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Based on the lack of understanding of the attribution of land use change and the
resulting ecological effects in the Datong River Basin (DTRB), we analyzed the
spatial-temporal characteristics of the land use change and explored the drivers
of the changes, and calculated the effect of the land use change on the net
primary productivity (NPP) from 1990 to 2020. The main conclusions are as
follows: The predominant land use types comprised grassland, forest, cropland,
bare land, ice/snow and other categories. The cropland, grassland and shrubs
showed a decreased trend. However, forest, bare land and impervious surface
were increased. The comprehensive index of the land use degree showed a
significant downward trend, indicating that land use intensity will likely remain at a
low level. Additionally, these conversions occurred among different land use
types. Cropland and Grassland were dominated by transfer-out; Forest, bare land
and impervious surface were dominated by transfer-in. Regarding the analysis of
the driving factors of land use changes. The low elevation area was affected by
human activities, and under the impact of “green gain” protection policy, the area
of grassland increased; coupledwith the impact of “returning farmland to forests,”
the area of cropland decreased. Bare land was significantly and negatively
correlated with GDP and population, while impervious surface was positively
correlated. However, high-altitude areas were affected by natural factors, with
grassland partial negatively correlated with precipitation. For bare land, it partial
positively correlated with temperature. Snow/ice partial positively correlated with
precipitation. Regarding the ecological effect of land use change, the multi-year
average NPP was about 167.0 gC·m−2·a−1 and showed a decreased trend during
the period of 1990–2020, and the NPP decreased in the northwest and increased
in the southeast. This study provides scientific suggestions for the management
of land resources and ecological environmental protection.
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1 Introduction

Land is a fundamental natural resource and material basis for
human society’s survival and development. Land use/cover change
(LUCC) is a critical driver of global climate and environmental
change (Xu et al., 2019). Research on global LUCC began in the
1990s with the International Geosphere-Biosphere Programme
(IGBP) and the International Human Dimensions Programme on
Global Environmental Change (IHDP) (Uhrqvist and Lövbrand,
2014). These programs underscored the role of LUCC in global
research, highlighting its significant influence on climate change and
human development (Wang et al., 2019). The interventions of
human and natural have led to global warming, biodiversity loss,
groundwater depletion, and these changes in terrestrial ecosystem
net primary productivity (Williams et al., 2015; Januchowski-
Hartley et al., 2016; El-Beltagy and Madkour, 2012; Scanlon
et al., 2005). Sustainable land use is a pivotal issue in
industrialization and urbanization processes, impacting economic
strength, food security, land conservation, and regional development
(Wang et al., 2018). For instance, the conversion of cultivated land to
urban generated some potential risks to food security (Li et al.,
2009). Consequently, LUCC holds a critical position in global
sustainable development (He et al., 2013). A deeper
understanding of the spatial and temporal patterns of LUCC, its
driving mechanisms, and the ecological effects (NPP) of land use
changes is of scientific importance for balancing natural and human
systems and enhancing regional ecological environments (Hu
et al., 2020).

The use of satellite products has enabled access to global and
regional land cover databases with varying spatial resolutions
(Grekousis et al., 2015). Combined with remote sensing data,
these resources allow for analysis of land use changes across
different spatial and temporal scales, as well as for attribution
analysis of these changes. The driving factors behind LUCC
changes mainly include natural conditions, climate change,
economic development, social environment, and population
dynamics (Liu et al., 2010). Broadly, these drivers can be
categorized into two types (natural and human-induced factors).
For human-driven factors (such as economics, technology,
population, and policy), population pressure and intensive
agricultural land use have led to habitat fragmentation (Ferranto
et al., 2011; Sleeter, 2008), significantly impacting regional
groundwater and surface water quality (Lee, 2009). For instance,
land use changes are closely linked to shifts in government land
policies and socioeconomic development in China (Wang et al.,
2018). Among natural factors, hydrothermal conditions have the
important impact on land use changes, along with soil types (Han
et al., 2019; Yang et al., 2022). Rainfall is the most critical factor
affecting vegetation growth in arid and semi-arid regions, while
temperature is inversely related to vegetation growth. Annual
variations in temperature and precipitation align with changes in
land use; as temperatures rise and precipitation decreases, water
body areas shrink, and grassland and forest areas decline.
Conversely, the increases in both temperature and precipitation
shift unused land toward grasslands and water bodies, indicating
that improved hydrothermal conditions benefit ecological
restoration (Yang et al., 2022). Therefore, it is essential to
comprehensively consider the influences of both natural and

socioeconomic factors when analyzing the driving forces of land
use change (Xue et al., 2016; Han et al., 2019).

Driven by natural and human factors, land use changes
inevitably impact the environment, affecting water resources and
ecological processes (Guédé et al., 2024; Zhou et al., 2015). Changes
in different land use types significantly influence hydrological
processes. For evapotranspiration, these changes in high and
medium-coverage grasslands and bare land are positively
correlated with evapotranspiration, while low-coverage grassland
and cold desert areas changes show a negative correlation. Regarding
surface and subsurface runoff, these changes in low-coverage
grasslands and cold deserts are positively correlate, whereas
changes in high and medium-coverage grasslands and bare land
are negatively correlated, often exacerbating groundwater shortages
in arid regions (Stonestrom et al., 2009; Perrone and Jasechko, 2017;
Jin et al., 2021). Land use changes also substantially affect the net
primary productivity (NPP) of vegetation, with land use changes
playing a dominant role in the variation of NPP. For example, the
conversion of forests and farmland to construction land reduces
NPP, weakening the carbon sequestration capacity of the vegetation.
Conversely, ecological projects aimed at reforestation and grassland
restoration boost NPP significantly by promoting beneficial land use
changes (Jiang et al., 2016; Cheng et al., 2017).

However, most studies examine the environmental effects of
land use changes over longer intervals (5 or 10 years) and only focus
primarily on urban areas. Few studies utilize annual land use change
data, which may obscure the driving mechanisms and
environmental impacts. Additionally, most research emphasizes
the hydrological effects of land use changes, while studies on the
ecological impacts of year-by-year land use changes are scarce.
Therefore, this study focuses on the DTRB, located in the eastern
section of the Qilian Mountains. Using the annual land use data and
meteorological data (we aim to monitor land use changes and
climate changes over an extended time series to effectively
capture shifts in long-term driving factors and their
environmental impacts), we analyze the spatial and temporal
characteristics of land use changes and their drivers and simulate
NPP changes resulting from land use change using the CASA
(Carnegie-Ames-Stanford approach) model.

2 Data and methods

2.1 Study area

The DTRB is located between 36°30′–38°25′N and
98°30′–103°15′E, along the northeastern edge of the Tibetan
Plateau. It originates in Tianjun County, Qinghai Province, and
is a secondary tributary of the Yellow River. Flowing southeast
through the counties of Gangcha, Qilian, Haiyan, Menyuan, and
Huzhu, it joins the Huangshui River at Xiangtang Town in Minhe
County (Figure 1) before eventually entering the Yellow River. The
basin has an elongated, narrow shape, with a main channel length of
560.7 km, an average gradient of 4.65%, and a basin area of
15,130 km2. Over 80% of the catchment area lies above 3,000 m,
with ridge peaks around 4,500 m. The basin covers 11 counties
across Gansu and Qinghai provinces, with the population primarily
concentrated in Menyuan County, Honggu District, and Yongdeng

Frontiers in Environmental Science frontiersin.org02

Li et al. 10.3389/fenvs.2025.1590880

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1590880


County. The area is predominantly agricultural with an integrated
farming and grazing economy. Vegetation mainly consists of
mountain forests, grasslands, and alpine shrublands.

The basin experiences a cold, semi-humid continental mountain
climate. The upper reaches have a semi-arid grassland climate, while
the middle and lower reaches experience a semi-humid forest-steppe
climate. The long-term average temperature ranges from −0.3°C to
8.0°C, with an average annual precipitation of approximately
467 mm, 70% of which falls between June and September. The
climate is characterized by long cold seasons, short warm seasons,
coinciding rain and warmth, abundant sunshine, and strong solar
radiation (Liu et al., 2015). The runoff is primarily fed by rainfall and
melting snow and ice. The main flood season occurs from June to
September, with floods mainly driven by heavy rainfall, influenced
by the southeastern ocean monsoon.

2.2 Land use data

The land use data are based on the annual China Cover
Dataset (CLCD) produced by Yang and Huang (2021) based on
335,709 Landsat images on Google Earth Engine. This dataset
contains year-by-year land cover information of China from
1985 to 2020. Based on all available Landsat data on GEE,
spatio-temporal features are constructed, and the classification
results of each land type are obtained by combining with the
random forest classifier, and a post-processing method including
spatio-temporal filtering and logical inference is proposed to
further improve the spatio-temporal consistency of CLCD. In
terms of accuracy validation, the overall classification accuracy of
CLCD is 79.30% ± 1.99% based on 5,463 visually decoded
samples. For each land use type, water had the highest average
accuracy score (87.06% ± 7.07%), followed by forests (85.49% ±
1.30%), snow and ice (83.51% ± 7.99%), and unused (81.85% ±
4.15%). Grasslands and impervious areas were more accurate,
with average accuracy scores exceeding 72%. In addition, CLCD
outperformed MCD12Q1 and ESACCI_LC in terms of overall
accuracy. For land use types with a larger percentage of area, such
as farmland, forests, and grasslands, CLCD also showed better
and more consistent accuracy relative to MCD12Q1 and
ESACCI_LC.

2.3 Meteorological data

Regarding the meteorological data such as temperature and
precipitation, according to Li et al. (2009), CMFD (China
Meteorological Forcing Dataset) and ERA5-Land can well
reproduce the spatial distribution of the monthly average
temperature and precipitation in Qilian Mountains. Compared
with the measured temperature and precipitation, both products
underestimate the temperature and ERA5-Land overestimate the
precipitation, and the error of CMFD on precipitation is
significantly smaller than that of ERA5-Land. Overall, ERA5-
Land is more applicable than CMFD in Qilian Mountains. For
precipitation, CMFD performs better in the central and eastern part
of Qilian Mountains, while ERA5-Land performs better in the
western part of Qilian Mountains. Therefore, ERA5-Land was
used for temperature and CMFD was used for precipitation data
in this study (the upper reaches of the DTRB is located in the middle
part of the QilianMountains, while the middle and lower reaches are
located in the eastern part of the Qilian Mountains). The
topographic data were obtained from the geospatial data cloud
GDEMV2 30 m (https://www.gscloud.cn/), which was used to
calculate the elevation distribution and area of the basin.

2.4 Population and GDP data

The population and GDP data are from National Information
Center of China (https://ceidata.cei.cn/). We collected population
and economic data forMenyuan County from 2000 to 2020, with the
exception of missing economic data for the years 2000 and 2003.

2.5 Methodology

2.5.1 Calculation of the degree of land use
This study quantifies the degree of land use by means of the

comprehensive index method of the degree of land use. The degree
of land use is divided into four levels, and an index is assigned to it in
a hierarchical manner. The quantitative basis of the degree of land
use is established on the limit of the degree of land use, whose upper
limit is that the utilization of land resources has reached the apex

FIGURE 1
A sketch of study area in DTRB.
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and human beings are unable to further develop and utilize them,
and the lower limit is the starting point of human beings’
development of land resources, which is considered that the
degree of land use can be expressed in the form of a
discontinuous function. Based on the above characteristics, the
four ideal states of land use are designated as four land-use
classes, to which they are assigned their own category values, and
four graded indices of the degree of land use are obtained, as shown
in Table 1.

The four types of land use in the table are only four ideal types,
and in the actual state, these four types are mixed in the same area,
each occupying a different area proportion, and make their own
contribution to the degree of local land use, according to their own
weights. Accordingly, the comprehensive quantitative index of the
degree of land use must be mathematically synthesized on this basis
to form a composite index with a continuous distribution between
1 and 4, the size of which reflects the degree of land use in a certain
area. The quantitative comprehensive index of the degree of land use
is a Weaver index (Formulas 1, 2). Its calculation method is
as follows:

LI � 100✕∑n
i�1
Ai ✕ Ci (1)

ΔLb−a � Lb − La � ∑n
i�1
Ai ✕ Cib −∑n

i�1
Ai ✕ Cia

⎡⎣ ⎤⎦ (2)

Where LI is the comprehensive index of land use degree, which
ranges from 100 to 400, and its size reflects the degree of land use. Ai

is the index of land use degree grading of level i, and Ci is the
percentage of area of land use degree grading of level i. Cib and Cia

represent the percentage of area of land use degree of level i at time b
and time a, respectively. ΔL is the amount of change of land use
degree, when it is greater than 0, the regional land use is in the
development period, and vice versa, it is in the adjustment or
decay period.

2.5.2 Land-use change transfer matrix calculations
Information on changes in the number of land-use types can be

analyzed and calculated using the land-use change transfer matrix,
which comprehensively and systematically portrays the structural
characteristics of regional land-use change and the direction of
change of various land-use types (Formula 3). The transfer matrix
can reflect the structure of land use types at the beginning and the
end of the study period, and reflect the changes in the transfer of
various land use types during the study period, which makes it easy
to understand the direction of the transfer of various land use types
at the beginning of the study period and the sources and
composition of various land use types at the end of the study period.

Pij �
P11 P12 P13 / P1n

P21 P22 P23 / P2n

..

. ..
. ..

.

Pn1 Pn2 Pn3 / Pnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3)

Where Pij is the area (km2) of land use type i converted to
type j during the study period; n is the total number of land
use types.

2.5.3 Partial correlation analysis
A partial correlation analysis explores the correlation

between landscape area and temperature or precipitation by
excluding the effect of another variable. The partial correlation
coefficient reflects the effect of a single factor on landscape
area when the other variable is controlled. When the absolute
value of the partial correlation coefficient is greater than
the absolute value of the other meteorological factor, the
variable that matches the landscape area is considered to
have a greater influence on the landscape area than the other
factor, making the former the dominant influence. The partial
correlation coefficient (rxy,z) can be calculated by the following
Formula 4.

rxy,z � rxz − rxy × ryz�����������������
1 − r2xy( ) × 1 − r2yz( )√ (4)

where x, y, z are temperature, precipitation, and area of each
landscape, respectively, rxy is the correlation coefficient between
the two variables x and y, rxz is the correlation coefficient between
the two variables x and z, ryz is the correlation coefficient between
the two variables y and z, and rxy,z are the partial correlation
coefficients of the variables x and y, which were obtained by
excluding the effect of variable z.

2.5.4 CASA model
The CASA (Carnegie-Ames-Stanford approach) model is a

process-based model used to estimate vegetation net primary
productivity (NPP) by simulating vegetation physiological
processes, it integrates meteorological, environmental and soil
factors to simulate the physiological process of absorption of
photosynthetically active radiation by vegetation and its
conversion into organic carbon. The model is shown below
(Formula 5):

NPP x, t( ) � 0.5 × SOL x, t( ) × FPAR x, t( ) × Tε1 × Tε2

× WSC x, t( ) × εmax (5)
where NPP is net primary productivity (g Cm−2/month),
0.5 represents the proportion of radiation that can be absorbed

TABLE 1 The classification values of land use degree.

Type of classification Land use type Graded index

Level of unutilized land (C1) Barren, now/ice 1

Ecological land use class (C2) Forest, Grassland, Shrub, Wate, wetland 2

Agricultural land level (C3) Cropland 3

Building level (C4) Impervious 4
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by the plant (0.4–0.7 µm), SOL (x, t) is the total solar radiation
incident on grid cell x for a givenmonth (MJm-2/month), FPAR (x, t)
is the fraction of photosynthetically active radiation absorbed on
grid x, Tε1 and Tε2 are temperature stress factors representing the
effects of high and low temperatures on light use efficiency,
respectively, WSC (x, t) is the water stress coefficient on grid cell
x in a given month, and εmax is the maximum possible efficiency (g
CMJ-1) under ideal conditions (unstressed temperature and
unstressed water).

3 Results

3.1 Spatial distribution patterns of land use

The main land use types in DTRB included grassland, forest,
cropland, bare land, shrubland, ice and snow, water bodies,
impervious surfaces, and wetlands. Their areas were 11454.3 km2,
1801.8 km2, 730.3 km2, 665.4 km2, 224.8 km2, 120.2 km2, 31.9 km2,
5.8 km2, and 3.9 km2 during the period of 1990–2020, respectively.

TABLE 2 The proportion of each land-use type in DTRB from 1990 to 2020 (%).

Year Crop-land Forest Shrub Grass-land Water Sonw/Ice Barren Imper-vious Wet-land

1990 5.18% 10.82% 1.95% 77.13% 0.13% 0.51% 4.25% 0.02% 0.02%

1991 5.27% 11.07% 1.74% 77.41% 0.13% 0.51% 3.83% 0.02% 0.02%

1992 5.18% 11.16% 1.67% 77.42% 0.13% 0.53% 3.86% 0.02% 0.02%

1993 5.13% 11.27% 1.65% 77.14% 0.13% 0.81% 3.84% 0.02% 0.00%

1994 5.05% 11.48% 1.66% 76.91% 0.13% 0.81% 3.94% 0.03% 0.00%

1995 5.04% 11.63% 1.64% 76.75% 0.12% 0.79% 3.99% 0.03% 0.00%

1996 5.08% 11.82% 1.57% 76.57% 0.12% 0.73% 4.01% 0.03% 0.06%

1997 5.17% 11.92% 1.52% 76.46% 0.13% 0.72% 4.00% 0.03% 0.06%

1998 5.22% 11.97% 1.69% 76.14% 0.13% 0.67% 4.08% 0.03% 0.07%

1999 5.24% 12.02% 1.73% 75.86% 0.13% 0.64% 4.29% 0.03% 0.06%

2000 5.30% 12.01% 1.87% 75.44% 0.13% 0.62% 4.53% 0.03% 0.06%

2001 5.29% 11.95% 1.91% 75.49% 0.14% 0.62% 4.53% 0.04% 0.04%

2002 5.34% 11.91% 1.91% 75.54% 0.15% 0.64% 4.44% 0.04% 0.04%

2003 5.20% 11.86% 1.80% 75.81% 0.18% 0.74% 4.32% 0.04% 0.05%

2004 5.17% 11.84% 1.72% 75.96% 0.22% 0.81% 4.22% 0.04% 0.03%

2005 4.90% 11.87% 1.61% 76.19% 0.23% 1.09% 4.05% 0.04% 0.03%

2006 4.91% 11.94% 1.55% 76.09% 0.23% 1.11% 4.09% 0.04% 0.04%

2007 4.76% 12.00% 1.49% 76.15% 0.24% 1.14% 4.12% 0.04% 0.06%

2008 4.77% 12.07% 1.46% 76.15% 0.24% 1.11% 4.11% 0.04% 0.05%

2009 4.75% 12.21% 1.21% 76.49% 0.20% 1.15% 3.91% 0.04% 0.04%

2010 4.72% 12.26% 1.15% 76.52% 0.20% 1.13% 3.94% 0.04% 0.03%

2011 4.62% 12.28% 1.15% 76.59% 0.20% 1.11% 3.98% 0.04% 0.03%

2012 4.52% 12.26% 1.25% 76.59% 0.19% 1.06% 4.08% 0.05% 0.00%

2013 4.51% 12.33% 1.21% 76.13% 0.17% 0.79% 4.81% 0.05% 0.00%

2014 4.51% 12.35% 1.13% 75.95% 0.18% 0.84% 4.98% 0.05% 0.00%

2015 4.44% 12.39% 1.05% 76.05% 0.24% 1.01% 4.78% 0.05% 0.00%

2016 4.30% 12.41% 1.08% 76.06% 0.32% 1.02% 4.75% 0.05% 0.00%

2017 4.29% 12.41% 1.22% 75.93% 0.37% 1.01% 4.72% 0.05% 0.00%

2018 4.37% 12.43% 1.26% 75.59% 0.37% 0.35% 5.57% 0.05% 0.00%

2019 4.48% 12.37% 1.42% 75.39% 0.37% 0.28% 5.62% 0.05% 0.00%

2020 4.54% 12.34% 1.41% 75.16% 0.38% 0.60% 5.52% 0.05% 0.00%

Average 4.88% 11.96% 1.51% 76.23% 0.20% 0.80% 4.36% 0.04% 0.03%
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Grassland and forest covered the largest proportions, at 76.23% and
11.96%, respectively, followed by cropland and bare land, with
comparable areas of 4.88% and 4.36%. Impervious surfaces and
wetlands account for the smallest areas, at only 0.04% and 0.03%.
The proportion of each land use changed continuously at the annual
scale (Table 2). This study used the latest land use data in 2020 to
illustrate the spatial distribution of various land-use types. Figure 2
showed that grasslands were the most widespread, with the largest
areas in the northwest and fewer in the southeast; forest was mainly
concentrated in the southeastern; cropland was centralized in the
middle region; bare land was more dispersed, with greater presence
along the edges of western areas; shrubland occupied smaller; ice/
snow was concentrated along the northern edge of the central
region, and it interspersed with bare land; impervious surfaces
(urban areas) are clustered in the downstream area. Analysis of
land use intensity in the basin revealed that comprehensive index of
land use degree was about 199.7 from 1990 to 2020, indicating a
relatively low level of land utilization. This is primarily due to high-
altitude mountainous areas covering 80.0% of the basin, with
elevations between 3,000 and 4,000 m accounting for 61.6% of
the total area. In contrast, low mountainous areas (1,500–3,000 m)
cover only 3016.7 km2, comprising just 20.0% of the basin, where
cropland and urban areas are mainly concentrated (Table 3). The
topography limits the potential for further land use intensification.

3.2 Spatiotemporal changes of land
use types

3.2.1 Temporal changes of land use types
Driven by both natural factors and human activities, significant

changes have occurred in the various land use types in DTRB
(Figure 3). Cropland area showed a marked decline, with
minimal variation before 2002, but a sharp decrease was
observed after that. For ecological land, shrubland and grassland

exhibited a notable reduction. Grassland declined rapidly between
1990 and 2000, followed by a gradual decline with fluctuations. In
contrast, forest experienced rapid growth before 2000, with a slower
but steady increase thereafter. Water bodies demonstrated an
increasing trend, especially rapid after 2015. Wetlands showed an
overall decline, with large fluctuations before 2013 and a sharp
decrease thereafter. As for unused land, both bare land and ice/snow
displayed an increasing trend. Impervious surfaces, largely
representing urban development, have significantly increased
since 1990 (Figures 3a–d).

Analyzing changes in the land use intensity in relation to shifts
in various land use types. Figure 3d showed a significant downward
trend in the comprehensive index of land use degree (p < 0.01),
indicating that land use intensity will likely remain at a low level in
the future. The value of ΔL is −2.03, reflecting land use intensity
showed a declined trend. Although urban areas have expanded, the
absolute increase was minimal due to topographical constraints, and
cropland has notably decreased since 2002. Grassland area has also
significantly declined. Given the substantial weight of cropland and
impervious surfaces in the land use intensity index, this decline
contributed to an overall downward trend in land use intensity. The
calculated comprehensive dynamic degree of land use was 0.10%,
indicating minimal land use transformation over the past 31 years.

Figure 3 showed that all land use types have experienced varying
degrees of change. This study employed a transition matrix to
illustrate how each land use type has shifted over time (Table 4).
The area of cropland that remained unchanged was 575.4 km2 from
1990 to 2020, while 97.2 km2 transitioned into cropland from other
types, with 98.1% of this coming from grassland. Meanwhile,
189.4 km2 shifted out from cropland, 93.3% of which converted
back to grassland, with smaller portions transitioning to water
bodies and impervious surfaces; the conversion rate between
cropland and grassland was the highest. Grassland, the largest
land use type in DTRB, had an inflow area of 357.4 km2,
primarily from cropland (49.5%), followed by shrubland (28.7%)

FIGURE 2
The spatial distribution of land use in the DTRB in 2020.
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TABLE 3 Area of each elevation interval in the DTRB.

Elevation (m) 1,500–2,000 2,000–3,000 3,000–4,000 4,000–5,000 5,000–5,500

Area (km2) 142.3 2874.4 9267.4 2753.8 0.5

Proportion (%) 0.9% 19.1% 61.6% 18.3% 0.0%

Slope 11.8° 18.4° 17.0° 20.4° 30.6°

FIGURE 3
The change of each land use type and comprehensive index of land use degree (a) represents the changes of cropland, shrub, and baren; (b)
represents the changes of impervious, wetland, water, and ice/snow; (c) represents the changes of forest and grassland during the period of 1990–2020;
(d) represents the comprehensive index of land use degree during the period of 1990–2020.

TABLE 4 The land use conversion matrix during the period of 1990–2020.

Land-use
type

Crop-
land

Forest Shrub Grass-
land

Water Ice/
snow

Barren Imper-
vious

Wet-
land

Decline

Cropland 575.40 6.10 0.00 176.87 3.58 0.00 0.39 2.35 0.10 764.79

Forest 0.62 1515.51 62.98 15.77 0.07 0.00 0.01 0.00 0.00 1,594.94

Shrub 0.00 82.20 103.61 102.74 0.19 0.00 0.00 0.00 0.00 288.74

Grassland 94.36 215.95 41.86 10,811.05 38.00 3.59 254.24 1.06 0.19 11,460.29

Water 0.18 0.03 0.00 3.36 11.43 0.64 3.01 0.05 0.03 18.74

Ice/Snow 0.00 0.00 0.00 0.15 0.91 52.20 22.68 0.00 0.00 75.95

Barren 1.00 0.03 0.00 55.23 1.93 32.64 541.33 0.73 0.00 632.90

Impervious 0.01 0.00 0.00 0.01 0.06 0.00 0.00 3.00 0.00 3.09

Wetland 0.00 0.00 0.00 3.31 0.00 0.00 0.00 0.00 0.08 3.39

Additional 671.57 1819.81 208.45 11168.50 56.18 89.07 821.66 7.19 0.40

Frontiers in Environmental Science frontiersin.org07

Li et al. 10.3389/fenvs.2025.1590880

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1590880


and bare land (15.5%). Outflow from grassland amounted to
649.3 km2, with most converting to bare land (39.2%) and forest
(33.3%), and smaller portions shifting to cropland, shrubland, and
water bodies (14.5%, 6.4%, and 5.9%, respectively). For shrubland,
104.8 km2 transitioned in, mostly from forest (60.1%) and grassland
(39.9%), while 185.1 km2 moved out, largely to grassland (55.5%)
and forest (44.4%). Forest experienced an inflow of 304.3 km2,
predominantly from grassland (71.0%) and shrubland (27.0%). The
outflow from forest was 79.5 km2, with most shifting to shrubland
(79.3%) and grassland (19.8%). Bare land also experienced a
significant turnover, with 280.3 km2 transitioning in, primarily
from grassland (90.7%), and 91.6 km2 shifting out, mainly to
grassland (60.3%) and ice/snow cover (35.6%). Analyzing the net
transitions, cropland, shrubland, and grassland showed a decreasing
trend, except for forest and bare land. Other land use types,
including water bodies, ice/snow, impervious surfaces, and
wetlands, collectively accounted for about 1% of the total area
and had minimal transitions. Notably, impervious surfaces
(urban) showed a steady increase, with most conversions coming
from cropland (56.1%) and grassland (25.3%).

In summary, forest and bare land areas exhibited an increasing
trend, primarily due to conversions from grassland. Cropland,
grassland, and shrubland showed a decreasing trend, with
cropland mainly converting to grassland, grassland primarily
shifting to bare land and forest, and shrubland largely
transitioning to grassland and forest. The expansion of urban
areas was predominantly driven by conversions from cropland.

3.2.2 Spatial changes of land use types
For land use across different elevation ranges (Table 5),

impervious surfaces were concentrated at the lowest elevations,
primarily below 2,000 m. Cropland was mainly distributed
between 2,000 m and 3,000 m (67.0%) with limited presence
below 2,000 m. Forest is evenly distributed between 2,000 m and
4,000 m, while shrubland increased with elevation, primarily
occurring between 3,000 m and 4,000 m (95.4%). Grassland
similarly increased with elevation, with the largest proportion
(68.8%) between 3,000 m and 4,000 m. Water bodies and
wetlands were also mainly found in this range. Bare land and
ice/snow were concentrated at the highest elevations, primarily
between 4,000 m and 5,000 m (91.8% and 98.2%, respectively).

Across all elevation zones, grassland occupied the largest area,
especially above 3,000 m.

Figure 4 showed the changes in land use types across different
elevation ranges. Between 1,500 m and 2,000 m, cropland
demonstrated a notable increase after 2010, while the fastest
decline occurred between 2,000 m and 3,000 m (−4.2 km2/year)
(Figures 4a,b), contributing to the overall reduction of cropland
(Figure 3a). Forest was distributed between 2,000 m and 4,000 m,
showing an upward trend, with the 3,000–4,000 m range increasing
more rapidly (4.3 km2/year) (Figure 4c), resulting in an overall
increase in forest (Figure 3c). The elevation range of shrubland was
consistent with forest, but with an opposite trend, showing declines
in the elevation zones, particularly between 3,000 m and 4,000 m
(−3.1 km2/year) (Figure 4c), leading to a reduction in shrubland.
Impervious surfaces were concentrated below 2,000 m and exhibited
a significant increasing trend (Figure 4a). Although water bodies
covered a small area, they were present at all elevations below
5,000 m (not shown in Figures 4c,d, due to their minimal area
compared to other types), with the highest concentrations above
3,000 m and an increasing trend across all zones. Ice/snow occupied
the highest elevations, primarily above 4,000 m, with a slight upward
trend (Figure 4d).

Compared to other land use types, grassland and bare land have
the broadest distribution across all elevation ranges. Grassland
showed an increasing trend between 1,500–2,000 m and
2,000–3,000 m (0.1 and 2.6 km2/year), but a decreasing trend in
the higher elevations of 3,000–4,000 m and 4,000–5,000 m
(−2.5 and −6.4 km2/year) (Figures 4c,d), contributing to an
overall reduction in grassland area (Figure 3c). Bare land had a
smaller area and a decreasing trend between 1,500 m and 3,000 m,
but it was more extensive and showed a significant increasing trend
at 3,000–4,000 m and 4,000–5,000 m (1.1 and 5.3 km2/year) (Figures
4c,d), resulting in an increase in the basin (Figure 3a).

3.3 Attribution analysis of land use changes
and their impact on NPP

3.3.1 Attribution analysis of land use change
Human activities are primarily concentrated in the lower

mountainous areas (between 1,500 m and 3,000 m) in the basin.

TABLE 5 The distribution of land use at different altitudes during the period of 1990–2020.

Land-use type 1,500–2,000 2,000–3,000 3,000–4,000 4,000–5,000 5,000–5,500

Cropland 55.5 491.6 186.6 0.0 0.0

Forest 0.1 875.6 922.2 0.1 0.0

Shrub 0.0 10.4 216.1 0.0 0.0

Grassland 77.2 1488.2 7882.6 2015.4 0.0

Water 2.3 4.6 11.0 12.4 0.0

Ice/Snow 0.0 0.0 1.7 118.9 0.5

Barren 2.2 6.3 45.0 602.1 0.0

Impervious 5.5 0.2 0.0 0.0 0.0

Wetland 0.0 0.0 4.1 0.0 0.0
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Grassland showed an increasing trend in low elevation areas (after
2000), particularly between 2,000 m and 3,000 m, largely
influenced by conservation policies such as the “Green Gain”
program (Yang and Huang, 2021). Cropland has been on a
decreasing trend in the 2,000–3,000 m since 2005, due to
policies like reforestation initiatives and the development of
urbanization. Conversely, forest have increased in the
3,000–4,000 m since 2005, driven by reforestation efforts and
the Green Gain initiative launched after 2000, contributing to
the growth of forest. At the same time, shrubland in this elevation
range showed the most significant decrease, influenced by these
policies. In addition, this study takes population and GDP (Gross
Domestic Product) as examples to analyze the influence of
socioeconomic factors on land use types. As shown in Figure 4,
impervious surfaces are mainly distributed in areas below
2000 m in elevation. Menyuan County is primarily located in
the low-elevation region of the middle and eastern Daotong River
Basin (Figure 1). Therefore, population and GDP data from
Menyuan County were used to investigate the influence of
socioeconomic factors on land use changes in low-altitude
areas. From 2000 to 2020, the population of Menyuan County
increased from 1.47 × 102 thousand in 2000 to 1.63 × 102 thousand
in 2015, followed by a slight decline. Meanwhile, GDP rose from
3.76 × 102 million in 2000 to 37.2 × 102 million in 2016, and then
slightly decreased (Figure 5). Correlation analysis (Table 6)
revealed that bare land in low-altitude areas was significantly
negatively correlated with both GDP and population. With
population growth, bare land in these areas has been
increasingly converted for urban and rural construction, leading
to a decline in bare land. In contrast, impervious surfaces showed a
significant positive correlation with population, as urban

expansion driven by population growth increased built-up
areas, along with associated economic benefits from the service
and industrial sectors.

Additionally, a partial correlation analysis between temperature,
precipitation, and forest and shrubland areas at 3,000–4,000 m
suggested that the rising temperatures correlated significantly
with increased forest area at this elevation, showing a strong
partial positive correlation, while shrubland showed a significant
partial negative correlation, due to its preference for cooler
conditions. The expansion of impervious surfaces was primarily
attributed to economic growth and population increase.

In high-elevation areas (>3,000 m), where human influence was
minimal, natural factors predominantly affect land use changes
(Table 7). Grassland in the 3,000–4,000 m range decreased
mainly due to the rising temperatures, showing a strong partial
negative correlation. Between 4,000 m and 5,000 m, precipitation
was the primary influencing factor, it showed the partial negative
correlation. For bare land, temperature was the main controlling
factor in high-elevation zones, with a significant partial positive
correlation. Regarding water bodies, both temperature and
precipitation exerted positive influences. This was primarily
reflected in how variations in temperature and precipitation have
altered permafrost and snowmelt processes, thereby influencing the
changes in water body area. Ice and snow, primarily distributed
above 4,000 m, were mainly influenced by precipitation. Increased
precipitation, particularly snowfall, has led to the expanded ice/
snow cover.

3.3.2 The impact of land use changes on NPP
In time scale, the annual total value of NPP in DTRB showed a

decreasing trend in fluctuation from 1990 to 2020 (r = −0.35),

FIGURE 4
Inter-annual variability of each land-use type across altitude zones (a–d) represent the elevations of 1,500–2,000 m, 2,000–3,000 m,
3,000–4,000 m, 4,000–5,000 m, respectively.
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with the largest NPP value of 2.8 Tg C in 1990, the smallest of
2.2 Tg C in 2018, and a multi-year average of 2.5 Tg C. Overall,
the NPP was at a low level in the basin, and the carbon
sequestration capacity of the vegetation was gradually
decreasing (Figure 6).

Spatially, the NPP of each raster in DTRB was mainly
distributed from 45.7 to 324.0 g C·m-2·a−1, and the multi-year
average NPP was about 167.0 g C·m-2·a−1 from 1990 to 2020. The
multi-year average NPP gradually increased from northwest to
southeast, with the southeast being the largest, mainly since
forest was distributed in the southeast, which had a higher
NPP than the other land use types. NPP was also larger in the
center, mainly due to the distribution of cropland and forest. The

northwest edge had the smallest NPP, mainly due to the
distribution of bare land. The spatial change of NPP was
analyzed using the MK method in the basin (the black-dotted
part passed the significance test of 0.05), and the NPP decreased
in the northwest and increased in the southeast, with a significant
decrease in the northwest, which, combined with the transfer
matrix analysis, revealed that the grassland distribution was the
largest in the northwest and most of it was shifted to bare land
(Table 4). NPP increased in the southeast, and forest was mainly
distributed in the southeast. For forest, the area transferred to
forest was 304. 3 km2, of which grassland accounted for 71.0%,
and at the same time, forest was the second largest area
transferred out of grassland (33.3%), and grassland was mainly

FIGURE 5
The distribution of GDP and population in Menyuan County from 2000 to 2020 (lack of economic data for 2001 and 2003).

TABLE 6 Correlations between GDP, population, and various land use types at elevations ranging during the period of 1990–2020.

Socio-economic factor Cropland Grassland Barren Impervious

GDP −0.02 −0.11 −0.82** 0.93**

Population −0.10 −0.05 −0.88** 0.96**

**P < 0.01.

TABLE 7 Partial correlation of individual land-use types with temperature and precipitation in high-altitude zones.

Elevation/m Cropland Grassland Water Ice/snow Bare land Forest Shrubland

T P T P T P T P T P T P T P

3,000–4,000 0.06 −0.37* −0.47** −0.14 0.47** 0.48** 0.39* 0.21 0.53** 0.16 −0.27* −0.33*

4,000–5,000 −0.30 −0.51** 0.19 0.16 0.1 0.36* 0.27 0.21 0.38* 0.55**

5,000–5,300 −0.1 0.28 0.08 −0.27

*P < 0.05, **P < 0.01.
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transferred to forest in the southeast region, so the NPP showed
an increasing trend (Figures 7a,b).

Based on a controlled experiment, we used land use data from
1990 as input and held land use constant while allowing climate
variables to vary normally. By subtracting the NPP simulated
under constant land use (with varying climate factors) from the
NPP simulated under both changing land use and climate
conditions, we found that the former accumulated 0.34 TgC
less NPP than the latter over the period from 1990 to 2020.
This result indirectly indicated that land use change has
contributed to a reduction in watershed NPP.

4 Discussion

4.1 Contrasting human and natural drivers of
land use change in different areas

Driven by climate change and human activities, land use types in
various regions have changed to varying extents. However, the
drivers of land use changes differ across areas. Yang et al. (2022)
found that forest and built-up land areas increased while water
bodies and unused land areas decreased in Mu Us Sandland. Land
use changes influenced by natural and human factors accounted for

FIGURE 6
The inter-annual change of NPP in DTRB.

FIGURE 7
The Spatial distribution and changes in NPP in DTRB (a) represents the mean NPP in DTRB; (b) represents the change of NPP in DTRB.
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27.92% and 10.63% of the total area, respectively. Human factors
predominantly drove changes in cropland, forest, and built-up areas,
while natural factors mainly led to the reduction of water bodies and
unused land. In urban areas, land use changes were primarily driven
by human factors. Since the 20th century, the urban areas have seen
a decrease in cropland and an increase in built-up areas, with
suburban lands increasingly converted to construction sites,
resulting in higher landscape fragmentation due to rapid
urbanization. However, green spaces within urban developments
have expanded, with ecological land types (such as forests,
grasslands, and wetlands) also increasing in proportion (Feng
et al., 2018; Wang et al., 2018). This expansion has been
supported by urbanization initiatives aimed at enhancing urban
habitat quality, including projects like sponge cities, green patches,
and post-demolition greening. In this study, land use changes were
primarily directed by natural factors, especially in high-altitude
watersheds.

Figure 8 showed the changes in temperature and precipitation at
each altitude zones. The precipitation increased with altitude.
However, temperature was opposite. Both them increased at a
faster rate from 1990 to 2020, especially in high altitude. Low-
altitude mountainous regions primarily referred to areas below
3,000 m, with impermeable surfaces predominantly located below
this elevation, particularly between 1,500 and 2,000 m (97.3%). The
DTRB spans eight counties and cities. Agricultural and pastoral
activities were prevalent. For instance, Menyuan county located in
the middle reaches of the Datong River, 155,900 residents are
engaged in farming and herding (82.2% of the total population),
primarily cultivating barley and raising grazing livestock such as
cattle and sheep. Therefore, in low-altitude areas, extensive
grasslands and croplands were significantly influenced by human
activities, with minimal constraints from natural factors.
Consequently, land use changes in low-altitude regions were
predominantly driven by human activities.

However, human activities were sparse above 3,000 m.
Grassland exhibited a partial negative correlation with
temperature between 3,000 and 4,000 m. This is primarily
because temperature raised faster in this elevation range
compared to lower altitudes (Figure 8a), leading to increased

evapotranspiration and reduced water availability for vegetation.
Consequently, grassland has decreased in this zone. Between
4,000 and 5,000 m, the rate of temperature increase was similar
to that between 3,000 and 4,000 m, but precipitation is higher and
exhibits the fastest increase across all altitudes (4.7 mm/year).
Additionally, slope steepness intensifies with elevation, and this
zone has a high average slope (20.4°) (Table 3). These conditions
exacerbated soil erosion, resulting in a significant reduction in
grassland area within this elevation range, thus the precipitation
showed a partial negative. Shen et al. (2017) reported that in DTRB,
areas with slopes exceeding 20° experienced moderate and severe
erosion rates of 19.7% and 50.2%, respectively, underscoring the
severity of soil erosion in this elevation range. Bare land showed a
partial positive correlation with temperature. The rising temperature
between 3,000 and 4,000 m increased soil moisture dissipation,
leading to an expansion of bare land. Water bodies were partial
positively correlated with both temperature and precipitation. In
high-altitude regions, precipitation showed a consistent increasing
trend (Figure 8b), leading to an expansion in water body area.
Furthermore, widespread permafrost in high-altitude zones was
experiencing significant warming (Figure 8a), resulting in
permafrost degradation, increased active layer thickness,
enhanced soil water retention, and improved connectivity. These
factors collectively contributed to the increased water supply to lakes
and other water bodies, expanding their area. Snow and ice showed a
partial positive correlation with precipitation. Above 4,000 m, the
high precipitation levels and the fastest rate of increase derived a
trend of expanding snow and ice cover in this elevation zone, with
snow/ice change rates reaching 1.0 km2/year. Therefore, land use
changes were predominantly governed by natural factors such as
temperature, precipitation, slope, and permafrost dynamics in high-
altitude regions.

In this study, the correlations between the area of land use and
temperature and precipitation were relatively low, but all passed
significance tests. The low correlations are mainly attributed to data
accuracy and the complexity of land use change. The study
employed monthly temperature and precipitation data from the
ERA5-Land reanalysis product. However, due to the limited
availability of ground-based observations, inaccuracies in satellite-

FIGURE 8
The changes in temperature and precipitation at each altitude in DTRB (a,b) represent the interannual variation of temperature and precipitation at
different elevations.
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derived data, and the interpolation methods used, the precision of
the meteorological data may have been affected. Similarly, the
accuracy of land use data is also influenced by the inversion
algorithms and the quality of training samples, which can
introduce uncertainty in the area estimates for different land use
types. Moreover, land use changes were driven by multiple factors
beyond temperature and precipitation in the high-altitude regions of
the QilianMountains, including soil physicochemical properties and
topographic conditions (Al-Sababhah, 2024), which further weakens
the observed correlations.

4.2 Comparing the ecological effect of land
use changes with prior studies

Land use changes can lead to varying hydrological and ecological
effects. In terms of hydrological processes, these impacts are evident
in some aspects such as evapotranspiration and surface runoff (Jin
et al., 2021; Guédé et al., 2024). The ecological effects of land use
changes were reflected in some aspects such as carbon storage and
net primary productivity (NPP) of vegetation. Land use changes,
such as increased cropland and water areas coupled with reductions
in grassland and unused land, have led to an upward trend in NPP in
the Hexi region of the Qilian Mountains. In the Shule River Basin,
the total annual NPP showed an overall increase from 2001 to 2015,
though land use changes between 2010 and 2015 resulted in a
6.9 Tg C decrease in NPP. Similarly, land use changes in the Ordos
region contributed to an increase in NPP over the same period (Liu
et al., 2024). In contrast, this study found a decreasing trend in NPP
in DTRB from 1990 to 2020. This decrease was mainly due to
grassland, which constitutes approximately 76.2% of the basin,
showing a downward trend, alongside an increase in bare land,
leading to a reduction in NPP. Additionally, the extended study
period, beginning in 1990, revealed that grassland area was at its
peak and the NPP was large in the late 20th century. Uncertainties in
the structure and input parameters of the CASA model may also
contribute to these findings that differed from other regions. Future
research could further investigate the impact of both natural and
anthropogenic factors on land use change under different climate
scenarios. By integrating the CASA model, it could analyze the
changes in NPP under various emission scenarios, offering
recommendations for the high-quality development of human
society and promoting harmonious development between
humans and nature.

5 Conclusion

This study analyzed the spatial and temporal characteristics of land
use changes using the annual land use data, attributed these changes to
human activities and natural factors, and employed the CASA model to
clarify the impact of land use changes on vegetation net primary
productivity (NPP). The main conclusions are as follows:

(1) The grassland was largest, followed by forest, cropland, bare
land, shrubland, ice/snow, and water bodies in DTRB.
Grasslands were predominantly found in the northwest,
while the southeast had the less coverage. Forest areas

were mainly concentrated in the southeast, with cropland
in the central region. Bare land was more dispersed,
particularly along the central and western edges. Ice/snow
areas were adjacent to bare land, primarily on the northern
edge and the impervious surface areas were located
downstream. Overall, the comprehensive degree of land
use was relatively low. Between 1990 and 2020, cropland
was decreased, largely due to reductions in areas at altitudes
between 2,000 m and 3,000 m. Grassland and shrubland also
were decreased, primarily in areas between 4,000 m and
5,000 m for grasslands and 3,000 m and 4,000 m for
shrubland. In contrast, forest and bare land expanded,
attributed to the increase in forest between 3,000 m and
4,000 m and bare land between 4,000 m and 5,000 m. The
overall land use intensity showed a marked decreasing trend,
with a change rate of −2.03, indicating a period of decline. The
comprehensive dynamic degree of land use was minimal, at
0.10%, suggesting limited land use type conversion during the
study period.

(2) Based on the land use transfer matrix analysis, the
conversion occurred among the different land use types
in DTRB from 1990 to 2020. Cropland primarily
transferred out, with grasslands accounting for 93.3%.
Grasslands also experienced significant conversion, with
39.2% turning into bare land and 33.3% into forest.
Shrubland primarily transferred out as well, with 55.5%
turning into grassland. Forest mainly gained area, with
71% of its increase coming from grassland, while bare
land similarly saw a net gain, with 90.7% derived from
grassland. Impervious surfaces, heavily influenced by
human activities, largely expanded through the
conversion of cropland and grassland. At lower altitudes
(1,500–3,000 m), human activities played a significant role.
Under the “Green Gain” conservation policy, grassland
areas increased. Additionally, policies such as the
reforestation initiatives led to a decrease in cropland,
while forest expanded. The correlation analysis indicated
that bare land exhibited a significant negative correlation
with GDP and population, while impervious surfaces were
positively correlated in low elevation regions. In higher
altitudes (above 3,000 m), natural factors were more
influential. Grassland showed a significant partial negative
correlation with precipitation at 4,000–5,000 m. Bare land
exhibited a positive correlation with temperature, while
water bodies were positively correlated with both
temperature and precipitation. Ice/snow areas, on the
other hand, had a partial positive correlation with
precipitation.

(3) The ecological effects of land use changes. The multi-year
average NPP was approximately 167.0 gC·m−2·a−1 from
1990 to 2020, showing a gradual increase from the
northwest to the southeast. The lowest NPP values were
found along the northwest edge, largely due to the
extensive distribution of bae land. In contrast, the highest
NPP values were in the southeastern region, attributed to the
prevalence of forest. Spatially, NPP showed a decline in the
northwest, where grasslands dominated and were increasingly
converted to bare land. Conversely, the southeastern region
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showed an upward trend in NPP as grasslands were converted
to forest, resulting in an increase in NPP. Overall, the total
NPP for the basin exhibited a decreasing trend.
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