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With the growing demand for global water environmentmonitoring, satellite laser
altimeters (SLA) have considerable advantages for underwater measurements.
However, changes in suspended solids, turbidity, and other optical properties of
water affect the propagation of SLA laser pulses in water. This can affect the
accuracy and reliability of the measurements. This study analyzed the impact of
water quality changes in the Oahu Island region of Hawaii on the accuracy of SLA
un-derwater measurements based on ICESat-2, MODIS, Landsat-8, and in situ
data. Underwater photons were obtained from ICESat-2 ATL03 data through an
Adaptive Elevation Difference Threshold, combined with in situ data to calculate
the potential altimetry deviation. Using the water quality data inverted from
Landsat-8 as a reference, MODIS kd490 was implemented through random
forest regression. The impact of water quality changes on the SLA accuracy
was quantified by combining the altimetry bias and water quality data that
matched the laser footprint. There is a positive correlation between water
quality and photon water permeability. The more turbid the water quality, the
smaller the proportion of photons that can penetrate the water surface. The
maximum measurement deviation caused by multiple scattering of the water
body could reach the meter level. Future underwater bathymetry corrections
need to consider the impact of multiple scattering. The findings are of
considerable importance for environmental protection, resource management,
policy formulation, and SLA data processing.
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1 Introduction

Accurate water depth measurement is of important in fields such as water resource
management, infrastructure planning, and disaster prevention. It has been widely used in
shoreline assessments, hydrological process analyses, sediment transport monitoring, and
channel maintenance (Bergsma et al., 2021; Dong et al., 2019; Peña-Arancibia et al., 2024).
Traditional water depth measurement methods such as field surveys and acoustic
techniques, can be applied to various water environments and have real-time data
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processing capabilities. However, they have certain limitations in
terms of cost, coverage, and time resolution (Costa et al., 2009;
Kutser et al., 2020). Since the 1970s, the rapid development of
satellite microwave remote sensing has enabled satellite altimetry
technology to extract large-scale, high-precision, and high-
frequency water depth information (Pereira, 2019; Parrish et al.,
2019; Herzfeld et al., 2014).

Satellite altimetry technology can be divided into two categories:
satellite radar altimetry (SRA) and satellite laser altimetry (SLA).
The SRA obtains information such as sea level, gravity field, and
depth using microwave radars such as radar altimeters. Its footprint
is generally at the kilometer level, and the height measurement
accuracy is at the decimeter level, such as TOPEX, Jason-1/2, and
HY-2A/B/C/D (Ardalan et al., 2023; Wang J. et al., 2023; Xu et al.,
2021b). Information like the vertical distribution and depth of ocean
profiles is obtained via lidar and laser altimeters. The footprint size is
usually at the meter level, and height measurement accuracy is at the
centimeter level, such as ICESat-1/2, ZY3-02/03, and GF-7 (Abdalati
et al., 2010; Li et al., 2020; Schutz et al., 2005; Tang et al., 2020a; Tang
et al., 2020b). Compared with SRA, the advantages of SLR are its
high vertical resolution, high measurement accuracy, and small
footprint. It has considerable advantages for water depth
measurements, especially in shallow water areas, and in assessing
small-scale water bodies. However, various factors can affect the
accuracy of final measurements (Caballero and Stumpf, 2023; Chen
et al., 2022; Ma et al., 2019; Xu et al., 2024a). In terms of water depth

measurements, influencing factors can be divided into the following
three aspects (Table 1): the influence of the external environment,
the data processing algorithm complexity, and the interaction
between the water body and laser.

Laser pulse transmission from satellites to water bodies are
affected by the external environment, such as cloud–aerosol layer
obstruction, atmospheric multiple scattering, atmospheric refraction
effects, and the surface slope. This directly reduces the laser
penetration capability, signal quality, and flight conditions (Narin
et al., 2024; Yao et al., 2021a; 2021b; Zuo et al., 2021). Studies have
been conducted to correct the corresponding height measurement
deviations using the corresponding models. If errors could not be
eliminated, the data accuracy was controlled using quality control
markers. Therefore, the influence of environmental factors can be
appropriately resolved in engineering applications (Markus et al.,
2017; Moudrý et al., 2022). From raw observation data to products
that can be directly used by users, a series of data processing
processes is required. This includes noise removal, active and
passive sensor fusion, and other algorithms. Therefore, additional
errors caused by the complexity of these algorithms must be
considered. In severe cases, they may affect the data effectiveness
(Cui et al., 2018; Xu et al., 2023). However, after nearly two decades
of technological accumulation, satellite-ground multi-sensor fusion
research has become relatively well developed and can achieve high-
precision inversion of long-term and large-scale underwater
characteristics (Leng et al., 2023; Yang et al., 2023). For

TABLE 1 Influencing factors of underwater measurement accuracy of satellite laser altimeter.

Influencing factor Source of error Description Limitations

External environmental
impact

Atmospheric effects
(Madson and Sheng,

2021)

Changes in temperature, humidity and air pressure in the
atmosphere affect the laser propagation speed, and the
measurement results

This can be corrected using atmos-pheric parameters
but requires accu-rate atmospheric data and complex
correction algorithms

Ground reflection (Zuo
et al., 2021)

Factors such as the inhomogeneity of the ground surface
and change in re-flectivity will lead to changes in the
intensity and time delay of the laser return signal

This can improve the impact of ground reflection but
requires accurate ground information and complex
correction methods

Weather conditions
(Tang et al., 2022)

Weather conditions such as rainfall and dense fog will
interfere with the propagation of laser signals and affect
measurement accuracy

This can be corrected using the actual weather
conditions but requires accurate weather data and a
complex correction process

Complexity of data
processing algorithms

Noise interference (Chen
et al., 2021a)

The noise and environmental interference of the
instrument itself will affect the clarity and stability of the
laser signal and reduce the measurement accuracy

It can improve the signal quality, but it needs to balance
the filtering parameters and the complexity of the
algorithm

Multipath effect (Yao
et al., 2021a)

The laser signal may undergo multiple reflections and
scattering during propagation, resulting in a non-unique
path for the signal to reach the receiver. This affects the
measurement accuracy

This can reduce the error caused by a multipath effect,
but it requires complex signal processing and
calculations

Data fusion (Yang et al.,
2023)

In the active and passive multi-source data fusion, the
inconsistency and delay between different sensors may
introduce errors

It can improve the measurement accuracy of a single
sensor, but it is necessary to consider the multi-source
synergy mechanism between multi-sensors

Interaction between water
and laser

Tide effect (Madson and
Sheng, 2021)

Tidal changes can cause periodic changes in water level.
This, in turn, affects the vertical accuracy of laser
measurements

It can eliminate the error caused by tide, but it depends
on accurate tidal forecasting and data

Water table fluctuation
(Chen et al., 2021b)

Fluctuations in the water surface will cause the laser
beam to refract on the water surface, which affects the
vertical accuracy of the results

It can reduce the interference of water surface
fluctuation on the measurement but requires accurate
wave and wind speed data

Water quality impact (Lu
et al., 2021)

Suspended solids and algae in water will scatter and
absorb laser signals, affecting the propagation and
reception of signals

It can improve the measurement accuracy under
different water quality conditions. The disadvantage is
that it requires accurate water quality data and complex
correction methods
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underwater depth extraction using satellite altimetry technology,
water quality parameters such as turbidity, suspended matter
concentration, and water color may affect the detection of laser
signals entering the water column and returning to the water surface.
This interaction has a greater impact on the usability of the results
(Hedley et al., 2021; Lu et al., 2023). In contrast with the problems
faced in land areas, the distribution density of underwater signals
varies with changes in water quality, seabed substrate, and seawater
depth. The photon density varies significantly under different
conditions. As the seabed topography changes, the degree of
dispersion varies. Distinguishing signals from noise in complex
situations is a key issue (Babbel et al., 2021).

The current ICESat-2 photon-denoising algorithm is mainly
based on statistical distribution theory. This includes Adaptive
Variable Ellipse Filtering Bathymetric Method (AVEBM),
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), Ordering Points To Identify the Clustering
Structure (OPTICS), and an improvement algorithm to obtain
signal photons using spatial clustering (Chen et al., 2021a).
Currently, official products use histogram-based filtering
algorithms. Although it is suitable for most situations, its
accuracy is poor in areas with complex terrain (Neumann et al.,
2021). AVEBM determines filtering parameters using the photon
density distribution in different water environments and water
depths to accurately detect signals on the water surface and
underwater (Chen et al., 2021b; Ni et al., 2024; Xu et al., 2024b;
Xu et al., 2021a; Yao et al., 2025). DBSCAN is the most widely used
denoising model. This model proposes an adaptive density
segmentation model that can detect vertical hierarchical
structures such as the ground, vegetation canopy, and water
surface in the data (Schubert et al., 2017; Xu et al., 2022b). The
DBSCAN effect depends on the preset parameters. However,
owing to the substantial amount of underwater background
noise, selecting different input parameter values leads to
significantly different clustering results and regional mobility
crosses (Lao et al., 2021; Xu et al., 2022b). In contrast with the
DBSCAN algorithm, although the OPTICS algorithm does not
explicitly create clusters, it still relies on key parameters such as the
minimum number of neighborhood points, Minpts, and the
clustering radius Eps (Ankerst et al., 1999). No matter which
algorithm is used, water quality directly affects the distribution
of underwater photons. This directly affects the measurable limit
underwater depth, and also affects the reliability and availability of
data. Changes in water quality may originate from natural
processes, such as sediment transport and algal blooms, or
human activities, including pollution and changes in water
bodies (Zheng et al., 2023). Therefore, understanding the
impact of water quality changes on the underwater
measurement accuracy of SLA is crucial for the application of
SLA technology for inversion of underwater characteristics.

The ICESat-2 satellite photon point cloud has a strong water
projection capability but is limited by factors such as spot size,
underwater sediment, and water quality. As photons enter the water,
water quality differences at different height levels along the
transmission path cause multiple scattering and reflections. The
energy gradient attenuation affects the ultimate detection distance.
However, the complexity of multiple scattering introduces problems
in the final result. This can result in inestimable measurement errors.

Therefore, two problems must be solved urgently in the field of
underwater detection: 1) Under what water quality threshold can
errors be corrected? 2) Under what water quality threshold can the
error no longer be corrected but can be corrected through quality
control identification to quantify its impact? This study combined
ICESat-2, MODIS, Landsat-8, and in situ data to analyze the impact
of water quality changes in the Oahu Island area on the SLA
underwater measurement accuracy. The study aimed to provide
guidance for satellite laser altimetry data processing, quality control,
and error.

2 Materials and methods

2.1 Regional overview

To further illustrate the impact of water quality changes on the
underwater measurement accuracy of the satellite laser altimeter,
the coastal zone of Oahu was selected as the experimental area, as
shown in Figure 1a. Oahu Island is located in the middle of the
Pacific Ocean and is the third largest Hawaiian island of the
United States. It has a high level of coastline diversity. This area’s
meteorological and seasonal changes can cause various changes in
water quality, which align with the current study. The red area in
Figure 1a represents the survey area. A buffer zone with a radius of
100 m was established using measured data. The parameters of the
measured data are described in detail below. As shown in
Figure 1b, for the ICESat-2 532 nm channel, the laser incurs
incidence, refraction, and scattering on the atmosphere–ocean
transmission path. Vertical incidence does not cause additional
errors, and the refraction error is obtained. This has been
corrected, but scattering errors remain a problem. Suspended
particles such as silt, sediment, and phytoplankton, biological
debris, and dissolved substances in water may undergo multiple
Rayleigh scattering with photons. This can result in an inestimable
delay distance, ultimately biasing the water depth measurement,
which may be relatively large, or attenuated to the noise
distribution level (Figure 1c). Affected by multiple
atmospheric–water scattering, these signals are mixed with
other photon point clouds and have a greater impact on the
overall accuracy and user use. Quantifying this impact was one of
the objectives of the present study.

2.2 Experimental data

This study mainly involved the water depth and quality data of
the Oahu coastal area from 2018.09 to 2022.09 in Table 2. We used
in situ data as reference water depth data and established a buffer
zone as the research scope of this study. The in-situ data were point
cloud data obtained through airborne LIDAR (SHOALS 3000) in
2013. Its expected water depth measurement accuracy could reach
approximately 0.2 m (Xu et al., 2022a). Although the in-situ data
were obtained in 2013, the underwater terrain did not change
significantly. Therefore, we still used it as a reference for the true
value of water depth. We used the ICESat-2 L2A global geolocation
photonic product (ATL03) as the original measurement data. This
contains the position information of all the data received by the
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satellite receiver, including orbital distance, elevation angle,
longitude and latitude, and photon flight time, as shown in
Section 3.1. Only by processing the algorithm can we obtain
accurate water depth data, and its expected accuracy is
approximately 0.5 m (Neumann et al., 2021). To obtain the
changes in water quality, we quoted the diffuse reflection
attenuation coefficient (Kd490) in the MODIS 3 L OceanColor
product as a reference. Kd490 is the absorption coefficient of the
water color index at 490 nm in water body. It is used to assess the
concentration of suspended particulate matter in the water,

reflecting the transparency and water quality of the water body.
Since it falls between the green and infrared spectral bands and is
close to the 532-nm wavelength of laser light, this study utilizes
Kd490 to quantify the water quality and evaluate its impact on laser
scattering(Lu et al., 2016). However, there was a substantial
difference between its spatial resolution and the laser footprint
size. Therefore, we used the algorithm in Section 3.2. Multiple
water quality data such as sage depth inverted from Landsat-8
were used as references to achieve downscaling through random
forest regression (Tilstone et al., 2021).

FIGURE 1
Overview of experimental area and principles. (a) Survey area. (b) Laser transmission path in water. (c) ATL03 typical underwater signal distribution.

TABLE 2 Datasets covered in this article.

Data type Dataset
name

Acquisition
time

Sensor Carrying
platform

Expected
accuracy

Water depth ATL03 2018–2022 Advanced Terrain Laser Altimeter System
(ATLAS)

ICESat-2 0.5 m

Situ data 2013 SHOALS 3000 Airborne 0.2–0.4 m

Water quality OceanColor 2018–2022 MODIS Aqua/Terra 4 km

Surface reflectance 2018–2022 OLI (Band 1–7) Landsat-8 30 m
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3 Experimental principles

The overall technical process is shown in Figure 2 and includes
three main parts: data processing, and data analysis. The photon
coordinates of different levels of the water body are obtained from
the ICESat-2 ATL03 product through the AEDTA algorithm.
Three types of reference water quality raster data were inverted
through Landsat-8. The classified photon coordinates were
corrected for refraction, and for use as the water quality
reference. The data was obtained as a MTSI raster, and all the
data were geo-referenced and resampled uniformly to ensure that
the size of all the random forest data to be input was completely
consistent. The downscaled Kd490, underwater altimetry error,
and water permeability were combined as rate data. The impact of
water quality changes on satellite laser altimetry data was analyzed
from a spatial and trend perspective, and an empirical correction
model was established.

3.1 Adaptive elevation difference threshold

ICESat-2 was launched in September 2018 and emits three pairs
of laser micro pulses at a frequency of 10 kHz using an Advanced
Terrain Laser Altimeter System (ATLAS). The 532 nm wavelength
makes it water-permeable but is limited by the reflectivity of
seawater to return photons (Wen et al., 2024a). Meanwhile, the
532 nm green light in sunlight is also captured by the satellite’s
receiving field of view. Therefore, a substantial amount of
background noise was mixed with the effective water depth
signal in the acquired ATL03 data. The signal also includes the
influence of terrain, clouds, and underwater obstructions. Therefore,
a denoising algorithm was required to extract the water depth
information (Wen et al., 2024b). In this study, the Adaptive
Elevation Difference Threshold (AEDTA) was used as the

denoising model. The specific process is as follows (Wang B.
et al., 2023).

3.1.1 Surface, water, and underwater photon point
cloud recognition model

Given that there are significant differences in the distribution of
photons on the water surface, above water, and underwater, and
because photons undergo refraction effects when they are
transmitted in water, it is necessary to classify the original data
hierarchically and denoize each layer of photons separately to obtain
an effective signal. The accurate identification of these three photon
layers is a key issue for water depth surveying and mapping. Given
that only a few photons penetrate the water surface and most remain
there, the water surface elevation can be determined based on the
elevation value that appears most frequently in the elevation
histogram. The Gaussian fitting model was used to determine the
dense elevation distribution area along the track direction, that is,
the photon elevation corresponding to the maximum amplitude.
This is defined in Equations 1, 2:

f h( ) � A × exp − h − μ h( )( )2
2 × σ h( )2{ } (1)

h> μ h( ) + 3 × σ h( ), Photons of above water
μ h( ) − 3 × σ h( )< h< μ h( ) + 3 × σ h( ), Photons ofwater surface
h< μ h( ) − 3 × σ h( ), Photons of underwater

⎧⎪⎨⎪⎩
(2)

where f represents the Gaussian fitting model, h represents the
height of the photon along the track direction, μ(h) represents the
horizontal position of the fitted Gaussian peak position, σ(h)
represents the width of the fitted Gaussian peak, and A
represents the fitting. The maximum amplitude of the Gaussian
model is the photon elevation of the water surface. After
determining the photons on the water surface, a hierarchical

FIGURE 2
Overall process of the algorithm in this study.
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classification of the photons was obtained based on the probability
distribution rules of the ideal Gaussian model.

3.1.2 Underwater photon three denoising model
Underwater terrain in shallow sea areas is generally gentle and

continuous, and the maximum depth measurement capability of
lasers is often between 20 and 50 m. Within this range, it is assumed
that the difference in elevation between adjacent photons does not
exceed a certain threshold. If the threshold is satisfied, then the
constraints enable rapid underwater signal recognition. Taking the
elevation difference as the vertical axis and the starting coordinate of
the photon in the long-track direction as the horizontal axis, we
found that its spatial distribution is similar to that of the exponential
decay model. Therefore, we used Equations 3, 4 to rapidly calculate
this threshold:

hdiff � hi+1 − hi| | (3)
fdiff hdiff( ) � a × exp −b × hist hdiff( ){ } + c (4)

where hi represents the height of the ith photon, hdiff represents the
absolute value of the height difference between adjacent photons,
fdiff(hdiff) represents the exponential decay model, and hist(hdiff)
represents the abscissa of the statistical histogram. This is the
starting point of adjacent photons along the track. In terms of
coordinates, a represents the amplitude of the attenuation model, b
represents the attenuation rate of the attenuation model, and c
represents the constant term of the attenuation model, respectively.
The spatial distribution of the elevational differences at each location
can be obtained through this attenuation model. The threshold was
determined using Equation 5, where hthr represents the threshold.

fdiff hdiff( ) − c< 1 × 10−3, hthr � hi (5)

This was used as the basis for performing the three denoising
operations. The three denoising methods were required to make
accurate estimates of the different photon distributions in complex
environments. In the first denoising step, all underwater photons
were targeted. When the elevation difference was greater than a
threshold, the two adjacent photons were marked as noise. By
contrast, the two photons were marked as signals. For the second
denoising, the photons marked as noise in the first denoising result
were used as targets, and the threshold was redetermined for
denoising. For the third denoising, the photons marked as noise
in the second denoising result were used as targets, and the
threshold was determined again for denoising. The photons
marked as signals after the three denoising cycles were the final
outputs of the underwater signals. The advantage of this model is
that it does not require manual determination of parameters and
adapts to the characteristics of ICESat-2 ATL03 data to derive
thresholds.

3.1.3 Water depth estimation model
As the water depth increases, the photon transmission path

undergoes refraction effects, causing measurement deviations. A
water depth of 30 m causes an elevation measurement offset of
approximately 9 cm (Parrish et al., 2019). Therefore, for shallow
water depth detection, the following empirical model, as shown in
Equation 6, was used to correct the refraction error (Parrish
et al., 2019):

hcor � hph + 0.25416 × ssh − hph( ) (6)

where hcor represents the corrected photon water depth, ssh
represents the water surface height, and hph represents the
underwater signal height after denoising.

3.2 Principle of the water quality inversion
and downscaling algorithm

The spatial and temporal resolution of the MODIS Level 3 ocean
water color product is 4 km on a daily scale. This makes it difficult to
directly match the size of the satellite laser footprint. Therefore, in
this study, we used the 30 m Mean Trophic State Index (MTSI)
retrieved from Landsat-8 as water quality reference data. These data
were fed into the random forest model to achieve spatial resolution
downscaling. Water quality parameter inversion primarily uses the
radiation energy received by the sensor to analyze the water quality
parameters. In this study, to avoid interference from environmental
factors on water quality inversion, we selected chlorophyll a
concentration, sage depth, and the nutritional status index for
the MTSI inversion. Three basic performance indicators were
selected. The specific descriptions are as follows.

3.2.1 Water quality inversion algorithm
Chlorophyll concentration a (Chla) captures solar energy and

converts it into biomass for plants and algae. Its concentration is an
important parameter in evaluating the ecological health and
nutritional status of water bodies. High chlorophyll a
concentrations usually indicate that there are too many
nutrients in the water body and that the water body is
eutrophic. Low chlorophyll a concentrations indicate a lack of
adequate nutrients in water to support a healthy ecosystem. The
chlorophyll a concentration in water bodies differs. The
corresponding spectral information from the remote sensing
images also differs. Generally, the spectral characteristics of
water bodies containing chlorophyll a have the highest values in
the near-infrared band. Therefore, the following inversion model,
as shown in Equation 7, was constructed:

Chla � 0.06 × B4 + 0.00638( )/10000 (7)
where Chla represents the chlorophyll a concentration in μg/L, and
B4 represents the characteristic band in the near-infrared band
range of the Landsat-8 image.

Secchi depth (SD) reflects the transparency of water and is an
important parameter that describes the optical properties and
quality of water. Suspended substances, particles, or sediments
in the water body scatter and absorb light, reducing the
transparency of the water body. This results in a reduction in
the SD. Multispectral remote sensing inversion technology
analyses the relationship between different wavebands to
achieve broader and more detailed water transparency
monitoring and SD estimation, compensating for the lack of
local data caused by the inability of ships to reach the
traditional Secchi Pan method. In Equation 8:

SD � 0.1777 × 101.4856×ln
B2
B4
( )+0.2734 + 1.0813 (8)
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SD represents the Secchi Depth (m) and B2 and B4 represent the
green and near-infrared band of the Landsat8 image, respectively.

The Trophic State Index (TSI) was originally proposed by
Carlson (1977). He determined the TSI of lake water based on
the chlorophyll a (Chla) content. The calculation method, as shown
in Equation 9, is as follows:

TSI � 10 × 6 − 2.04 − 0.68 ln Chla( )( )/ ln 2[ ] (9)
where TSI is the Carlson nutritional status index and Chla is the
chlorophyll a concentration in the water (µg·L−1).

The MTSI is used to describe the trophic status of a specific
lake’s waters. The calculation of MTSI value mainly uses the
following formula, as shown in Equation 10, which is a
multiparameter evaluation standard. This method eliminates the
dependence on a single factor.

MTSI � CHL + SD + TSI[ ]
3

(10)

3.2.2 Water quality super-resolution
reconstruction algorithm

Random forest regression (RFR), a powerful machine learning
method, has shown broad potential in the field of super-resolution
reconstruction of water quality data owing to its nonlinear modeling
capabilities and adaptability to various data. In terms of application
prospects, super-resolution reconstruction, also known as
downscaling sampling, refers to the process of converting low-
resolution data into high-resolution data and is crucial for
improving the accuracy and efficiency of water quality
monitoring (Wang et al., 2021).

In this study, we constructed multiple decision trees using RFR,
inferred the prediction results of the sample set on each independent
individual tree, and used the verification set as the standard to
quantify the training effect. The original data in the sample and
validation sets refer to theMTSI data obtained from Landsat-8. The
corresponding labels refer to MODIS KD490 water quality data.
4 km resolution MODIS was expanded into the same matrix shape
as a 30 m Landsat-8. Using the results of georeferencing and matrix
matching, the point set corresponding to both was constructed and
divided 80% into the sample set and 20% into the validation set. The
sample set was then sent to the RFR for iterative training. In this
process, we used the following parameters as evaluation indices, as
shown in Equation 11:

RSR � RMSE

STDEV
�

���������������∑n
i�1 ypredi − yobsi( )2√

���������������∑n
i�1 yobsi − yobsi( )2√ (11)

where RSR is the root mean square error (RMSE)-observations
standard deviation ratio (RSR). RMSE refers to the root mean
square error between the prediction result and the observation
results. STDEV refers to the standard deviation of the observation
data, and n refers to the number of data. ypredi refers to the
prediction result, which is the underwater elevation
measurement value; yobsi is the observation result, which is the
true value of the underwater elevation; and yobsi is the mean value
of the observation result. In this study, we used the Scikit-learn
package to initialize the RFR and save the model parameters
(Pedregosa et al., 2012).

4 Results

4.1 Influence of water quality on satellite
laser measurement accuracy

Figure 3a shows the distribution of laser points and water quality
data in the shoal area of Oahu. There were 125 tracks of ICESat-2
laser data from this area, comprising a total of 376,050 laser photons.
These photons include noise and signal photons, and the signal
photons did not necessarily return to values underwater. The water
quality data visualized in Figure 3a were averaged from the daily
scale Kd490 data and obtained using random forest analysis. The
Diffuse Attenuation Coefficient (Kd490) represents the absorption
and scattering ability of the water body in the 490 nm channel. It is
often used in water quality and oceanography to evaluate the optical
properties of water bodies, particularly for studying the content and
distribution of phytoplankton in water. Larger values indicate higher
turbidity and poorer potential water quality.

Overall, the water quality fluctuations in the Oahu shoals vary
from 0 to 1 and are relatively uniform. The north and southwest
areas had the worst and best water quality, respectively. The
further away from the shore, the smaller the value. To gain an in-
depth understanding of the impact of water quality changes on
satellite laser water permeability and height measurement
accuracy, six areas with different water quality gradients were
selected for further analysis, as shown in red framed areas c–h in
Figure 3a. Different gradient ranges were formed by the natural
discontinuities. Figure 3a shows the photon spatial distribution
map corresponding to the laser point trajectory. Figures 3c–f is
the sounding result during the day, and Figures 3g,h are the
sounding results at night. In this figure, the horizontal axis
represents the photon dimensions along the track. The vertical
axis is the height along the track, blue represents the water surface
photon recognized by AEDTA, and red represents the
underwater photon recognized by AEDTA. Kd490 is the
average value of the regional along-track data. Water
permeability is calculated as the proportion of the number of
underwater photons to the overall effective signal. Water
permeability is an evaluation of the ability of a satellite laser
altimeter to penetrate and obtain effective signals under different
water quality conditions.

The results show that there was a correlation between water
quality and water permeability, as shown in Figure 3b. Poor water
quality often implies a low permeability. Among them, when
Kd490 is in the range of 0.57–0.72, the water permeability was
the lowest. This may be because of the presence of more dissolved
organic matter and suspended particles in the water body. These
prevent light from fully penetrating the water body, thus affecting
the laser transmittance. Higher water permeability usually means
that the water body has a stronger ability to transmit light. This is
more likely to cause the photon signal to penetrate deeper water
layers, thus affecting the sounding results. Compared to areas of high
water quality, there may be more suspended particulate matter in
water bodies in areas of low water quality. Particulate matter can
cause scattering, absorption, or reflection of laser signals, resulting in
the generation of noise points and loss of photons in the water. The
signal was more dispersed, thus interfering with the bathymetry
results. This trend is evident in Figures 3c–h. When the track passes
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through water during the day Figures 3c–f, the lower the
Kd490 value, the higher the water permeability, and the photons
can better display the underwater topography, thereby obtaining
more accurate bathymetry results. Likewise, the night Figures 3g–h
exhibited similar characteristics.

For a photon-counting system satellite laser altimeter, the
background noise acquired during the day and night may differ
significantly. To obtain a more universal conclusion based on
Figure 3, water quality and water permeability were analyzed on
a continuous spatial scale. The correlation between water quality and
water permeability is shown in Figure 4. The diffuse reflection
coefficient, Kd490, represents the ability of the water body to
weaken the laser. Its value range is 0–1. When it was 1, the laser
pulse attenuated almost completely.

Figure 4a shows the spatial distribution of the dual variable
correlation between water quality and water permeability.
According to the numerical change range of the two variables in

the study area, each variable was reclassified into three categories
(Kd490: [0.281, 0.335)/(0.335, 0.359)/(0.359, 1)]; water permeability:
[0.018, 0.092)/(0.092, 0.259)/(0.259, 1)]).

Overall, Oahu’s regional water quality and permeability showed
an interactive and mutually influential relationship. Water
permeability refers to the ability of soil or other media to pass
through its surface to the surface or groundwater below. We
observed distinct areas in Oahu. Figure 4b in the upper area and
Figure 4d in the lower area showed that areas with lower water
quality but higher water permeability could be observed. This may
be due to high water permeability, which makes it easier for
pollutants in the water to penetrate groundwater or deep soil,
causing groundwater contamination and worsening water quality.
Excessive water permeability may increase surface runoff,
exposing the water body to pollutants and thereby reducing
water quality. In contrast, the central area in Figure 4c shows
higher water quality and water permeability. This is because the

FIGURE 3
(a) Laser point and water quality data distribution of shoals in the Oahu area. (b) correlation between water quality and water permeability; (c–f) the
sounding result during the day; (g, h) the sounding results at night.

Frontiers in Environmental Science frontiersin.org08

Lu et al. 10.3389/fenvs.2025.1592962

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1592962


water permeability level directly affects the residence time and
flow rate of water in the soil or medium. When soil water
permeability is high, water penetrates deeper into the soil more
easily. This helps improve water quality because microorganisms
and soil particles in the soil can filter and adsorb pollutants in
the water.

4.2 Impact of long-termwater quality on the
underwater measurement accuracy of
satellite laser altimetry

Figure 5 shows the measurement error of the intersecting tracks
in different waters. The orbit error in the figure refers to the

FIGURE 4
Spatial correlation between water quality and water permeability. (a) Overall spatial distribution; distinct areas in Oahu: (b) the upper area, (c) the
central area, (d) the lower area.

FIGURE 5
Spatial distribution of laser points between cross rails. (a, b) the two tracks intersecting near the water surface, (c) Intersecting in the deep water.
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sounding difference of the two intersecting tracks in the same area.
The result shows there are certain differences in the photon-
sounding results in the intersecting parts of the tracks. As the
depth increases, this difference gradually increases. In Figure 5,
we selected three areas with similar water quality distributions to
reflect the differences in the bathymetry results, Where the orange
box area is the crossing position of the two laser orbits. As shown in
Figures 5a,b, the two tracks intersected near the water surface. The
differences in the depths of the two tracks were small at 0.144 and
0.314 m, respectively. In Figure 5, we selected three areas with
similar water quality distributions to reflect the differences in the
bathymetry results. However, as the water depth increased
(Figure 5c), the water characteristics became more complex,
causing the laser signal to become more affected during
propagation. This increased the difference in the bathymetry
results, reaching 0.507 m. The accuracy of water body bathymetry
was correlated with the season and strength of the photon signal.
Figures 5a,c show the strong and weak orbits, respectively. Compared
with weak orbits, the photon signals received in strong orbits were
stronger and richer, which makes them more accurate. Water depth
measurements in Figure 5b show the photon track bathymetry results
in different seasons (December and July). Compared to summer, the
photon signal in water was stronger in winter, resulting in differences
in the water depth measurements.

To further analyze the difference in underwater ranging
accuracy between strong and weak laser beams, three cases were
selected, and the bathymetric results of the simultaneously observed
strong and weak laser beams were analyzed. The results are shown in
Figure 5. There were differences in the water depth measurement
results of different strong and weak beams. Compared with real
bathymetry results, strong beams usually provide more accurate
bathymetry. From the perspective of the photon signal reflection,
strong beams exhibit stronger photon signals during underwater

measurements. This may mean that the strong beams can penetrate
deeper into the water body. The propagation path of the photon
signal in the water body is stronger, thus providing a stronger
reflection signal. From the perspective of bathymetry performance,
the signal intensity of the strong beam was greater. Therefore, the
bathymetry results were more accurate than those of weak beams. In
Figure 6, we compared the preliminary depth-sounding values and
real values of the strong and weak beams in different areas. In
Figure 6, the mean Kd490 values in the region shown in Figures
6a,b,c are 0.25,0.39, and 0.59, respectively and the corresponding
average track errors were 1.13 m, 1.36 m, and 2.93 m, showing a
positive correlation. In different areas at three different times, the
maximum errors between the strong beam and the true value were
6.375 m, 7.614 m, and 2.931 m respectively. Meanwhile, the
maximum errors between the weak beam and the true value were
5.243 m, 8.976 m, and 10.231 m, respectively. This shows that strong
beams perform better in terms of depth measurement accuracy than
weak beams. However, because a strong beam is more sensitive to
suspended particles in the water when the water quality is poor and
the Kd490 is greater than 0.5. There may be more noise photons in
the water, which will affect the accuracy of the water depth
measurement.

4.3 Underwater scattering error correction
based on the empirical model

The fitting relationship between the water quality and
underwater elevation measurement error is shown in Figure 7.
The linear fitting slope of the two is 6.18 and the intercept is
0.85. A positive correlation was observed between the two with a
correlation coefficient of 0.72. The deviation (Bias) between water
quality and underwater altimetry error was −2.56, indicating that on

FIGURE 6
Analysis of the difference in underwater ranging accuracy between strong and weak laser beams. (a–c)weak laser beams, (d–f) strong laser beams.
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average, the underwater altimetry error is slightly lower than that of
the water quality data. This may be due to systematic deviations
during the data collection process, resulting in errors in the altimetry
data. The Mean Absolute Percentage Error (MAPE) were 96.85%.
This indicated that there were certain differences between the
underwater altimetry data and water quality data. The variability
in the altimetry data affected the water quality data to a certain
extent. This variability was not highly interpretable and may be
related to the presence of noisy photons. As the underwater height

measurement error and Kd490 decrease, the scatter point
distribution gradually becomes denser, indicating that when the
water quality is high, the underwater height measurement error is
lower and the measurement accuracy is higher. When the water
quality is poor, the laser transmittance is higher. If the value is low,
the photon noise points increase and the measurement accuracy will
also decrease. When Kd490 was less than 0.14 and the height
measurement error was less than 0.17, the concentration of
scattered points in the two-dimensional space was the highest.

FIGURE 7
Empirical fitting model between water quality and underwater measurement errors.

FIGURE 8
Comparison of statistical histograms of underwater ranging errors before and after correction.
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To eliminate errors caused by the combined effects of sound
speed, water temperature, and salinity, we performed denoising
correction processing on the underwater ranging errors to improve
the accuracy and credibility of the data. A histogram of the
underwater ranging errors before and after the correction is
shown in Figure 8. Before correction, we observed that 50% of
the data error range was distributed between 0 and 2. Meanwhile, the
remaining 50% of the data error range was distributed between 2 and
7, and some of the data exceeded seven. However, after correction,
the distribution of the data changed significantly. Seventy-five
percent of the data error range was between 0 and 4, while the
remaining 25% of the data error range was between 4 and 7.
However, there were still a few data errors. After correction, the
proportion of data with an error range between 2 and 4 increased
significantly from 20% before correction to 40%. The maximum
error value before correction could reach 10, while the maximum
error value after correction dropped to seven. This showed that the
denoising correction processing of underwater ranging errors can
effectively reduce the error level, improve the quality and accuracy of
data, and improve the readability and interpretability of
processed data.

To visually display the differences before and after underwater
measurement height correction, three areas with large differences in
water quality were selected for display. The results are shown in
Figure 9. Figure 9b,c show two areas with relatively similar locations.
The results show that the heights along the track in Figures 9a–c
decreased to varying degrees after correction compared with before
correction, by 2.40 m, 3.32 m, and 6.10 m, respectively. There is a
certain correlation between the results before and after photon-
sounding correction and the water quality. When Kd490 is larger,
the difference in height along the track before and after correction is
larger. This is because, when the water quality is poor, impurities,
dissolved substances, or turbidity in the water are high, resulting in a
murky water body. Increased scattering of laser light leads to
increased uncertainty in elevation measurements. For different
seasons (Figures 9b,c), there were large differences in height
along the track before and after correction in winter. This may
be because Oahu Island experiences more rainfall and lower
temperatures in winter than in summer, causing changes in the
concentrations of suspended sediment and particulate matter in the
water. This affects the water quality, thereby affecting the laser
height measurements.

5 Discussion

5.1 Limitations of the model proposed in this
manuscript

The existing research on the impact of water quality changes on the
accuracy of satellite laser height measurements is not completely clear.
This study establishes an empirical model based on water quality and
LIDAR verification data for the Oahu Island area to quantify this
impact. However, three potential issues need to be addressed. Firstly, the
weak data generalization ability of the empirical model was constructed
using the Oahu Island area and may only represent a this specific
geographic location or water condition. The accuracy and
generalizability of the model may be affected if it is applied to
different regions or environmental conditions. For example, a model
built in an estuarine region may not be applicable to the open ocean
because the water quality characteristics of the two environments differ
significantly. Secondly, dynamic changes in time and space of aquatic
environments are dynamically changing, including seasonal changes,
weather effects, and human factors. This may lead to rapid changes in
water quality. Empirical models are often built using historical data and
may not effectively capture short- and long-term environmental
changes. Therefore, models may need to be updated regularly to
maintain their accuracy in changing environments. Furthermore,
terrain changes may render past data inadequate for meeting real-
time satellite measurement accuracy assessment needs. Therefore, in
future research, emphasis should be placed on adopting satellite
synchronous observation technology to enhance the real-time
accuracy of satellite measurement accuracy assessment. Thirdly, the
impact of complexwater characteristics such as turbidity, distribution of
suspended particles, and organic matter content have an important
impact on the absorption and scattering of laser pulses. These properties
vary widely among water bodies and may show significant spatial
heterogeneity within the same water body. Therefore, empirical models
may not adequately capture these complexwater properties, particularly
in areas with drastic changes in water quality.

5.2 Influence of other environmental factors

SLA technology relies on the time difference between the laser
pulses being emitted and reflected to the satellite from the earth’s

FIGURE 9
Display of the results of correcting the front and rear track heights. (a) Minor differences, (b, c) Significant differences.
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surface to calculate the distance. The presence of clouds, aerosols,
and other atmospheric particles cause laser pulses to be scattered
and absorbed during propagation. Thin clouds near the surface
ultimately affect the accuracy and effectiveness of the returned
photons (Yang et al., 2010).

Clouds can block or attenuate laser signals, rendering them
unable to reach the ground or be effectively reflected from the
ground. This can result in data loss or quality degradation,
particularly in areas with thick or continuous cloud cover.
Second, aerosol particles such as dust, smoke, and water droplets
scatter and partially absorb the laser signal. Not only does the
scattering reduce the amount of the signal reaching the ground,
it can cause changes in the signal path, thereby affecting the accuracy
of the measurement. As shown in Figure 10a, the laser transmission
path is affected by the single-scattering effect of the atmosphere, and
the influence of multiple scattering is more complex. Existing studies
have shown that as the complexity of multiple scattering increases,
centimeter-or even meter level height measurement deviations
may occur, resulting in a significantly lower final photon
elevation than the target (Yao et al., 2021a; Yao et al. 2021b).
Figure 10b shows the photon point cloud data distribution
visualization results of the ICESat-2 product ATL03. The lower-
left corner shows the superposition of the laser point trajectory on
MODIS at the corresponding time point. The spatial distribution
of photons is affected by cloud scattering. This becomes more
discrete, and the underlying surface elevation cannot be
effectively extracted.

5.3 Application prospect of SLA
underwater detection

With the development of SLA technology, researchers can use
the underwater information obtained by ICESat-2 to address
bottleneck issues related to water research. This is reflected in the
following three aspects. Firstly, for hydrology and water resource
management, SLA technology can be used to accurately monitor the
water levels and underwater topography of inland water bodies, such

as rivers, lakes, and reservoirs, and to establish more refined
hydrological models to simulate target changes (Yang et al.,
2023). This is crucial for the rational planning and dispatch of
water resources, assessment of reservoir storage capacity, early flood
warning, and drought monitoring (Xu et al., 2020). Particularly in
remote or hard-to-reach areas, this technology provides a non-
contact water level monitoring method, greatly improving the
coverage and frequency of hydrological observations. Secondly,
for water ecology and water environment research, SLA data can
not only be used to measure the depth of water bodies but also to
help scientists understand optical properties such as water body
transparency and suspended matter content, thereby monitoring
and evaluating the water quality status (Zheng et al., 2022). In
ecological protection zones and sensitive waters, this technology can
track changes in the environment and provide data to support
ecological protection and restoration. Thirdly, in the field of
oceanography, SLA technology is particularly important for
mapping seafloor topography in shallow sea areas. It provides
information on the coastal erosion, seabed sediment distribution,
and coral reef health (Yu et al., 2021). In addition, this technology is
used tomonitor sea level rise and fall, ocean surface fluctuations, and
tidal changes, providing important data for the establishment and
verification of ocean dynamic models.

In summary, SLA technology shows strong application potential
in the fields of hydrology, water resource management, aquatic
ecology, water environment protection, and oceanography. With the
continuous development of technology and expansion of its
application scope, this technology is expected to bring deeper
research perspectives and more effective management tools to the
above fields in the future.

6 Conclusion

At present, there is no clear conclusion regarding the impact of
changes in the optical properties of water on the accuracy of SLA
data. In view of this, we combined ICESat-2, MODIS, Landsat-8 and
situ data to quantify the water quality in the Oahu Island region

FIGURE 10
Influence of cloud occlusion on the distribution of photon point cloud data. (a) Influence of atmospheric scatter-ing on satellite laser altimetry. (b)
Affected ICESat-2 cases.
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using AEDTA and RFR methods, and changes in the underwater
measurement accuracy. The conclusions are as follows:

1. There was a positive correlation between water quality and
water permeability in the spatial distribution, with a correlation
coefficient of 0.72. The larger the value of KD490, the smaller
the proportion of photons that can penetrate the water sur-
face. Among them, Kd490 0.5 is a critical value. When this
value is exceeded the number of water-transmitting photons
decreases significantly.

2. By combining the strong and weak beams, cross-track, and
LIDAR verification data, it was found that the depth
measurement accuracy of ICESat-2 strong beams under
different water quality conditions was significantly better
than that of weak beams. The maximum measurement
deviation caused by the multiple scattering of water bodies
can reach the meter level. In the future, underwater bathymetry
corrections should consider the influence of multiple
scattering.

3. The empirical model for water body multiple scattering
correction established in this study has a certain correction
effect on the data obtained when the water quality, Kd490, is
less than or equal to 0.4. However, the model cannot be fully
applied when the water becomes more turbid, and it needs to
be combined with the mechanism model for an in-
depth analysis.
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