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Eco-efficiency and its
determinants of major
grain-producing areas in China

Chang Qian, Chang Xiang, Yuan Qiuyue, Zhao Yiping, He Xianglin,
Tao Xinyuan and Li Yijin*

College of Management, Sichuan Agricultural University, Chengdu, China

Accurately measuring the eco-efficiency of grain production and exploring
pathways for its improvements are essential for pormoting green agricultural
transformation and achieving China’'s “dual carbon” goals. This study
assesses the eco-efficiency of grain production in China by incorporating
carbon emissions and agricultural non-point source pollution as non-
desired outputs, utilizing the SBM-Undesirable model and micro-level
survey data from 1,208 farm households in major grain-producing
regions. The results suggest that the average eco-efficiency score across
these regions is 0.627, marginally above the acceptable threshold and 0.219
points higher than traditional production efficiency, providing empirical
support for the Porter hypothesis. Mechanism analysis identifies that eco-
efficiency is positively associated with household head’s age, family income,
grain-sown area, land quality, and membership in agricultural organizations.
In contrast, it is negatively associated with family size, land fragmentation,
cropping index, agricultural subsidies, agricultural production outsourcing,
and investment in fixed productive assets. Regional heterogeneity analysis
confirms the robustness of these findings, showing only minor variations
across provinces. Overall, the study offers critical insights into the
determinants of eco-efficiency in grain production and proposes
actionable strategies to enhance sustainability across China’s agricultural
sector.

KEYWORDS

food security, farmer behavior, SBM-Undesirable model, carbon emissions, agricultural
non-point source pollution

Highlights

o This study measured the eco-efficiency of major grain-producing areas in China.

o The study analyzed the determinants of eco-efficiency.

o Agricultural non-point source pollution and carbon emissions are considered non-
desired outputs.

o This study focuses on the micro-foundations of enhancing eco-efficiency.

o Determinants of eco-efficiency are largely stable and slightly different in
different provinces.

« Strong support is provided to ensure food security.
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1 Introduction

Food security has long been a strategic priority for China, a
country with a large population and relatively underdeveloped
agricultural conditions. As the Chinese proverb warns, “Without
agriculture, there will be instability; without food, there will be
chaos”. The issue extends beyond national boundaries, with
profound implications for global security and social stability
(Zhang Q. et al, 2021). However, China’s extensive agricultural
production model—characterized by high input, high output, and
high waste—has led to serious ecological consequences, including
land degradation and environmental pollution (Li et al., 2022).
Consequently, grain production in China now faces dual
constraints of environmental sustainability and resource scarcity,
making the challenge of ensuring food security increasingly acute
(Mumtaz et al., 2021). Against this backdrop, traditional economic
theory attributes economic growth primarily to two drivers:
land and

improvements in production efficiency that enable higher output

increased inputs—such as labor, capital—and
to be produced from the same level of inputs. However, such
framework often neglects the environmental and resource
constraints that inherently accompany economic growth (Xie and
Teo, 2022). As economic and societal development continues to
advance, the conflict between economic growth and environmental
sustainability has become more pronounced (Adejumo, 2020; Jie
et al,, 2023). In response, scholars have called for the integration of
ecological considerations into agricultural development frameworks
(Adisa et al., 2024). In particular, the concept of eco-efficiency in
grain production—defined as the coordination among resource
conservation, environmental  protection, and  economic
performance—has emerged as a focal point in recent research
(Czyewski et al., 2021; Wang et al,, 2022).

Agricultural eco-efficiency is a key measure of sustainable
agricultural development. It guides the balance between
ecological conservation and economic growth and underpins
modern ecological agriculture (Wu et al, 2023). Developed
countries, including the United States, the United Kingdom, and
Japan, have already integrated eco-efficiency into their agricultural
practices (Fuhrmann-Aoyagi et al., 2024; Grassauer et al., 2021;
Puertas et al., 2022; Suh, 2018). By contrast, its implementation in
China remains relatively limited and uneven across regions. Studies
indicate that China’s agricultural green total factor productivity
(AGTFP) is constrained by economic-policy suppression and
human capital-economic suppression (Lu et al., 2025), as well as
environmental and resource-related factors such as extreme weather
events (Song et al., 2022), greenhouse gas emissions including
methane and nitrous oxide (Wang et al., 2025), and the natural
endowment of arable land (Liu et al.,, 2020). These factors further
exacerbate regional disparities in agricultural eco-efficiency.

In terms of spatial distribution, Wang et al. (2025) find that
higher nitrous oxide (N,O) emissions in southeastern China lead to
a clear spatial pattern of agricultural eco-efficiency, with higher
efficiency in the northwest and lower efficiency in the southeast. This
shows significant regional differences. Specifically, in major grain-
producing areas, major grain-purchasing areas, and balanced grain
production and consumption areas, agricultural eco-efficiency is
underestimated by 7.83%, 8.23%, and 16.75%, respectively, revealing

spatial biases in assessment. Liao et al. (2021) identify energy input,
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water resource input, and carbon emissions as the core drivers of
these spatial differences. Additionally, water resource input,
pesticide input, and labor input are key factors affecting eco-
efficiency across eastern, central, and western regions.
Recognizing this gap, recent studies have focused on measuring
agricultural eco-efficiency and examing its evolution and driving
forces. These assessments typically consider three components:
inputs, desirable outputs, and undesirable outputs. While inputs
and desired outputs are relatively well-defined, incorporating
undesirable outputs—such as agricultural non-point source
pollution (e.g., nitrogen and phosphorus runoff, pesticide use,
COD) and carbon emissions—presents methodological challenges
(Zhuang et al., 2021).

With mounting pressure on land and environmental resources,
China’s grain supply-demand balance has become increasingly
fragile (Zhan, 2022). Relying on material inputs to boost yield is
no longer a sustainable strategy (Zhou et al., 2020). Furthermore,
global uncertainties—such as long-term structural shifts and the
COVID-19 pandemic—have underscored the risks associated with
reliance on international food markets (FAO, 2020). In response to
worsening environmental degradation, China has implemented
stringent land protection measures, commonly known as “long
teeth” regulations (Liao et al., 2021). While these policies aim to
preserve ecological integrity, they have also led to higher production
costs and reduced agricultural competitiveness (Zhong, 2016). In the
short term, a tension appears to exist between achieving food
security and promoting the growth of a green agricultural
economy (Li et al, 2011). However, in the long run, enhancing
eco-efficiency is increasing recognized as a strategic pathway toward
sustainable agriculture (Malan et al., 2022).

Given this context, accurately assessing agricultural eco-
efficiency has become essential for informing policy decisions
and balancing productivity with sustainability goals. In recent
years, the Data Envelopment Analysis (DEA) model has been
widely employed, particularly the Slacks-Based Measure (SBM)
model introduced by Tone (2004), which effectively accounts for
input and output slacks. The SBM-Undesirable model, as a cutting-
edge improvement framework for data envelopment analysis
(DEA), effectively addresses the limitations of traditional models
through three core theoretical assumptions. First, the non-radial
treatment assumption breaks through the constraints of traditional
DEA radial optimization, allowing input and output variables to be
adjusted in a non-proportional manner, which is more in line with
the gradual and differentiated reality of factor adjustments in
agricultural production; Secondly, the assumption of endogenous
slack variables directly incorporates slack issues such as excess
inputs and insufficient outputs into the objective function,
accurately identifying the specific sources of inefficient resource
allocation (Zhan et al, 2023); Finally, the assumption of weak
disposability of non-expected outputs combines environmental
negative outputs such as soil compaction and carbon emissions
with expected outputs in a joint model. The construction of an
environmental technology set embodies the fundamental ecological-
economic trade-off, where pollution reduction necessitates partial
sacrifice of economic output (Huang and Yao, 2022). In the context
of research on green transformation in agriculture, the advantages of
applying this model are reflected in its triple compatibility: It can
analyze the non-linear relationship between factors such as land and
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labor and output, quantify ecological compensation standards
through environmental shadow prices, and calculate specific
optimization paths based on slack variables. This integrated
analytical framework of “diagnosis-pricing-optimization” not only
distinguishes between technological inefficiency and managerial
inefficiency but also provides a differentiated policy basis for
technological innovation and institutional adjustment, thereby
systematically promoting the coordinated development of
agricultural productivity —improvement and environmental
sustainability (Ma and Mu, 2024). As a result, the SBM-
Undesirable model has become the mainstream method for
assessing agricultural ecological efficiency (Akbar et al, 2021;
Wang and Liu, 2024). Empirical evidence suggests that excluding
environmental costs can led to substantial overestimation of
production efficiency (Pang et al, 2016). Although China’s
agricultural eco-efficiency has shown a gradual upward trend,
considerable regional disparities persist (Wu et al., 2023; Wang
and Liu, 2024). Specifically, major grain-producing areas tend to
exhibit higher eco-efficiency compared to other regions, though
intra-regional variation remains notable (Wang S. et al, 2020).
Moreover, the literature is divided on the direction of these
trends—while some studies report improvements, others identify
stagnation or decline (Xu et al., 2021; Aslam et al., 2021).

Regarding the determinants of eco-efficiency, existing research
has examined macro-level factors including R&D investment,
technological progress, and resource allocation efficiency (Li
et al, 2024; Wang et al, 2020); meso-level influences including
industrial structure, urbanization, policy environment, and
agricultural mechanization (Lu et al, 2020; Chen et al, 2022);
and micro-level factors including human capital, agricultural
production behavior, and social capital (Nurul, 2019; Minviel
et al, 2022; Wang H. et al,, 2024). Nevertheless, two critical gaps
remain. First, few studies integrate both carbon emissions and non-
point pollution within a unified analytical framework. Second, most
existing work often overlooks the micro-foundations of eco-
efficiency, particularly the role of farmers’ perceptions.

To address these gaps, this study draws on survey data from
1,208 farm households in China’s major grain-producing areas to
quantify both types of environmental pollutants. These undesirable
outputs are incorporated into the SBM-Undesirable model to
evaluate eco-efficiency and examine its key determinants. The
findings aim to offer policy-relevant insights for promoting the
sustainable development of China’s grain sector.

2 Materials and methods
2.1 Overview of the research area

During the reform of China’s grain distribution system, the
government designated three major functional zones—major grain-
producing areas, major grain-purchasing areas, and balanced grain
production and consumption areas—based on provincial differences
in grain production and consumption patterns, historical grain
cultivation traditions, and regional variations in resource
endowments across 31 provinces.

Since the founding of the People’s Republic of China, the

spatial distribution of grain production has undergone significant
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changes. Initially, 12 of the 14 southern provinces were net grain
exporters, with annual transfers exceeding 20 million tons. Even
by the time of the reform and opening up, 7 southern provinces
continued to export surplus grain. However, since then, the
southern region has accelerated its industrialization and
urbanization. Traditional grain-producing provinces, including
Guangdong, Fujian, Zhejiang, and Jiangsu, began to prioritize
economic development over agriculture. As a result, leading to a
shift in grain cultivation patterns characterized by a “decline in
the south and stability in the north”.

Grain production is a sector that relies heavily on land scale.
Although southern China enjoys high land productivity, its per
capita arable land is limited. Against this backdrop, many southern
farmers transitioned into non-agricultural sectors or began cultivating
high-value economic crops, leading to a continuous decline in grain-
planting areas. At the same time, with improvements of agricultural
technologies and mechanization, the comprehensive agricultural
production capacity in northern China increased significantly.
Consequently, the center of gravity for national grain growth has
gradually shifted from south to north.

In the 21st century, China implemented a reform of its grain
circulation system. Based on the overall characteristics of grain
production and consumption across provinces, as well as differences
in resource endowments and historical grain production traditions, the
central government officially categorized the 31 provinces (including
autonomous regions and municipalities) into the three aforementioned
functional zones. This classification aimed to better coordinate national
grain supply by aligning production, distribution, and consumption
patterns with regional characteristics.

Among these regions, the major grain-producing areas are
characterized by favorable natural conditions—including geography,
soil quality and climate—that are well-suited for grain cultivation.
These areas have high grain yields and a large proportion of land
devoted to grain crops. In addition to achieving self-sufficiency, they are
also capable of supplying substantial amount of commercial grain to
other regions. Provinces in this category include Heilongjiang, Jilin,
Liaoning, Inner Mongolia, Hebei, Henan, Shandong, Jiangsu, Anhui,
Jiangxi, Hubei, Hunan and Sichuan. The major grain-purchasing areas,
by contrast, are economically more developed but face land constraints
and high population density, resulting in a significant gap between grain
supply and demand. These areas include Beijing, Tianjin, Shanghai,
Zhejiang, Fujian, Guangdong and Hainan. Balanced grain production
and consumption areas contribute relatively less to national grain
output but are generally able to achieve self-sufficiency. This group
includes Shanxi, Ningxia, Qinghai, Gansu, Tibet, Yunnan, Guizhou,
Chongqing, Guangxi, Shaanxi and Xinjiang. The government has
designated the major grain-producing areas as a cornerstone of
national food security. These areas not only reflect China’s overall
grain production capacity but also serve as representative zones
for assessing agricultural eco-efficiency and exploring its key
determinants.

The major grain-producing areas constitute a vital foundation
for ensuring China’s food security. The eco-efficiency of grain
production in these areas plays a pivotal role in shaping both
national food security and the prospects for green agricultural
development. The data for this study were collected from a
farm household
three

micro-level
2021

survey conducted in October

across major grain-producing provinces of
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Heilongjiang, Henan, and Hunan. A multi-stage sampling method
was employed, with the procedure outlined as follows:

In the first stage, three provinces were selected from among the
13 designated major grain-producing provinces in China'. The
selection was based on a typical sampling method®, considering
of geographic
development, crop type, and maturity system. As a result,

characteristics location, level of economic
Heilongjiang, Henan and Hunan were chosen to represent three
distinct geographic zones: the middle reaches of the Yellow River
Basin and the middle reaches of the Yangtze River. These provinces
also encompass China’s three major crop types—maize, wheat and
rice—as well as three cropping systems: single-season, double-
season and triple-season cultivation.

In the second stage, based on the clustering characteristics of six
indicators, namely, resident population, GDP per capita, cultivated
land area, the share of cultivated land area in municipal land area,
the share of agricultural resident population in municipal resident
population, and the share of agricultural output value in municipal
GDP, and in combination with the sown area and yield level of
major crops, three sample municipalities were taken in each sample
province respectively using typical sampling method’.

In the third stage, based on geographic location and production
of major grain crops, a typical sampling method* was used to select

1 The division of China’s major grain-producing areas originated with the
2001 reform of the grain circulation system. On the basis of the overall
characteristics of grain production and consumption in each province, and
taking into account such factors as differences in resource endowments
and historical traditions of grain production, the State divides China’s
31 provinces (autonomous regions and municipalities) into three

functional areas: the major grain-producing area, the area of balanced

production and marketing, and the main marketing area. There are

13 provinces in the major grain production area, including Heilongjiang,

Jilin, Liaoning, Inner Mongolia, Hebei, Henan, Shandong, Jiangsu, Anhui,

Jiangxi, Hubei, Hunan and Sichuan; 11 provinces in the production and

marketing balance area, including Shanxi, Ningxia, Qinghai, Gansu, Tibet,

Yunnan, Guizhou, Chongging, Guangxi, Shaanxi and Xinjiang; and

7 provinces in the main marketing area, including Beijing, Tianjin,

Shanghai, Zhejiang, Fujian, Guangdong and Hainan. There are

7 provinces in the main sales area, including Beijing, Tianjin, Shanghai,

Zhejiang, Fujian, Guangdong and Hainan.

At this stage, typical sampling was used, and the selection of sample
provinces was based on the researchers’ judgment and specific objectives.
This may not fully represent all internal differences among the 13 major
producing provinces, and there is a risk of incomplete sampling frame
coverage or subjective selection bias, which limits the strict generalisability

of the results to all major producing provinces.

The subjectivity of typical sampling at this stage may lead to bias in the
representativeness of the selected cities, failing to cover all types of areas

within the province.

This stage focuses on national-level grain-producing counties, which may
overlook non-national-level but important grain-producing counties or
counties of different types, resulting in an overrepresentation of "typical”

large counties and an underrepresentation of other types of counties.
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two national-level grain-producing counties (districts) that are not
geographically adjacent to each sample city.

In the fourth stage, two sample townships (townships) were
selected in each sample county (district) using a typical sampling
method® according to the economic development status.

In the fifth stage, a random sampling method was used to select
two sample villages in each sample township (town).

In the sixth stage, using the random sampling method®, 16 to
18 sample farm households were selected in each sample village
respectively.

The study employed a structured survey approach comprising
two types of questionnaires. The village questionnaire systematically
collected data on the village’s basic socio-economic characteristics,
topography and geomorphology, crop cultivation structure, the
extent of agricultural production outsourcing, the main providers
of outsourcing services, pricing across different production stages,
and the proportion of outsourcing purchases. The farm household
questionnaire comprises five core modules: (1) Individual and
household characteristics, including age, education level, health
status, and farming or off-farm employment experience. (2) Land
resource endowment and land transfer status, such as farmland
management practices, land transfers, soil quality, and cultivation
types. (3) Grain production inputs and outsourcing behavior,
covering production methods, input costs, outsourcing activities,
and yields across different production stages. (4) Awareness and
decision-making related to green technology, including farmers’
knowledge of, willingness to adopt, and actual use of green inputs
and production technologies, as well as their awareness of,
willingness to purchase, and types of agricultural production

outsourcing services and (5) Asset allocation and risk
management, including livestock and poultry breeding,’
participation in agricultural organizations, ownership of

5 Typical sampling based on economic conditions may make the sample
townships representative in terms of economic development, but it may
overlook the diversity of other important characteristics (such as terrain

and subtle differences in crop structure).

The last two stages used random sampling to improve representativeness
within villages and households, but their representativeness was strictly
limited to the sample townships and sample villages selected in the
previous stages. In multistage sampling, potential biases in the upper
stages (especially the typical sampling stage) can be transmitted and
affect the representativeness of the final sample. Terminal random
sampling cannot correct for systematic biases introduced by non-

probability sampling in the upper stages.

It should be emphasized that, the multi-stage sampling framework

(province—municipality—county—township) employed purposive
selection of typical grain-producing regions as defined by provincial
agricultural authorities. The representativeness of the final sample
mainly reflects the "typical” situation in the “typical” grain-producing
cities, counties, and townships in Heilongjiang, Henan, and Hunan
provinces as defined by the researchers. Any inferences should be
cautiously limited to this scope. There are certain limitations to strictly
generalizing the results to non-typical areas within the three provinces or

other major grain-producing provinces nationwide.
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Sample distribution map.

household
agricultural insurance coverage and claims, risk preferences, and
social capital. Data were collected through standardized face-to-face

income and expenditure,

household machinery,

interviews, resulting in 1,242 completed questionnaires. After
excluding inconsistent responses and samples with missing key
variables, 1,208 valid responses were retained, yielding an
effective sample rate of 97.26%. Of the valid samples, 416 were
from Heilongjiang, 393 were from Henan, and 399 were from
Hunan. Figure 1 shows the sample distribution.

The sample areas encompass three distinct geographical regions:
the northeast, the middle reaches of the Yangtze River, and the middle
reaches of the Yellow River basin. These areas include three major crop
types: maize, wheat, and rice, and feature three crop maturity systems:
single-season, double-season, and triple-season. This diversity provides
strong regional representation. The survey collected data on farm
households,
conditions, disasters, and the cognitive attitudes of farmers in 2020.
The data include gender, age, education level, household labor
endowment, cultivation types, plot characteristics, agricultural labor,
capital inputs, agricultural outputs, meteorological disaster types,

agricultural  production, regional meteorological

frequency and intensity of disasters, and agricultural knowledge
reserves. These data provide a rich empirical foundation for
analyzing the eco-efficiency of China’s major grain-producing regions.
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The basic characteristics of the sample farm households are
presented in Table 1. More than 70% of household heads were
aged 50 or older, nearly 80% had an education level of junior high
school or below, and over 70% had 3 to 6 members. The
household types were divided according to the ratio of farm
income to the total income®. Among the farm households, pure
farm households and part-time non-farm households were more
prevalent, each accounting for over 30% of the total sample. This
is followed by part-time farm households and non-farm
households, accounting for 23.59% and 6.87%, respectively.
The definition of farm size used in this study follows that of
the Food and Agriculture Organization (FAO), which classifies
farms of less than 2 ha as small-scale. Consequently, small-scale
farms dominated the sample, accounting for 66.31%. Only

8 The classification is defined as follows: pure farm households derive more
than 95% of their total income from agriculture; part-time farm
households derive greater than 50% but less than or equal to 95% from
agriculture; part-time non-farm households derive greater than 5% but
less than or equal to 50% from agriculture; and non-farm households

derive less than or equal to 5% from agriculture.
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TABLE 1 Basic characteristics of the sample farmers.

10.3389/fenvs.2025.1597439

Variables Categories N P (%) Variables Categories N P (%)
Age (years) [26,35] 24 1.99 Household type Pure farm household 425 35.18
[35,50] 263 21.77 Part-time farm household 285 23.59
[50,65] 609 50.41 Part-time non-farm household 415 34.35
[65,88] 312 25.83 Non-farm household 83 6.87
Education (years) [0,6] 451 37.33 Scale of grain cultivation Small-scale farms 801 66.31
[7,9] 515 42.63 Large-scale farms 407 33.69
[10,12] 205 16.97 Agricultural organization membership Yes 278 23.01
[13,16] 37 3.06 No 930 76.99
Family size (persons) [1,2] 239 19.78 Number of production fixed assets (pcs) 0 243 20.12
(3.4] 408 | 3377 [1,2] 549 4545
[5,6] 439 36.34 [3,5] 295 24.42
(7,11] 122 10.10 [6,93] 121 10.02

23.01% of the sample farmers were members of agricultural
organizations, and nearly 90% of farm households owned
fewer than six productive fixed assets. At present, the basic
characteristics of the sample farm households align with the
general conditions of China’s major grain-producing areas in
China, which makes the sample highly representative.

2.2 Methods

2.2.1 Measurement model of eco-efficiency

Referring to Tone (2001), Chen et al. (2022), and Wu et al.
(2023), a non-radial, non-angle SBM-Undesirable eco-efficiency
evaluation model was constructed as follows:

Supposing that there are n decision units in the agricultural
production system, each with four vectors, that is, input
vector, desirable output vector, non-point source pollution
vector, x € R™,
y* € R%, y¥ € R%2, y¢ € R%, respectively. The matrices X, Y*,
Y?, Y¢ are defined as follows.

and carbon emission vector denoted as

Considering undesirable outputs (variable returns to scale, VRS),
the fractional planning form of the SBM model is:

_1ym X
-2V

e (z s st Db 25 )

P* = min

+

stx> Y Lxp < Y Ayhybe Y AphEe Y A,
, y i1 J=T#0

where P* is the target efficiency value, x, y°, yb, and y° are the input
vector, desirable output vector, non-point source pollution vector, and
. . — — 3 — .
carbon emission vector, respectively. x, y7, y;» and y, are the input
slack, desirable output slack, non-point source pollution slack, and
carbon emission slack, respectively. A is the weight vector. The subscript
“0” indicates the evaluated decision unit. P is strictly monotonically
decreasing to xy, y_?, yf’ R y_;, and satisfies 0 < P < 1. If the constraint on
the sum of the weight variables Z;-’:L# oAj =1 is removed, it is a

X = [x1,x,, .-
Y= [y yss -
Y= [y o5
Y= [y 55

Lx] € RS0
L)Y €RTTS0
.,yﬁ] € R >0
LY €RY>0

directional distance function under constant returns to scale (CRS).

2.2.2 Analytical model of the determinants of

The finite set of production possibilities P is.

(x, ¥y ) kzz/l,xj,?sz/\]y‘;,
Pl (x0>)’0) = - " = ]Zl - j=1
Yy <Y Ay 20,420
j=1 j=1

P in the above equation excludes the decision unit (xo, yo), which
effectively circumvents the possible simultaneous validity of multiple
decision units in the SBM model with undesirable outputs.

Frontiers in Environmental Science
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Eco-efficiency is a variable with non-negative truncation
characteristics of 0-1. For the estimation of such constrained
dependent variables, the OLS method tends to yield biased
estimation outcomes. The Tobit model is used for estimation
as follows.

AEE, =By + ) B, Xgn + &
q

AEE, denotes the eco-efficiency of the n farmer, Xy, denotes the

vector of determinants affecting the eco-efficiency of the n farmer, §,
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denotes the estimated coefficient for determinants, and ¢, is the
random error term.

2.3 Variable selection

2.3.1 Measurement variables of eco-efficiency
2.3.1.1 Input variables

Following Lin et al. (2018) and Huan and Hou (2021), input
variables in this study comprise three categories: labor input,
capital inpt and land input. Among them, labor input is measured
as total workdays (unit: workday) devoted to grain production by
farm households in 2020. This aggregates all labor time across
grain production stages. Capital input refers to the total
monetary investment (unit: 10,000 yuan) farm households
allocated to grain production in 2020, primarily comprising
the sum of expenses on chemical fertilizers, pesticides,
agricultural film, seeds, diesel fuel, electricity, hired labor,
purchased machinery services, and depreciation of self-owned
agricultural machinery® etc. Land input is represented by the total
sown area (unit: hectare) of grain crops cultivated by farm
households in 2020, disregarding subsequent increases or
decreases in  harvested due to natural

area or

anthropogenic factors.

2.3.1.2 Desirable output variable

To address aggregation biases arising from heterogeneous crop
types and varieties, following Zeng, L et al. (2020), desirable output is
represented by the gross grain production value (unit: 10,000 yuan)
of farm households in 2020.

2.3.1.3 Undesirable output variables

Undesirable outputs, as defined by Di Maria and Sisani
(2019) and Zhuang et al. (2021), primarily denote various
environmental  pollution  emissions from  agricultural
primary forms: total
10,000 m’,

dominated by losses of total phosphorus (TP), total nitrogen

production, manifested in two

agricultural non-point source pollution unit:

(TN), and chemical oxygen demand (COD) in water bodies; and
total agricultural carbon emissions (unit: tonne), characterized
(GHG) emissions from

by greenhouse gas agricultural

9 Calculation of depreciation costs for self-owned agricultural machinery:
Depreciation of fixed assets is typically calculated using either the straight-
line method or units-of-production method. For agricultural machinery,
given the relatively consistent annual workload and operational patterns
across years, the straight-line method is conventionally applied. In this
study, the depreciation cost is calculated as the product of the original
machinery value and the annual depreciation rate. Distinct annual
depreciation rates apply to different machinery types, determined by
the ratio of (1 minus the estimated net residual value rate) to the
depreciation period. Herein, the estimated net residual value rate is
typically set at 3%-5% of the original value; this study adopts 4%.
Depreciation periods are referenced from the Depreciation Schedule
for Agricultural Machinery in State Farms issued by Finance and Ministry

of Agriculture, Animal Husbandry and Fisheries of China.
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production. Primary pollutants and sources in grain
production systems are illustrated in Figure 2. The specific
calculation process and results of undesirable outputs are

presented in Part IV.

2.3.2 Determining variables of eco-efficiency
Based on relevant studies (Weerasekara et al., 2022; Ma and
Li, 2021; Liu et al., 2018; Czyzewski, B et al., 2021; Tenaye, 2020),
it is evident that eco-efficiency is co-determined by many factors,
environmental

natural endowments,

policy
interventions, and farm household characteristics. Therefore,

including  regional

economic development level, farming practices,
this study systematically examines determinants of eco-
efficiency in China’s major grain-producing areas from four
perspectives: household head attributes, family characteristics,
agricultural production features, and regional traits. To identify
enhancement pathways and diagnose inefficiency sources at the
micro-level, key variables include household head’s age,
household head’s education, household head’s health, family
income, family size, non-farm employment, social capital, land
quality, land fragmentation, grain-sown area, cropping index,
agricultural subsidies, agricultural production outsourcing level,
fixed

organizations, agricultural technical training, meteorological

productive assets, membership in  agricultural

disasters,  residence-county  distance, and  provincial
characteristics. Variable definitions and descriptive statistics

are presented in Table 2.

3 Eco-efficiency measurement

3.1 Calculation of agricultural non-point
source pollution emissions

Agricultural non-point source pollution emissions are
calculated using the unit survey evaluation method (Lai
et al.,, 2004). This method decomposes various pollution
sources into pollution-producing elementary units (EUs)
and quantifies emissions by establishing a relationship
between the units, pollution generation, and pollution
emissions. The calculation formula for each pollution unit
is as follows:

E= Y EUp,(1-1)C,

In this model, EEE represents agricultural non-point source
pollution emissions, and III denotes the indicator statistics of the
unit UUU. o\alphaa is the pollution production intensity
coefficient in the unit. P\betaP is the utilization efficiency
coefficient in the unit. The products of a\alphaa and P\betaP
represent the generation of agricultural pollution, which
the
agricultural production in the absence of integrated resource

indicates maximum potential pollution caused by
utilization or management factors. y\gammay is the emission
coefficient in the unit, which is measured by unit and spatial
characteristics. This reflects the combined effects of hydrology,
rainfall, regional environment, and management measures on

agricultural pollution.
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Nitrogen |
fertilizers
Phqsphate | | Fenilizer - L
fertilizers Agrochemicals
Compound Acricultural Production
fertilizers ng(;llc_u;l;:i Undesirable Agricultural Inputs
p > output N carbon H
Crushing and source variables emissions
the field
Straw - .
Disposal pile [1{ Agricultural |- Rice fields
Solid Waste
Open-air | |
burning

Primary pollutants and sources in grain production systems.

TABLE 2 Variable definitions and descriptive statistics.

Fertilizers

Pesticides

Agricultural
Machine

Watering

Agricultural
films

Variables Variable definition and measurement

Age Age of household head (years) 56.780 10.388
Education Years of formal education of household head (years) 7.888 3.322
Health status Health status of household head: 1 = very poor; 2 = poor; 3 = fair; 4 = healthy; 5 = very healthy 4.274 0.984
Family size Total number of family members (persons) 4.334 1.771
Family income Annual gross household income in 2020 (yuan), natural log-transformed 11.488 1.105
Non-farm employment Percentage of non-farm income to total household income in 2020 (%) 39.210 36.876
Social capital Number of relatives and friends holding public office at county level or above (persons) 1.083 3.998
Grain-sown area Total grain-sown area in 2020 (ha) 3.320 9.010
Land fragmentation Number of cultivated land plots (blocks) in 2020 14.057 52.953
Land quality Self-assessed land fertility: 1 = very poor; 2 = relatively poor; 3 = fair; 4 = relatively good; 5 = very good | 3.379 0.767
Cropping index Ratio of total sown area to cultivated area in 2020 (%) 1.521 0.486
Agricultural subsidies Agricultural subsidies income received by farmers in 2020 (yuan), In(amount+1) transformed 7.272 1.674
Outsourcing level Farmers™ expenditure on agricultural production outsourcing services in 2020 (1000 ¥/ha) 2.966 2.121
Productive fixed assets Value of productive fixed assets of farmers in 2020 (yuan), In(value+1) transformed 6.332 3.925
Agricultural organization 1 = Participated in cooperatives/family farms/demonstration farms/agribusinesses 0.230 0.421
Agricultural technical training 1 = Received agricultural training in 2018-2020; 0 = None 0.350 0.477
Meteorological disasters Frequency of weather-related crop losses in 2020 (times) 0.838 1.014
Distance from residence to county = Distance from residence in the village to nearest county seat (meters), In(distance+1) transformed 9.576 1.069
Province dummy variables (Ref: Henan)

Heilongjiang 1 = Heilongjiang; 0 = Other 0.344 0.475
Hunan 1 = Hunan; 0 = Other 0.330 0.471

The pollution-producing units in grain production mainly include
agrochemicals and farmland solid waste (Table 2). Given that fertilizer
loss is the primary cause of non-point source pollution (Xiang et al,,
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2020; Liu et al, 2021), and straw is another significant contributor
(Zou et al., 2020), this study highlights non-point source pollution
resulting from fertilizer loss and straw. It calculates the emissions of
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TABLE 3 Inventory of agricultural non-point source pollution generating units.

Pollution
source

Category Survey unit

Survey parameter Emission

inventory

Agrochemicals
losses of fertilizers

Agricultural solid
waste

Crop residues
stubble

chemical oxygen demand (COD), total phosphorus (TP), and total
nitrogen (TN) under different fertilizer loss and straw management
practices. Table 3 shows the list of agricultural non-point source
pollution-producing units.

The parameters of pollution production intensity, utilization
efficiency, and pollution emission coefficients for each pollutant
were obtained through an extensive literature review and
comparative analysis. The parameters provided in the Manual of
Agricultural Source Coefficients in Pollution Source Census were
highlighted referring to the work of Liang (2009), Lai et al. (2004),
Chen et al. (2006), and Shi and Shang (2021). This approach allowed
for considering regional variations in pollution intensity and
establishing a comprehensive database of parameters related to
pollution intensity coefficients, utilization coefficients, and loss
coefficients for agricultural pollution in different pollution-
producing units within the sample area.

Subsequently, total agricultural non-point source pollution was
quantified as equivalent pollution emissions (in 10* m’) through
convertion of TP, TN, and COD concentrations based on Class III
water quality standards (GB3838-2002) (Qian, 2001; Chen et al,
2010). Specifically, the equivalent emissions are calculated by dividing
measured pollutant concentrations by their respective standard limits:
0.2 mg/L for TP, 1.0 mg/L for TN, and 20 mg/L for COD.

3.2 Calculation of agricultural
carbon emissions

Referring to existing studies (Gu et al., 2013; Tian et al., 2012;
Shang et al,, 2015; Cheng, 2018; Jane, 2007), six agricultural carbon
sources were identified from four dimensions': soil respiration,
production inputs, straw burning, and rice fields, with detailed
types, corresponding emission coefficients and reference basis
presented in Table 4. The carbon emission levels were estimated
using these coefficients (Table 4), which incorporated environmental

10 Unfortunately, due to data constraints in the survey, this study excludes
carbon emissions from pesticide and agricultural plastic film production
and usage in the agricultural carbon accounting framework. Moreover,
for emissions generated by agricultural machinery operation, only
indirect emissions were considered, while direct emissions were
excluded from the calculation. However, these exclusions do not
materially compromise the integrity of our assessment, as fertilizer

contributors  to

application and rice cultivation—the dominant

plantation carbon emissions—are fully incorporated in the

accounting framework.
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Surface runoff and subsurface leaching | Compound fertilizer, phosphate
fertilizer, and nitrogen fertilizer

Maize stalks, wheat straw and rice

Applied amount (pure Kg TN, TP
component basis)
Total yield Kg COD, TN, TP

characteristics, rainfall patterns, and resource endowments of the
study areas. Subsequently, total agricultural carbon emissions were
calculated by converting greenhouse gases into carbon equivalents (Ge
et al,, 2018), expressed in tons.

The carbon emissions from soil respiration, production inputs,
and rice fields are quantified using the following equation:

E=YE+F=)T;-3+(A-B+C-D)

1 i=1

M=

i

where E; is the carbon emission from soil respiration, fertilizers,
watering, and rice fields, F is the carbon emission from the
operation of farm machinery, T; is the statistical index of soil
respiration, fertilizers, watering and rice fields, 0; is the
coefficient of carbon emission, A represents the grain-sown
area, C represents the total power of farm machinery, B and
D describe the carbon emission coefficient of the carbon source of
agricultural machinery.

Following the methodologies outlined by Cao et al. (2007), Cao
et al. (2005), Peng et al. (2016), Wang (2017), and relevant FAO
guidelines, the carbon emissions from straw burning are quantified
using the following formula:

K
Ejj =) (P x Ci x Ry x Fy x EFy)
k=1

where E;; is the greenhouse gas emissions of the category j of the
farmer i, Py is the yield of the crop k of the farmer i, C is the
straw-to-grain ratio of the crop k in %, Ry is the ratio of open-air
burning of the crop k, Fj is the burning efficiency of the crop k,
and EFy is the emission coefficient of open-air burning of the
crop k in g/kg.

To determine Maize, wheat, and rice straw-to-grain ratios, the
parameters published by the National Development and Reform
Commission were mainly used (see Table 5).

For the measurement of straw-burning efficiency, the straw-
burning emission coefficient was determined by considering the
differences in the emission coefficients for different crops based
on the studies of Cao et al. (2005), Zhang (2009), Peng et al.
(2016) and Wang (2017). The emission coefficients for straw-
burning are shown in Table 6.

In summary, the description and statistics of eco-efficiency
input-output variables are shown in Table 7.

3.3 Eco-efficiency measurement results

Since different constraints and orientation choices can lead to
different measurement results, MaxDEA Ultra was used as the
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TABLE 4 Carbon emission inventory: sources, coefficients and reference basis.

Carbon source Emission coefficient

Soil respiration 312.6 kg C/km?

Reference basis

Li et al. (2011)

Production inputs-fertilizers 0.896 kg C/kg

Production inputs-agricultural machinery B 16.47 kg C/hm*

Oak Ridge National Laboratory, United States

West and Marland (2002)

Production inputs-agricultural machinery D 0.18 kg C/KW

Production inputs-irrigation"' 20.476 kg C/hm’

Gu et al. (2013)

Dubey and Lal (2009)

Rice cultivation'? 0.46 g CH4/(m*d)

calculation platform to measure the eco-efficiency of each decision
unit by using three constraints of variable returns to scale (VRS),
general returns to scale (GRS), and constant returns to scale (CRS),
as well as three forms" of input orientation (1I0), output orientation
(00), and non-orientation (NO). We set both the total desirable
output weight and the total undesirable output weight to 1. The eco-
efficiency values were calculated using data from 1,208 field surveys
of farm households in China’s major grain-producing areas Table 8
presents the mean eco-efficiency values under different constraints
and orientation choices. In terms of trends, the mean eco-efficiency
values increased from CRS to GRS to VRS under the same
orientation across both the total and provincial samples.
Conversely, the mean eco-efficiency decreased from output-
oriented to input-oriented to non-oriented under the same
constraints.

Generally, production technology exhibits three stages of
returns to scale: decreasing returns to scale (DRS), constant

11 Since indirect carbon emissions originate exclusively from fossil fuel
consumption in thermal power generation, applying the unadjusted
coefficient of 25 kg/hm, for agricultural irrigation—as reported by Li
et al. (2011)—fails to account for energy mix variations. This coefficient
must instead be scaled by the thermal power share (i.e., the proportion of
fossil-based electricity in total generation). We therefore applied a
thermal power coefficient of 0.891, derived from China Statistical
(2004-2008),

20.476 kg C/hm, for agricultural irrigation.

Yearbooks yielding a refined emission factor of

12 The IPCC Fourth Assessment Report (2007) established that the
greenhouse effect caused by 1 ton of CH, is equivalent to that caused
by 25 tons of CO, (about 6.82 t C). Using this standardized conversion, the
methane emission coefficient for rice paddies was converted to
3.137 g C/(my.d). Furthermore, accounting for varietal and regional
heterogeneity in rice growth cycles, we defined region-specific
cultivation periods based on IPCC guidelines and empirical field data
from China: 145 days for Heilongjiang (japonica), 87 days for Henan, and

85 days for early-season indica rice in Hunan.

13 Input orientation refers to minimizing inputs while holding outputs
constant. Output orientation denotes maximizing outputs given fixed
input levels. Non-oriented approach measures efficiency through
simultaneous input reduction and output expansion, thus termed

bidirectional input-output optimization.
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Mingxin et al. (1990), Matthews et al. (1991), Cao et al. (1995)

TABLE 5 The straw-grain ratios of different crops in sampled regions.

Regions

Heilongjiang 1.86 0.93 0.97
Henan ‘ 1.73 1.34 0.93
Hunan ‘ 2.05 1.38 1.28

TABLE 6 Emission coefficients for straw burning.

Crops Rice Wheat Maize
Combustion efficiency 0.93 0.93 0.92
CH,4 3.20 3.40 4.40
CO, 1460 1460 1350

returns to scale (CRS), and increasing returns to scale (IRS). If
it is difficult to determine which stage the study sample is in, or if
the sample spans all stages, the VRS model is recommended for
evaluating technical efficiency (Cooper et al., 2006; Fire and
Grosskopf, 1983; Grosskopf, 1986). The selection of model
orientation relies primarily on the purpose of the analysis. If
the goal is simply to obtain the efficiency value for each unit, all
three orientations (input, output, and non-oriented) can be
considered (Cheng and Qian, 2012). Given that Chinese
farmers, particularly those involved in grain production,
exhibit strong empirical and fixed behavioral patterns in their
agricultural practices (Gao and Shi, 2019), output-oriented
measurement is deemed more appropriate. Consequently, eco-
efficiency values under the VRS and output-oriented (OO)
settings were selected for the subsequent analysis.

The average eco-efficiency in grain-producing areas was 0.627,
which is only slightly above the “passing threshold”. The mean
eco-efficiency values for Heilongjiang, Henan, and Hunan were
0.701, 0.648, and 0.528 (Figure 3), respectively. It can be seen that
the agricultural ecological efficiency value of the major grain-
producing areas in China is not high, the ecological efficiency
of the three major grain-producing provinces is significantly
different, and the agricultural ecological efficiency of Hunan
Province is the lowest. The possible reason is that compared
with Heilongjiang and Henan Province, which are mainly

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1597439

Qian et al.

TABLE 7 Input-output variables: definitions and summary statistics.
Category

Input variables

10.3389/fenvs.2025.1597439

Desirable output variable

Undesirable output variables

plains, Hunan Province is dominated by hilly and mountainous
terrain. This geographical feature leads to higher regulatory costs
in the implementation of chemical fertilizer and pesticide
reduction and efficiency policies. At the same time, the
fragmentation of cultivated land in hilly areas has led to a
generally low willingness of small-scale farmers to adopt
environmental protection technologies, resulting in certain
obstacles in the implementation of the policy. On the other
hand, limits the
mechanization. Although the region is rich in rainwater

popularization and application  of
resources, it is easy to cause the waste of water resources and
the spread of agricultural non-point source pollution due to the lag
of farmland irrigation and drainage system construction. This
finding aligns with the results of Aslam et al. (2021). This
indicates, to some extent, that these areas are still in the rough-
running agricultural development model, relying more on the
input of resources and damage to the environment. Moreover,
resources, environment, and agricultural development are in a
relative imbalance. However, compared with the efficiency level
before 2015' (Meng et al., 2019), the eco-efficiency of grain
production has slightly improved.

To further assess eco-efficiency, the values of eco-efficiency
were compared with those of traditional production efficiency. The
results indicate that the average traditional production efficiency is
0.408, lower than the mean eco-efficiency, with a difference of
0.219. This finding aligns with the conclusions of Lv and Zhu
(2019). The possible reason is that over the years, in the process of
promoting agricultural development, China has gradually realized
the importance of environmental pollution control, and has taken
a series of measures to promote the coordinated development of
agriculture and the environment, such as “Notice on Printing and

14 The eco-efficiency values were compared with 2015 levels, coinciding
with China’s enactment of the One Control, Two Reductions, and Three
Basics policy for emission reduction and carbon sequestration measures

such as land fallowing.
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VELELIES Definition Mean Std. dev. Min Max
Labor input Total time devoted by farm households to = 41.8442 58.2605 0.0000 635.0000
grain production processes in 2020
(workday)
Capital input Total monetary investment in grain 4.6895 19.2276 0.0022 541.7333
cultivation by farming households in 2020
(10,000 yuan)
Land input Total sown area for grain crops of farm 4.5274 14.4712 0.0133 386.8600
households in 2020 (ha)
Gross grain output value | Total economic value of grain production = 7.3377 24.0868 0.0040 664.7900
of farm households in 2020 (10,000 yuan)
Agricultural non-point Calculated pollutant equivalent index of 8.4407 26.8861 0.0000 596.8094
source pollution agricultural non-point source pollution
(10,000 mj)
Agricultural Carbon Total calculated emissions (tonne) 11.7900 51.4957 0.0009 1397.4710
Emissions

Issuing the Construction Plan of the National Agricultural
Sustainable Development Experimental Demonstration Zone”,
“Notice on the Pilot Work of Carbon Emission Trading’ and
other policies”,
enthusiasm  for

which have actively mobilized farmers’

environmental  protection  production
and effectively promoted the transformation of the grain
industry to a green and low-carbon direction (Du et al., 2023;
Yu et al, 2022). The preliminary research results of this study
verify the applicability of the Porter Hypothesis in China’s
that is,

regulation can promote farmers’ investment in green technology

agricultural ~ development, strict  environmental
and sustainable production through technological innovation (Jing
etal., 2024), so as to achieve a win-win situation between economic

and environmental benefits.

4 Results and discussion

4.1 Baseline regression results for the
determinants of eco-efficiency

estimates, different
determinants were progressively incorporated into the Tobit

To improve the accuracy of
model, with the model estimation results labeled as Regression
1-Regression 4, all presented in Table 9. Regression 1 includes
only the personal characteristics of household head, Regression
2 adds
3 incorporates

farm  household characteristics, Regression

agricultural production and operational
characteristics, and Regression 4 includes all variables. The
chi-square test statistics gradually increase, its goodness-of-fit
improves, and the estimated results remain consistent in terms
of direction and significance levels. The analysis is based on the
results from Regression 4.

Regarding the personal characteristics of household heads,
age has a positive impact on eco-efficiency at the 5% significance
level, challenging the common perception that aging hinders
agricultural development. This study suggests that aging does not
pose an immediate threat to food security; rather, the older

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1597439

Qian et al. 10.3389/fenvs.2025.1597439

TABLE 8 Mean eco-efficiency under differential constraints and orientation options.

Mean eco-efficiency

Overall sample Heilongjiang sub-sample  Henan sub-sample Hunan sub-sample

(N = 1208) (N = 416) (N = 393) (N = 399)

CRS GRS VRS CRS GRS VRS CRS GRS CRS GRS VRS
00 0.600 0.618 0.627 0.681 0.693 0.701 0.629 0.641 0.648 0486 0520 0.528
10 0324 0373 0.388 0426 0470 0.486 0344 0.394 0.410 0.198 0250 0.264
NO 0262 0304 0319 0366 0.405 0.420 0287 0.333 0.349 0.129 0.171 0.184

TABLE 9 Tobit regression results: determinants of eco-efficiency.

Eco-efficiency Regression 1 Regression 2 Regression 3 Regression 4
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.
Age 0.000 0.000 0.001** 0.000 0.001** 0.000 0.001** 0.000
Education 0.000 0.001 0.001 0.001 0.002 0.001 0.001 0.001
Health status -0.010** 0.004 —0.009** 0.004 -0.005 0.003 0.001 0.003
Family size — — =0.011*** 0.002 -0.004* 0.002 -0.004* 0.002
Family income — e 0.008** 0.004 -0.001 0.004 0.011+** 0.004
Non-farm employment _ _ —=0.001*** 0.000 —0.000** 0.000 -0.000 0.000
Social capital —_ —_ —-0.001 0.001 —-0.001 0.001 0.000 0.001
Grain-sown area — — — — 0.006*** 0.001 0.006™** 0.001
Land fragmentation — — — — —0.000%%* 0.000 -0.000%* 0.000
Land quality — — — — 0.009** 0.004 0.008** 0.004
Cropping index —_ —_ —_ — —0.051*** 0.007 —0.045%** 0.010
Agricultural subsidies —_ —_ —_ —_ —0.006** 0.003 —0.012%** 0.002
Outsourcing level — — — — —0.017*%* 0.002 -0.004** 0.002
Productive fixed assets —_ —_ —_ —_ -0.002 0.001 -0.002* 0.001
Agricultural organization —_ —_ _ —_ 0.017** 0.008 0.013* 0.007
Agricultural technical training — — — — -0.002 0.007 -0.003 0.006
Meteorological disasters —_ —_ —_ —_ —0.018*** 0.003 0.000 0.003
Distance from residence to county — — — — — — 0.001 0.003
Heilongjiang —_ —_ —_ —_ —_ —_ 0.009 0.013
Hunan — — — — — — —0.144*** 0.009
_cons 0.642%** 0.034 0.591°* 0.051 0.781* 0.053 0.624*** 0.056
Observations 1208 1208 1208 1208
LR chi2 10.47** 97.31°7* 394.55%%* 677.00%**

Note: (1) ***, **, * indicate the significant level of 1%, 5%, and 10%, respectively; (2) All models have passed the multicollinearity test.
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Radar chart of eco-efficiency performance.

agricultural labor force may even make a positive contribution.
This can be explained by two factors: first, older laborers tend to
have higher technical efficiency (Shen et al., 2023; Seok et al,
2018); second, older laborers have fewer non-farm employment
opportunities to dedicate more time and energy to agricultural
production (Shen et al., 2024). This conclusion is somewhat
supported by Li and Sicular (2013), who found that rural
aging nationwide did not lead to a decline in grain
production, but rather to an increase in the sown area and
total grain production.

Concerning farm household characteristics, family size has a
negative impact on eco-efficiency at the 10% significance level (Xu
etal, 2021). Larger families are more likely to invest labor in agricultural
production rather than in machinery, which may hinder the efficiency
gains that machinery can provide. In addition, family income positively
affects eco-efficiency at the 1% significance level. As family income
increases, farmers may become less dependent on agricultural
production (Sattar et al, 2024), which reduces their reliance on
agrochemicals and enhances eco-efficiency. Additionally, higher
income alleviates budget constraints, which may encourage the
purchase of eco-friendly production materials and the adoption of
new technologies. This is consistent with Li et al. (2024) at the regional
level and (Zong et al, 2023) at the national level. Both of them
demonstrate a positive association between eco-efficiency and
income levels.

Regarding agricultural production characteristics, the grain-sown
area positively affects eco-efficiency at the 1% significance level, which
suggests that economies of scale are still present in China’s major grain-
producing areas. Farmers can improve eco-efficiency by reallocating land,
which is consistent with national studies (Lu et al,, 2024; Zong et al., 2023).
In contrast, land fragmentation negatively affects eco-efficiency at the 5%
significance level, which aligns with the studies of Blaikie and Sadeque
(2000); Hou et al. (2021). Land fragmentation leads to inefficient use of
land, improper allocation of agricultural inputs, and increased loss of
technical efficiency, which raises economic costs (Tenaye, 2020).
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Moreover, it discourages the adoption of new agricultural technologies
and the development of farmland infrastructure (Lu et al,, 2022).

Land quality positively affects eco-efficiency at the 5%
significance level, which indicates that better land quality leads
to higher crop yields and reduced demand for production inputs
such as fertilizers and irrigation, thereby enhancing eco-efficiency.
The cropping index also negatively affects eco-efficiency at the 1%
significance level (Hou et al., 2021). Jiang et al. (2024) confirmed
that increased cropping index necessitates greater inputs and
continuous cropping tends to induce environmental hazards
such as soil compaction, salinization, and soil-water erosion,
consequently reducing eco-efficiency. Agricultural subsidies
negatively affect eco-efficiency at the 1% significance level,
which supports the research of (Guo et al., 2021). Subsidies
alleviate the budget constraints of farmers, which can lead to
the overuse of fertilizers and pesticides (Pan et al., 2022).
Additionally, agricultural subsidies may limit output effects due
to rising production costs and diminishing returns (Pan, 2016).

The negative influence of agricultural production outsourcing on
eco-efficiency at the 5% significance level contrasts with Zhang et al.
(2023) and Wang L. et al. (2024), but aligns with Zhang et al. (2015). It
is suggested that information asymmetry between farmers and
outsourcing providers may explain the reduced eco-efficiency,
particularly due to the reduced quality of service from providers
and excessive supervision from farmers. The presence of more
productive fixed assets negatively affects eco-efficiency at the 10%
significance level. Farmers with more productive assets may be
inclined to use more agrochemicals to stabilize grain production,
which leads to greater environmental pollution and lower
eco-efficiency.

Finally, positively
influence eco-efficiency at the 10% significance level, likely due to

agricultural ~organization ~memberships

their role in improving farmers’” knowledge, attitudes, and practices of
green production. These organizations also help reduce transaction
costs and negotiate better terms for farmers, which enhances
eco-efficiency.

In terms of regional characteristics, Hunan negatively affects eco-
efficiency at the 1% significance level, while no significant difference
exists between Heilongjiang and Henan. This variation may be related
to regional climatic conditions. Located in the mid-reach of the Yellow
River Basin, Henan features flat terrain and abundant solar radiation,
yet experiences significant diurnal temperature variations and
spatially uneven precipitation. The region practices a double-
cropping system, with wheat-maize rotation or wheat-rice rotation
dominating grain production. Heilongjiang, situated in Northeast
China, occupies a high-latitude continental plain characterized by
synergistic hydrothermal regimes and phaeozem soils of exceptional
fertility. The constrained growing season permits only single annual
cropping, rendering it a quintessential low-input high-output
agricultural system with minimal environmental externalities. In
contrast, Hunan, located in the mid-Yangtze Basin, features
hyperthermal conditions and copious precipitation sustained by
dense arterial waterways. Dominated by paddy landscapes, it
supports double/triple annual cropping rotations. However, its
methanogenic rice cultivation constitutes a critical carbon footprint
hotspot, epitomizing a high-input high-output paradigm with
elevated pollution loading.
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TABLE 10 Provincial-level regression analysis: determinants of eco-Efficiency.

Eco-efficiency Regression 5 Heilongjiang

10.3389/fenvs.2025.1597439

Regression 6 Henan

Regression 7 Hunan

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Age 0.001 0.001 0.001*%* 0.000 0.000 0.001
Education 0.000 0.002 0.002* 0.001 0.001 0.002
Health status 0.007 0.007 0.001 0.003 -0.004 0.006
Family size -0.002 0.005 -0.002 0.002 -0.002 0.003
Family income 0.031°* 0.010 0.004 0.005 0.003 0.007
Non-farm employment -0.000 0.000 -0.000 0.000 0.000 0.000
Social capital 0.000 0.001 0.000 0.002 -0.001 0.001
Grain-sown area 0.004* 0.002 0.016%** 0.003 0.005%* 0.001
Land fragmentation 0.001 0.001 —0.003* 0.002 —0.000 0.000
Land quality 0.012 0.008 -0.002 0.005 0.011* 0.006
Cropping index -0.178 0.198 —-0.024 0.017 —0.051*** 0.010
Agricultural subsidies —0.018*** 0.007 —0.009** 0.004 —-0.009*** 0.003
Outsourcing level -0.009* 0.006 —-0.016*** 0.003 -0.001 0.002
Productive fixed assets -0.005%%* 0.002 0.001 0.001 -0.001 0.001
Agricultural organization 0.002 0.016 0.017* 0.010 0.022* 0.011
Agricultural technical training -0.001 0.013 0.001 0.008 -0.010 0.010
Meteorological disasters 0.007 0.006 -0.005 0.006 -0.005 0.004
Distance from residence to county 0.007 0.004 -0.006 0.007 -0.009** 0.004
_cons 0.532** 0.224 0.737% 0.089 0.694¢ 0.090
Observations 416 393 399

LR chi2 58.15%** 110.83*** 12454

Note: (1) ***, **, * indicate the significant level of 1%, 5%, and 10%, respectively; (2) all models have passed the multicollinearity test.

4.2 Heterogeneity analysis

The measured results of eco-efficiency in the sample areas reveal
significant differences among Heilongjiang, Henan, and Hunan,
with mean values of 0.701, 0.648, and 0.528, respectively.

This raises the question of whether the determinants of eco-
efficiency also vary for farmers in different geographical regions. To
this end, a regional sub-estimation was conducted. Table 10 shows
the estimation results.

Regressions 5 to 7 display the results for the determinants of eco-
efficiency in Heilongjiang, Henan, and Hunan, respectively.
Regional differences are evident, though the direction of effect
and significance level of each factor closely mirror those in the
total sample regression. Specifically, grain-sown area and
agricultural subsidies consistently show significant effects across
all regions. The grain-sown area positively influences eco-efficiency
and agricultural subsidies have a negative impact.

In Henan, the household head’s age and education are positively
associated with eco-efficiency, while land fragmentation has a
negative effect. In Heilongjiang, family income has a positive
effect, while productive fixed assets exert a negative influence. In
Hunan, land quality positively affects eco-efficiency, while the
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cropping index and distance from residence to county town have
negative effects.

Additionally, the negative effect of agricultural production
outsourcing is insignificant in Hunan, while the positive effect of
agricultural ~ organization is in

memberships insignificant

Heilongjiang.

4.3 Robustness tests

The previous analysis examined the determinants of eco-
efficiency based on eco-efficiency measurements under output
orientation. To enhance the robustness of the results, the
determinants of eco-efficiency were further analyzed under
input orientation and non-orientation. This additional analysis
helps mitigate potential biases in the results that may arise from
the choice of orientation (Cooper et al, 2007; Tone, 2001).
Table 11 shows the regression results. Regression 8 reports the
results from the determinants of eco-efficiency under input
orientation, while regression 9 presents the results under non-
orientation. The direction of influence and significance levels of
each variable remain consistent with those in the output
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TABLE 11 Determinants of eco-efficiency under input-oriented and non-oriented models.

Eco-efficiency

Regression 8 input orientation

Regression 9 no orientation

Coef. Std. Err. Coef. Std. Err.

Age 0.002*** 0.000 0.002*** 0.001
Education 0.002 0.001 0.002 0.002
Health status 0.006 0.005 0.005 0.005
Family size —-0.007** 0.003 —-0.007** 0.003
Family income 0.005 0.006 0.004 0.007
Non-farm employment 0.000 0.000 0.000 0.000
Social capital 0.000 0.001 0.000 0.001
Grain-sown area 0.008*** 0.001 0.008*** 0.001
Land fragmentation —0.000* 0.000 —0.000%* 0.000
Land quality 0.026*** 0.006 0.023%* 0.006
Cropping index —0.063*** 0.016 —0.053*** 0.017
Agricultural subsidies —0.023%* 0.004 —0.0220%* 0.004
Outsourcing level —0.012%** 0.003 —0.012%** 0.003
Productive fixed assets —0.007*%* 0.001 —0.006*** 0.001
Agricultural organization 0.005 0.012 0.005 0.013
Agricultural technical training -0.010 0.010 -0.008 0.011
Meteorological disasters —-0.004 0.005 -0.002 0.005
Distance from residence to county 0.002 0.004 0.003 0.005
Heilongjiang 0.027 0.021 0.032 0.022
Hunan —0.150*** 0.015 —0.166*** 0.016
_cons 0.478*** 0.090 0.394%* 0.094
Observations 1208 1208

LR chi2 529.36%** 518.95%**

Note: (1) ***, **, * indicate the significant level of 1%, 5%, and 10%, respectively; (2) all models have passed the multicollinearity test.

orientation regression, which confirms the robustness and (2) The mean eco-efficiency score (0.627) is 0.219 higher than the
traditional production efficiency metric, suggesting that China has
begun to decouple agricultural growth from environmental
degradation. This finding provides preliminary empirical
support for the Porter Hypothesis, which states that well-
designed environmental regulation can enhance, rather than

hinder, economic efficiency.

reliability of the findings.

5 Conclusion and recommendations

This study adopts a micro-level perspective to evaluate the eco-
efficiency of China’s major grain-producing areas, incorporating (3) Multiple factors significantly influence eco-efficiency in these
both agricultural carbon emissions and non-point source regions. Positive contributors include household head’s age,

pollution. Using field survey data from 1,208 farm households family income, grain-sown land quality, and

area,
and employing the SBM-Undesirable model, the study analyzes
the determinants of eco-efficiency. The main findings are
as follows:

membership in agricultural organizations. In contrast,
factors such as family size, land fragmentation, cropping
index, agricultural subsidies,
outsourcing, and investment in fixed prodcutive assets tend

agricultural  production

(1) The average eco-efficiency score across China’s major grain- to suppress eco-efficiency.

producing areas is 0.627—slightly above the old typically (4) The determinants of eco-efficiency exhibit regional

regarded as “passing”. At the provincial level, eco-efficiency
values are 0.701 in Heilongjiang, 0.648 in Henan, and 0.528 in
Hunan, revealing pronounced regional disparities.

Frontiers in Environmental Science

heterogeneity. In Henan, promoting vocational education to
enhance environmental land
consolidation to mitigate fragmentation, and strengthening

awareness, ~encouraging
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the extension functions of farmer cooperatives are key policy
priorities. Furthermore, to harness the potential of the aging
rural labor force, models such as Japan’s “senior farmers’
gardens” could be adapted to establish silver-haired
agricultural service teams. However, the proliferation of
pesticide overuse in outsourced production underscores
the need for tighter regulation. In Heilongjiang, excessive
investment in fixed agricultural assets reflects management
inefficiencies within large-scale farming operations, echoing
the energy inefficiency concerns associated with over-
mechanization in the American Midwest. This calls for
improved asset utilization and precision management in
mechanized farming systems. For Hunan, the focus should
be on enhancing soil quality—potentially through targeted
subsidies for eco-efficiency soil improvement practices, as
seen in South Korea—and optimizing crop rotation systems,
drawing lessons from Thailand’s rice—green manure
rotation model. Additionally, empowering farmers in
remote and ecologically fragile areas through digital
after the
Union’s smart farming programs—could help alleviate

agriculture initiatives—modeled European

productivity ~constraints associated with geographic

disadvantages.

Compared with the ecological degradation resulting from large-
scale monoculture expansion in Brazil, the three provincial cases in
China demonstrate the potential for achieving agricultural
intensification and ecological sustainability in a synergistic
manner. However, compared to France’s cluster-based
agricultural development, land fragmentation and insufficient
regulation of agricultural production outsourcing services remain
fundamental challenges in China. Future policies need to build a
comprehensive “three-in-one” framework: At the technical level,
efforts should focus on promoting precision agriculture to minimize
redundant investments, exemplified by initiatives such as the
Heilongjiang Agricultural Machinery Sharing Platform. At the
institutional level, environmental standards for outsourcing
services need to be strengthened, including the formation of a
Henan and
level, the

development of age-friendly cooperatives—drawing on Henan’s

cross-regional  regulatory alliance  between

Heilongjiang provinces. At the organizational
experience—and the provision of digital support for remote
suburban areas, as piloted in Hunan, are essential. Collectively,
these measures aim to effectively address the “intensification trap”
and “marginalization dilemma”, providing a uniquely Chinese
approach to advancing green transformation in major global
grain-producing regions.

Currently, China’s major grain-producing regions remain
entrenched in an extensive model of agricultural development,
characterized by heavy reliance on resource inputs and
environmental degradation to sustain production. This has
resulted in

environmental

a persistent imbalance among resource use,

sustainability, and agricultural development.
Greater attention from government agencies, farmers, and other
relevant stakeholders is urgently needed to enhance agricultural eco-
efficiency. From a policy perspective, it is critical to integrate
environmental concerns into agricultural development strategies.

Policymakers should prioritize the promotion of low-carbon
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that reduce

pollution, while formulating region-specific strategies tailored to

technologies and practices non-point source
local ecological conditions. Such differentiated approaches can
improve the effectiveness of policy interventions and optimize
eco-efficiency outcomes across China’s diverse grain-producing
regions. In addition, intergovernmental cooperation can facilitate
the design of unified yet adaptable frameworks for agricultural
environmental sustainability. From the farmers’erspective, policy
incentives should encourage land consolidation through farmland
land

fragmentation. In addition, farmers should be encouraged to

transfer to expand operational scale and mitigate
diversify their operations and reduce their dependence on
traditional resource-intensive methods. Expanding access to
financial support and targeted credit for sustainable agricultural
technologies will further facilitate the transition toward a more eco-
efficient model. From the standpoint of other stakeholders in the
agricultural sector—including agribusinesses, non-governmental
organizations, and research institutions—efforts should focus on
advancing technological innovation and accelerating the adoption of
sustainable agricultural practices. In addition, stakeholders should
also help build a stronger and more integrated system by promoting
dialogue and technical assistance to narrow the gap between farmers
and policymakers, thereby improving the agricultural eco-efficiency
of the entire region.

In summary, this study makes several important contributions.
First, a more comprehensive measure of eco-efficiency is provided
by incorporating agricultural carbon emissions and non-point
source pollution. Second, the adoption of a non-radial, non-
angle SBM model allows for more accurate eco-efficiency
measurement, which overcomes the limitations of traditional
radial models. Third, a clearer evaluation of agricultural
development in China’s

major grain-producing areas is

performed by comparing eco-efficiency with traditional
production efficiency. Fourth, the determinants of eco-efficiency
are identified and discussed from four dimensions (household
head characteristics, farm household characteristics, agricultural
production and operation characteristics, and regional
characteristics), which propose feasible paths for improvement.
These findings provide valuable insights for policymakers and
farmers to face agricultural and environmental challenges. Fifth,
regional differences are further analyzed to increase the

applicability of the findings.

6 Research limitations and perspectives

Despite the contribution of this study, several limitations
warrant further refinement in subsequent research. First, due to
data constraints, the selected output and input indicators are
not fully comprehensive. Important environmental factors such
as agricultural pollution from pesticide use and plastic film
residues were not accounted for, which could be incorporated in
future datasets to enhance measurement accuracy. Second,
constrained by limited space, this study does not examine the
heterogeneity of eco-efficiency across different farm sizes and
crop types. Future research could explore these dimensions in
greater depth to provide a more nuanced understanding. Third,
although the Tobit model is a suitable approach for analyzing
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the determinants of eco-efficiency, some explanatory variables
(e.g., family income, land fragmentation, agricultural subsidies)
may suffer from endogeneity, potentially biasing the estimation
results. Due to current data and methodological constrains, this
study does not address endogeneity using techniques such as
instrumental variables. Future research may mitigate this issue
as more suitable data become available. Fourth, this study relies on
cross-sectional data, which limits the ability to identify the temporal
effects of climate variables on farm-level eco-efficiency. Future
studies could integrate high-resolution meteorological time-series
data or adopt panel data methods to address this limitation and
improve the robustness of temporal inferences. Fifth, this analysis is
based on a one-time farm household research data, which limits the
availability of longitudinal tracking information and may constrain
the examination of dynamic trends or causal relationships.
Additionally, the absence of administrative or remotely sensed
data for validation may affect the external validity of the results,
particularly in macro-level or cross-regional analyses. To address
this, future research could incorporate micro-level panel data, such
as constructed farm household tracking surveys or official
agricultural census data, and enhance causal inference through
quasi-natural instrumental  variable

experiments,  panel

approaches, or other advanced econometric techniques.
Moreover, an integrated analytical framework combing remotely
sensed data with official statistics could improve the external validity of
the findings and facilitate regional policy comparisons. Sixth, although
the subjective indicators of land quality and health status used in this
study were designed with standardized scales and supported by
interviewer interpretation to minimize respondent bias, these
deliberately positioned as farmer perspectives “subjective

assessments”. This approach aims to capture farmers’ behavioral

or

responses to perceived resource conditions rather than treating these
variables as objective physical inputs. While this is consistent with
prevailing practices in agricultural economics, self-reported variables
may still introduce potential biases. In future research, the objectivity
and precision of these indicators could be improved through the
integration of remote sensing data, soil testing, and agronomic
health records.
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