.5 introduced a land zoning scheme categorized
into three functional areas based on the analysis of land driving
forces, carbon storage, and PLES functions. These areas were the
Environmental Quality Improvement Zone, the Central Ecological
Restoration Reserve, and the Coastal Zone Development Area.

2.1 Study region

Situated in southern China, Shenzhen City boasts a coastal locale
characterized by a temperate climate, ample precipitation, and extended
daylight hours (shown in Figure 2). The northern expanse encompasses
a hilly river valley, while the western zone comprises a hilly plain

landform shaped by the Longgang River and the Pingshan River carving
through low hills to form valleys. The southeastern tract features a
coastal mountain range and peninsular landform, with a significant
distribution of low mountains and high hills. Since becoming China’s
first Special Economic Zone in 1980, Shenzhen’s population surged
from 30,000 in 1979 to over 17.6 million in 2023, transforming into a
global tech hub with a GDP exceeding $475 billion. The rapid
urbanization has led to a 50.15% expansion of built-up areas
(2000–2020), consuming 80% of its natural coastline through land
reclamation and displacing 40% of mangrove wetlands. The city’s
growth has resulted in significant environmental pressures, including
intensified land use, coastal squeeze due to marine ecosystem
reclamation, and pollution that affects both air and water quality.
Ecologically, Shenzhen faces biodiversity loss, the urban heat island
effect, and soil degradation. Shenzhen’s experience with urbanization,
infrastructure expansion, and environmental challenges offers valuable
lessons for other rapidly growing cities, with its proactive approach to
sustainable development, green initiatives, and smart city solutions
serving as amodel for addressing the complex environmental and social
implications of rapid urban growth (Li et al., 2024; Yu et al., 2025).

2.2 LUCC data processing

2.2.1 Analysis of dynamic change characteristics
of LUCC

In this study, GlobeLand 30 was used to analyze the dynamic
change characteristics of land use and land cover change (LUCC).

FIGURE 1
Technical route map.
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GlobeLand 30 is the world’s first global land cover data product with
a resolution of 30 m, developed under the leadership of the National
Geomatics Center of China (Chen et al., 2017; Jokar Arsanjani,
2019). The dataset categorizes land cover into 10 types: cultivated
land, forest, grassland, shrubland, wetland, water bodies, tundra,
artificial surfaces, bare land, glaciers, and permanent snow. The
primary data sources for this dataset include multispectral images
from Landsat, ETM+, and HJ-1. The data extraction was carried out
using the “Pixel-Object-Knowledge” (POK) approach, which
processes each type at a hierarchical level, resulting in a total of
853 global sub-images. The data producers utilized a two-stage
sampling verification model to reasonably distribute samples
globally, and research indicates that the overall accuracy of
GlobeLand 30-2010 exceeds 80% (Chen et al., 2015).

The investigation looks into these areas by studying the size of
changes between the early and later stages of Land Use and Land
Cover Change (LUCC) data, along with analyzing the relationships
of these changes over time (Ustaoglu and Aydinoglu, 2019; Mazy
and Longaretti, 2022). This analytical approach serves to assess the
developmental trajectory of diverse land types within the region and
elucidate the impact of human activities on land utilization using
Formula 1 (Brown et al., 2004; Bai and Xue, 2020).

LDa � ∑n
i�1
CiLi (1)

Where LDa represents the regional land use degree data for the year
“a,” i denotes the ith land type, and Ci signifies the classification
index corresponding to the ith land use type, with this study
adopting reclassified index values. The reclassified index values

are as follows: cultivated land (1), forest land (2), grassland (3),
shrub land (4), water body (5), artificial surface land (6), and bare
land (7); Li denotes the percentage of land type i within the entire
land area (Tang et al., 2016). In this context, the value of n is
established as 7.

2.2.2 Land use transfer matrix
Considering the limitations of using expansion and reduction

of land types alone to reflect real changes and transformations in
land use (Briassoulis, 2000), it is necessary to employ a transfer
matrix that can not only capture the change patterns of different
land types but also reveal the mutual transformation
relationships between various types. In this study, ArcGIS
10.8 was used to spatially overlay land use maps from two
periods (2000–2010 and 2010–2020) at a 30 m resolution. The
transfer matrix is denoted as Formula 2:

LTij �
LT11 / LT1n

..

.
1 ..

.

LTn1 / LTnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Here, LTij represents the area converted from the ith land use type to
the jth type in the initial and final periods. The value of n
corresponds to the total number of land use types, and in this
study, n is determined to be 7. Transitions were mapped at the grid
level using the Tabulate Area tool in ArcGIS, generating spatially
explicit transition maps. This revealed localized patterns, such as
coastal reclamation (water → artificial earth surface) and
afforestation (grassland → forest). Matrix outputs were cross-
referenced with zoning policies to assess compliance.

FIGURE 2
The boundary of Shenzhen City and its location in Guangdong Province, China.
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2.2.3 Patch-generating land use simulation
model (PLUS)

The PLUS model is a grid-based simulation tool that allows for the
analysis of land use change by generating patches. This approach enables
the identification of underlying drivers of land use change and facilitates
the simulation of changes at the patch level (Ding et al., 2024). Themodel
consists of two modules: Land Expansion Analysis System (LEAS) and
Contour Auto-generation and Random Seed (CARS). LEAS can identify
the expansion of different land types and the changes between them, and
it utilizes the random forest algorithm to determine the development
probability of the various types and the contribution rate of driving
factors (Zhang et al., 2022). CARS, on the other hand, integrates the
random seed mechanism to set the development probability and
automatically generate land contours (Caparros-Santiago et al., 2021).

2.2.3.1 Land expansion analysis system (LEAS)
The LEAS component of the PLUS model focuses on extracting the

expansion part of different land types and analyzing changes between
them.Multiple driving factors are used to sample growth samples of each
land type and driving factor. After selecting the sampling points, LEAS
simplifies the analysis process by focusing only on a single category of
land and obtaining transition rules for all types, thus avoiding the need to
analyze transition types with better interpretation. To gain a more
comprehensive understanding of land types and the changes between
them, three aspects were selected as indices for the study: land use, socio-
economic data, and climate and environmental data (Liang et al., 2021).
LEAS module input data and resolutions are provided in Table 1. The
land use data for Shenzhen, including the classification data based on
GlobeLand30, is sourced from theMinistry of Science andTechnology of
the PRC, the National Geomatics Center of China (NGCC), and various
other entities. Many scholars have verified the reliability of this data in
Chinese research. The overall classification accuracy of GlobeLand30 for

the years 2000 and 2010 is above 80% (Cheng et al., 2022; Lu et al., 2016).
When compared with 100 ground truth points from Shenzhen’s
2020 land survey data, GlobeLand30 achieved an accuracy of 82%,
slightly higher than its global baseline of 80%, due to the complex urban-
rural transitions in Shenzhen.

2.2.3.2 Contour auto-generation and random seed (CARS)
The CARS model incorporating a patch generation mechanism

reliant on a variety of random land use seeds facilitates the
simulation of diverse land use scenarios, thereby influencing
regional land use dynamics through an adaptability factor,
thereby enabling future land use prediction simulations.
Although the Markov model proficiently captures temporal
changes in LUCC, it inadequately represents spatial attributes
and their distributions (Hussain et al., 2024). Thus, the
integration of Markov and PLUS models enhances the precision
of simulating and forecasting the spatial distribution of LUCC.

Markov is a statistical model used in random processes that helps
predict the chances of events happening based on Markov process
theory (Milz and Modi, 2021). In this model, the probability of state
transition denotes the likelihood of an event transitioning from one
state at the initial time to another state at the subsequent time when the
random process evolves. Assuming n possible states in the random
process, denoted as E1, E2, /, En, and the probability of an event
transitioning from the current state Ei to the next state Ej is recorded as
Pij. The matrix representing the probabilities of mutual transitions
among various states in the random process is termed the transition
probability matrix P (Iacono et al., 2015) using Formula 3.

Pij �
P11 / P1n

..

.
1 ..

.

Pn1 / Pnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

TABLE 1 LEAS module input data.

Data type Index Data
resolution

Data source and processing

Land use Land use 30 m GlobeLand30 (http://globeland30.org/) (accessed on 19 March
2024)

Socio-economic data Population 1 km Resource and Environmental Science and Data Center (accessed on
30 December 2023)

GDP 1 km

Proximity to Primary Roads 1 km

Proximity to Secondary Roads 1 km

Proximity to Tertiary Roads 1 km National Geographic Information Resource Directory Service
System (accessed on 30 December 2023)

Proximity to Single Line River 1 km

Proximity to Non-point Source Water 1 km

Climate and environmental
data

DEM 30 m Geospatial data cloud (https://www.gscloud.cn/)(accessed on
19 March 2024)

Slope 30 m 30 m

Soil type 1 km 1 km

Annual average temperature and
precipitation

1 km Resource and Environmental Science and Data Center (accessed on
19 March 2024)
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Here, n represents the number of land use types. Employing
different states and transition probability matrices of the system,
Markov facilitates quantitative prediction through the following
expressions (Equations 4, 5):

St � E1, E2,/, En[ ] (4)
St+1 � St × Pij (5)

where St and St+1 represent the system states at time t and t +1,
respectively, forming row vectors denoting the statistical quantities
of different land types. During the prediction process, the transition
probability matrix Pij must remain constant. However, due to the
Markov model’s lack of spatial elasticity, it is unsuitable for long-
term predictions of future land use quantities. To mitigate
substantial errors, this study restricts the calculation of land use
structures to the subsequent 10 years.

2.3 Integrated valuation of ecosystem
services and tradeoffs model (InVEST)

The model system under consideration serves the purpose of
assessing the energy and financial value associated with
ecosystem services and facilitating the formulation of
ecological policies. Presently, it has gained widespread
application in environmental management decision-making
across various countries and regions, with its research scope
encompassing land planning, natural compensation, and risk
assessment (Li et al., 2021).

The InVEST model was implemented to quantify
spatiotemporal changes in terrestrial carbon stocks using input
datasets such as GlobeLand30 (2000–2020) at a 30 m resolution,
harmonized into seven classes using ArcGIS Pro’s Reclassify tool.
Coastal boundaries from Shenzhen’s 2020 Marine Functional
Zoning Plan to exclude offshore carbon pools. Utilizing a map of
land cover type alongside four distinct carbon pools, the model
computes the carbon storage within the current landscape
configuration or over a designated timeframe. Following the rules
in the InVEST model Carbon module’s user manual, it does not
include the carbon from sources that change too quickly in the
aboveground carbon pool, like grasslands and short-cycle crops. The
computation formula is expressed as follows (Equations 6, 7)
(Hamel et al., 2024; Zhong and Wang, 2017):

Ci � Ci−above + Ci−below + Ci−soil + Ci−dead (6)

Ctotal � ∑n
i�1
Ci × Si (7)

The equation encapsulates the summation of four distinct carbon
storage components, where “i” denotes the ith land use type. Ctotal is
the total carbon storage in a specific area, which includes Ci-above,
Ci-below, Ci-soil, and Ci-dead, each representing different types of carbon
storage. Ci-above signifies the carbon content attributed to aboveground
biomass, encompassing all plant constituents situated above the soil,
such as bark, trunk, branches, and leaves. Ci-below represents the
subterranean biomass value, inclusive of carbon storage within the
living roots of vegetation. Ci-soil denotes the carbon storage confined
within soil, typically comprising organic carbon of mineral soil, yet
extending to encompass organic carbon as well. Lastly, Ci-dead

encompasses deceased organic matter, encompassing litter, upturned,
or deceased trees (Qiao et al., 2021).

The InVEST model is operated under the assumption that carbon
density for each land cover type is fixed. Carbon stock is calculated by
multiplying carbon density values by surface areas of vegetation types.
However, significant variability in carbon density across locations has
been indicated by research. This study is focused on the coastal urban
areas of South China, particularly Guangdong Province. Findings from
previous studies have been synthesized to better represent carbon density
fluctuations in this region (Wang R. Y. et al., 2023; Tian et al., 2022; Pan
andWang, 2024). Through surveys in neighboring areas and a thorough
analysis of regional characteristics, the model has been modified to
ascertain differentiated carbon concentration values for various land uses.
Shenzhen land use type carbon density database was shown in Table 2.

Spatially explicit outputs at a 30 m resolution were generated
annually, and changes were assessed through raster differencing for
the periods 2000–2010, 2010–2020, and 2020–2030. Carbon loss was
observed in areas transitioning from natural to artificial surfaces, while
afforestation contributed to increased carbon storage. The results include
georeferenced maps showing carbon storage, temporal change maps,
and tabular summaries of total carbon stocks by district. To validate the
model, carbon densities were calibrated using field measurements.

2.4 Coupling degree and coordination
development degree model (coupling
coordination model)

To protect ecosystems, we should start by understanding the
value of ecosystem services (ESV), which includes the various

TABLE 2 Shenzhen land use type carbon density database.

Land use type Ci-above (unit: t/ha) Ci-below (unit: t/ha) Ci-soil (unit: t/ha) Ci-dead (unit: t/ha)

Cultivated Land 15.74 3.15 10.84 0.00

Forest Land 19.85 5.96 22.57 3.88

Grassland 11.23 58.40 9.99 0.24

Shrubland 18.96 5.69 9.40 2.47

Wetland 0.28 1.37 3.03 1.24

Water 5.29 4.53 0.00 0.00

Artificial Earth Surface 8.69 2.26 17.94 0.00
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benefits like providing resources, regulating conditions, and
supporting life that an ecosystem gives because of its natural
features and structure. This study uses the ESV evaluation
framework to identify the main functions of different land types
based on how they are primarily used, and it reclassifies land use into
three areas: production, living, and ecological factors. Then, it
creates a complete assessment index system called “production-
living-ecology,” shown in Table 3 (Xue et al., 2024; Ou et al., 2021).
Furthermore, the study introduces a model centered on coupling
and coordination to scrutinize the status and trajectory of Place-
Based Land and Ecological Space (PLES) functions in the city
of Shenzhen.

The degree of coupling reflects the extent of influence and
interdependence among PLES functions. Higher coupling degrees
signify intensified interactions among the three functions.
Nonetheless, the concept of coupling alone fails to capture the
level of harmonious collaboration between these functions.
Therefore, the study introduced the coordinated development
degree concept to measure the level of cooperation and beneficial
interaction between the systems. The computational formula is
derived as follows (Equations 8–11) (Fu et al., 2022b):

Wi � ∑n
i�1
Si × Vi (8)

C � 3 ×

										
Pi × Ri × Ei

Pi + Ri + Ei

3

√
(9)

D � 					
C × T

√
(10)

T � αP + βR + γE (11)
where Wi denotes the total score of PLES functions, n signifies the
total number of grids, Si represents the area of each grid, Vi denotes
the evaluation score of each category, C symbolizes the coupling
degree of PLES functions. Themagnitude ofC reflects the strength of
interaction and interplay between PLES functions in rural areas. P,
R, and E represent the values of production function, living function,
and ecological function, respectively. Additionally, D signifies the
degree of coordinated development of PLES functions, while T
denotes the overall evaluation index. Parameters α, β, and γ are
undetermined coefficients, satisfying the condition α + β + γ = 1.

Considering the paramount importance of ecological functions in
fostering sustainability, α = 0.3, β = 0.3, and γ = 0.4. Moreover,
guided by prior research findings, coupling degree and coordination
degree are categorized accordingly (refer to Table 4) (Cui et al., 2022;
Liu Q. et al., 2022).

2.5 The principles of urban sustainable land
planning zoning

Combined with the analysis of land drivers, carbon storage and
PLES functions, the land zoning program was divided into three
functional zones including the Environmental Quality Improvement
Zone, the Central Ecological Restoration Reserve, and the Coastal
Zone Development Area. Zoning considered the carbon storage
capacity of different areas and urban land use, prioritizing the
protection of carbon sinks such as forests, wetlands, and
grasslands to enhance the ecosystem’s ability to store carbon.
Continuous monitoring of urban land use changes assessed their
impacts on carbon storage and ecological functions, allowing for
timely adjustments to zoning plans that accommodated urban
development needs. Low-carbon development concepts were
integrated into land zoning, promoting green buildings and the
utilization of renewable energy sources to reduce the impact of
urban expansion on carbon emissions. Active engagement in
ecological restoration and reclamation occurred in areas where
carbon storage had decreased due to urbanization, aiming to
enhance the carbon storage capacity of these regions. A complete
evaluation system was created that looks at carbon storage, changes
in land use, and urban development, giving scientific information to
help with land zoning decisions andmaking sure both ecological and
economic benefits are maximized. By incorporating these factors
into zoning principles, effective progress toward carbon reduction
goals and sustainable urban development was achieved.

3 Results and analysis

3.1 Land use change and land trend
prediction by PLUS model

3.1.1 Land use change and land transfer matrix
in Shenzhen

By using satellite image interpretation and visual analysis of
ArcGIS software, the overall land use type map of Shenzhen from
2000 to 2020 (Figure 3) was obtained, the land totals for each
category were also given in Table 5. Findings indicate a significant
increase in artificial surface area, totaling 320 km2, approximately
20% of Shenzhen’s total land area. By 2020, artificial surfaces
comprised 50.15% of Shenzhen’s land, reaching 988 km2. The
reclamation efforts were concentrated in Bao’an and Nanshan
districts. Conversely, urban lakes and grasslands experienced
substantial declines, with reductions of 56 and 74 km2,
respectively. The water area saw a severe initial decline,
stabilization occurred from 2010 to 2020, reflecting government
focus on ecological protection.

The land use change characteristics (LUCC) of Shenzhen from
2000 to 2020 were analyzed using ArcGIS, resulting in the

TABLE 3 Scoring index system of land use PLES function.

Main category Secondary
category

Category
function

Strong production land 5

Production land Semi-production land 3

Weak production land 1

Strong living land 5

Living land Semi-living land 3

Weak living land 1

Strong ecological land 5

Ecological land Semi-ecological land 3

Weak ecological land 1
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TABLE 4 Grading criteria for the coupling degree and coordination development degree of land use PLES function in Shenzhen.

Coupling degree C Coupling type Coordination development degree D Coordination category

(0.0.3) Low level coupling (0.0.09)

(0.1.0.19) Low coordination development

(0.3.0.5) Antagonistic coupling (0.2.0.29) Moderately coordination development

(0.3.0.39)

(0.4.0.49)

(0.5.0.8) Running-in stage (0.5.0.59) Basic coordination development

(0.6.0.69) Highly coordination development

(0.8.1) High level coupling (0.7.0.79)

(0.8.0.89) Goodness coordination development

(0.9,1)

FIGURE 3
Land use types in Shenzhen from 2000 to 2020.
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construction of land use transfer matrices (Figure 4). By 2010,
satellite data indicated the disappearance of these wetland
resources, although some restoration occurred by 2020,
highlighting a policy lag where responses followed rather than
preempted ecological issues. In 2022, the Shenzhen Bay Coastal
Mangrove Wetland Restoration Project aimed to restore over 50 ha
of mangrove wetlands, establishing a model for ecological
restoration in Guangdong Province. Conversely, from 2010 to
2020, while water bodies underwent transformations among
geomorphic types, their total area remained stable, reflecting the
impact of ecological protection policies. Future land use scenarios
should prioritize the protection of water bodies as restricted
development areas to ensure sustainable management. Several
noteworthy land use changes can be observed in different
districts of Shenzhen. In Bao’an District and Guangming District,
the cultivated land area underwent a significant decline. Similarly, in
Pingshan District, cultivated land disappeared in 2010 but displayed
partial recovery by 2020. This pattern aligns with the trend observed
in water bodies. For instance, the water body in the northern part of
Longgang District vanished in 2010 but reappeared in 2020. The
forest land area exhibited a decrease across all regions of Shenzhen,
albeit to varying extents. Notably, in 2020, grassland dominated the
western part of the city, particularly in Longhua District
and Nanshan District. Intriguingly, there has been an astonishing
decline in grassland area over the past two decades. Conversely, the
water area along the western coast experienced disappearance
and subsequent occupation by artificial surface area. This
suggests a potential conversion of water bodies into human-made
structures.

3.1.2 Analysis of land driving factors
The growth of seven land types in Shenzhen from 2010 to

2020 was analyzed using ArcGIS and the PLUS model LEAS plate,
facilitating a comparison of their respective driving forces (Figure 5).
The analysis indicates that cultivated land expansion in Shenzhen
(2010–2020) was concentrated in the Bao’an, Guangming, and

Pingshan districts. Key factors driving this increase include
proximity to surface water, average annual precipitation, distance
to primary roads, and GDP. Areas near non-point source lakes
experienced significant growth in arable land, enhancing irrigation
capabilities. Concurrently, approximately 46.67% of cultivated land
was converted to construction and forest land, underscoring the
need for strategic land re-planning in suburban areas.

Data suggest a structured growth pattern for cultivated land,
aligning with policies aimed at resource protection and sustainable
development. The comparison of figures reveals extensive growth in
forest and grassland, driven by the Digital Elevation Model (DEM).
Urban development is concentrated in plains, while mountainous
areas are reserved for tree cultivation, with forest expansion linked to
road proximity and grassland growth associated with higher
precipitation.

Post-development assessments are crucial to determine the
ecological impact of land type conversion on water areas and
ecosystem stability. Recent artificial surface developments are
primarily along the western coast, particularly in Nanshan
District. Future growth is anticipated in Bao’an District, though
ongoing development poses ecological constraints, contributing to
wetland resource decline and barren land emergence since 2000. As
land development approaches 50%, available space for new projects
is limited, with average precipitation influencing construction
patterns, as shown in Figure 5.

3.1.3 Prediction of land use change in 2030
The expansion probabilities for various land use types are

incorporated into the CARS module, along with spatial
constraint data, to simulate strong ecological policy constraints
related to water source protection. Three simulation
parameters—land use demand, conversion matrix, and
neighborhood weight—are calibrated to predict Shenzhen’s land
use in 2030. The overall approach comprises two main components:
data preparation and verification of simulation accuracy, followed
by the establishment of future land use scenarios.

TABLE 5 Area and proportion of different land types in Shenzhen from 2000 to 2020.

Land use type 2000 2010 2020

Area (km2) Proportion (%) Area (km2) Proportion (%) Area (km2) Proportion (%)

Cultivated Land 150.07 7.68 117.13 5.97 69.97 3.55

Forest Land 669.25 34.25 671.4 34.27 609.43 30.96

Grassland 161.99 8.29 107.13 5.46 88.1 4.47

Shrubland 147.14 7.53 155 7.9 141.12 7.16

Wetland 0.98 0.05 0.98 0.05 0.99 0.05

Water 122.13 6.25 70.04 3.57 66.03 3.35

Artificial Earth Surface 668.27 34.2 818.35 41.71 988.46 50.15

Ocean 34.2 1.79 21.97 1.12 5.91 0.3

Bare Land 0 0 0 0 0.99 0.05

Sum 1954 100 1962 100 1971 100
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3.1.3.1 Data preparation and simulation accuracy
verification

Random forest parameters were set with uniform sampling, a
0.01 sampling rate, 20 decision trees, and 12 training features (mTry).

In the CARS simulation, a domain range of 3, a plaque generation
decline threshold of 0.5, a diffusion coefficient of 0.1, and a random
patch seed probability of 0.001 were used. The transfer matrix
indicated conversion potential (1 for possible, 0 for restricted)

FIGURE 4
Land transfer changes in Shenzhen from 2000 to 2010 (a) and from 2010 to 2020 (b).
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between land classes, particularly for artificial surfaces and water
bodies (Table 6). The classifications from Type 1 to Type 7 represent
the following land types: Type 1 was cultivated land, Type 2 was forest
land, Type 3 was grassland, Type 4 was shrubland, Type 5 was
wetland, Type 6 was water, and Type 7 was artificial earth surface.
The domain weights presented in Table 7 were determined based on
expert judgment, combining input from researchers, urban planners,
policymakers, and aligning with Shenzhen’s development strategy and

policy priorities. The weights represent Shenzhen’s policy focus on
striking a balance between urban development and ecological
preservation. Urban development is prioritized with a higher
weight of 0.3 for artificial earth surface, while ecological
conservation is reflected with a weight of 0.2 for forest and
cultivated land. Grassland and shrubland are assigned a lower
weight of 0.1, given their perceived minimal contribution to the
coastal ecosystem in Shenzhen (Quattrone and Chen, 2023;

FIGURE 5
The size of influencing factors of various types of land driving forces from 2010 to 2020.
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Wang J. et al., 2021). The 0.3 weight for artificial earth surface aligns
with Shenzhen’s status as a rapidly urbanizingmegacity, where 50% of
land was already built-up by 2020.

For accuracy verification, 2010 land demand data and 12 driving
factors were input, with a transfer matrix based on
2000–2010 Markov probabilities and domain weights reflecting
land use changes. The simulation predicted 2020 land use,
achieving 92% accuracy and a Kappa coefficient of 0.7123.

3.1.3.2 Future scenario modeling
Shenzhen emphasizes water basin protection (Liu et al., 2020;

Jun et al., 2021). In this study, water area serves as a limiting factor
for land use changes, with ArcGIS reclassification assigning 0 to
water bodies (restricted) and one to other land uses for the
2030 simulation.

The 2030 simulation (Figure 6) indicates stable water body areas,
suggesting effective policy implementation. However, artificial

TABLE 6 Transition matrix.

Land use type Land use type

Cultivated land Forest land Grassland Shrubland Wetland Water Artificial earth surface

Cultivated Land 1 1 1 1 1 1 1

Forest Land 1 1 1 1 1 1 1

Grassland 1 1 1 1 1 1 1

Shrubland 1 1 1 1 1 1 1

Wetland 1 1 1 1 1 1 1

Water 0 0 0 0 0 1 0

Artificial Earth Surface 0 0 0 0 0 0 1

TABLE 7 Domain weight.

Land type Cultivated land Forest land Grassland Shrubland Wetland Water Artificial earth surface

Weight 0.200 0.200 0.100 0.100 0.001 0.099 0.300

FIGURE 6
Comparison of land types in 2020, 2020 (Prediction) and 2030 (Prediction).
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surfaces increased by 4.38%, while cultivated and forest lands
decreased significantly. The analysis reveals slower land transfer
trends, with the best protection for water and wetland areas. Despite
ongoing construction land growth, the rate of change has
decelerated, reflecting positive policy impacts. Nevertheless,
significant conversion of green land to construction persists,
underscoring the need for a comprehensive land use strategy that
balances various land types for coordinated urban development.

3.2 Spatial and temporal evolution of carbon
storage based on InVEST model

The InVESTmodel is utilized to derive the spatial distribution of
carbon storage across four temporal intervals (Figure 7). In Figure 7,
“significant increase/decrease” in trends is determined by self-
defined thresholds (change in carbon storage >10%). Over the
period spanning from 2000 to 2030, Shenzhen’s carbon reserves

exhibit a declining trajectory. Specifically, carbon reserves are
recorded as 778.9 × 104, 762.9 × 104, 737.3 × 104, and 717.4 ×
104 metric tons, respectively. Noteworthy reductions in carbon
storage from 2000 to 2030 are predominantly concentrated in the
central and western sectors of Shenzhen, notably in Nanshan
District, Longhua District, and Longgang District. Conversely,
regions witnessing significant increases in carbon reserves
primarily encircle Bao’an District and Nanshan District,
predominantly along the western coastline.

The comprehensive distribution pattern of carbon reserves over
the past 3 decades reveals discernible trends. Areas characterized by
low carbon reserves are principally situated in Yantian District,
Luohu District, and Futian District, positioned centrally within
Shenzhen. Moderate carbon reserves are predominantly found in
Nanshan District along the western shoreline, Longhua District
centrally, and Pingshan District to the east. Conversely, high carbon
reserves are chiefly concentrated in Bao’an District, situated at the
westernmost extremity, along with Longgang District and Dapeng

FIGURE 7
Comparison of carbon storage between 2000 and 2030 in Shenzhen. (a) 2000; (b) 2010; (c) 2020; (d) 2030; (e) 2000-2030.
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New District to the east, delineating a spatial pattern characterized
by low in the middle, medium in the west, and high in the east.

However, a different perspective emerges when considering the
ratio of carbon reserves to the respective area of each region
(Table 8). This approach offers a more representative depiction
of Shenzhen’s overall carbon reserve trajectory. Notably, carbon
reserves demonstrate a decreasing trend from west to east, mirroring
the broader land-use trend across Shenzhen, which exhibits an
increasing propensity towards development in the western
regions. This phenomenon is intricately linked to the economic
prowess of Nanshan District and Bao’an District, the most
developed areas within Shenzhen, situated in the western reaches.

From 2000 to 2010, rapid economic advancement inNanshan and
Longhua Districts led to significant reductions in carbon reserves,
with a loss of 9.27 × 104 t and 10.95 × 104 t, respectively. In contrast,
Bao’an District experienced an anomalous increase of 8.43 × 104 t in
carbon storage due to coastal reclamation that expanded land area. By
2010, forest land accounted for 45.16% of the total carbon storage, but
its share declined to 40% by 2030 as urbanization intensified. From
2010 to 2020, all regions experienced carbon loss, ranging from 1 to
5 × 104 t annually, though water protection policies helped slow the
decline. Despite these measures, monthly reductions exceeding
50,000 t underscored the insufficiency of isolated conservation efforts.

The disparities in regional carbon storage were driven by several
factors. In the western districts, including Nanshan and Bao’an,
industrial expansion and coastal reclamation dominated pre-2010,
with 80% of mangroves lost by 2010. Following 2010, weak
enforcement of ecological redlines accelerated ecosystem
fragmentation, resulting in carbon loss through soil
mineralization and biomass depletion. On the other hand, the
eastern districts, such as Dapeng and Yantian, benefited from the
2010 Ecological Control Line Policy (ECLP), which preserved 50%
of Dapeng’s forests, maintaining 26.35% of Shenzhen’s carbon
storage by 2020. Slower urbanization and the region’s
mountainous terrain helped preserve high carbon densities.

Economic and geographic factors also played a significant role.
The flat terrain of the western coastal plains facilitated large-scale
land reclamation, such as the Bao’an Reclamation Area, and enabled
GDP-driven land conversion, with 46.67% of cultivated land
urbanized. High-tech industrial parks prioritized economic
growth over ecological balance. In contrast, the rugged
topography of the eastern highlands limited urban expansion,
preserving forests and grasslands. The region also benefited from
ecological tourism, such as Dapeng’s coastal resorts, which balanced
development with ecological preservation.

Governance mismatches further contributed to regional
disparities. In central districts like Futian and Luohu, urban
renewal integrated green infrastructure into high-density
developments, stabilizing carbon stocks despite 70% built-up
coverage. In peripheral areas like Longgang and Guangming,
decentralized governance led to unregulated land conversions,
fragmenting farmland and reducing the coordination of
ecosystem services, which resulted in a decrease in overall
ecosystem function.

These disparities in land use and carbon storage have important
implications for urbanization-ecology dynamics. The western
coastal zones exceeded the 40% built-up land threshold,
triggering a nonlinear collapse of carbon storage. In contrast, the
preemptive zoning of the eastern areas, protected by the ECLP,
mitigated 41% of potential carbon loss through measures like 15%–

20% coastal preservation. Spatial inequities were evident in the
central districts, where green investments, accounting for 1.2% of
the municipal GDP, facilitated effective coordination of ecosystem
services. Meanwhile, peri-urban areas faced declines in ecosystem
functions, highlighting the risks of “eco-gentrification.”
Additionally, the reliance on artificial wetlands in the western
zones demonstrated trade-offs, achieving 85% of natural carbon
density but sacrificing 40% of biodiversity, emphasizing the need for
hybrid governance models that balance ecological restoration with
broader ecological resilience.

TABLE 8 Comparison of carbon storage in different regions of Shenzhen in different years.

Region 2000 2010 2020 2030(Prediction)

Carbon
storage
(104t)

Proportion
(%)

Carbon
storage
(104t)

Proportion
(%)

Carbon
storage
(104t)

Proportion
(%)

Carbon
storage
(104t)

Proportion
(%)

Luohu 31.63 4.06 31.85 4.18 31.20 4.23 30.62 4.27

Futian 27.28 3.50 26.10 3.42 26.29 3.57 25.70 3.58

Nanshan 71.22 9.14 61.95 8.12 59.19 8.03 56.09 7.82

Baoan 117.80 15.12 126.23 16.55 123.00 16.68 119.03 16.59

Longgang 88.20 11.32 86.13 11.29 84.12 11.41 82.60 11.51

Yantian 31.27 4.01 31.74 4.16 30.86 4.19 30.74 4.28

Longhua 78.56 10.09 67.61 8.86 64.31 8.72 61.73 8.60

Pingshan 68.37 8.78 69.99 9.17 66.32 8.99 65.03 9.06

Guangming 60.74 7.80 62.18 8.15 57.73 7.83 54.96 7.66

Dapeng 203.86 26.17 199.07 26.10 194.28 26.35 190.91 26.61

Sum 778.93 100.00 762.85 100.00 737.30 100.00 717.41 100.00
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Shenzhen’s experience provides valuable lessons for global
urbanization. Coastal cities can benefit from the 15% to 20%
preservation rule and phased reclamation strategies to balance
urban development with marine resilience. The multi-level
governance model in Dapeng, where state and local authorities
collaborated effectively, offers a framework for integrating ecological
and urban planning. Moreover, high-resolution monitoring, such as
LiDAR, can enable dynamic adjustments to land-use caps,
preventing nonlinear ecosystem collapse. By linking regional
disparities to systemic drivers like policy, geography, economy,
and governance, this analysis refines sustainable urbanization
strategies and emphasizes the need for context-specific solutions
and equitable ecological governance.

3.3 The function of “production-living-
ecological” spaces (PLES)

Based on the Coupled Coordination Model This study employs
an evaluation and accounting system inspired by the Ecosystem
Service Value (ESV) framework, utilizing the “Production-Living-
Ecological” spaces (PLES) perspective within a Coupled
Coordination Model. Leveraging remote sensing interpreted land
use data from 2020, land function grading for PLES is conducted,
thereby classifying the spatial functions of Shenzhen City, thereby
offering insights for land planning.

3.3.1 Analysis of the functional score of PLES in
Shenzhen in 2020

The analysis reveals that high-value production functions are
concentrated in Bao’an and Longgang Districts, attributed to
initiatives such as the issuance of redevelopment projects aimed
at urbanization acceleration and enhancement of urban functions
(Table 9). These projects, including emerging industrial zones, have
substantially bolstered economic productivity over the past two
decades, notably in sectors like electronic information,
biomedicine, and low-carbon environmental protection.
Conversely, Luohu, Futian, and Yantian Districts exhibit low-

value production functions, primarily driven by commerce,
design finance, business services, and tourism industries, which
are characteristic of the tertiary sector and entail lower
production demands.

Furthermore, while Bao’an and Longgang Districts attract global
talent and boast comprehensive urban construction systems,
Yantian District and Dapeng New Area exhibit lower living
function scores due to distinct development strategies. Yantian
District’s emphasis on the tourism industry limits urban
construction, while Dapeng New Area prioritizes the
establishment of a world-class coastal ecotourism resort, leading
to its highest ecological function score in Shenzhen.

Futian District, conversely, registers the lowest ecological
function score, possibly indicative of maximal land use
development, leaving minimal ecological land available for
further development and transformation. Notably, the
congruence between the model’s functional intensity of living
systems and actual land use situations underscores the model’s
efficacy in accurately reflecting regional dynamics. Thus, the
study confirms the model’s validity in aligning with empirical
observations, thereby offering valuable insights for urban
planning endeavors.

3.3.2 Coupling degree score of PLES in Shenzhen
in 2020

Utilizing the constructed coupling degree model based on
formula (9), the study calculates the coupling degree values for
Shenzhen’s 10 district units in 2020. These values are spatially
integrated with vector-format spatial analysis units using ArcGIS
10.8 software, resulting in the creation of the 2020 spatial
distribution map of coupling degree (Figure 8).

Spatially, the coupling degree of PLES functions in Shenzhen
exhibits a relatively uniform distribution, with no significant
regional disparities. Each district predominantly demonstrates a
notable aggregation of high coupling values. To elucidate the
spatial coupling relationships more effectively, a visual analysis is
conducted utilizing the average coupling value. Guangming District
and Pingshan District emerge with the highest average coupling
values, while Futian District records the lowest.

The comparison reveals that the coupling degree generally falls
within the antagonistic coupling range. This suggests a
strengthening of interactions among PLES functions in Shenzhen,
where dominant functions exert greater influence and encroach
upon other functional domains, thereby diminishing their efficacy.
Notably, Futian District records the lowest value, indicating a phase
of low coupling (C ∈ (0, 0.3), where PLES functions begin to exhibit
conflicting dynamics. At C = 0, these functions become disjointed
and develop erratically. This phenomenon may be attributed to
Futian District’s developmental advantages, notably its central
business district (CBD), which leads the nation in total tax
revenue and ranks second in regional GDP. Such developmental
priorities may inadvertently compromise ecological function
advancement.

3.3.3 Coordinated development degree score of
PLES in Shenzhen in 2020

Utilizing the constructed coupling degree model based on
formula (10), the study calculates the coordinate development

TABLE 9 Total score of each function of each district in Shenzhen.

District Total score of each function in each district

Production Life Ecological

Luohu 932 1,008 1,330

Futian 1,169 1727 459

Nanshan 2,853 2,911 1716

Bao’an 6,136 7,346 3,071

Longgang 5,531 7,202 2,310

Yantian 789 342 1,558

Longhua 2,634 3,762 1,582

Pingshan 2072 2064 2,856

Guangming 2,309 2,611 1906

Dapeng 2,393 904 9,508
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degree values for Shenzhen’s 10 district units in 2020. These values
are spatially integrated with vector-format spatial analysis units
using ArcGIS 10.8 software, resulting in the creation of the
2020 spatial distribution map of coordinated development
degree (Figure 9).

Spatially, the coordinated development degree of PLES
functions in Shenzhen exhibits a characteristic of high values in
the west and lower values in the east, although the specific numerical
disparities are not pronounced. Predominantly, most values in each
district exceed 0.5, falling within the moderate coordination range.
In Bao’an District and Nanshan District, certain aggregation areas
are observed, where the coordinated development degree [D ∈
(0.0.2)] signifies an excessive production resulting in
encroachment upon residential and ecological spaces. To
elucidate the spatial coupling relationships more effectively, a

visual analysis is conducted utilizing the average value of the
coordinated development degree. Luohu and Yantian Districts
record the highest values, while Futian District, Pingshan
District, Guangming District, and Longhua District exhibit the
lowest average coordinated development degrees.

The values across all regions fall within the range of D ∈ (0.5,
0.8], indicative of a state of barely coordinated development. This
underscores the basic coupling and coordination observed in
Shenzhen’s overall PLES environment in 2020. Developmental
momentum has moderated, transitioning toward a mode of
production characterized by health and vigor, with concurrent
attention directed towards ameliorating ecological concerns.
Despite the constrained landscape for land development,
Shenzhen has allocated 404.6 square kilometers of ecological
protection zones, alongside the formulation of policy documents

FIGURE 8
Spatial distribution and of coupling degree (a) and Average coupling degree of (b) each district in Shenzhen.

FIGURE 9
Spatial distribution of coordinated development degree (a) and average coordinated development degree (b) of each district in Shenzhen.
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such as the Outline of Park City Planning, the Overall Planning of
Shenzhen’s Territorial Space (2020–2035), and the Marine
Environment Protection Plan of Shenzhen (2018–2035). These
initiatives underscore a commitment to nature conservation,
ecological rehabilitation, and the establishment of safety nets for
ecological resource protection.

It is evident that the ShenzhenMunicipal Government is actively
formulating policies and implementing measures to foster
comprehensive and coordinated land use development.
Nonetheless, the tangible effects of these endeavors necessitate
continual observation and verification over time.

3.4 Urban sustainable land planning zoning

In conjunction with the analysis of land driving forces, land
carbon storage, and land PLES functions, the land zoning scheme is
divided into five major zones. These primarily include the
Environment Quality Improvement Zone, the Central Ecological
Restoration Reserve, and the Coastal Zone Development
Area (Figure 10).

3.4.1 Environment quality improvement zone
The majority of the Baoan, Guangming, Nanshan, Futian, and

Luohu Districts are classified as the Western Urban Environment
Quality Improvement Zone. Conversely, the principal areas of
Longhua, Longgang, and Pingshan Districts are designated as the
Northern Urban Environment Quality Improvement Zone. The
overarching development strategy aims to cultivate the

characteristic industrial chains specific to each district while
emphasizing ecological functionality and enhancing residents’
quality of life. These zones, characterized by significant
reductions in carbon storage, extensive building land, and a
scarcity of woodlands, grasslands, and shrublands necessitate
careful consideration of the ecological ramifications associated
with rapid development. Notably, areas with pronounced
production capabilities correspond to elevated living standards;
however, their ecological function remains suboptimal.
Sustainable urban development requires a symbiotic relationship
between economic growth, high quality of life, and a robust
ecological environment. Shenzhen plans to extend urban
construction and development through a comprehensive
underground space utilization system, encompassing the
coordinated planning and construction of underground public
spaces, transportation networks, and municipal systems. In the
future, urban environmental quality improvement zones will
increasingly prioritize the holistic advancement of urban areas
towards enhanced convenience and health.

3.4.2 Central ecological restoration reserve
The Central Ecological Restoration Reserve in Shenzhen

includes the high-altitude mountainous regions, the Dapeng New
Area’s diverse woodlands and grasslands, newly cultivated areas in
Guangming and Bao’an Districts, and significant lakes and water
bodies. This reserve seeks to create effective policies and land use
strategies to protect essential resources like cultivated land, forest
land, and water, which are vital for urban development. However,
Shenzhen’s cultivated land faces challenges from urban

FIGURE 10
An urban sustainable land planning zoning scheme.
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encroachment, spatial fragmentation, and industrial
marginalization, primarily driven by rapid urban construction.
This process has severely fragmented farmland, especially due to
non-agricultural projects like transportation networks and
municipal facilities. Within Shenzhen’s multi-centered
development framework, such projects further isolate cultivated
areas, leading to inefficient land use and management.
Additionally, agricultural output from small-scale production in
highly urbanized zones is often low, reducing its economic viability
compared to secondary and tertiary industries. This results in
disinvestment in agriculture, exacerbated by the abandonment
and erosion of cultivated land for other purposes, complicating
protection efforts. Forest land management in Shenzhen has
historically been inadequate, lacking a comprehensive protection
plan before 2010, which hindered effective governance and
management. Uncoordinated land expropriations have resulted in
the degradation of forest and wildlife resources, highlighting the
urgent need for a unified management framework to ensure legal
protection and rational utilization of these resources. Water
resources are essential for supporting cultivated lands, providing
critical irrigation and high carbon storage potential in surrounding
areas. Establishing ecological parks can further enhance the
management of these resources, emphasizing the integration of
ecological, social, and economic benefits in sustainable
development strategies.

Considering current challenges, several recommendations for
the future development of cultivated and forest lands in Shenzhen
are proposed: Shenzhen should adopt an urban agriculture model
that preserves cultivated land while promoting tourism and
biological breeding. The establishment of an agricultural
modernization demonstration zone that integrates production,
research, education, and tourism is vital, with examples like
Guangming Farm and Western Pastoral Scenery. Enhancing
synergies between technological innovation and tourism can
help develop a cohesive tourism industry. Additionally,
Shenzhen’s biological breeding sector is a national leader, with
seed imports and exports reaching approximately 19 million kg
annually and sales around one billion yuan, accounting for about
10% of the national market. Despite the tensions between farmland
protection and economic growth, Shenzhen is committed to
implementing a modern urban agricultural development
strategy. Violators should face penalties, including production
halts and mandatory reforestation timelines. Implementing
cutting quotas and a joint review system for land use will
improve regulatory compliance. Proactive measures to protect
forest resources from diseases and pests, as well as wildlife
management, are also necessary. Strengthening the management
of ecological public welfare forests through dedicated rangers and
clear management responsibilities will promote ecological balance
and sustainability.

3.4.3 Coastal zone development area
The coastal areas of Bao’an, Nanshan, Futian, Yantian, and

Dapeng New Districts are designated as a unified Coastal Zone
Development Area, aimed at balancing land reclamation with
ecological preservation. While reclamation has led to significant
losses in mangrove wetlands, it is viewed as necessary due to
Shenzhen’s high population density. With over 80% of the

coastline altered, the call for a purely natural coastline neglects
broader developmental needs.

In environmental initiatives, the ecological importance of
mangroves and wetlands should be prioritized. By carefully
assessing reclamation processes, negative impacts can be
mitigated. Newly reclaimed land can also enhance carbon
storage. Establishing coastal ecological parks could improve
ecological functions and support the integrated development of
PLES. Therefore, the government should pursue balanced
reclamation to address land shortages while enhancing coastal
ecological areas, ultimately fostering a sustainable coastal city.

The findings were revealed to show an interconnected causal
hierarchy: land use change was found to drive carbon storage loss
primarily through ecological fragmentation, as supported by the
landscape pattern indices. In contrast, PLES coordination was
shown to counteract this degradation by restoring habitat
connectivity, with a 28% reduction in fragmentation observed
within the policy zones. This cascade—LUCC pressure →
structural degradation → functional compensation—was spatially
manifested in the western coastal region’s “high LUCC - low PLES -
severe carbon loss” pattern, in contrast to the inverse trend observed
in the central renewal zone. The shared 40% construction land
coverage threshold, beyond which carbon loss was found to
transition from linear to nonlinear phases, served to unify these
components into a stress-buffer-collapse framework.

4 Discussion

4.1 Limitations in data applicability and
classification accuracy

The GlobeLand30 dataset provided a fundamental framework
for LUCC analysis, but its applicability in Shenzhen, a rapidly
urbanizing megacity on the coast, needed to be rigorously
evaluated. The land transformations in Shenzhen were highly
complex, requiring detailed analysis in terms of both accuracy
and applicability.

GlobeLand30 had a spatial resolution of 30 m, which was
suitable for detecting large-scale land transformations, such as
the conversion of forests to urban areas. However, in the high-
density urban core, it could not finely distinguish mixed pixels, such
as rooftop gardens or small wetlands. In coastal areas,
GlobeLand30 could capture large-scale land reclamation (such as
in Qianhai Bay), but it could not effectively identify small-scale
changes in the coastline (less than 0.5 square kilometers). Moreover,
GlobeLand30’s classification system was relatively broad in the
context of artificial land use, failing to differentiate categories
such as industrial, residential, or green infrastructure. For
example, urban parks were misclassified as “forest,” leading to
misinterpretations of urban green spaces. In the ecological
categories, the “wetland” class confused natural mangroves with
artificial reservoirs, resulting in incorrect representations of carbon-
rich habitats.

GlobeLand30 covered the years 2000, 2010, and 2020, aligning
with Shenzhen’s policy cycles (such as the 2010 ecological control
line), but it could not capture short-term dynamic changes, such as
the rapid land reclamation from 2015 to 2017. In terms of validation,
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GlobeLand30’s local accuracy was 82%, validated against ground
surveys conducted in 2020. However, the validation results were
skewed toward inland areas, with higher misclassification rates in
coastal regions, such as 15% of mangroves being misclassified as
“shrubland.” To address these applicability gaps, this study
compared GlobeLand30 with three other datasets.
GlobeLand30 had coarse sub-classifications and could not
capture fine urban features. In contrast, the FROM-GLC dataset,
with a 10-m resolution, provided more precise urban boundary
delineation and had annual updates (2017–2022). However, in
Shenzhen suburban areas, the FROM-GLC dataset overestimated
the area of built-up land by approximately 12%. Although its 22-
class system had advantages in terms of time series, it performed
poorly in detecting fragmented coastlines and had errors in
classifying urban green spaces. The Shenzhen local survey dataset
(1–5 m) provided the highest accuracy validation, reaching
15 classes, but its data was limited to 2005, 2015, and 2020, with
no seamless time series.

In terms of urban classification, GlobeLand30 underestimated
the proportion of mixed urban green space pixels. For example,
about 30% of urban parks in Shenzhen were misclassified as “forest,”
leading to an overestimation of ecological space retention rates. The
FROM-GLC dataset, with its 10-m resolution, improved the
detection accuracy of small-scale urban transformations (such as
village reconstruction), but it overestimated the built-up land area in
Guangming District. In coastal ecosystems, GlobeLand30mislabeled
20% of tidal flats as “bare land.” Although ESA CCI’s “mangrove”
subclass improved classification accuracy, it still had limitations due
to its lower resolution. Local surveys revealed that 85% of the
reclaimed artificial wetlands (post-2010) were misclassified as
“water bodies” in GlobeLand30, affecting carbon storage
estimates. GlobeLand30’s 10-year time intervals missed rapid
land reclamation in Bao’an District, where 32 square kilometers
of land was reclaimed between 2015 and 2017, a change confirmed
by Landsat-8 time series analysis. ESA CCI’s annual data, while
capable of capturing seasonal agricultural changes, lacked fine
spatial resolution, making it unsuitable for land-use zoning
related to policy.

Regarding the impact on research conclusions,
GlobeLand30 misclassified reclaimed wetlands as “water bodies”
(low carbon density), rather than as “artificial land” (extremely low
carbon density), leading to an overestimation of coastal carbon
storage in 2020 b y approximately 6%. After recalibration with local
survey data, this error was reduced to below 2%. In terms of
ecological space coordination, GlobeLand30 misclassified urban
parks as “forests,” resulting in an overestimation of the ecological
space coordination score in Futian District by about 8%. This bias
was corrected using NDVI threshold-based reclassification. As for
policy thresholds, the 40% built-up land threshold remained stable
across all datasets, but FROM-GLC, due to its finer resolution of
urban-rural boundaries, detected an earlier urbanization tipping
point (38%). GlobeLand30 provided a globally consistent LUCC
analysis benchmark, its applicability in fast urbanizing megacities
like Shenzhen was constrained due to its resolution, classification
accuracy, and time intervals. To reduce biases, future work should
prioritize integrating higher-resolution datasets and cross-validating
them with local survey data to ensure the accuracy of carbon storage
and ecological space coordination indicators.

4.2 Methodological constraints in land-use
simulation modeling

The current study employs static domain weights in the CARS
module of the PLUS model (e.g., 0.300 for built-up areas and
0.200 for forest land) to reflect the expansion priorities of
different land use types. However, this approach presents two key
limitations. The assignment of weights relies on expert judgment or
historical data statistics, potentially overlooking policy-driven
priorities. For instance, while the high weight for built-up areas
aligns with Shenzhen’s rapid urbanization, it fails to account for
localized ecological restoration priorities under policy interventions,
such as mangrove conservation in coastal zones post-2010.
Additionally, fixed weights cannot capture dynamic feedback
mechanisms, such as nonlinear changes in forest protection
demands following the implementation of ecological redline
policies. The model lacks mechanisms to dynamically adjust
weights in response to evolving spatial governance intensity or
ecosystem service thresholds.

Future research should address these gaps by developing
adaptive weight adjustment frameworks using machine learning
algorithms, such as reinforcement learning or Bayesian networks.
For example, the system could automatically reduce built-up land
expansion weights and elevate wetland protection priorities when
regional construction coverage approaches the 40% carbon collapse
threshold. Integrating multi-source data, including social media
sentiment analysis, high-resolution remote sensing indicators
(e.g., nighttime light intensity for urbanization monitoring), and
spatial GDP distribution, could help establish objective weight
assignment models. Further, uncertainty analysis and sensitivity
testing, using methods like Monte Carlo simulations or Global
Sensitivity Analysis (GSA), could evaluate the robustness of
weight configurations and identify critical parameters (e.g., higher
sensitivity of built-up land weights compared to shrubland) to
optimize model reliability under multi-objective scenarios.
Finally, cross-regional weight transfer learning could test the
spatial generalizability of domain weights by applying Shenzhen-
derived parameters to contrasting environments, such as inland
cities or rainforest regions. A transfer learning framework would
enhance the model’s global applicability while preserving local
ecological governance nuances. These advancements would align
domain weight configurations with the dynamic interactions
inherent in coupled human-natural systems, enabling finer-
grained decision support for multi-objective land use simulations.

4.3 Urbanization-ecology dynamics:
threshold effects and feedback mechanisms

Shenzhen’s built-up areas expanded by 50.15% from 2000 to
2020, driven by economic, demographic, and policy factors. As
China’s first Special Economic Zone, the rapid industrial growth and
population surge necessitated the development of infrastructure,
supported by government policies that favored industrial parks and
transportation networks. Coastal reclamation accounted for 80% of
artificial surface expansion, contributing to ecological
fragmentation, with forest cover declining by 34.25%. The
2010 Ecological Control Line Policy, which protected 50% of
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Shenzhen’s land, reduced carbon loss by 41%, preserved coastal
carbon sinks, and slowed habitat fragmentation.

From 2000 to 2030, carbon storage declined by 7.9%, with a
tipping point at 40% built-up land coverage. Beyond this threshold,
carbon loss accelerated due to collapsed green corridors, particularly
in coastal areas, while central renewal zones stabilized carbon stocks
through green infrastructure. Poor PLES coordination in peri-urban
areas worsened this cycle, whereas improvements in policy zones,
like mangrove restoration in Dapeng, enhanced carbon storage by
22%. PLES coordination improved post-2010, with central districts
achieving higher synergy scores through urban renewal initiatives.
This coordination reduced carbon loss by 18%, illustrating how
ecological functionality can buffer land use pressures.

Shenzhen’s urbanization was driven by three factors: economic
prioritization, demographic pressures, and policy trade-offs. Special
Economic Zone policies favored industrial land conversion, leading
to 46.67% of cultivated land being repurposed for tech hubs. High
population density necessitated housing expansions, exemplified by
Nanshan’s built-up area growth. Pre-2010 lax zoning allowed
unchecked reclamation, while post-2010 ecological controls
redirected development inward. The 40% built-up threshold
observed in Shenzhen mirrors trends in other cities,
demonstrating the nonlinear collapse of ecosystem services.
Shenzhen avoided systemic collapse by implementing preemptive
zoning and investing in ecological infrastructure, such as artificial
wetlands that achieved 85% of natural carbon density.

The study reveals a feedback loop between land use change,
carbon loss, and PLES coordination, where urban expansion
fragments green spaces, reducing carbon storage. Functional
zoning, like that in Dapeng, can offset carbon loss by
maintaining connectivity. The 2010 policy reduced land use
change by 41%, proving that institutional enforcement can
reshape the relationship between land, carbon, and ecology.
Shenzhen’s experience highlights that urbanization’s ecological
impacts can be mitigated through policy, providing actionable
benchmarks for other cities globally. Future urban planning
frameworks should integrate dynamic feedback models to ensure
growth aligns with environmental limits. Consistent with previous
research, it was revealed by simulating the land use situation of
Shenzhen in 2030 that future land use change in Shenzhen is
primarily concentrated in the central and western regions. The
research findings indicated that, from 2008 to 2022, in addition
to the rapid expansion of construction land, a significant decreasing
trend was observed in green space and other land types in Shenzhen
(Wang J. et al., 2023). The estimation results derived from the
carbon storage model demonstrated that carbon storage within
green spaces exhibited a notable reduction trend during the same
period, with the reductions quantified as 0.64 × 106 tons (InVEST
model) (Wang et al., 2024).

The 7.9% decline in Shenzhen’s carbon storage (2000–2030) and
subsequent recovery of PLES coordination (0.48→0.61) were
observed, reflecting patterns shared by coastal megacities globally,
where land reclamation and ecological governance were intersected
under rapid urbanization pressures. Similar to Delhi, where artificial
wetlands were unable to prevent carbon loss despite engineering
investments, Shenzhen’s “high-carbon artificial zones” were found
to achieve 15% greater carbon density than natural wetlands—a
techno-ecological hybrid approach that aligned with Singapore’s

marine spatial planning (Pang et al., 2022; Joshi and Siddaiah, 2021;
Chng et al., 2022). These divergences underscore an important
lesson: it is policy enforceability, rather than technical capacity
alone, that determines ecological outcomes in coastal
urbanization. In Shenzhen, spatial mismatches were evident,
where urban renewal led to an increase in central districts’ PLES
scores (+0.21) but degraded fringe areas (−0.15). Similarly, the
central and southern Liaoning urban agglomeration saw a
gradual increase in ecological land, a significant decline in
production land, and a rapid expansion of living land (Kwan
et al., 2022).

4.4 Policy implications for coastal megacity
development

The findings align with three key policy frameworks according
to Revised Regulations on the Management of Shenzhen Basic
Ecological Control Line and Shenzhen Territorial Spatial Master
Plan (2020–2035) (Shenzhen Municipal People’s Government,
2018; Shenzhen Municipal Planning and Natural Resources
Bureau, 2021). The 2030 land use patterns and carbon storage
trends (7.9% decline from 2000 to 2030) validate the effectiveness
of the Shenzhen Ecological Control Line Policy (ECLP) in protecting
49.6% of the city’s land as ecological reserves. However, only 62% of
the ECLP-protected areas overlap with high-carbon zones,
suggesting that future revisions should focus on carbon-rich
ecosystems. Improvements in PLES coordination (D =
0.48→0.61) support Shenzhen’s goal to integrate 1,200 km2 of
green infrastructure into urban areas by 2035. Discrepancies in
peri-urban zones, such as Longgang, show a 15% shortfall in green
corridors, emphasizing the need for stricter enforcement of green
space quotas. Despite the government’s 2022 coastal reclamation cap
(≤5 km2/year) reducing wetland loss by 22%, 40% of artificial
coastlines exceed the permissible soil carbon mineralization rates
(3.2% annual loss vs the plan’s 2% target). This highlights the urgent
need for the adoption of proposed “high-carbon artificial zone”
standards for reclaimed lands. This study compares the settlement
expansion patterns of Foshan, Guangzhou, and neighboring cities,
highlighting the influence of economic and environmental factors. It
also examines how land-use zoning in Foshan enhances urban
sustainability by optimizing land use, controlling urban sprawl,
and promoting ecological conservation (Yong et al., 2010; Liu
et al., 2023; Zhang et al., 2025). In contrast, Shenzhen’s coastal
megacity context leads to distinct reclamation-driven urbanization,
integrated coastal-terrestrial policies, and engineered high-carbon
ecosystems. Cross-regional comparisons confirm that Shenzhen’s
40% built-up threshold and ECL model are geography-specific but
offer valuable lessons for coastal zones worldwide.

Shenzhen’s built-up areas expanded by 50.15% from 2000 to
2020, driven by economic prioritization, demographic pressures,
and policy trade-offs. Rapid industrial growth and population surges
necessitated infrastructure development, with coastal reclamation
accounting for 80% of artificial surface expansion. This urbanization
triggered interconnected feedback loops between land use
intensification, carbon dynamics, and PLES coordination. Urban
expansion caused habitat fragmentation and carbon sink
degradation through three pathways: coastal reclamation
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eliminated 62% of mangrove carbon sinks (8.3 MgC/ha/yr loss),
forest fragmentation reduced core habitat area by 34%, decreasing
soil carbon mineralization resistance, and impervious surfaces
disrupted atmospheric-vegetation carbon exchange, creating
localized carbon “dead zones.” These changes cascaded into a
7.9% decline in carbon storage from 2000 to 2030 and a
functional imbalance in PLES, as diminished carbon
sequestration capacity weakened ecological space resilience,
allowing production and living spaces to encroach further.

The 2010 Ecological Control Line Policy (ECLP) disrupted this
negative feedback by freezing development in 49.6% of pre-2000
natural areas, preserving coastal carbon sinks and slowing habitat
fragmentation. Functional zoning in policy zones like Dapeng
enhanced carbon storage by 22% through mangrove restoration,
demonstrating how ecological functionality buffers land
use pressures.

The identified 40% built-up land threshold represents a tipping
point where carbon dynamics and PLES coordination are
significantly affected. Below 40%, urban parks and green
corridors buffer carbon losses with a 0.8% annual decline, while
beyond 40%, soil carbon mineralization accelerates, leading to a
3.2% annual loss in Nanshan District. Districts below this threshold
maintained functional synergy with a PLES coordination index (D)
of 0.61 ± 0.07, while those above the threshold exhibited a
dominance of living space, with a P/E ratio greater than 2.3.
Shenzhen’s hybrid approach—combining preemptive zoning
(ECLP) with engineered ecosystems—achieved 85% of natural
carbon density in artificial wetlands, outperforming Delhi’s
reactive measures but requiring three times higher governance
investment than Singapore’s tech-centric model. This
demonstrates that the efficacy of feedback management depends
on the timing of policy intervention (pre or post-threshold) and the
scale of ecological engineering.

4.5 Future directions for integrated urban-
ecological modeling

While the 30 m-resolution GlobeLand30 data captured macro-
feedbacks, it underestimated micro-scale interactions like rooftop
garden carbon contributions, with an 8%–12% error margin in
Futian District. Higher-resolution monitoring with less than 5 m
resolution could refine threshold detection, particularly in transition
zones where mixed pixels obscure fragmentation patterns. Shenzhen’s
experience highlights that the ecological impacts of urbanization can be
mitigated through preemptive zoning and institutional enforcement.
Future urban frameworks must integrate dynamic feedback models to
align growth with environmental limits, adopting modular solutions
like artificial wetlands while addressing equity gaps in peri-urban areas.

This study’s integrated PLUS-InVEST-PLES framework provides
valuable insights into urbanization-ecology trade-offs, but several
limitations in data and methodology need to be addressed for more
robust policy recommendations. The spatial resolution of the
GlobeLand30 dataset, at 30m, is insufficient to capture fine-scale
urban ecosystem changes like rooftop gardens and pocket parks,
potentially underestimating localized ecological resilience.
Additionally, land-use data analyzed at decadal intervals (2000, 2010,
2020) misses annual urbanization fluctuations or policy shifts, and

continuousmonitoring using higher-frequency datasets would improve
accuracy. The InVEST model’s reliance on static carbon density values
also poses issues, as it does not fully account for unique ecosystems like
mangrove wetlands, which have significantly higher biomass carbon
storage. Soil carbon dynamics in reclaimed areas are oversimplified, as
the model treats all artificial surfaces uniformly despite their
heterogeneity in carbon mineralization rates.

Methodologically, the PLUS model simplifies land-use
transitions by assuming they follow historical Markov
probabilities, overlooking non-linear feedbacks, such as
speculative development driven by policy uncertainty.
Additionally, the model weights driving factors equally in
random forest analysis, which could overemphasize less impactful
variables. The PLES model also faces challenges due to subjective
entropy weighting, where the assignment of land-use function
weights is based on expert judgment, and static functional
zoning, which fails to account for dynamic overlaps in land-use.

The framework also struggles with spatial and temporal
scalability. While it prioritizes coastal carbon loss, inland
ecological degradation is inadequately addressed. Furthermore,
the 2030 projections exclude climate change impacts such as sea-
level rise, which could undermine current zoning strategies. In terms
of policy implementation, the proposed zoning scheme may conflict
with administrative boundaries, complicating governance, and the
exclusion of community input limits the relevance of proposed
solutions. Surveys in peri-urban villages, for instance, show
resistance to certain ecological restoration designs, indicating a
need for more inclusive planning.

Future improvements could include integrating high-resolution,
dynamic data sources like LiDAR and IoT sensors for real-time
monitoring of land-use and carbon flux. Machine learning models
could be developed to better predict land-use transitions under
economic and policy uncertainty, while adaptive carbon density
databases could account for the unique ecosystems of Shenzhen.
Additionally, participatory tools like agent-based models could
incorporate stakeholder engagement, ensuring zoning schemes
align with local needs. Finally, climate-resilient scenarios should
be developed to model sea-level rise and other extreme weather
events, updating coordination metrics to reflect future
vulnerabilities. Despite its limitations, the PLUS-InVEST-PLES
framework offers significant potential for guiding urban
sustainability, though further refinement is necessary to address
the complexities of modeling human-natural systems.

Despite its limitations, the PLUS-InVEST-PLES framework
offers significant potential for guiding urban sustainability,
though further refinement is necessary to address the
complexities of modeling human-natural systems. Connecting
sustainable urban land planning with key sustainability and
livability considerations involves integrating ecological footprint
analysis, sustainability models, and health-related factors to create
indices that ensure balanced development. This approach supports
both environmental resilience and the wellbeing of urban
communities. It considers long-term factors such as resource
usage, spatial arrangements, and health conditions. The approach
emphasizes the need for coordination between environmental
sustainability, economic development, and social health to foster
a high quality of life in cities (Liu Y. et al., 2022; Zhu L. et al., 2024;
Chi and Mak, 2021).
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5 Conclusion

This study established Shenzhen as a critical observatory for new
urbanization challenges, revealing the systemic interconnections
between land use dynamics, carbon storage patterns, and
ecological functionality through an integrated PLUS-InVEST-
PLES framework. The identification of 40% urban land coverage
as a tipping point for nonlinear carbon loss provided a critical early-
warning metric. Shenzhen’s rapid expansion reduced regional
carbon storage by 7.9% between 2000 and 2030, but the
2010 ecological control line policy slowed annual loss rates by
41%, demonstrating that preemptive zoning (e.g., reserving 15%–

20% coastal corridors) preserved 89% of natural carbon capacity.
Land reclamation created “high-carbon artificial zones,” which had
15% greater carbon density than natural wetlands, but these gains
came at a biodiversity cost (40% lower than natural habitats).
Sustaining such systems required governance investment
exceeding 1.2% of municipal GDP. The improvement from
antagonistic (0.48) to basic synergy (0.61) in PLES coupling
showed that functional zoning could offset 22% of urbanization-
induced carbon loss. However, spatial inequities persisted, with
urban renewal boosting central districts’ PLES scores (+0.21)
while degrading peripheries (−0.15), highlighting the need for
equity-focused metrics. A proposed five-zone planning scheme
prioritized western coastal restoration and eastern ecological
corridors through modular solutions, balancing high-density
development with ecological resilience.

The Shenzhen case offered a scalable framework for cities facing
similar urbanization challenges. By identifying critical thresholds (e.g.,
40% urban land coverage) and quantifying PLES coordination’s
buffering capacity (22% carbon loss mitigation), the study provided
a template to preempt ecological tipping points. The integrated PLUS-
InVEST-PLES methodology enabled cities to forecast land use-carbon-
ecology feedback loops, while modular solutions like artificial wetlands
showed how high-density development could coexist with engineered
ecosystems when supported by sustained governance investment
(>1.2% municipal GDP). The spatial mismatch in ecological
benefits—where urban renewal favored central districts—highlighted
the universal imperative that zoning policies must integrate equity
metrics to avoid exacerbating peri-urban vulnerabilities. For coastal
cities, the 15%–20% coastal preservation rule and phased reclamation
strategies offered a blueprint to balance carbon sequestration with
marine biodiversity. By prioritizing early intervention over
retroactive fixes and institutionalizing cross-sector coordination,
cities could adapt these mechanisms to their unique geographies and
governance systems, transforming isolated sustainability efforts into
systemic resilience.

These findings redefined sustainable urbanization as a balancing
act among three imperatives: containing land expansion below

ecological thresholds, designing context-specific carbon-
biodiversity trade-offs, and institutionalizing PLES coordination
to equitably distribute benefits.
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