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Introduction: The increasing frequency of compound heat events (CHEs),
including compound dry-hot events (CDHEs) and compound humid-hot
events (CHHEs), poses significant threats to terrestrial ecosystems. While
previous studies have examined the independent and combined effects of
drought and heat on vegetation productivity, the specific roles of CHHEs and
the differential impacts of CDHEs and CHHEs remain poorly understood.

Methods: Using Gross Primary Productivity (GPP) estimated from satellite-based
near-infrared reflectance (NIRv), monthly meteorological data and the
Standardized Precipitation Evapotranspiration Index (SPEI), this study calculated
the Standardized Compound Event Indicator (SCEI) to quantify the severity of
CHEs, and investigated the immediate and lagged effects of CDHEs and CHHEs
on global GPP from 2001 to 2018.

Results: Our results demonstrated that CDHEs occurred more frequently and
with greater severity than CHHEs during the study period. The immediate effects
of CDHEs reduced GPP in 68% of vegetated areas, whereas CHHEs enhanced
GPP in 58% of vegetated areas. Globally, CDHEs and CHHEs caused net GPP
changes of −5.26 Pg C yr−1 and 1.67 Pg C yr−1, respectively. In contrast, GPP in the
polar zone, boreal shrubs, and boreal grasslands increased during CDHEs and
decreased during CHHEs, with average net GPP changes of 0.17 Pg C yr−1 and
−0.04 Pg C yr−1, respectively. Additionally, lag effects were most prominent in the
periods of 0 to 3 months and 10 to 12 months post-event.

Discussion: These findings highlight the contrasting impacts of compound dry-
and humid-hot events on ecosystem carbon fluxes and provide a better
understanding of global carbon cycles under climate extremes.

KEYWORDS

compound dry-hot events, compound humid-hot events, gross primary productivity,
ecosystem types, climate zones

1 Introduction

Terrestrial ecosystem is an important carbon sink, driving the seasonal fluctuations of
global carbon dioxide concentrations and providing feedback on global warming
(Houghton et al., 1998; Le Quéré et al., 2009; Ruehr et al., 2023). Gross Primary
Productivity (GPP), which represents the total amount of carbon fixed by terrestrial
vegetation through photosynthesis, is a crucial indicator reflecting the productivity of
terrestrial ecosystems and regional carbon fluxes (Pinker et al., 2010; Wang J. et al., 2021;
Xiao et al., 2019). In recent years, global temperature increases have exacerbated the
frequency and severity of extreme heat events (CHEs), which have significantly impacted
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variations in terrestrial GPP (IPCC, 2021; Luo et al., 2024; Tang
et al., 2025; Xu et al., 2019). Therefore, it is essential to investigate the
effects of CHEs on vegetation productivity over different regions of
the world.

Extreme heat events are typically categorized into two types
based on variations in atmospheric moisture content: compound
dry-hot events (CDHEs) and compound humid-hot events
(CHHEs) (Buzan and Huber, 2020; Meng et al., 2022; Wang P.
et al., 2021). While these two types of CHEs exhibit similar extreme
nature, they differ markedly in spatiotemporal pattern and their
impacts on terrestrial ecosystems (Fan et al., 2024; Gampe et al.,
2021; Ting et al., 2023). Previous studies have mainly examined the
individual and combined effects of heat and drought on GPP,
demonstrating that extreme heat and drought impair
photosynthesis at both physiological and canopy levels while
limiting water availability, ultimately causing a decline in GPP
(Von Buttlar et al., 2018; Zhang et al., 2016; Zhao and Running,
2010). For instance, the 2003 heat and drought in Europe resulted in
a 30% reduction in GPP, which translated into a significant
anomalous net source of carbon dioxide (0.5 Pg C yr−1) to the
atmosphere (Ciais et al., 2005). Yuan et al. (2016) found that the
severe heat and drought in southern China during the summer of
2013 led to a substantial decline in GPP, with an average crop yield
loss of 90.91 kg ha−1. Furthermore, studies based on remote sensing
data and probabilistic assessments have revealed that the combined
effects of heat and drought on vegetation productivity exceeds the
effects of an individual stressor. In arid and semi-arid regions, the
probability of vegetation productivity reduction under CDHEs
increases by 7% and 28% compared to individual drought or
heat conditions, respectively (Hao et al., 2021; Zhu et al., 2021).
Despite the extensive research on the impacts of CDHEs on
vegetation productivity, studies on the combined effects of
CHHEs remain scarce. Some field-controlled experiments have
examined changes in vegetation productivity under wet
conditions, suggesting that increased precipitation can alleviate
water stress and enhance vegetation productivity, but excessive
moisture coupled with high temperatures may lead to
waterlogging, oxygen deprivation, and increased susceptibility to
diseases, potentially offsetting the benefits of enhanced water
availability (Lahlali et al., 2024; Lesk et al., 2022; Tian et al.,
2021; Velásquez et al., 2018). Although these preliminary findings
highlight the importance of CHEs, there is still lack of systematic
and global-scale research to quantitatively assess their impacts on
vegetation productivity.

The influences of CHEs on vegetation productivity manifest as
immediate effects and lagged effects. The immediate effects refer to
concurrent changes in vegetation during extreme events, such as
reductions in stomatal conductance and photosynthetic rates
(Grimmer et al., 2012; Kang et al., 2024; Teskey et al., 2015). In
contrast, lagged effects represent a “memory” of past extreme
climatic events, influencing current ecosystem functioning
(Cranko Page et al., 2023; Zhao et al., 2020). Previous studies
have demonstrated that CHEs exert direct stress on plant
physiological processes while indirectly disrupting ecosystem
water and heat balances, leading to delayed impacts on
vegetation productivity. For example, Dong et al. (2025) reported
the lagged effects of compound high-temperature and high-
precipitation events on boreal forest ecosystems, with lag time of

1 month in 16.9% of the area, 2 months in 15.5%, and 3 months in
16.5%. Zhou et al. (2024) observed a shortening of the lagged
response time of vegetation to CDHEs, suggesting heightened
sensitivity of vegetation to these events. Moreover, vegetation
responses to CHEs vary markedly across ecosystems and climatic
zones (Von Buttlar et al., 2018). Forests, owing to their greater
resistance, are less vulnerable to the combined stresses of high
temperature and drought compared to grasslands (Flach et al.,
2021; Rammig et al., 2015). In arid and semi-arid regions, water
deficits triggered by CDHEs are slower to recover, exerting
prolonged adverse effects on vegetation productivity (Hao et al.,
2021; Schwalm et al., 2017; Wei et al., 2022). These variations
underscore the adaptive capacity of vegetation to extreme
climatic events and emphasize the need to investigate the impacts
of CHEs on vegetation productivity across diverse lagged
timeframes and spatial scales.

In this study, we utilized global monthly GPP based on satellite
near-infrared reflectance (NIRv), air temperature dataset, and the
Standardized Precipitation-Evapotranspiration Index (SPEI) to
explore the differential impacts of CDHEs and CHHEs on global
vegetation productivity during 2001–2018. To achieve our goal, we
hypothesized that: 1) CDHEs and CHHEs exert differential impacts
on GPP, with spatial differences across vegetation types and climate
zones; 2) These impacts vary temporally, including both immediate
and lagged effects that differ by hemisphere and biome. By exploring
how CDHEs and CHHEs shape GPP dynamics, this study provides
valuable insights for improving carbon sink estimates and
enhancing ecosystem functioning assessments under
extreme climates.

2 Materials and methods

2.1 Data and pre-process

We used monthly SPEI from SPEIbase v2.5 (Beguería et al.,
2014; Vicente-Serrano et al., 2010) to characterize the global drought
conditions with a spatial resolution of 0.5°. Monthly mean air
temperature, minimum temperature (Tmn), maximum
temperature (Tmx) and precipitation (PRE) data were obtained
from a commonly utilized climate dataset, CRU TS v.4.03 (Harris
et al., 2020). We also collected the soil moisture (SM) from the
Global Land Evaporation Amsterdam Model (GLEAM) (Martens
et al., 2017). Vapor pressure deficit (VPD) were derived from ERA5
(Muñoz-Sabater et al., 2021). The GPP data derived from NIRv
spanning 2001 to 2018 (NIRv-GPP) (Wang et al., 2020) was used to
represent the vegetation productivity. The NIRv-GPP, with a spatial
resolution of 0.05°, has shown good performance on capturing the
seasonal and inter-annual variations in global GPP (Zhang Y. et al.,
2022). All data were resampled to 0.5° to match the spatial
resolution of SPEI.

Long-term trends and seasonal variations in vegetation
observations can potentially influence analysis metrics. The
Seasonal and Trend decomposition using Loess (STL) method,
which decomposes a time series into seasonal, trend, and residual
components through locally weighted regression (Loess), is widely
used for detecting anomalous fluctuations in vegetation indices
(Rojo et al., 2017; Zhou et al., 2024). In this study, we applied
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STL to remove both trend and seasonal components from the raw
GPP time series, enabling a clearer focus on short-term GPP
variations. Additionally, following Zscheischler et al. (2014), the
monthly air temperature was calculated as the Standardized
Temperature Index (STI) to facilitate the comparison of air
temperature time series across different locations and to make
the air temperature indicators comparable with the SPEI.

2.2 Landcover reclassification

We used MODIS land cover data based on the International
Geosphere-Biosphere Programme (IGBP) classification scheme to
statistically analyze the effects of CHEs on different vegetation types.
Considering that vegetation of the same type may respond distinctly
to extreme events across various climate zones (Li et al., 2022; Ren
et al., 2023), our study reclassified global vegetation into 13 types
based onMODIS IGBP land cover and Köppen–Geiger climate zone
data (Huang and Zhai, 2025). Following Huang et al. (2019), the
original 17 land cover types were first grouped into 9 major
vegetation types: evergreen needleleaf forest (ENF), evergreen
broadleaf forest (EBF), deciduous needleleaf forest (DNF),
deciduous broadleaf forest (DBF), mixed forest (MF), shrubland
(SHR), savanna (SAV), grassland (GRA), and cropland (CRO).
Among these, ENF, EBF, DNF, DBF, MF, and CRO were
retained without further subdivision. Shrublands, savannas, and
grasslands were further divided based on their respective climate
zones. Vegetation in cold and polar zones were classified as boreal
and arctic, whereas vegetation in other zones were categorized as
temperate. Specially, shrublands were classified into temperate
shrublands (SHR[t]) and boreal and arctic shrublands (SHR[b]);
savannas was classified into temperate savannas (SAV[t]) and boreal
and arctic savannas (SAV[b]); and grasslands was classified into
temperate grasslands (GRA[t]), boreal and arctic grasslands (GAR
[b]). Besides, the grasslands on the Tibetan Plateau was classified
into a separate category (GRA[T]) given the unique alpine climate of
this region (Huang et al., 2019; Yao et al., 2012).

2.3 Statistical analysis

2.3.1 Detection of CHEs
In this study, a bivariate identification method based on

temperature (STI) and moisture (SPEI) conditions was employed
to detect CDHEs and CHHEs. Extreme events were identified using
the 20th and 80th percentiles as severity thresholds (Hao et al.,
2019b; Zhao et al., 2025). Specifically, an extreme heat event was
classified when the STI value for a given grid cell (2001–2018)
exceeded the 80th percentile (Zhou et al., 2024). For moisture
conditions, an extreme drought event occurred when the SPEI
value fell below the 20th percentile, while extreme humid events
corresponded to SPEI values exceeding the 80th percentile (Stagge
et al., 2017). Finally, when both drought and heat events occurred in
the same month, it was defined as a CDHE, whereas a CHHE was
defined as the simultaneous occurrence of drought and humid
events. Additionally, the frequency of CHEs was quantified as the
total number of occurrences from 2001 to 2018.

The standardized compound event indicator (SCEI), derived
from the bivariate distribution function of SPEI (X) and STI (Y), was
calculated to characterize the severity of CHEs (Hao et al., 2019b).
Lower SCEI values indicate more severe conditions of CHEs. For
instance, in the case of CDHE, the joint probability distribution of
low moisture and high temperature is expressed as Equation 1 (Hao
et al., 2019a; Li et al., 2024):

P X ≤ x,Y > y( ) � P X ≤ x( ) − P X ≤ x,Y ≤ y( ) (1)
the joint probability was estimated based on Gringorten plotting
position (Equation 2):

P xi, yi( ) � ni − 0.44
n + 0.12

(2)

where n is the total length of time series and ni is the count of
occurrences where xk ≤ xi and yk > yi (1 ≤ k ≤ n). To ensure that P
follows a uniformly distribution, the empirical distribution F was
fitted to the joint probability P, remapping it into a uniform space
(Hao et al., 2019b; Mo and Lettenmaier, 2014). Finally, the SCEI of
CDHE (SCEICDHE) was derived by transforming the remapped joint
probability using the standard normal distribution Φ. The formula
of SCEICDHE is expressed as (Hao et al., 2019a):

SCEICDHE � Φ−1 F P X ≤ x,Y > y( )( )( ) (3)

Similar to Equation 3, SCEICHHE used to characterize the
severity of CHHEs can be expressed based on the joint
probability of high moisture and high temperature (Equation 4):

SCEICHHE � Φ−1 F P X > x,Y > y( )( )( ) (4)

2.3.2 Quantifying immediate effects of CHEs
on GPP

To quantify and compare the immediate response of GPP to the
CHEs, we calculated the difference in anomalous GPP between
periods with and without these events (ΔGPP). To further minimize
the influence of seasonal GPP variations on ΔGPP, the difference in
anomalous GPP was computed separately for each month (e.g.,
January, February, March, etc.) throughout the study period. The
specific calculation is shown as Equations 5–7:

ΔGPPi � GPPi Y( ) − GPPi N( ) (5)

GPPi Y( ) � ∑n
j�1GPPi,j Y( )

n
(6)

GPPi N( ) � ∑n
j�1GPPi,j N( )

n
(7)

where i represents the i-th month of each year (1 ≤ i ≤ 12), j refers
to the j-th year in the study period, and n is the length of the study
period (18 years in this study). Y and N indicate whether a
compound event occurred or not, respectively. The term
∑n

j�1GPPi,j(Y) represents the sum of anomalous GPP for all i-th
months in which a compound event occurred, while ∑n

j�1GPPi,j(N)
represents the sum of anomalous GPP for all i-th months when no
compound event occurred. If no CHEs occurred in all i-th months
over the study period, ΔGPPi is recorded as a null value. The change
in anomalous GPP during CHEs at each grid cell is then calculated as
the mean of the 12 ΔGPPi values, excluding the null values.
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To elucidate the ecological mechanisms underlying the
contrasting immediate GPP responses to CDHEs and CHHEs, we
employed an explainable machine learning approach using XGBoost
(eXtreme Gradient Boosting) in combination with SHAP (SHapley
Additive exPlanations) to assess feature importance and effect
directionality. Four separate XGBoost models were developed, with
input features including SCEI, minimum temperature, maximum
temperature, soil moisture, vapor pressure deficit, and
precipitation. The models were trained to predict GPP under the
following conditions: (1) CDHEs with positive ΔGPP, (2) CDHEs
with negative ΔGPP, (3) CHHEs with positive ΔGPP, and (4) CHHEs
with negativeΔGPP.Model hyperparameters were optimized through
random search, and the final models were selected based on the lowest
mean absolute error (MAE) obtained via tenfold cross-validation
(Bergstra and Bengio, 2012; Gaur and Drewry, 2024; Guo et al., 2025).

2.3.3 Assessing lagged effects of CHEs on GPP
Previous studies have demonstrated that CHEs not only affect

vegetation immediately but can also induce significant lagged effects
that persist for several months (Han et al., 2023; Rammig et al., 2015;
Zhou et al., 2024). Therefore, this study investigated how the severity
of CHEs influences GPP over time, accounting for potential delayed
responses. Pearson’s correlation coefficient (r) was used to assess
both the magnitude and temporal scale of the lagged effects (Wei

et al., 2022; Zhang Z. et al., 2022). Specifically, the SCEI of each
compound event was paired with the GPP from the t-th month
following its occurrence (1 ≤ t ≤ 12) to form a series. The correlation
coefficient was then calculated for each time lag, yielding 12 values
for each pixel (Equation 8). The absolute maximum r (Rmax) value
was selected to determine the magnitude of the lagged effect, and its
corresponding temporal scale defined the lag month (Equation 9).

rt � corr SCEI Y( ), GPPt( ), 1≤ t ≤ 12 (8)
Rmax � max rt| |( ), 1≤ t ≤ 12 (9)

where SCEI(Y) is the SCEI for the month in which CHEs
occurred, t represents the lag months, GPPt denotes anomalous
GPP at t-th month following the compound event, rt is the
Pearson’s correlation coefficient with a lag of t months, and
Rmax represents the maximum rt, indicating the magnitude of
the lagged effect.

3 Results

3.1 Frequency and severity of CHEs

The CDHEs occurred widely across the globe, with 61.52% of
vegetation area experiencing more than 10 occurrences during the

FIGURE 1
Frequency and average severity of compound dry-hot events (CDHEs) and compound humid-hot events (CHHEs). (a,b) Total number of CDHEs (a)
and CHHEs (b) occurrences from 2001 to 2018. (c,d) Average SCEI when CDHEs (c) and CHHEs (d) occurred. (e)Comparison of the frequency of the two
CHEs (CDHE frequency - CHHE frequency). (f) Frequency and severity of CHEs in different climate zones.
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study period (Figure 1a). High frequency of CDHEs over
2001–2018 occurs mainly in tropical regions, northern and
southern South America, the western United States, and along
the Mediterranean and Caspian Sea coasts. Similarly, 67.65% of
vegetated area experienced more than five occurrences of CHHEs
during the same period, with particularly frequent events in regions
such as India, the Tibetan Plateau, and northern Canada (Figure 1b).
The spatial distribution of CDHEs and CHHEs severity, as indicated
by the SCEI, showed no obvious clustering patterns (Figures 1c,d).
In regions above 70° N, the CHEs exhibited higher frequency but
lower severity compared to mid- and low-latitude regions. Across
80% of regions, CDHEs occurred more frequently than CHHEs,
whereas only 20% of regions, mainly in India, Australia, South
Africa, eastern China, the Tibetan Plateau, and northern North
America, experienced a higher frequency of CHHEs (Figure 1e). In
all climate zones, CDHEs were more frequent, with an average of
12.2 events compared to 7.2 events for CHHEs, and more severe,

with an average SCEICDHE of −1.60 as opposed to −1.52 for
SCEICHHE (Figure 1f).

3.2 Immediate effects of CHEs on GPP

Comparing the immediate changes in GPP caused by the two
CHEs (ΔGPPCDHE and ΔGPPCHHE), we found that while the spatial
distribution of GPP responses was similar, the direction of change
differed. GPP decreased in 68% of regions affected by CDHEs,
particularly in central and eastern North America, eastern South
America, and the western and northern parts of Eurasia (Figure 2a).
Conversely, 58% of vegetation areas exhibited a positive ΔGPPCHHE,
while 42% showed a negative ΔGPPCHHE, mainly located in
northern and polar regions, as well as eastern Australia
(Figure 2b). The high-latitude regions of the Northern
Hemisphere (above 60° N) and the mid-latitude regions of the

FIGURE 2
Δ GPP in whether compound dry-hot (CDHE) and compound humid-hot (CHHE) events occurred. (a,b) Spatial distribution of mean ΔGPPCDHE and
ΔGPPCHHE. (c) Comparison of ΔGPP across different climate zones. The brown and green dotted lines represent the global median of ΔGPPCDHE and
ΔGPPCHHE, respectively.
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Southern Hemisphere (40°–60° S) showed opposite ΔGPP compared
to the low latitudes. On a global scale, the average ΔGPPCDHE

was −132.65 gC m−2 d−1, while ΔGPPCHHE was 73.58 gC m−2 d−1.
CDHEs and CHHEs contributed to a global net GPP change
of −5.26 Pg C yr−1 and 1.67 Pg C yr−1, respectively. Additionally,
the polar zone exhibited distinct ΔGPP responses compared to the
other four warmer climate zones, while the ΔGPP patterns in both
hemispheres were consistent (Figure 2c). In tropical, arid, temperate,
and cold zones, ΔGPPCDHE was predominantly negative, with
median values ranging from −34.84 gC m−2 d−1 in arid zone
to −139.09 gC m−2 d−1 in temperate zones. Meanwhile,
ΔGPPCHHE was generally positive across these zones, with
median values ranging from 3.03 gC m−2 d−1 in arid zone to
63.96 gC m−2 d−1 in temperate zone. In contrast, in polar zone,
GPP exhibited a positive immediate response to CDHEs (36.24 gC
m−2 d−1) and a negative immediate response to CHHEs
(−13.57 gC m−2 d−1).

We used SHAP summary plots to illustrate the magnitude and
direction of the effects of environmental variables and SCEI on GPP
during the month when the CHEs occurred (Figure 3). In CDHEs
associated with increased GPP (ΔGPPCDHE > 0), Tmn and Tmx
were the most influential factors (Figure 3a). Conversely, VPD and
SM dominated in CDHEs associated with GPP declines
(ΔGPPCDHE < 0) (Figure 3b). For CHHEs, GPP changes were
primarily influenced by SM and temperature. SM exerted the
greatest influence when ΔGPPCHHE was positive (Figure 3c),
whereas TMN had the strongest impact when ΔGPPCHHE was
negative (Figure 3d). The direction of effect of environmental
factors was generally consistent across the four models. Higher

values of TMN, TMX, and SM tended to promote increased GPP,
whereas greater VPD was associated with reductions in GPP. SCEI
and PRE were found to have the weakest impacts among all
considered factors.

3.3 Lagged effects of CHEs on GPP

A total of 52% of regions exhibited a positive Rmax (SCEICDHE

vs. GPP), meaning that severe CDHEs led to a lagged decrease in
GPP (Figure 4a). These regions were mainly located in central North
America, central and western Russia, and eastern Siberia.
Conversely, regions where CDHEs resulted in a lagged increase
in GPP (Rmax < 0) were more commonly found in the tropical
Malay Archipelago, western Europe, and temperate zones of South
America around 30° S. The climate zones statistics in Figure 4b
showed consistent results, with the median Rmax (SCEICDHE vs.
GPP) of −0.18 in tropical zone and −0.38 in temperate zone. In
contrast, the median Rmax was 0.30 in arid zone, 0.42 in cold zone,
and 0.21 in polar zone. The lagged effect of CDHEs differed between
the NH and SH, with GPP decreasing in the NH (median Rmax =
0.34), while increasing in the SH due to the lagged impact of CDHEs
(median Rmax = −0.22). We found 30% of regions showing a lag of
less than 3months, and 28% of regions having a lag of 10–12months
(Figure 4c). In the early stages following CDHEs (0–3 months), all
climate zones outside the polar exhibited positive Rmax (SCEICDHE

vs. GPP), with stronger correlations than those observed at
6–8 months of lag (Figure 4d). Except for the 12-month lag,
positive correlations between GPP and SCEICDHE was

FIGURE 3
The SHAP values showing the contributions of environmental variables to GPP under positive and negative responses to CDHEs and CHHEs. SHAP
summary plots for the GPP values during (a)CDHEswith positive ΔGPP, (b)CDHEswith negative ΔGPP, (c)CHHEswith positive ΔGPP, and (d)CHHEswith
negative ΔGPP.
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consistently observed in cold zone across all lag months, with the
highest Rmax (SCEICDHE vs. GPP) of 0.15 occurring at lag 0. In
tropical and temperate zones, the correlation coefficient shifted from
positive to negative as lag time increased. In contrast, in polar
regions, the correlation transitioned from negative to positive with
longer lag time.

More regions (53%) experienced an increase in GPP due to the
lagged impact of CHHEs (Rmax [SCEICHHE vs. GPP] < 0), while no
spatially distinct clustering of lagged correlations was observed
(Figure 5a). Statistical results by climate zones demonstrated that
CHHEs generally exerted favorable lagged effects, contributing to
higher GPP across all climate zones (Figure 5b). The median values
of Rmax (SCEICHHE vs. GPP) ranged from −0.42 in cold zone
to −0.13 in tropical zone. The lagged effect of CHHEs on GPP was
consistent in both hemispheres, with median Rmax values
of −0.34 in the NH and −0.35 in the SH. The lag time of CHHEs
showed a higher proportion (>9%) of lag months concentrated in
the 0–3 and 10–12 months ranges (Figure 5c). In the polar zone, a
negative correlation between GPP and SCEICHHE was observed for

most lagmonths, except for months 0 and 2 (Figure 5d). However, as
time progressed, CHHEs contributed to an increase in GPP.
Furthermore, in tropical, temperate, and cold zones, the
correlation coefficients shifted from negative to positive with
increasing lag time.

3.4 Impacts of CHEs on GPP of different
vegetation types

Based on the statistics involving the reclassification of
13 vegetation types (Figure 6a), we observed that all vegetation
types responded more strongly to CDHEs than to CHHEs, as
indicated by a greater average absolute ΔGPP under CDHEs
across vegetation types (Figure 6c). With the exception of
SHR(b) and GRA(b), the immediate GPP response patterns to
CHEs were generally consistent across vegetation types,
characterized by a decrease in GPP during CDHEs and an
increase during CHHEs. The median average ΔGPPCDHE

FIGURE 4
Lagged effect of compound dry-hot events. (a) Spatial distribution of maximum correlation coefficient (Rmax) between the SCEICDHE and GPP. (b)
Rmax (SCEICDHE vs. GPP) in different climate zones. (c) Spatial distribution of the lag months corresponding to the Rmax (SCEICDHE vs. GPP). (d) The
median value of Rmax (SCEICDHE vs. GPP) for different climate zones in different lag months.
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was −158.03 gC m−2 d−1, whereas the median average ΔGPPCHHE

was 79.84 gC m−2 d−1. SHR(b) and GRA(b) exhibited opposite
response patterns, with median ΔGPPCDHE values of 113.15 gC
m−2 d−1 and 10.79 gC m−2 d−1, and median ΔGPPCHHE values
of −43.97 gC m−2 d−1 and -2.34 gC m−2 d−1, respectively. Among
all vegetation types, DBF experienced the most pronounced
immediate decline in GPP during CDHEs (median
ΔGPPCDHE = −301.02 gC m−2 d−1), while CRO exhibited the
largest increase in GPP in response to CHHEs (median
ΔGPPCHHE = 162.97 gC m−2 d−1). In SHR(t), SAV(t) and
GRA(T), GPP was mainly influenced by the negative lagged
effect of CDHEs, whereas other vegetation types exhibited
positive lagged correlations between GPP and SCEICDHE

(Figure 6d). DNF and GRA(t) were primarily affected by the
positive lagged effect of CHHEs, while the remaining vegetation
types experienced a negative lagged effect. Overall, the lag months
for the two CHEs were similar, with an average of 5.77 months for
CDHEs and 5.62 months for CHHEs (Figure 6b). In ENF, DNF, and
SAV(b), the lag time for CDHEs was longer than for CHHEs,

whereas the opposite pattern was observed in DBF, SHR(b),
GRA(b), and CRO.

4 Discussion

Our findings demonstrated the widespread and adverse
immediate effects of CDHEs on GPP, with 68% of global
vegetated areas experiencing reduced GPP during these events
(Figure 2). This is consistent with previous research in Europe,
southern China and eastern United States, which similarly observed
the negative response of GPP to droughts and hot events (Bastos
et al., 2020; Ting et al., 2023; Yuan et al., 2016; Zscheischler et al.,
2014). The immediate effects of CDHEs are primarily attributed to
the synergistic suppression of photosynthesis and ecosystem
productivity by drought and elevated temperatures. High
temperatures directly impair productivity by altering activity of
photosynthetic enzymes (Dusenge et al., 2019; Mathur et al.,
2014). Additionally, drought reduces soil moisture availability,

FIGURE 5
Lagged effect of compound humid-hot events. (a) Spatial distribution of maximum correlation coefficient (Rmax) between the SCEICHHE and GPP.
(b) Rmax (SCEICHHE vs. GPP) in different climate zones. (c) Spatial distribution of the lag months corresponding to the Rmax (SCEICHHE vs. GPP). (d) The
median value of Rmax (SCEICHHE vs. GPP) for different climate zones in different lag months.
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limiting water supply to photosynthetic tissues (Turner, 2019). In
response to water scarcity, plants typically close their stomata to
reduce water loss. However, under extreme heat stress, some plants
may reopen their stomata to cool down through transpiration (Lesk
et al., 2022; Li et al., 2017; Pirasteh-Anosheh et al., 2016). When high
temperatures and drought occur at the same time, VPD can induce
stomatal closure leading to excessive leaf temperatures and further
inhibiting photosynthesis (Zandalinas et al., 2020; Zhang and
Sonnewald, 2017). This mechanism is supported by our SHAP-
based analysis, which showed dominant roles of atmospheric
dryness and water limitation in driving productivity losses during
compound dry-hot conditions (Figure 3b).

Compared to CDHEs, CHHEs generally have a more positive
influence on GPP, with GPP increasing in 58% of global vegetated
areas during CHHEs (Figure 2). As the SHAP analysis indicates,
high temperatures and high soil moisture enhance productivity
(Figure 3c). Additionally, prerious studies reported that low VPD
facilitates greater stomatal opening, enhancing transpiration-based
cooling and mitigating heat stress while simultaneously boosting
photosynthetic efficiency (An et al., 2024; Slot et al., 2024; Zhu et al.,
2022). Polar, boreal shrub and boreal grassland ecosystems
displayed contrasting responses to both CHEs compared to
global average (Figures 2c, 6c). These ecosystems experienced
increased GPP during CDHEs but declines under CHHEs. This
reversal is closely linked to the cold climate of high-latitude regions,
where snowmelt, low precipitation and even lower evaporation rates,
sustain humid soil conditions during the growing season
(Rasmussen et al., 2020; Xu et al., 2021). Furthermore,
permafrost in deep layer limits water infiltration, leading to
surface water accumulation (Blume-Werry et al., 2019; Man
et al., 2022). In these environments, temperature is the primary

limiting factor for vegetation growth rather than water availability
(He et al., 2021; Seddon et al., 2016). Consequently, CDHEs in polar
zones promote higher GPP by meeting vegetation temperature
requirements (Lin et al., 2021; Zhang Z. et al., 2022). This
mechanism is further corroborated by our SHAP results, which
show that under CDHEs associated with increased GPP, Tmn and
Tmx contribute most significantly and positively to GPP
variation (Figure 3a).

The lagged effects of CDHEs and CHHEs on GPP exhibited
obvious spatial heterogeneity, reflecting the complex and
multifaceted responses of ecosystems to prolonged climate
anomalies. Our analysis uncovered that CDHEs generally impose
adverse lagged effects on GPP, whereas CHHEs tend to promote
lagged enhancement in productivity (Figures 4, 5). This divergence
primarily stems from the prolonged recovery of water availability
following CHEs, which often requires extended periods to return to
normal moisture levels (Gründemann et al., 2023; Jiao et al., 2021;
Schwalm et al., 2017). However, biome-specific variations exist. In
tropical and temperate regions, short-stature vegetation, including
shrubs and savannas, exhibited enhanced GPP due to the lagged
effects of CDHEs, whereas tropical EBF experienced adverse lagged
impacts from dry heat. This differential response can be attributed to
the rapid biomass accumulation and high resilience of short-stature
vegetation following drought (He et al., 2025; Jiang et al., 2024; Yao
et al., 2022). As water availability improves post-CDHEs, these
vegetation types recover quickly and leverage elevated
temperatures to stimulate GPP. Similar findings by Yu et al.
(2017) indicate that moderate drought stress can enhance
productivity and water use efficiency in tropical savannas.

The lagged effects of CDHEs on GPP also varied between
hemispheres. In the NH, GPP showed a delayed decline

FIGURE 6
Effects of CHEs on GPP of different vegetation types. (a)Global distribution of reclassified vegetation types based on theMODIS land cover data and
the Köppen–Geiger climate classification. (b) Lag time of the lagged effect of CDHEs and CHHEs on GPP in different vegetation types. (c) ΔGPP in
different vegetation types caused by two CHEs. The brown and green dotted lines respectively indicate the mean values of median ΔGPPCDHE and
ΔGPPCHHE across all vegetation types. (d) Lagged correlation between the two CHEs and GPP for various vegetation types.
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following CDHEs (median Rmax = 0.34), while in the SH, GPP
exhibited a lagged increase (median Rmax = −0.22). This
hemispheric divergence may result from the variations in
ecosystem composition. The SH is predominantly covered by
shrubs and grasslands, whereas the NH has a greater proportion
of forests and croplands. Forests, though resistant to extreme
drought and heat events, are less resilient than short-stature
vegetation (Yu et al., 2017). Meanwhile, crop yield reductions
due to dry-hot conditions have been observed in both regional
and global studies (Feng et al., 2019; Ting et al., 2023; Wu and Jiang,
2022). Additionally, human activities (Wada et al., 2013; Wanders
and Wada, 2015) and climate systems such as monsoons and
tropical high-pressure systems (Polson et al., 2014; Svoma et al.,
2013) contribute to extensive drought in the NH (Balting et al., 2021;
Naumann et al., 2018). In tropical and temperate zones, the impact
of CDHEs transitioned from positive to negative over time, while
CHHEs in arid and temperate zones exhibited a shift from negative
to positive effects. These temporal dynamics suggest the potential for
nonlinear, long-term impacts of compound heat events on
vegetation productivity. Establishing a precise mechanistic
explanation for the temporal shifts in the correlation between
SCEI and GPP remains challenging. We propose analyzing the
lag effects from both short-term and long-term perspectives. The
initial lag phase (0–3months) likely reflects immediate physiological
responses, including stomatal closure (Li et al., 2017; Slot et al.,
2024), photosynthetic inhibition (Von Buttlar et al., 2018; Zhang
et al., 2016), and short-term stress-induced metabolic adjustments
(Hasanagić et al., 2020). In contrast, the prolonged lag
(10–12 months) may stem from carry-over effects spanning
multiple growing seasons, such as delayed phenological shifts
(Liu et al., 2025), depletion or accumulation of carbon reserves
(Van Der Molen et al., 2011).

Additionally, several limitations in this study warrant further
refinement. Firstly, the sliding lag correlation analysis used to assess
the lagged effects of CHEs on GPP relies solely on the maximum
absolute Pearson correlation coefficient, which may simplify the
intricate interactions between CHEs and vegetation. For instance,
CHEs might exert multi-layered lagged effects on GPP across
different temporal scales or exhibit nonlinear lagged responses,
posing challenges to the current methodologies (Wei et al., 2022;
Zhao et al., 2020). Secondly, the use of monthly meteorological and
GPP data, while informative, is inadequate in tracking short-term
climate and vegetation dynamics. Previous studies indicate distinct
variations in plant water content within 1–4 weeks following rainfall
or heat events (Densmore-McCulloch et al., 2016; Dreesen et al.,
2012; Feldman et al., 2020; Mainali et al., 2014). Therefore,
employing higher temporal resolution data could facilitate more
precise quantification of CHEs frequency and duration, while
enabling a more nuanced exploration of vegetation responses.
Moreover, given the influence of vegetation greenness, diurnal
temperatures, and light use efficiency on vegetation productivity
at fine temporal scales (Chen et al., 2021; Tang et al., 2021; Wang
et al., 2022), as well as the findings by Wankmüller et al. (2024)
highlighting soil texture as a decisive factor influencing ecosystem
sensitivity to VPD and soil moisture, incorporating these additional
environmental variables into future analyses could provide a more
comprehensive mechanistic explanation of vegetation responses to
compound heat events.

5 Conclusion

This study compared the immediate and lagged effects of
compound dry-hot (CDHEs) and compound humid-hot (CHHEs)
events on global GPP, while also investigating how these impacts vary
across different climate zones and vegetation types. Our findings
demonstrated that, CDHEs were more frequent and more severe
during 2001–2018. Distinct patterns were observed in immediate GPP
responses, as CDHEs led to a reduction in GPP across 68% of
vegetated regions, while CHHEs increased GPP in 58% of areas.
On a global scale, the net GPP change was −5.26 Pg C yr−1 caused by
CDHEs and 1.67 Pg C yr−1 caused by CHHEs. In polar zones, boreal
shrubs, and boreal grasslands, CDHEs and CHHEs exerted opposite
immediate effects on GPP compared to the global average, causing net
GPP changes of 0.17 Pg C yr−1 and −0.04 Pg C yr−1, respectively.
Additionally, the lagged effect analysis revealed that CDHEs led to a
lagged decrease in GPP in 52% areas, while CHHEs resulted in a
lagged increase in 53% of areas, with obvious spatial heterogeneity in
these effects. The temporal distribution of lagged effects primarily
concentrated within 0–3 months and 10–12 month periods following
the CHEs. These results enhance the understanding of global
vegetation dynamics and carbon cycling in the context of future
climate extremes.
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