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Predicting the morphodynamic behaviour of pocket beaches exposed to
energetic waves and meso-tidal ranges—particularly under strong seasonal
variability and the influence of climate change—requires a robust
characterization of coastal morphodynamics across a wide range of temporal
and spatial scales. This study introduces a data-driven modelling approach using
Machine Learning (ML), specifically the Gradient Boosting Regressor (GBR), a
powerful ensemble technique capable of iteratively improving predictions from
limited datasets. The GBR model is applied to forecast beach evolution in
complex coastal settings, where physical understanding is limited, specifically
targeting a set of pocket beaches in the Bay of Biscay (North Atlantic). The
methodology combineswave time series andmorphodynamic variables obtained
through videometry stations (KOSTASystem technology). This ML framework is
then implemented to improve the current understanding of hydro-
morphological interactions and establish criteria to enhance the reliability of
erosion and flood predictions. The obtained predictions can steer the design and
implementation of protection measures to increase beach resilience under
climate change drivers, such as sea-level rise and wave storminess, leading to
improved adaptation strategies. This approach, which also demonstrates the
advantages of ML over conventional statistics, is developed from a set of extreme
meteo-oceanographic events acting on pocket beaches adjacent to and within
the Nervión estuary and Bilbao port. The application of conventional statistics and
ML techniques to this dataset begins with an extreme analysis of offshore wave
data, fromwhich a set of 32 wave storms has been propagated towards the coast
using the Simulated WAves Nearshore (SWAN) model. This dataset serves to
evaluate predictive formulations derived from statistical and ML tools, based on
monthly values, which filter out short-term variability and focus on medium- to
long-term (annual to decadal) beach behaviour—scales that are critical for
sustainable coastal management. Results demonstrate that ML-based
predictions using GBR outperform traditional statistical methods, where
validation metrics confirm the improved predictive accuracy, with R2 values
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exceeding 0.7 in several cases, without any evidence of overfitting. These
predictions contribute to understanding hydro-morphological interactions and
support the design of adaptive beach protection strategies.

KEYWORDS

Machine Learning, Gradient Boosting Regressor, key hydro- and morphodynamic
variables, cross-correlations, predictive formulations

1 Introduction

A reliable characterization of key hydro-morphodynamic
factors, driving beach evolution at various spatio-temporal scales,
is essential for accurately forecasting beach behaviour under present
and future climate conditions. Waves are the main hydrodynamic
driver for the behaviour of pocket beaches, where hydro-
morphodynamic interactions are also controlled by boundary
conditions such as possible land discharges and outer coast
transport processes (e.g., Risandi et al., 2020). To ensure effective
beach protection, maintenance, and risk management, it is crucial to
establish robust predictive relationships that integrate the combined
effects of waves, currents, and sea-level fluctuations—including
astronomical tides, meteorologically driven surges, and long-term
climatic trends (e.g., Alfaro Chavarría et al., 2017; Pau Sierra
et al., 2005).

In addition to classical hydrodynamic drivers, geological and
morphological factors play a critical role in shaping coastal evolution
and must also be considered. The lithological composition and
erosion resistance of coastal promontories significantly influence
sediment availability and long-term shoreline stability (Gallop et al.,
2020). Furthermore, the orientation, length, and configuration of
these promontories—as well as the angle at which prevailing waves
interact with them—determine the extent of wave energy dissipation
and the degree of sheltering experienced by pocket beaches
(Fellowes et al., 2022). The rocky nature of the shoreface in the
study area exacerbates their effects on wave propagation and energy
dissipation, thereby reinforcing spatial gradients in sediment
transport and beach response. Due to the nonlinear nature of
sand transport under these interactions and sediment erosion,
beach morphodynamics are highly sensitive to extreme events
(Section 3.1). Therefore, accurately characterizing extreme wave
storms—including their transformation from offshore to
nearshore—is essential to understanding and predicting coastal
responses (e.g., Mosso et al., 2009). Extreme distribution
functions for areas with energetic waves and high tidal ranges,
such as the Cantabrian Sea in the Bay of Biscay, require
addressing the sequences of wave storms, whose combined effect,
amplified by tides and river discharges, controls the
morphodynamic evolution of pocket beaches (e.g., Monge-
Ganuzas et al., 2017; Ortiz Berenguer et al., 2004).

Previous studies (e.g., Sánchez-Arcilla et al., 2006) highlight the
importance of accurately analysing erosion and accretion processes,
since their prediction is fundamental for beach maintenance and
sustainability, which supports in this area a range of important
socio-economic activities. Based on these predictions, erosion and
flooding risks can be curbed with solutions adapted to prevailing
biophysical and socioeconomic conditions on each beach. These
conditions depend on the considered beach archetype, here

classified as: a) urban; b) semi-urban; and c) rural-natural (e.g.,
Machado et al., 2020). The four analysed pocket beaches near or
inside the Nervión estuary (Figure 1) are predominantly semi-urban,
with significant socio-economic relevance, and where leisure
activities have a fundamental role.

The main key variables that can be considered to analyse beach
hydro-morphodynamic processes can be structured in five blocks:

a) Wave characteristics near the breaker zone, including
significant wave height (Hs), peak period (Tp), mean
propagation direction (Θm), wave steepness (S), and wave
storm duration (Dur)

b) Wind speed (Uwind), direction (Dir_Wi), and wind event
duration (Dur_Wi)

c) Circulation patterns linked to general circulation, local wind
circulation, and tidal currents, with emphasis on net transport
patterns, bed shear stresses, and turbulence levels

d) Sediment transport patterns, with a focus on the sand-size
fraction and distinguishing between alongshore and cross-
shore fluxes

e) Longshore and cross-shore beach evolution, accounting for the
distribution of sediment volumes across the subtidal,
intertidal, and supratidal zones.

Incoming wave energy is the dominant driver for beach
morphodynamics in the study area, particularly at monthly
timescales where astronomical tide effects have been filtered out.
As such, wave parameters can also serve as effective proxies for
meteorological influences, including atmospheric pressure. Due to
the limited availability of long and accurate local time series for some
of these atmospheric variables, wave-driven parameters -such as
significant wave height (Hs) and peak period (Tp)- are adopted in
this study as the primary forcing terms, effectively capturing the
influence of broader metocean conditions (Ibaceta and
Harley, 2024).

To address the challenges posed by nonlinearity and data
scarcity in coastal environments, recent research has increasingly
focused on the application of Machine Learning (ML) techniques in
morphodynamic studies. These approaches have demonstrated
strong capabilities in capturing complex interactions even under
data-limited settings (e.g., Al-Ghosoun et al., 2025; Kumar and
Leonardi, 2023; Mokarram et al., 2023). ML models offer a
promising alternative to traditional statistical and process-based
approaches, particularly in regions lacking high-resolution datasets
for the key hydro-morphodynamic variables. Building on this, the
present study develops and validates a tailored Gradient Boosting
Regressor (GBR) model for predicting morphodynamic changes in
semi-urban pocket beaches characterized by sparse observational
data. The proposed methodology integrates hydro-morphodynamic
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variables derived from videometry and wave propagation modelling,
offering a robust and objective enhancement over conventional
statistical techniques. By focusing on topographically complex
and sheltered settings—such as beaches influenced by river
mouths and bathymetries dominated by rocky shoals—this study
advances the predictive capacity of ensemble MLmodels under real-
world constraints, contributing to improved operational forecasting
of beach behaviour in the face of ongoing climatic changes.

2 Study area and data characterization

2.1 Study area

The beaches analysed in this study (Figure 1) are located within
the meso-tidal region of the Nervión estuary, in the vicinity of the
Port of Bilbao (43° 20′N, 3° 01′W), and include adjacent open-coast
sites to the west (La Arena beach) and east (Barinatxe and Arriatera-
Sopelana beaches) (e.g., Grifoll et al., 2009). This area has been the
subject of extensive hydrodynamic and geomorphological research,
providing a robust foundation for the development of site-specific
morphodynamic prediction models (e.g., de Santiago et al., 2021).
Among the selected sites, Arrigunaga beach is partially sheltered due
to its estuarine location and limited exposure to wave action. In
contrast, the other three beaches are fully exposed to high-energy
wave conditions, each of them exhibiting unique sedimentary
properties and varying degrees of bathymetric protection
(Gorostiaga and Díez, 1996).

La Arena beach, located between the municipalities of Muskiz
and Zierbena, extends approximately 966 m in length and 85 m in
width. It is partially influenced by the Barbadún inlet, a river mouth
system embedded within the pocket beach configuration. The
spacing and orientation of the bounding headlands influence the

geomorphological expression of the inlet and regulate the dynamics
of the supratidal beach zone. According to the Udden–Wentworth
grain-size classification, the sediment at the studied beaches is
composed predominantly of medium sand, with median grain
size (d50) values ranging between 250 and 500 µm. In La Arena,
the d50 is approximately 310 µm (e.g., An et al., 2025). Arrigunaga
beach, situated within the estuarine domain (Abra) in the
municipality of Getxo, has a total length of nearly 658 m, a
width of about 68 m, and a d50 of 460 µm (Abalia et al., 2024;
de Santiago et al., 2021). Barinatxe beach, located on the eastern side
of the estuary and extending across the municipalities of Getxo and
Sopelana, measures approximately 752 m in length and 80 m in
width, with a d50 of around 270 µm. The fourth site, Arriatera
beach—further east in the municipality of Sopelana—is
approximately 826 m long and 43 m wide, with slightly coarser
sediment characterized by a d50 of around 320 µm.

2.1.1 Morphodynamic characterisation
The proposed methodology, combining statistical analyses with

physical processes, links the morphodynamic response with key
hydrodynamic forcing factors, based on morphological data from
the videometry stations deployed at La Arena (since 2012),
Arrigunaga (since 2017), Barinatxe and Arrietara/Atxabiribil
(since 2018) beaches. The videometry is provided by the
KOSTASystem, which is based on TIMEX-type images (Epelde
et al., 2021). Two main morphological indicators have been
analysed for each beach: i) intertidal area, defined as the beach
area between the average high and low tide, which corresponds on
average to the levels +4.0 and +1.0 m respectively (above the Bilbao
port 0 reference level), ii) supratidal area, defined as the beach
surface above the average high tide level (Figure 2).

These morphodynamic variables are characterised from the
rectification of images captured using photogrammetry

FIGURE 1
Study area, showing on the left panel the regional location with the wave measurement stations (W1–W3, red circles) and the fixed measurement
point (W4, blue circle). The right panel offers a detailed view of the coastal zone adjacent to the Nervión estuary, including bathymetry contours, the
identified pocket beaches (La Arena, Arrigunaga, Barinatxe, and Arriatera), and the mouths of the Barbadún and Nervión rivers.
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techniques, where the coastline is identified as the more stable,
landward boundary of the active beach system—typically
corresponding to the upper limit of the supratidal zone—and is
delineated accordingly (Holland et al., 1997). To achieve this,
TIMEX-type images were generated by averaging 1-s frames over
a 10-min period (600 frames generating 1 final image), followed by a
smoothing to filter out wave fluctuations, which facilitates the
identification of the mean sea level contour, associated with the
shoreline position during the time interval considered.

Due to the semidiurnal tidal pattern at the study area, the
maximum feasible sampling resolution for the supratidal area is
14 days, as the mean high tide level only occurs during two spring
tide cycles per month. However, this resolution is often not viable
because it also requires daylight, low wave height (Hs), and fair-
weather conditions, which are uncommon, mainly during high-
energy periods throughout the year. Therefore, a 30-day sampling
resolution is adopted to effectively capture seasonal beach variability
(Abalia et al., 2024; De Santiago et al., 2013; Splinter et al., 2013).
Morphodynamic analyses begin with the mid-term behaviour of the
beach, consisting of the evolving shoreline position and elevation,
extracted from the available images, from which the combined effect
of tides and waves can be inferred. La Arena beach, where important
differences in behaviour between its eastern and western sectors
have been observed, requires characterising the effects due to the
small inlet in the Barbadún estuary. This estuary features a low-tide
sandbar, which, depending on its location, directly affects hydro-
morphodynamic processes in the more concave zone of the coastline

in that area. Considering the different relative weight of physical
processes for the western and eastern sectors of the beach, due to the
river mouth inlet and submerged bars but also to the different level
of hydrodynamic sheltering by rocky features, has led to split the
beach in two sectors (Figure 2), corresponding roughly to the two
beach halves, which exhibit different wave exposure, submerged bars
and presence/absence of river inlet. The obtained correlations for
each sector yield significantly better values and confirm the expected
differential behaviour, supporting the decision to treat both beach
sectors separately. The Eastern sector is more directly exposed to
wave action due to its orientation and limited sheltering from rocky
headlands, while the Western sector is more sheltered, with a higher
level of hydrodynamic filtering and with the influence of the
Barbadún river inlet and submerged bars. The longshore wave
height gradient leads to a recirculating longshore current that
flows from the Eastern to the Western sector and promotes
sediment accretion near the river mouth inlet. Such a
morphodynamic differentiation, due to geomorphic controls, is
consistent with previous findings in marine-dominated estuaries,
where headlands, shoals and inlet morphology significantly
modulate sediment transport and, in general, estuarine dynamics
(e.g., Jenkins et al., 2023).

On the other hand, the beach of Arriatera presents the highest
values of supratidal and intertidal area, with averaged values around
12 and 32 ha, ranging between +-4 and +-5 ha, respectively. The
beach of Barinatxe has lower supratidal and intertidal values than
Barinatxe, but with a similar variability. Finally, the beach of

FIGURE 2
Spatial variation of morphological indicators for La Arena beach, showing supratidal and intertidal area subdomains with differentiated behaviour
(west and east sectors of the beach) and the upper active profile limit is indicated by a purple line.
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Arrigunaga exhibits a decrease in supratidal and intertidal values,
and so their variability is also smaller than for the former two.

The analysed morphodynamic time series include data on
supratidal (Figure 3 top) and intertidal areas (Figure 3 bottom).
For a comprehensive characterization of local hydro-
morphodynamics, it is important to consider that the data
collected for each beach do not cover the same interval.
Therefore, any intercomparison must explicitly consider the time
interval and spatial domain that the data represents.

2.1.2 Hydrodynamic characterisation
The hydrodynamic characterisation begins with data from the

incoming waves, as the primary forcing factor, whose records have
been analysed for the three oceanographic (W1, W2, and W3,
respectively). Offshore stations, supplemented by a fixed
measurement point (W4) inside the estuary, where an acoustic
Doppler profiler was deployed (Figure 1). The deepest wave data
recording corresponds to a buoy of the REDEXT (External wave buoy
Network) system of PdE. This buoy, known as Bilbao-Vizcaya (W1), is
located in deep waters (coordinates 43.64° N, 3.04° W) andmoored at a

depth of 600 m, providing a time series that goes from 1990 to 2022,
with 32 years of valid wave data (Conjunto de datos_REDEXT, 2015).

The intermediate-depth wave records correspond to the coastal
buoy called Bilbao II (W2) located at coordinates 43.40° N and
3.13°W, known as Castro’s buoy (Figure 1), andmoored at a depth of
53 m. This buoy provided a time series of good-quality wave data
spanning from 2004 to 2023.

The remaining wave stations (W3 and W4) are located within the
Nervión estuary, inside the port domain. The outermost is the Abra-
Zierbena buoy (W3), located at 43.37° N, 3.07° W at a depth of 22 m
(Figure 1), which is part of the REDCOS (Coastal Network) system of
PdE and provides wave data from 2001 to 2023. The W4 station is a
Doppler profiler (NORTEK), located at 43.36° N, 3.04° W, at a depth of
21 m in an inner (inland) section of the estuary. It has been recording
continuous wave time series from 2016 to 2023. To ensure its high-
quality performance, the station operates with hourly wave bursts
consisting of 2,048 samples recorded at a sampling frequency of 2 Hz.

The local wave conditions in front of each studied beach are
obtained through a robust wave propagation, based on Snell’s law
and linear theory. Waves are propagated from deep waters recorded

FIGURE 3
Evolution of the supratidal area (upper panel) and intertidal area (lower panel) anomalies for La Arena beach, distinguishing between its east and west
subdomains, Arrigunaga beach, Barinatxe beach and Arriatera beach.
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at the W1 station up to the outer breaking zone around 8 m depth,
where the measurements for validation are available. The key wave
parameters considered are the significant wave height (Hs), peak
period (Tp) and wave direction (Θm). In the case of Arrigunaga
beach, as it is slightly sheltered by a submerged dike, the propagation
was performed in two steps. First, the waves were propagated from
deep water up to 30 m depth, considering the direction of
propagation perpendicular to the dike. Then, the waves were
propagated from 30 m up to 8 m depth, considering the
direction of propagation perpendicular to the beach. These target
depths were chosen due to the absence of permanent in situ wave
measurements directly offshore of the studied beaches.

The monthly time series derived from these linearly propagated
wave conditions has been employed in subsequent correlation and
prediction analyses, involving all key hydro-morphodynamic
variables, which enable a classification of incident waves into
predominant wind sea or swell classes. Swell waves, which
typically exhibit periods between 7 and 12 s, induce a
significantly different morphodynamic response compared to sea-
type waves (Sánchez-Arcilla et al., 2008).

Locally generated sea waves, characterized by short periods and
high directional variability, are commonly associated with erosive
processes, whereas swell waves—longer andmore regular—are often
linked to beach accretion and natural recovery processes (e.g.,
Sánchez Arcilla and Jiménez, 1995).

To distinguish between sea and swell wave conditions, the
methodology employs the mean wave period (Tm) derived from
the time series, as it offers more stability than the spectral width
parameter (e.g., Carevic et al., 2012). The following empirical
relationship is used (Equation 1):

Tp � 1.40Tm (1)

Based on this, Equation 2 is applied to classify a wave record as
either swell or sea according to the criterion:

Hs > 0.45 +
1.3
1.11 Tm

4.5
( )1.8

→ Swell type

otherwise → Sea type

⎧⎪⎪⎨⎪⎪⎩ (2)

3 Methodological framework

The proposedmethodology is based on key hydro-morphodynamic
variables that control the response of pocket beaches under energetic
hydrodynamic conditions. Their identification and selection is
structured (Figure 4) in the following steps:

Step 1: Identification of key hydrodynamic drivers. Assessment of
the offshore wave climate and its propagation toward the
breaking zones of the four studied beaches, where
sufficient videometry data are available to characterize
dominant morphodynamic behaviour patterns.

Step 2: Extreme event characterization. Use of offshore wave buoy
data and the SWAN model to simulate the propagation of
32 annual maximum storm events. These simulations
provide a characterisation of extreme wave conditions
for each studied beach.

Step 3: Analysis of mid-to long-term hydro-morphodynamic
relations. Investigation of seasonal to multi-year
variability in the intertidal and supratidal zones across
the four pocket beaches through cross-correlation analyses
of the available data.

Step 4: Development of ML-based predictive models.
Formulation of machine learning models to predict the
behaviour of both emerged and submerged beach areas,
incorporating the most relevant temporal scales and
prevailing hydrodynamic conditions.

Step 5: Operational integration. Recommendations and
suggestions for the implementation and optimization of
the developed algorithms to enhance automated decision-
making for efficient and proactive beach maintenance.

3.1 Assessment under extreme events

The methodology for characterizing extreme events (Step 2) is
based on data collected from fixed measurement stations, which are
particularly well-suited for this type of analysis. In this study,
extreme events are identified using significant wave height (Hs)
and storm duration as the primary criteria. Specifically, an event is
classified as extreme when wave height exceeds a predefined
threshold for a sustained period. This methodology, known as
Peak Over Threshold (POT), enables a more accurate
characterization of extreme events for relatively short time series,
as it yields a larger extreme sample compared to alternative methods
such as annual maxima (e.g., de Alfonso et al., 2021).

The selection of thresholds to characterize extreme events
follows the recommendations of PdE (Estado, 2024; Estado,
2020; Estado, 2023), which integrates knowledge from
numerous extreme event analyses along the Spanish coast. The
proposed approach standardizes the definition of extreme events
and minimizes sources of error (Hawkes et al., 2008; Sánchez-
Arcilla et al., 2008). For the study zone (Bay of Biscay) the
proposed methodology defines thus the concept of extreme
event following two basic criteria: i) Event duration, with a Hs

above a threshold lasting more than 5 h; ii) Event independence,
with a minimum gap of 5 days between two storm events to ensure
that two consecutive (not continuous) events are statistically and
physically independent (Bonta and Rao, 1988).

This methodology has been applied to select a sample of extreme
events, where the relative frequency of their peaks has been fitted to a
three-parameter Weibull distribution function (Fw), defined by
Equation 3 the expression below, which is used to model the
statistical behaviour of extreme wave heights. The distribution
parameters are estimated using the Pyextremes library, a Python-
based tool specifically developed for extreme value analysis, which
ensures a statistically robust and reproducible estimation of
distribution parameters:

Fw Ha( ) � 1 − e − Ha − α
β( )γ[ ] (3)

where Ha is the significant wave height with a certain value, α is the
location parameter, β is the scale parameter, and γ is the shape
parameter (e.g., González-Marco et al., 2007).
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3.2 Propagation of extreme events

Step 2 (Figure 4) continues with a local characterization of
extremes at each beach, which requires propagating the incident
waves from the measurement point to the outer breaker zone. Wave
propagation has been simulated using the SWAN code, a numerical
model recognized for its low computational cost and ease of
validation, accurately reproducing the main processes (refraction,
numerical diffraction, bottom friction, and bottom-induced
breaking) governing wave propagation towards the surf zone
(e.g., Booij et al., 1997; Lei et al., 2023). Given the distances
involved, local wave generation and wave-wave interactions
should play a minor role and have not been explicitly addressed.

Relative frequencies of storm peaks have been estimated from
the Peak Over Threshold (POT) and annual maximum methods
(e.g., González-Marco et al., 2008). The latter method relies on the
maximum significant wave height peak yearly recorded, which
provides a sample of annual maxima (e.g., Jarušková and Hanek,
2006). The performed analysis reveals that, for long enough time
series like the ones here treated, both methods yield similar results,
with differences of less than 0.2 m (under 5% error on Basque
beaches) for 100-year return periods (see also Kapelonis et al., 2015).
Using annual maxima is computationally more efficient than
propagating a larger number of storms defined by the POT
method, and because of that, the proposed methodology starts
utilizing annual maximum values derived by partitioning the

FIGURE 4
Diagram illustrating the proposed methodological framework, detailing the sequential steps and key components involved in developing a robust
predictive tool for proactive beach management and maintenance.
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time series into yearly intervals (e.g., Faranda et al., 2011) and fitting
the sample frequencies to an extreme value theory (EVT). For the
Nervión estuary case, the 32-year time series from the W1 buoy
yielded 32 storms, each characterised by its significant wave height at
the peak, associated peak period and mean direction. These extreme
storm events provide the boundary conditions for the various
analysed scenarios (e.g., Allard and Rogers, 2002). The wave
propagation model operates in Cartesian coordinates, with
distances measured in meters along the X and Y-axes, covering
latitudes 43.47° N to 43.32° N and longitudes −2.97° W to −3.16° W,
as suggested in previous studies (Altomare et al., 2024). A specific
bathymetry averaged over 15 × 15 m cells has been employed for
wave propagation, based on two-dimensional, steady-state
simulations with spectra discretized into 74 equidistant
directional bands and 75 frequency bands spanning from
0.0521 Hz to 0.5 Hz to include the main wave train components.
The 32 selected storm events were propagated using default model
coefficients, with minor local adjustments to account for site-specific
seabed characteristics. The bottom friction coefficient was adapted
based on sediment grain size; however, the model did not explicitly
account for the presence of loose sediment layers or rocky shoal
bedforms. To capture pre-breaking wave conditions under extreme
storm scenarios as accurately as possible, four representative points
-each located offshore of one of the studied beaches at a depth of
15 m-were selected for analysis.

3.3 Stationarity and homogeneity
requirements

To detect correlations between parameters or changes in wave
regimes, whether due to port structures, bathymetric modifications,
or other factors (Step 3), it is important to verify that the time series
do not exhibit significant autocorrelation and are stationary (e.g.,
Guevara Díaz, 2014). To address these points, monthly data have
been selected, since it helps mitigate short-term autocorrelation
effects, thereby enhancing the statistical robustness of the cross-
correlation analysis. Accordingly, the proposed methodology
(Figure 4) includes the application of both the Autocorrelation
Function (ACF) and the Augmented Dickey-Fuller (ADF) test to
verify that the time series maintains constant mean and variance
over time, a key condition for a meaningful correlation analysis (e.g.,
Choi et al., 2021).

The ACF technique explores how the correlation between two
values of a signal (the wave time series in this case) changes as the
time interval between them varies (e.g., Hunt, 2016). Previous
studies have demonstrated an annual periodicity, reflecting the
seasonal nature of offshore wave conditions, which are generally
more energetic during winter (Coe et al., 2022). The proposed
methodology involves conducting several statistical tests to assess
stationarity as a function of time lag (delay). Specifically, if a series is
non-stationary, the ACF will show high and significant
autocorrelation coefficients along several lags that gradually
decrease towards zero. Conversely, if serial correlation has been
effectively removed, after lag 0, the correlation coefficient will
rapidly decline in subsequent lags.

The autocorrelation coefficient is obtained from the time series
x(t) using Equation 4 the following expression, where subscripts

indicate the time instant (e.g., Hawkes et al., 2008; Nounou and
Bakshi, 2000)

ρk �
Cov xt, xt+k( )
















Var xt( )Var xt+k( )√ (4)

Once the ACF is computed, any serial correlation detected in the
series must be removed to ensure robust cross-correlation analyses.
To achieve this, the methodology proposes two well-established
techniques: i) data resampling and ii) data averaging. In this study,
for the hydrodynamic data, the second technique is initially chosen
at a monthly scale, because the morphodynamic time series are
based on monthly data. This approach not only facilitates the
stationarization of the series but also preserves the seasonality
inherent in the data.

To determine whether the series has a unit root, the proposed
methodology employs the ADF test (e.g., Livieris et al., 2021). This
widely used statistical test evaluates the null hypothesis (the time
series has a unit root, indicating non-stationarity) versus the
alternative hypothesis (the series is stationary) (Jebb et al., 2015;
Siino et al., 2020). A significance level of 10% is used as the threshold
for rejecting the null hypothesis, thereby confirming that the series
does not have a unit root.

3.4 Assessment of cross-correlations

In the proposed methodology, once all necessary wave
parameters are obtained, a cross-correlation analysis is
performed to explore potential spatial and temporal
relationships among the key hydro-morphodynamic variables.
This process enables identifying predictive relationships
between data series, determining both their similarity and the
time lag between them (Jamshidi, 2024). Such correlations, derived
from comparing hydro-morphodynamic signals, facilitate the
prediction of key variables critical for beach protection and
sustainability. For example, the morphodynamic response
time—which can be understood as the period of beach erosion
and subsequent recovery—can be estimated and applied within a
proactive beach maintenance.

To compare any couple of time series (x1, x2 respectively) and
characterize the dependency relationships between them as a
function of the time lag (t), their correlation is defined by
Equation 5:

x1*x2( ) tCorr( ) � ∫∞

−∞
x1 t( )x2 t + tCorr( )dt (5)

where x1(t) is the conjugate complex of x1(t) and tcorr is the
displacement or delay between the two signals (e.g., Nauleau
et al., 2018).

It is important to note that the presence of correlations at lag =
0 does not imply correlations at other lags (e.g., Podobnik et al.,
2010), where the time lag is expressed in the same units as the time
scale of the analysed series. For instance, when using monthly
averages, each lag corresponds to 1 month, thereby allowing a
data-driven assessment of erosion and recovery periods for the
studied beaches.

In a typical cross-correlation analysis, when the maximum
correlation occurs at the first time-lag (lag = 0), this value is
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equivalent to Pearson’s correlation coefficient. Furthermore, if the
maximum cross-correlation occurs at positive lags, it indicates that
the independent series (x1) leads the dependent series (x2);
conversely, a negative lag implies that x2 leads x1 (e.g., Guevara
Díaz, 2014). Based on observed hydro-morphodynamic processes
and knowledge, both local and generic, the developed methodology
assumes that hydrodynamic variables always lead morphodynamic
ones, so that the dependent series is consistently associated with the
supratidal and intertidal beach areas and each time lag in the cross-
correlation analysis corresponds to a 1-month interval, enabling a
direct interpretation of the observed morphodynamic response.

3.5 Assessment of morphodynamic
predictions

The prediction models are based on decision trees and machine
learning, utilizing the Gradient Boosting Regressor (GBR),
implemented with the Scikit-Learn library (Pedregosa et al.,
2011) executed on a standard Intel i7-based machine with 32GB
RAM. The core idea of decision trees is to subdivide the input data
space into disjoint regions, ensuring that samples within each region
belong to the same class (e.g., Alomari et al., 2023). This approach
allows a complex system to be represented as a tree, simplifying the
problem, particularly when the available dataset is not large enough
for reliable multiple regression modelling (e.g., Bundy et al., 2010;
Pourzangbar et al., 2023).

Given the typical constraints in coastal morphodynamic data
already mentioned, the GBR algorithm is preferred over other
ensemble models (such as C4.5 Decision Trees or Random
Forests) because it reduces bias by revealing discrepancies
between the exact result and the model’s average forecast, while
controlling variance, thereby indicating any excessive model
complexity (Raihan and Nahid, 2023). The performance of GBR
on limited datasets, containing fewer than 3,000 observations
(Otchere et al., 2022) shows that this ML tool outperforms
alternatives such as Random Forest, in terms of predictive
accuracy, demonstrating its suitability for small-to-medium-sized
environmental datasets.

Boosting has been applied next to address these issues by
combining multiple models to create a more robust predictor
(e.g., Yaman and Subasi, 2019). The proposed methodology
begins with training an initial (“weak”) model on the available
data. Subsequently, additional models are trained to correct the
errors not captured by the preceding model, continuing iteratively.
In this study, the morphodynamic time series analysed -derived
from TIMEX-type videometry (Section 2.1.1)- span approximately
5 years for the beaches of Arriatera, Barinatxe, and Arrigunaga, and
13 years for La Arena beach. These series have been aligned with the
corresponding hydrodynamic predictors and subjected to stringent
quality control procedures. However, due to the limited length of
some time series, a degree of uncertainty remains. Because of that,
ML models based on the boosting concept are designed to improve
predictions by accounting for nonlinear interactions between the
data (e.g., Dyer et al., 2022). In this way, GBR is well suited to limit
uncertainty in the predictions, and a model with M trees has been
generated and applied using the expression shown in Equation 6
(e.g., Otchere et al., 2022):

fM xj( ) � ∑M
m

γmhm xj( ) (6)

Where hm are the weak variables (those not providing a good
predictor model) and ym are the corresponding scale factors. In
regression problems where the response variable Y is continuous, it
is common to use a loss function to quantify the discrepancy
between predicted and observed values. In this study, the square-
error loss function (L2 loss) has been chosen to give more weight to
the high-energy morphodynamic responses. It is expressed in
Equation 7 as:

ψ y, f( )L2 � 1
2

y − f( )2 (7)

The L2 loss function, selected for its simplicity and favourable
analytical properties, as it strongly penalizes large deviations, is
applied to encourage the model to correct significant errors during
training (e.g., Natekin and Knoll, 2013). Following the selection of
the loss function, the model is constructed according to the proposed
methodology (Figure 4) using the Scikit-Learn library (e.g.,
Pedregosa et al., 2011) as summarised below.

The developed methodology organizes the modelling for each
beach, starting by the morphodynamic response, specifically
changes in supratidal and intertidal beach areas, predicted as a
function of hydrodynamic forcing. Accordingly, the primary input
variables (X) consist of the most relevant hydrodynamic drivers,
while the dependent variables (y) are selected to characterize the
beach morphodynamic evolution, focusing on the emerged
(supratidal) and transitional (intertidal) zones of the active
beach profile. Given the observed lack of a consistent
dependency between the supratidal and intertidal zones, the
model design incorporates a cross-dependency structure: the
intertidal area is included as an input when predicting
the supratidal area, and vice versa. This approach enhances the
model’s ability to capture potential interactions between profile
subzones. The dataset is randomly partitioned into training and
testing subsets, comprising 75% and 25% of the data, respectively.
This division is well aligned with standard machine learning
practices, which commonly allocate 70% to 80% of the data for
training purposes (e.g., Kirdeev et al., 2024; e.g., Alhakeem et al.,
2022; Huang et al., 2022).

To determine the optimal hyperparameters for the GBR model,
and due to the limited dataset size, no separate validation set was
created. Instead, 5-fold cross-validation was implemented using the
GridSearchCV. This technique systematically explores every
possible combination of selected parameters. A total of 8 model
configurations were tested for every beach (5 beaches x 2 areas =
80 models total), and the performance was assessed by comparing
the model’s prediction across the validation folds (e.g., Belete and
Huchaiah, 2022).

Among the various hyperparameters considered (Table 1), the
following have been selected to frame the analysis (e.g., Xie
et al., 2022):

a) Number of estimators: Defines the number of sequential
decision trees, where although a higher number can
improve the model accuracy, it also increases the risk of
overfitting and computational costs.
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b) Learning rate: Modulates the contribution of each tree to the
final model, where a lower rate typically enhances the model’s
generalizability.

c) Maximum depth of each tree: Allows the model to capture
more complex interactions, where higher maxima can also
lead to overfitting.

Although the GBR was selected for its robustness under low-
data conditions, once more data becomes available in the coming
years, alternative machine learning models—such as Random Forest
or Neural Networks—may offer different performances in other
settings, not analysed here due to the current dataset size.

3.6 Metrics for validation

The developed methodology evaluates the performance of the
various models and compares the selected ML-based tool with
conventional statistical approaches. Three widely used metrics
(Meng et al., 2024) are employed:

a) Coefficient of determination (R2), evaluating the model’s
capacity to fit the data and is defined in Equation 8:

R2 � 1 − SSR

SS
(8)

Where SSR is the sum of the squares of the regression values, and SS
is the sum of squares.

b) Mean absolute percentage error (MAPE), evaluating the
model’s accuracy to reproduce the data, comparing

predicted values (ŷi) and measured data (yi) as defined in
Equation 9.

MAPE � 100
n

∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (9)

c) Root Mean Square Error (RMSE), providing a measure of the
error between predicted and measured data according to
Equation 10 (Wu et al., 2023).

RMSE �













1
n
∑n
i�1

ŷi − yi( )2√
(10)

4 Results and discussion

4.1 Wave predictions and uncertainty

The results begin with an extreme value analysis, using data
from the W1 and W2 buoys (upper graph in Figure 5), both
belonging to the PdE network. As explained earlier, this analysis
enables wave climate predictions for beaches that are directly
exposed to wave action, namely, La Arena, Barinatxe, and
Arriatera. Data from buoy W4, located within the estuary (port)
domain in front of Arrigunaga beach (lower panel in Figure 5),
allows local predictions for this site. The full set of studied beaches
facilitates a comparison of central trends and confidence intervals.

Comparing extreme value distribution functions for Hs at two
different depths and from various measuring stations reveals the
influence of wave propagation and evolution processes. Notably, the
Hs recorded at the W2 buoy are systematically lower than those at

TABLE 1 Main characteristics of the set of selected hyperparameters to frame prediction models for both the supratidal and intertidal areas of the studied
beaches.

Beach Hyperparameter Search space Best parameter supra/Inter-tidal areas

La Arena west section No. estimators (500, 1,000) No. estimators: 500/500

Learning rate (0.01, 0.1) Learning rate: 0.01/0.01

Max tree depth (1, 5) Max tree depth: 1/1

La Arena east section No. estimators (500, 1,000) No. estimators: 500/500

Learning rate (0.01, 0.1) Learning rate: 0.01/0.01

Max tree depth (1, 5) Max tree depth: 1/1

Arrigunaga No. estimators (500, 1,000) No. estimators: 1,000/500

Learning rate (0.01, 0.1) Learning rate: 0.01/0.01

Max tree depth (1, 5) Max tree depth: 1/1

Barinatxe No. estimators (500, 1,000) No. estimators: 500/500

Learning rate (0.01, 0.1) Learning rate: 0.01/0.01

Max tree depth (1, 5) Max tree depth: 1/1

Arriatera No. estimators (500, 1,000) No. estimators: 500/1,000

Learning rate (0.01, 0.1) Learning rate: 0.01/0.01

Max tree depth (1, 5) Max tree depth: 1/1
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W1. This behaviour can be attributed to depth reduction, which
increases bottom friction, and local effects such as shoaling,
refraction, and diffraction (e.g., Bosboom and Stive, 2023). For a
1000-year return period, the uncertainty for W1 is 30.62%, whereas
it rises to 36.16% for W2. These uncertainty levels are consistent but
slightly different, due to several factors such as series length
duration, where the W1 record spans 32 years, while W2 covers
only 19 years. This, together with higher gradients and variability
closer to the coast, explains the higher uncertainty at W2.

This analysis provides an initial view of the impact of extremeHs on
the most exposed beaches (La Arena, Barinatxe, and Arriatera-
Sopelana, as shown in the upper part of Figure 5). Similarly, it
characterizes extreme wave conditions at measurement points within
the Nervión estuary (lower part of Figure 5), particularly in front of the
Arrigunaga beach. Extreme value distributions frombuoysW3 andW4,
both located inside the estuary, exhibit similar characteristics because
they are recorded at nearly identical depths and subject to similar wave
propagation effects, namely, refraction, diffraction, and bottom friction.
However, the uncertainty is heremore pronounced due to differences in
the time series length:W4 covers only 7 years (2016–2023) compared to
21 years for W3 (2001–2022). For a 1000-year return period, the
uncertainty (e.g., the gap between the two 90% confidence limits) is

49.17% forW3 and 53.73% forW4. The shorter series atW4 leads to an
overestimation of the central Hs value by 5.98 m between the two series
for the same return period, highlighting the importance of having
sufficiently long time series, where a threshold of 7 years appears to
emerge from the so far available data.

4.2 Stationarity control

The methodology next examines potential serial correlations for
key hydro-morphodynamic variables, using their monthly time
series. From these data, auto-correlograms were generated (see
Table 2), showing a decrease in correlation at the second time
lag against the Hs parameter as the main driver for the considered
beaches. This behaviour, consistent with the state of the art (e.g., Coe
et al., 2022; Guevara Díaz, 2014) allows a first differentiation
between beaches for eventual clustering:

Type A beaches, such as Arriatera, are characterised by relatively
low autocorrelation values (0.518), which indicate reduced temporal
persistence and higher short-term variability in the wave signal,
probably due to the location (at the eastern sector of the study area as
shown in Figure 1) which is more directly exposed to incoming wave

FIGURE 5
Comparison of extreme distributions of the significant wave height (Hs) against return periods (Tr) for W1 andW2 buoys (upper panel), both from the
PdE network andW3 andW4 buoys (lower panel). All charts show the central trends and 90% confidence intervals, while the location of the wave stations
appears in Figure 1.
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energy and therefore less influenced by complex geomorphological
constraints. As a result, the system exhibits higher sensitivity to
external drivers, enhancing the interpretability of cross-correlation
analyses by minimising the confounding effects of internal serial
dependence.

Type B beaches, exemplified by Arrigunaga, are situated within
the Nervión estuary and are partially shielded by port infrastructure.
While this configuration provides substantial sheltering from direct
wave action, the wave field is significantly modified by complex
physical processes such as refraction and diffraction. These
mechanisms redistribute energy spatially and dampen high-
frequency variability, resulting in smoothed hydrodynamic signals
and, consequently, lower autocorrelation values.

Type C beaches, including Barinatxe and La Arena, display
higher autocorrelation values (0.597 and 0.596, respectively), though
driven by distinct mechanisms. Barinatxe, despite being outside the
estuary, is partially sheltered by offshore rocky shoals, which
attenuate incident wave energy and reduce short-term variability
in the wave forcing. La Arena, on the other hand, is located in the
western part of the study area and is influenced by both
geomorphological sheltering and the Barbadún river inlet. These
features contribute to complex hydro-morphodynamic interactions
that sustain more persistent beach states over time, thereby
increasing temporal autocorrelation in the signal.

4.3 Bathymetric control

The derived prediction models, although not explicitly tackling
wave propagation phenomena, consider the effects of propagation

from process-based simulations using the SWAN code (Table 3),
which accounts for key physical mechanisms related to bathymetric
effects such as wave refraction, energy spreading around obstacles
(diffraction approximation), and wave breaking. The obtained
results allow characterizing local wave energy variations at each
beach, thereby providing better data conditioning from combined
physical and statistical criteria.

From these results, it is apparent that La Arena beach is more
sheltered than the two eastern beaches, with ameanHs of 5.89m and
a standard deviation of 0.36 m. Its minimum propagated storm is
4.50 m, with the 25th and 75th percentiles at 5.83 m and 6.09 m,
respectively, and a maximum of 6.25 m. Arrigunaga beach, instead,
located within the estuary and, thus, naturally more sheltered from
direct wave action, exhibits the lowest values among the beaches,
with an average Hs of 4.68 m, a standard deviation of 0.61 m, and
extreme waves ranging from 2.91 m to 5.51 m. Barinatxe beach, on
the more exposed east side, has a slightly higher average Hs of 6.26 m
(σ = 0.65 m), with minimum and maximum values of 4.11 m and
7.00 m, respectively. Arriatera beach records the highest wave
heights, indicating less local sheltering by bathymetric features,
with an average Hs of 6.33 m, a standard deviation of 0.76 m,
and a maximum of 7.34 m.

In summary, beaches protected by shoreline orientation and
bathymetry exhibit lower incident wave energy in the near- and
intermediate fields. When comparing standard deviations, beaches
with more bathymetric sheltering and therefore hydrodynamic
filtering display a more homogeneous behaviour, as the filtered
waves show lower variability than the natural incident waves on
unprotected beaches. This filtering effect is particularly pronounced
at La Arena, which benefits from protective rocky shoals under NW

TABLE 2 Autocorrelations for the Hs time series, as the main driver for morphological evolution in each of the studied beaches.

Beach Lag 1 ΔLag

La Arena 0.596 0.404

Arrigunaga 0.479 0.521

Barinatxe 0.597 0.403

Arriartera 0.518 0.482

The Table displays autocorrelation values in time steps one lag apart (lag 1) and the differences between lag 1 and lag 0.

TABLE 3 Summary of statistical parameters from north-westerly wave storm propagation results using the SWAN model.

Statistical parameter La arena beach Arrigunaga beach Barinatxe beach Arriatera beach

No. of data 32 32 32 32

µ 5.89 4.68 6.26 6.33

σ 0.36 0.61 0.65 0.76

Hs min 4.5 2.91 4.11 4.07

Percentile 25 5.83 4.42 6.05 5.99

Percentile 75 6.09 5.17 6.74 6.92

Hs max 6.25 5.51 7 7.34

Data are presented for three of the most exposed beaches (one on the west and two on the east side of the estuary), together with the beach inside the estuarine domain. “No.” indicates the

number of data points, µ the mean, σ the standard deviation, Hs min/max. The minimum/maximum significant wave height, and the 25th and 75th percentiles represent the corresponding

percentiles.
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storms (see Figure 5) and features a higher level of local protection.
A similar, albeit less pronounced effect, is observed at Barinatxe and
Arrigunaga.

These results validate the autocorrelation analysis (Table 2),
supporting the fact that La Arena and Barinatxe present data series
with higher correlations. This analysis confirms that the filtering
effect of rocky shoals conditions incident waves, resulting in lower
spatial variability on protected beaches. Conversely, beaches without
such a rocky protection (e.g., Arriatera) exhibit greater variability.
The filtering effect leads to a higher degree of self-correlation among
incident waves, whose characteristics (Figure 6) reflect the control
exerted by the domain geometry on wave propagation, as indicated
by the wave directional roses, which show that waves at La Arena
and in minor grade Barinatxe, are lower but more perpendicular
compared to those at Arriatera.

From the joint analyses of key hydro-morphodynamic
parameters used as predictors in the subsequent machine
learning models, the maximum correlations (lag 0 for supratidal
and lag 1 for intertidal areas in all cases) can be aggregated and
compared, which allows evaluating (Figure 7) the intensity of
maximum correlations for two key morphodynamic variables: a)
supratidal area; b) intertidal area.

Due to the complex morphodynamics and bathymetry of the La
Arena beach (Section 2), located within an embayment with the
Barbadun river inlet (Figure 8), correlations for this case improve
significantly when considering the differential behaviour of its
eastern and western sectors (Figure 7). Such a splitting
(Figure 2), allows a more robust analysis of the control exerted
by river inlet bars on both the intertidal and supratidal zones. As is
common for such pocket beaches, the western sector (influenced by
the river) shows positive correlations, indicating that more energetic
waves result in greater accretion in the supratidal area. This
behaviour can be attributed to three processes (Figure 8): a)
enhanced sediment input and hydraulic protection during storm-
induced floods; b) protection and nourishment from river mouth
bars in the western subdomain, which can merge with the
beachfront during energetic wave events, leading to local

accretion; c) recirculation within pocket beaches associated to
alongshore varying wave heights, which are larger for the more
exposed eastern sector (when compared to the more sheltered
western sector).

Furthermore, the steeper western cliff, when compared to the
eastern one, can also control wave propagation, reflection and
breaking for both sectors. This contributes to a greater longitudinal
gradient in the breaker zone from west to east, enhancing the
longshore current due to differential set-up. It is important to note
that each transport mechanism (Figure 8) operates on its own local
time and space scales, where longshore processes tend to dominate at
a scale of months to years for the whole beach stretch, while transverse
transport typically dominates during high-energy and river discharge
events, controlling beach profile dynamics (e.g., Lim and Lee, 2023).
The evolution of submerged bars and their effect on the emerged
beach (supratidal) area occurs on a slower scale, requiring longer or
cumulative storm events.

For the eastern sector of La Arena beach, less affected by river
dynamics (Figure 8), a behaviour similar to that of the other beaches
can be observed, presenting negative and moderate correlations
between hydrodynamic andmorphodynamic parameters, associated
with an inverse relationship between wave energy and supratidal
area. Comparative analyses of supratidal time series for the other
beaches show how increasing wave energy leads to larger erosion
and, consequently, a reduction in supratidal area. The spatial
variability of the correlation between supratidal area and
significant local wave height reveals that the near- and
intermediate-field bathymetry controls the local incident Hs. This
is especially evident at La Arena beach, particularly its eastern sector,
less influenced by river discharges and more sheltered by rocky
shoals (Table 3) and displaying moderate negative correlations,
similar to those observed at Barinatxe beach (r = −0.52 for Hs).
This pattern is consistent with the bathymetric filtering effect
demonstrated by the SWAN model simulations, which indicate
higher wave dissipation before reaching the outer surf zone of
these sheltered beaches. The opposite pattern can be illustrated
by Arriatera beach, with a gentler bathymetry and higher incident

FIGURE 6
Plots of the digitised bottom bathymetry and shoreline used for simulating wave propagation. The nearshore directional distribution of wave power
(wave roses) also demonstrates the different levels of bathymetric control for the propagated sample of 32 annual maxima storms.
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wave heights, which leads to the highest negative correlations
(r = −0.73 for Hs), suggesting a strong wave control over its
supratidal area, where increased wave energy results in
supratidal erosion.

For the intertidal area, the differences in correlation coefficients
across the studied beaches reflect again the influence of bathymetry,
local geomorphological controls. Maximum correlations in the
intertidal zone occur at lag 1, 1 month later than for the

FIGURE 7
Results of maximum correlations between the key hydro-morphodynamic parameters [including wave steepness (S)], namely, the supratidal area at
lag 0 (top image) and the intertidal area at lag 1 for the four studied beaches.

FIGURE 8
Schematic representation of the interactions (green arrows) between welding river mouth bars (submerged or external to themain beach body), the
submerged and emerged beach subdomains and the resulting shoreline evolution (green arrows). The figure also indicates the role of a longitudinal
current (beige arrow) due to surf zone gradients induced by wave propagation and differential sheltering from the bathymetry and shoreline orientation.
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supratidal zone, indicating that the beach profile response is
significantly delayed (Figure 7). The reaction time can be defined
as the period between hydrodynamic forcing and beach response,
where the relaxation time is the duration from the end of
hydrodynamic forcing till the recovery of the beach modal state
(Colin, 2007). All studied beaches are characterised by a mesotidal
regime, which expands the active beach profile as the wave run-up
zone shifts vertically across the intertidal range throughout the tidal
cycle. This spatial and temporal variability distributes incident wave
energy over a broader cross-shore area, thereby reducing the
intensity of morphodynamic forcing at any specific point. As a
result, sediment adjustment processes are more gradual and
distributed, both spatially and temporally, leading to longer
relaxation times (Poate et al., 2014).

The morphodynamic control of submerged bars, intertidal or
river inlet, must also be considered since it contributes to explaining
the complex set of observed morphodynamic responses (Colosimo
et al., 2023; Masselink et al., 2006). La Arena beach, with low-
amplitude and smoother bars, experiences higher mean sea levels
during wave storms due to the bar control on wind and wave set-up.
This leads to a reduced intertidal area, which explains the observed
negative correlations. Beaches with steeper profiles tend to
experience an enhanced bathymetric control, as illustrated by the
Arriatera beach, where a high positive correlation (r = 0.65) between
significant wave height and intertidal area indicates that the beach
profile responds directly to variations in wave energy but with an
opposite trend to that of the supratidal area. In this case, during
energetic wave events, sediment is transported from the supratidal to
the intertidal zone, a pattern also displayed, though less pronounced,
by the Barinatxe and Arrigunaga beaches.

4.4 Morphodynamic predictions with GBR

The application of machine learning (ML) techniques has
proven its effectiveness in many research fields, especially when
handling large volumes of data and performing complex tasks such
as prediction, image classification or natural language processing
(e.g., Uc Castillo et al., 2025). The Gradient Boosting Regressor
(GBR) technique offers improved predictive performance compared
to conventional correlation-based statistics when working with
limited time series and complex inter-variable relationships. By
fine-tuning the hyperparameters of the GBR model for each
beach, the predictive accuracy for the morphodynamic response

(in terms of the evolving intertidal and supratidal areas) can be
significantly improved.

The beaches analysed in this study are characterised by short time
series for a limited set of key variables that do not fully capture the
complexity of dominant hydro-morphodynamic interactions. As shown
in previous sections, the spatial variability among beaches demonstrates
that each case study is controlled by its own set of local processes and
spatio-temporal scales, which ultimately determine the dominant
hydro-morphodynamic patterns. For that reason, the model also
includes variables that are strongly correlated, like Hs and Energy flux.

La Arena beach is highly influenced by its near-field bathymetry,
embedded geometry and sheltering rocky shoals. This complexity is
further increased by the differential effects produced by the inlet of
the Barbadún river, which results in a spatially and temporally non-
homogeneous behaviour, making analyses and predictions more
challenging than for other beaches with a lower level of interactions,
such as the Arriatera beach. In contrast, beaches in more sheltered
areas, such as Arrigunaga (located within the estuary), exhibit
hydro-morphodynamic patterns that are modulated by
geomorphic controls, resulting in lower wave energy compared to
more exposed beaches. Such spatial differences necessitate a high-
resolution adjustment of key parameters, including the number of
decision trees and learning rates, to properly capture local
variability. Similarly, beaches like Barinatxe, which have the
characteristics of semi-urban beaches without clearly defined
morphological features, also require some local hyperparameter
tuning, for instance, to tackle filtering effects by sandbars.

A summary of the main statistics that characterize the behaviour
of the supratidal and intertidal areas for all studied beaches is
presented in Table 4; Figure 9. These results reveal clear spatial
differences in correlation coefficients, RMSE and MAPE values,
which must be considered to qualify the predictions and to support
beach maintenance decisions.

For the western sector of La Arena beach, the GBR model predicts
average area evolution well, although it struggles with the extremes. To
illustrate that, the supratidal area yielded a MAPE of 0.08 and an R2 of
0.32 for both training and testing data, while the intertidal model
produced a MAPE of 0.05 and an R2 of 0.38 on the testing results.
These deviations reflect not only the limitations of the GBR model but,
more importantly, the inherent morphodynamic complexity of this
semi-enclosed coastal system. The site is characterized by highly non-
linear sediment transport processes, episodic riverine inputs, and
heterogeneous bathymetric controls, all of which introduce
substantial variability. This variability is difficult to capture reliably

TABLE 4 Summary of main statistics from the GBR model to characterize the quality of morphodynamic predictions for each of the studied beaches, in
terms of R2, RMSE and MAPE, distinguishing between results from the training and testing sets (training/testing).

Beach Supratidal area (training/testing) Intertidal area (training/testing)

R2 RMSE MAPE R2 RMSE MAPE

La Arena (west) 0.34/0.34 3,321.72 m2/3,158.43 m2 0.08/0.08 0.33/0.38 11,618.41 m2/10,006.25 m2 0.06/0.05

La Arena (east) 0.26/0.23 2,823.29 m2/2,512.03 m2 0.14/0.11 0.16/0.15 12,387.41 m2/13,613.28 m2 0.06/0.05

Arrigunaga 0.78/0.76 720.44 m2/799.96 m2 0.02/0.02 0.66/0.57 855.83 m2/1,200.12 m2 0.05/0.07

Barinatxe 0.46/0.59 2,796.91 m2/1967.96 m2 0.08/0.06 0.42/0.40 6,243.38 m2/4,020.82 m2 0.06/0.04

Arriatera 0.82/0.86 2,399.43 m2/2,237.40 m2 0.08/0.07 0.83/0.85 4,793.93 m2/4,894.24 m2 0.04/0.04
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using current modelling approaches, highlighting the challenges of
accurately predicting morphodynamic behaviour in environments
governed by complex and interacting physical drivers.

On the eastern sector of La Arena beach, the results differ
between supratidal and intertidal zones. The supratidal area
model shows a MAPE of 0.14 in the training set and 0.11 in the

FIGURE 9
Scatter plots to assess morphodynamic prediction capabilities for the key selected variables at each of the studied beaches. Test sample results are
shown, with supratidal areas [m2] in blue and intertidal areas [m2] in red.
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test set, with RMSE values of 2,823 m2 and 2,512 m2, respectively,
and R2 values of 0.26 (training) and 0.23 (testing). In contrast, the
intertidal area model exhibits a MAPE of 0.05 (test set) with an
RMSE of 13,613 m2 and R2 values of 0.16 (training) and 0.15
(testing). This discrepancy may be due to the partial
discrimination between East and West sectors, which continue
interacting in the recorded intertidal area time series.

Despite those beaches’ relatively low R2 values, the MAPE
remains low across both supra and intertidal areas. This
seemingly contradictory result can be attributed to several
factors. First, the absolute values of morphodynamic areas are
large, meaning that even if the model exhibits a higher error, the
relative error (MAPE) remains low due to the scale of the data.
Additionally, because the real morphodynamic values exhibit low
magnitude variability, the model may struggle to explain the
observed variance, effectively leading to this low MAPE.
Furthermore, MAPE is a relative error metric, meaning that large
absolute values of morphodynamic data in m2 and the limited
dataset may keep the error percentage low despite the RMSE and
R2 values. This issue has been extensively discussed in model
evaluation literature, where metrics such as RMSE are highly
sensitive to variability and data scale, while MAPE often remains
stable (e.g., Chai and Draxler, 2014; Willmott and Matsuura, 2005).

The GBR model for the Arrigunaga beach was adjusted by
increasing the number of trees to 1,000, while maintaining a learning
rate of 0.01. A low learning rate suggests slower convergence,
requiring more iterations to reach a solution, and this explains
the larger number of trees, which helps to reduce overfitting. The
proposed configuration achieved a test R2 of 0.76, a MAPE of 0.02,
and an RMSE of around 800 m2, representing a very good model
performance for this beach.

At Barinatxe beach, the model achieved a MAPE of 0.09% in
training and 0.04% in testing for the supratidal area, with RMSE
values of 2,882 m2 (training) and 1,339 m2 (testing). The R2 values
were 0.48 and 0.65, respectively, indicating a strong predictive
capability. For the intertidal area, the model gave a MAPE of
0.06% in training and 0.04% in testing, with RMSE values of
6,243 m2 (training) and 4,021 m2 (testing), and R2 values of 0.42
(training) and 0.40 (testing). The scatter plots in Figure 9
demonstrate that the model captures most of the observed
variability, both for average and extreme values.

Finally, at Arriatera beach, the GBR model delivered robust
predictions for both supratidal and intertidal areas. The supratidal
area model accomplished a MAPE of 0.08 for the training and
0.07 for the testing set, with RMSE values of 2,399 m2 and 2,237 m2,
and R2 values of 0.82 and 0.86, respectively. Similarly, the intertidal
area maintained a constant MAPE of 0.04 in both datasets, with
RMSE values of 4,794 m2 and 4,894 for training and testing sets, and
R2 values of 0.83 on the training and 0.85 on the testing, indicating a
very reliable performance to predict beach morphodynamics.

4.5 GBR prediction improvement over
conventional techniques

Despite the limited number of morphodynamic observations
available, the proposed methodology demonstrates that it is possible
to predict morphological changes on pocket beaches using ML

techniques, taking into account that some key geomorphological
parameters (e.g., d50) have not been considered. Coastal systems,
featuring expensive measurements and a harsh environment, are
usually characterised by smaller data sets than the ones available for
ML in large-scale, data-driven models. This challenge emphasizes
the need for advances in methodologies that yield predictions with
an identifiable and controllable degree of uncertainty.

To provide a more conventional benchmark and assess the
improvement achieved by the GBR model, a third-degree
polynomial regression was implemented as a comparative
baseline. This model incorporated dimensionality reduction using
Principal Component Analysis (PCA), a computationally efficient
approach commonly applied in morphodynamic modelling.
However, despite its simplicity, this method struggles to capture
the complex and nonlinear interactions that characterize beach
morphodynamics, thereby limiting its predictive performance
relative to ensemble-based ML techniques like GBR (e.g.,
Montaño et al., 2020). Moreover, this polynomial regression
models face considerable limitations and exhibits serious signs of
overfitting. This is primarily due to the limited data available, but
also to the numerous nonlinear factors that influence beach
morphodynamics. Although traditional regression models yield
predictive equations that can inform beach management, they fail
to capture the inherent complexity of these systems. As shown in
Table 5, morphodynamic variables are affected by a wide range of
processes and scales, leading to interdependent driving variables,
such as wave direction, period, and height. Hydro-morphodynamic
interactions also require the integration of additional variables,
including wave energy and bathymetric changes during high-
energy events or consecutive storms.

Furthermore, nonlinear interactions and varying spatial and
temporal scales among these variables make it challenging to build
an accurate predictive model using conventional techniques. As a
result, such methods often produce unacceptable error intervals for
decision-making and can suffer from overfitting, leading to
erroneous predictions under different conditions. For example,
the case of Arriatera beach (Table 5) illustrates how conventional
models may adjust reasonably well to training data but fail to predict
the correct behaviour under new conditions or datasets.

In contrast, Machine Learning (ML) methods, such as the
Gradient Boosting Regressor (GBR) (see Table 4), exhibit a more
robust and generalizable predictive capacity, particularly under
conditions of limited morphodynamic data and nonlinear system
dynamics. Table 5 includes the percentage variation in R2 values
between the GBR and conventional regression models for both
training and testing datasets, offering a clearer evaluation of the
performance improvements achieved.

Notably, although certain cases, such as Barinatxe and the
eastern sector of La Arena, show slightly lower R2 values during
training under the GBR approach, this should not be interpreted as a
deterioration in model performance. Rather, it highlights the
overfitting tendency of the polynomial regression model, which
achieves artificially high accuracy on the training data but fails to
generalize to unforeseen conditions, as evidenced by negative R2

values during testing. By contrast, GBR models demonstrate a more
conservative yet stable predictive behaviour, better aligned with the
inherent variability of real-world coastal systems. This consistency
makes them better suited for forecasting in complex
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morphodynamic environments where physical processes are highly
variable and data availability is constrained.

5 Concluding remarks and future work

The performed analysis demonstrates that ML models
significantly enhance predictive capabilities for beach behaviour
under variable constraints, which encompass Cantabrian beaches
like the ones here analysed, but also other systems, like
Mediterranean ones. Predictive performance depends on local
constraints, yielding better results for more energetic metocean
conditions like the ones here considered and for key
morphodynamic variables like the supratidal area. Features such as
rocky shoals act as natural coastal defences, exerting a hydrodynamic
filtering effect that dissipates incoming wave energy. This results in a
reduction in the intensity of the morphodynamic response,
contributing to increased stability of the beach profile in sheltered
areas (e.g., Huang et al., 2022; Morell et al., 2022).

The hydro-morphodynamic characterization of the four beaches
has led to a knowledge-based selection of key variables and to identify
dominant response patterns, paving the way for an improved
characterization of beach responses under varying wave conditions.
Beaches with higher autocorrelation (e.g., La Arena and Barinatxe)
exhibit a stronger influence of morphological constraints, which
reduces variability in the hydrodynamic forcing. This, in turn,
affects the cross-correlation analysis, showing that local filtering
(due to bathymetry, contours, and even fluvial inputs such as the
Barbadún river inlet) strongly influences the morphodynamic
response. Such a conclusion frames the potential to extrapolate this
approach to other environments with different tidal ranges and wave
energy, like the Mediterranean for the Spanish coast. Nevertheless, it is
acknowledged that other relevant processes, such as sediment budget
variability, erosion volumes, and overwash dynamics, should also play
a critical role in shaping beach responses. Due to the inherent
uncertainties associated with defining and quantifying these
processes, they have not been incorporated in the present analysis.
However, their potential influence on morphodynamic behaviour
remains significant and will be addressed in future research.

Beaches inside and outside the Nervión estuary show significant
negative correlations between wave drivers and supratidal area. This

behaviour, illustrated by Arrigunaga and Arriatera beaches,
demonstrates that as incident wave energy increases, the
supratidal area tends to decrease. This trend may reflect a natural
self-defence mechanism, wherein erosion of the supratidal zone is
accompanied by a growth of the intertidal area, leading to a
morphodynamic evolution toward more dissipative states.
Furthermore, the observed spatial heterogeneity in correlation
coefficients underscores the challenges faced by general statistical
predictors and emphasizes the importance of local processes.

The performed analysis also highlights the critical role of seabed
and coastal contours in modulating incoming wave energy and,
consequently, in shaping the morphodynamic response of the beach.
For example, La Arena beach exhibits a distinct behaviour due to the
influence of the Barbadún river and the formation of submerged
inlet bars, while Barinatxe beach, benefiting from the local
protection of rocky shoals, demonstrates that bathymetric
filtering can partially decouple the beach response from incident
wave characteristics. In contrast, Arrigunaga and Arriatera beaches
display a closer correspondence between incident wave properties
and morphological responses.

Moreover, the limited length of the available time series
emphasizes the advantage of ML-based methods over conventional
statistical approaches. By overcoming the inherent limitations of
traditional techniques, especially under extreme conditions or in
areas with complex hydro-morphodynamic patterns, ML models
can significantly improve the analysis and prediction of
morphodynamic responses under a wide range of conditions.

While the present study has demonstrated the predictive
capabilities of the GBR model to analyse coastal
morphodynamics of pocket Atlantic beaches, several challenges
remain open for further research and methodological
improvements. One important aspect to explore is the model
performance based on the percentage of data allocated for
training and testing, which can be addressed with additional data
and sensitivity analyses. The impact of different train-test split ratios
on the GBR model’s predictive accuracy should be systematically
examined to determine the optimal balance between training depth
and generalization capacity.

Future research should also explore the potential integration of
deep learning models, such as Long Short-Term Memory (LSTM)
networks and Temporal Convolutional Networks (TCN) (e.g.,

TABLE 5 Limitations of conventional morphodynamic predictions based on third-degree polynomial regression with dimensionality reduction via Principal
Component Analysis (PCA) for both supratidal and intertidal areas.

Beach Training R2 (supratidal/
intertidal area)

ΔTraining R2 (%)
(supratidal/intertidal area)

Testing R2 (supratidal/
intertidal area)

ΔTesting R2 (%)
(supratidal/intertidal

area)

La Arena (west
sector)

0.21/0.08 +61.9/+312.5 −0.15/0.17 +326.7/+123.52

La Arena (east
sector)

0.33/0.12 −21.2/+33.3 0.17/-0.12 +35.3/+225.0

Arrigunaga 0.37/0.28 +110.8/+135.74 −0.25/0.10 +404.0/+470.0

Barinatxe 0.54/0.43 −14.8/-2.35 −0.29/-0.37 +303.3/+208.10

Arriatera 0.70/0.59 +17.1/+40.67 0.34/-0.15 +152.9/+666.6

The results illustrate the challenges of overfitting commonly associated with traditional statistical methods. To assess predictive improvement and model generalizability, percentage differences

in R2 values between the GBR and polynomial regression models are reported for both training and testing phases.
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Chambers et al., 2024; Lv et al., 2023). These architectures are
specifically designed to capture complex, nonlinear relationships
within time-dependent data, making them particularly suited for
morphodynamic modelling of complex beaches under climate
change and weaker driving factors, such as beach face slope,
sediment grain size, embayment geometry and tidal range.

In summary, the results show that ML-based methods,
specifically the GBR model, offer substantial improvements over
conventional statistical techniques for predicting morphodynamic
responses in pocket beaches. ML approaches reduce the risk of
overfitting and provide more robust predictions, even under extreme
events or in areas with complex hydro-morphodynamic patterns in
other environments. As more data becomes available, the reliability
of these predictions will further improve, ultimately resulting in a
better protection and maintenance of vulnerable coastal systems.
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