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Agricultural activities markedly influence China’s goals of reaching carbon
emission peaks and achieving carbon neutrality. This study explores the
mechanisms by which digitalization in agriculture impacts carbon emissions
and develops a corresponding analytical model. It examines the extent of
agricultural digitalization and carbon emissions across 31 Chinese provinces
from 2013 to 2020. Empirical findings demonstrate that digital agricultural
practices significantly reduce carbon emissions within the agricultural sector,
exhibiting notable spatial spillover effects. Additionally, green technological
innovation and environmental regulatory frameworks act as crucial
intermediary factors. The efficacy of digital agricultural technologies in
reducing emissions varies across regions, showing stronger effects in inland
provinces and areas primarily engaged in grain production, compared to non-
grain-producing regions. The results contribute to the ongoing discussions on
pathways for agricultural carbon mitigation in the context of rapid digital
transformation in China’s agriculture. Furthermore, the study emphasizes the
necessity of addressing agricultural environmental externalities and emphasizes
the pivotal role of environmental regulations in reducing agricultural carbon
emissions, aligning with China’s ecological governance objectives.
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1 Introduction

Since the 1980s, there has been a rising trend in the frequency of tsunamis, alongside
environmental changes like glacier melts and global warming, posing severe threats to human
life and production. A global consensus has emerged to proactively respond to climate change,
with nations implementing various mitigation measures. During the 75th UN General
Assembly held in September 2020, China officially announced its commitment to
reaching peak carbon emissions before 2030 and attaining carbon neutrality before 2060.
Agriculture, responsible for approximately 24% of total global emissions, significantly
contributes to China’s carbon emissions (Zhao et al., 2023). China is a leading producer
of key agricultural products, such as rice, aquatic products, and pork. In response, as early as
2015, the China Ministry of Agriculture (CMA) introduced initiatives such as “The Action
Plan for Zero Growth of Fertilizer and Pesticide Usage” (CMA, 2015a) and “The Action Plan
for Governance of Agricultural Non-point Source Pollution” (CMA, 2015b). In 2018, the
China Ministry of Ecology and Environment (CMEE) launched “The Action Plan for the
Battle of Agricultural and Rural Pollution Control” (CMEE, 2018). Consequently, reducing
agricultural carbon emissions has become a critical goal for the Chinese government.

A key trend in China’s agricultural development is digital agriculture, as digital
technologies are becoming increasingly prevalent. The ongoing advancement of digital
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services in rural areas, combined with improved digital skills among
farmers, has promoted the widespread adoption of digital
agricultural practices. Consequently, the impact of digital
agriculture on agricultural carbon emissions has intensified. The
Food and Agriculture Organization (FAO) has labeled digital
agriculture as the “fourth agricultural revolution,” highlighting its
potential to address climate-related challenges by enhancing
efficiency, fairness, and ecological sustainability in agricultural
supply chains (Klingenberg et al., 2022). However, existing
studies indicate that digital agriculture may influence carbon
emissions in a bimodal manner. On one hand, it increases energy
use, thereby increasing emissions (Henderson et al., 2020); on the
other hand, it enhances energy efficiency, contributing to emission
reductions (Strubell et al., 2020). Yet, the specific mechanisms by
which digital agriculture impacts carbon emissions remain
insufficiently explored. Moreover, disparities in internet
accessibility and digital infrastructure between urban and rural
regions create a substantial “digital divide,” hampering the
equitable deployment of digital agricultural technologies,
especially in inland and underdeveloped provinces.

Existing research has provided valuable insights into the sources
of agricultural carbon emissions and the role of digital technologies
in energy conservation and carbon reduction. Studies on agricultural
carbon emissions have primarily focused on identifying emission
sources and quantifying their contributions (West and Marland,
2002; Johnson et al., 2007; Vleeshouwers and Verhagen, 2002;
Tasman, 2009). Methane emissions from rice paddies, direct
nitrous oxide emissions from soils, and livestock emissions are
significant contributors (Tian and Zhang, 2013). Different
agricultural practices, land-use changes, and climate conditions
significantly influence emission levels (Babbar et al., 2021; Chang
et al., 2022).

Meanwhile, digital innovation has been shown to reduce energy
consumption, increase clean energy use, and decrease energy
intensity across various sectors (Yoo et al., 2012; Jing et al., 2023;
Bano et al., 2022; Hong et al., 2023). Research specific to agriculture
is emerging: for example, Ma et al. (2022) identified digitalization as
significantly lowering agricultural carbon emissions through digital
financial inclusion, Wang et al. (2024) highlighted the role of
technological advancement and farm expansion, and Zhao et al.
(2023) confirmed digital transformation’s effectiveness in reducing
agricultural carbon intensity. However, concerns regarding the
rebound effect of digitalization (Smeets et al., 2014; Gelenbe and
Caseau, 2015) suggest that the relationship may be more complex.

Notably, Chen and Li (2024) explored the relationship between
digital agriculture and carbon emissions using China’s provincial
panel data, confirming that digital transformation significantly
reduces agricultural carbon emissions. However, their analysis
predominantly focused on the direct effects of digitalization,
without addressing the mediating mechanisms or potential spatial
spillover effects associated with digital agricultural development.
This gap highlights the need for more comprehensive investigations
into how digital agriculture influences carbon emissions through
both direct and indirect pathways.

Despite these advances, several limitations in the existing
literature remain. First, prior research has largely concentrated
on the direct impact of digital agriculture, often overlooking the
roles of green technological innovation and environmental

regulation as mediators. Second, few studies have explicitly
examined how digital agriculture generates spatial spillover
effects across regions. Compared with existing studies such as
Chen and Li (2024), which primarily examine the direct effects
of digital agriculture on carbon emissions, this study incorporates
spatial spillover effects and investigates the mediating roles of green
technological innovation and environmental regulation, thereby
providing a more comprehensive and multidimensional
analytical framework.

This study aims to explore two core research questions: (1)
whether digital agriculture effectively lowers agricultural carbon
emissions, and (2) through what underlying mechanisms digital
agriculture affects these emissions. The key contributions of this
paper are as follows: first, it constructs a comprehensive theoretical
framework linking digital agriculture with environmental
regulation, green technological innovation, and agricultural
carbon emissions, addressing the gap in prior research
concerning environmental regulation. Second, it extends the
limited research on the impact of digital agriculture on carbon
emissions by incorporating mediating and spatial spillover effects.
Finally, it provides empirical evidence based on panel data from
31 Chinese provinces spanning from 2013 to 2020, using a Spatial
Durbin Model (SDM) to capture spatial dependencies more
effectively.

2 Theoretical analysis and hypotheses

2.1 Direct influence of digital agriculture on
agricultural carbon emissions

Technologies such as 5G, IoT, cloud-based computing, and
artificial intelligence (AI) are widely utilized in agriculture. These
tools affect the entire agricultural supply chain—from initial input
providers to final consumers—and significantly impact carbon
emissions within the sector.

First, digital technologies in agricultural production conserve
resources and enhance efficiency, thus reducing carbon emission
intensity. Wearable sensors and real-time monitoring technology
instantly identify livestock conditions; IoT-based systems optimize
irrigation and fertilization, minimizing water and fertilizer usage;
blockchain technologies, drones, and robots help reduce pesticide
and herbicide application; IoT-based smart management systems
facilitate the integration of various agricultural activities, providing
renewable energy solutions such as agricultural photovoltaic and
water-photovoltaic systems (Jouanjean, 2019).

Second, in agricultural product marketing, digital technologies
address information asymmetry and enhance transaction efficiency.
Digital platforms and tools not only enable more accessible and cost-
effective information retrieval but also reduce trade and transaction
costs throughout—from contract negotiation to delivery. They also
connect suppliers, farms, traders, processing units, retailers, and
consumers on a single platform, enabling the sharing of information
and services. Even small farmers in remote areas can access market
demand information and agricultural extension services through
new digital platforms and applications. Yang (2022) utilized field
surveys from 2018 to 2020 in Vietnam, Thailand, and China to
illustrate how domestic and cross-border platforms facilitate the
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expansion of Southeast Asian fresh fruit trade into the Chinese
market, creating a trade and distribution network. Digital
technologies also support enhanced product traceability and
ensure better monitoring of product compliance, integrity, and
safety, fostering a more transparent and efficient trading and
regulatory environment.

Third, in agricultural logistics, digital technologies reduce
logistics costs and improve efficiency. Digital solutions introduce
new approaches to agricultural and food trade logistics, including
innovative trade financing tools. Alesiuniene et al. (2021) found that
IoT-enabled sensors and systems within food and beverage supply
chains provide real-time tracking and data-driven insights, enabling
stakeholders to optimize operational efficiency, lower expenses, and
conduct proactive maintenance. Based on these observations,
we suggest:

Hypothesis 1: Digital agriculture significantly reduces carbon
emissions in the agricultural sector.

2.2 Spatial spillover impacts of digital
agriculture on agricultural carbon emissions

Tobler’s First Law of Geography (Tobler, 1970) suggests that
spatial spillovers involve socio-economic activities that affect not
only their immediate localities but also adjacent areas and more
distant regions. The spatial spillover effects of digital agriculture on
agricultural carbon emissions are evident from two perspectives.

Firstly, digital technologies facilitate the mobility and exchange
of production resources. The rapid expansion of digital
infrastructures enhances the collection, processing, and sharing of
large-scale data, helping to dismantle “information silos” and
facilitating the movement of labor, capital, and technology. In
agriculture, the “core-periphery” model of new economic
geography (Krugman, 1991) suggests that factor flow not only
benefit the agglomeration of agricultural processing enterprises
but also support the development of agricultural clusters, such as
the corn-soybean cluster in Northeast China and the wheat cluster in
the Huang-Huai-Hai region. According to the Marshall-Arrow-
Romer (MAR) externality theory, industrial agglomeration
reduces communication time costs and information asymmetry
between agricultural enterprises and farmers, accelerates the
dissemination of green technologies, and generates knowledge
spillover effects, improving ecological performance and increasing
efficiency while decreasing carbon emissions within
agricultural clusters.

Second, peer effects. Niu et al. (2022) showed that adopting
environmentally friendly pest management practices has a
considerable peer influence, such as implementing ecological
regulations and rational pesticide use, which are resource-saving
and environmentally friendly measures. Deng and Zhao (2018)
concluded that these peer influences arise mainly through
learning, imitation, and competitive behaviors among agricultural
businesses and farmers in adjacent areas. Based on these insights,
we formulate:

Hypothesis 2: Digital agriculture produces negative spatial
spillover effects on agricultural carbon emissions.

2.3 Indirect influence of digital agriculture
on agricultural carbon emissions

Digital agriculture indirectly influences agricultural carbon
emissions by fostering green innovation. Zheng and Zhang (2023),
in their study of 2,660 Chinese manufacturing firms from 2015 to
2020, discovered that digital agriculture enhances firms’ capacities for
green innovation, with corporate social responsibility serving as a
mediator. Similarly, Liu D. et al. (2021) analyzed publicly listed
agricultural enterprises in China from 2015 to 2020 and
demonstrated that digital agriculture significantly boosts both the
scale and quality of technological innovation in agriculture-related
firms. According to Porter’s hypothesis (Porter and Van der Linde,
1995), inefficient resource use and significant resource waste are direct
causes of pollution. The implementation of end-of-pipe regulations to
reduce environmental pollution can incentivize innovations in
upstream processes, improving resource utilization and driving
both green technological advancements and pollution reduction.

Digital agriculture also affects agricultural carbon emissions
through environmental regulation. Research indicates that digital
agriculture contributes to minimizing information gaps and
improves the transparency of information. Wang et al. (2022),
utilizing data from Chinese listed firms spanning 2010 to 2020,
revealed that digital agriculture markedly improves corporate
information disclosure quality. Chen et al. (2024) discovered that
digital technology significantly enhances companies’ information
processing capabilities, using panel data from 929 listed companies
in China from 2016 to 2020. AI extracts valuable information from
diverse data sources and formats to provide tailored services; cloud
computing offers computational power and storage resources to
support the growing demands of data management and analysis; big
data analytics allows for rapid, efficient analysis of large datasets,
facilitating informed decision-making in a dynamic business
environment; and blockchain technology ensures data
confidentiality and authenticity through robust encryption,
distributed ledgers, and decentralized methods, thereby
enhancing the quality, reliability, and speed of information flow.
Enhanced information disclosure places institutional pressure on
local governments and companies to strengthen environmental
regulation, given the negative impacts of pollution on talent
retention, economic development, and government reputation
(Chen et al., 2020). Environmental regulation is a critical method
for addressing the externalities of environmental pollution (Kapp,
2011). Based on these insights, we propose:

Hypothesis 3: Digital agriculture influences agricultural carbon
emissions through green technological innovation and
environmental regulation.

3 Methods and data

3.1 Model construction

3.1.1 Baseline regression model
To analyze how digital agriculture influences carbon emissions

in agriculture, we construct the following baseline
econometric model:
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CO2it � α0 + α1Digital agriit + α2Xit + μi + λt + εit (1)

In Equation 1, i and t denote province and year, respectively. The
explained variable CO2it represents agricultural carbon emissions in
province i in year t; the primary explanatory variable, Digital agriit,
measures the extent of digital agriculture advancement in province i
during year t. Xit represents the set of control variables including
industrial structure, agricultural mechanization, and rural energy
consumption. The term εit represents the random error, μi denotes
province-specific fixed effects, and λt refers to time-specific
fixed effects.

3.1.2 Spatial spillover effects model
Existing studies demonstrate that agricultural carbon emissions

exhibit clear spatial dependence (Tian and Yin, 2022). Many
scholars highlight that ignoring spatial interactions among
economic indicators can lead to biased conclusions. Therefore,
this study employs spatial econometric techniques to account for
spatial correlations between variables and to investigate the impact
of digital agriculture on agricultural carbon emissions. The specific
spatial econometric model is as follows:

CO2it � ρWCO2it + θ1Digital agriit + βXit + θ2WDigital agriit

+ δWXit + μi + λt + εit

(2)
εit � ρWCO2it + τit (3)

In Equations 2, 3, ρ denotes the spatial autocorrelation
parameter, W represents the spatial weighting matrix, and Xit

includes various control variables that affect agricultural carbon
emissions over time. The coefficients to be estimated include θ1, θ2, β
and δ.

Spatial weighting matrices commonly include adjacency and
geographic-distance matrices, representing geographic interactions.
This research uses the adjacencymatrix as the primary spatial weight
structure, supplemented by the geographic-distance matrix for
robustness testing. Specifically, the adjacency matrix considers
first-order neighborhood relationships: if two provinces share a
common boundary, the value is set to 1; otherwise, it is 0, as
represented in Equations 4, 5:

AdjacencyMatrix: : W1 � 1, if provinces i and j are neighbors
0, if provinces i and j are not neighbors

{
(4)

Geographic DistanceMatrix: W2 �
1

d2, i ≠ j

0, i � j

⎧⎪⎨⎪⎩ (5)

3.1.3 Mechanism test model
To examine the channels through which digital agriculture

influences carbon emissions in agriculture, we establish a
mediation analysis framework, using environmental regulation
and green technological innovation as intermediary variables.
Initially, we investigate how digital agriculture impacts
environmental regulation and green innovation by specifying the
mediation models as follows:

Medit � λ0 + λ1Digital agriit + λ2Xit + μi + λi + εit (6)

CO2it � η0 + η1Digital agriit + η2Medit + η3Xit + μi + λi + εit (7)

Equation 6 investigates the effect of digital agriculture on the
mediators, whereas Equation 7 analyzes the combined influence of
digital agriculture and the mediators on agricultural
carbon emissions.

3.2 Variable construction

3.2.1 Dependent variable
In this research, the dependent variable is defined as the carbon

emission intensity from agriculture. Following Li et al. (2021),
agricultural carbon emissions are estimated using IPCC-
recommended coefficients. Six emission sources relevant to
agricultural production are selected: fertilizers, pesticides,
agricultural films, diesel consumption, irrigation, and tillage.
Agricultural carbon emissions are computed using the
corresponding emission factors, as shown below:

E � ∑Ei � ∑Ti*δi (8)

In Equation 8, E denotes total agricultural carbon emissions, Ti
indicates the quantity of the i-th emission source, and δi represents
the emission coefficient associated with that source.

In agricultural production, various inputs contribute to carbon
emissions, with their emission coefficients sourced from reputable
references. Fertilizers have a carbon emission coefficient of
0.8956 kg C·kg-1, based on data from Oak Ridge National
Laboratory in the United States. Pesticides, another crucial
agricultural input, exhibit a carbon emission coefficient of
4.9341 kg C·kg-1, also from Oak Ridge National Laboratory. The
carbon emission coefficient of agricultural films is reported as
5.1800 kg C·kg-1 by the Institute of Agricultural Resources and
Ecological Environment at Nanjing Agricultural University. Diesel
fuel, commonly used in agricultural machinery, has an emission
coefficient of 0.5927 kg C·kg-1, according to the Intergovernmental
Panel on Climate Change (IPCC). Tillage activities are associated
with a significant emission coefficient of 312.60 kg C·hm-2, as
documented by the College of Biology and Technology at China
Agricultural University. Additionally, irrigation contributes an
emission coefficient of 266.48 kg C·hm-2, according to Dubey and
Lal (2009).

Using coefficient data and provincial statistical yearbooks, we
calculated agricultural carbon emissions at the provincial level.
ARCGIS 10.2 software was then employed to create spatial maps
depicting provincial agricultural carbon emissions for the years
2013 and 2020 (Figure 1). The comparative analysis uncovered
two primary trends: First, agricultural emissions demonstrated a
declining pattern, decreasing from 81.9 million tons in 2013 to
74.67 million tons in 2020. This decline can likely be attributed to
China’s recent promotion of green technologies, the push for zero
growth in agricultural fertilizers and pesticides, and efforts aimed at
mitigating agricultural non-point source pollution (Guo and Zhang,
2023). Secondly, significant spatial discrepancies in agricultural
carbon emissions were identified. Provinces such as Shandong,
Henan, Hebei, Jiangsu, Anhui, Heilongjiang, and Xinjiang
reported higher emission levels, while provinces like Fujian,
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Jiangxi, Hainan, Ningxia, Shanxi, and Guizhou exhibited lower
emissions. These variations may stem from differences in crop
structures and the intensity of land use across provinces.

3.2.2 Core explanatory variables
The main explanatory variable is the comprehensive

development level of digital agriculture. Following the
framework established by Jiang et al. (2022), digital agriculture
is assessed across three key dimensions: digital infrastructure
(Digital_infr), digital industrialization (Digital_indu), and
farmers’ digital literacy (Digital_enti). The digital
infrastructure dimension is quantified by the level of internet
accessibility in rural areas, represented by the ratio of rural
broadband subscribers to the rural population. The digital
industrialization aspect is captured by the quantity of “Taobao
Villages.” According to the Alibaba Research Institute (ARI), a
“Taobao Village” is defined as a rural area where online
businesses actively represent at least 10% of local households,
and annual e-commerce transactions exceeding 10 million yuan
(ARI, 2021). Farmers’ digital literacy is gauged by comparing the
average communication expenditure per capita in rural areas to
the average per capita consumption expenditure.

To integrate these metrics into a single comprehensive measure
of digital agriculture, we applied the entropy weighting method. This
data-driven technique assigns weights to indicators based on their
intrinsic characteristics, offering greater objectivity, accuracy, and
reliability compared to subjective weighting methods. The
comprehensive digital agriculture development was evaluated
using the entropy weighting approach in four steps:

1 Standardize the data using the formula:

xij
′ � xij − xmin

xmax − xmin
(9)

In Equation 9, xij represents themeasurement of the j indicator in
year i; xmin and xmax denote the lowest and highest values of the j
indicator, respectively.

2 Compute the proportion of each indicator for year i as
represented in Equation 10.

yij � xij
′

∑m
i�1xij

′ (10)

3 Equations 11, 12 calculate the information entropy(ej) and the
redundancy of information entropy (dj)

ej � −k∑m
i�1

yij * ln yij( ) (11)

dj � 1 − ej (12)

where K = 1/l nm, and m is the number of years.
4 Equation 13 calculates the indicator weights

wj � dj∑n
j�1dj

(13)

The results indicate that over the study period, the dimension of
digital agriculture industrialization received the highest weight,
averaging 0.5454. This was followed by digital agriculture
infrastructure, with an average weight of 0.2958, while farmers’
digital literacy ranked third with an average weight of 0.1562.

Finally, the formula for calculating the overall level of digital
agriculture is provided in Equation 14.

Digital agri � w1 pDigital infr + w2 pDigital indu

+ w3 pDigital enti (14)

Using Equation 13 and data from provincial statistical
yearbooks, the comprehensive digital agriculture level for each
province was determined. By selecting 2013 and 2020 as
reference years, spatial patterns of provincial digital agriculture
development were visualized using ARCGIS 10.2 software
(Figure 2). A comparative analysis of these years revealed two
key trends: First, there was a general upward trend in the overall
digital agriculture development level. Second, significant regional
differences in digital agricultural practices were observed. In 2013,
eastern coastal provinces, including Zhejiang, Shanghai, and
Guangdong, demonstrated higher development levels, while
provinces in the central and western regions were relatively less
advanced. Notably, Alibaba, China’s largest e-commerce company,

FIGURE 1
Geographical distribution of agricultural carbon emissions (104 tons) for the years 2013 and 2020.
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headquartered in Hangzhou, Zhejiang, has played a critical role in
promoting digital agriculture in surrounding cities. By 2020, policies
and financial support from the central government boosted digital
agriculture in major agricultural regions of central and western
China, leading to significant growth.

3.2.3 Control variables
Following the methodologies of Guo and Zhang (2023) and Yan

et al. (2023), this study includes the following control variables:
Industrial Structure (stru): This is represented by the proportion of
agricultural output value in GDP. A higher proportion suggests
greater agricultural activity, potentially increasing resource
consumption and agricultural carbon emissions. Agricultural
Mechanization Level (lnmachine): Defined as the natural logarithm
of the total power of agricultural machinery, reflecting the degree of
mechanization in rural production. Resource Consumption (lnelect):
Defined as the natural logarithm of rural electricity consumption,
capturing the intensity of agricultural energy use.

3.2.4 Mechanism variables
Agricultural Green Technology Innovation (GTI): Following

Wang H. et al. (2021), green total factor productivity (TFP) in
agriculture is used as the proxy indicator. We apply the Malmquist
productivity approach, utilizing a non-radial, non-angular SBM
directional distance model, which addresses issues of negative
data values and angle biases in efficiency analysis. Inputs include
agricultural fixed capital, labor, and energy, with the desired output
being total agricultural production (in constant 2000 prices) and the
undesirable output being agricultural carbon dioxide emissions.
Agricultural fixed capital using the perpetual inventory approach,
while labor is represented by the average number of employees in
agriculture. Energy usage is measured in 10,000 tons of standard
coal. This study calculates agricultural green TFP for each province
from 2013 to 2020, using data from the China Rural Statistical
Yearbook and the China Energy Statistical Yearbook.

Environmental Regulation (ER): Measured by a comprehensive
environmental regulatory index. Following Hu et al. (2022), data on
industrial wastewater discharge, industrial SO2, and dust emissions
across provinces between 2013 and 2020 were collected. The entropy
weighting approach was used to develop the index.

3.3 Data sources

This research utilizes panel data covering 31 provinces in China
from 2013 to 2020. Variables such as industrial structure,
agricultural mechanization, natural disaster impacts, and resource
utilization were obtained from multiple editions of the “China
Statistical Yearbook.” Information on Taobao Villages was
sourced from the “2020 China Taobao Village Research Report”
issued by the Alibaba Research Institute. Data gaps were
supplemented by provincial-level statistical reports and annual
yearbooks. Summary statistics are presented in Table 1. Since all
data used in this study are at the provincial level and sourced from
public government datasets, there are no data privacy concerns or
individual-level data involved.

4 Results and discussion

4.1 Baseline regression analysis

Column (1) in Table 2 indicates that digital agriculture
significantly reduces agricultural carbon emissions, even without
control variables, with significance at the 1% level. Column (2)
further shows that after including control variables, the coefficient
remains relatively unchanged, confirming Hypothesis 1: digital

FIGURE 2
Spatial distribution of the agricultural digitalization index (dimensionless) for the years 2013 and 2020.

TABLE 1 Descriptive statistics.

Variable Mean SD Min Max

CO2 331.6 234.9 14.35 995.8

D-agriculture 0.338 0.310 0 1

ER 0.5016 0.5289 0.0002 2.5853

GTI 1.0929 0.1554 0.8045 1.5859

stru 0.16 0.0819 0.007 0.47

lnmachine 7.642 1.135 4.543 9.499

lnelect 4.777 1.519 0.0770 7.606
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agriculture significantly reduces agricultural carbon emissions. One
plausible reason is that digital agricultural technologies effectively
reduce chemical inputs and promote the adoption of green, low-
carbon, and intensive agricultural practices, enhancing agricultural
total factor productivity, which in turn reduces agricultural carbon
emissions (Liu H. et al., 2021).

In terms of control variables, industrial structure has a
significantly positive effect on agricultural carbon emissions at
the 5% level. This indicates that regions with a higher share of
agricultural output tend to experience greater carbon emissions,
likely due to more intensive use of land, fertilizers, irrigation, and
other inputs associated with traditional agricultural production (Yan
et al., 2023). Agricultural mechanization significantly increases
carbon emissions at the 1% level, likely due to the extensive use
of machinery, which increases fossil fuel consumption (Rong et al.,
2023). Resource consumption, particularly rural electricity, also
contributes to carbon emissions at the 5% level, as rural
electricity is primarily coal-based.

4.2 Spatial spillover effect analysis

4.2.1 Spatial autocorrelation test and
model selection

The Global Moran’s Index is shown in Equation 15, where n
represents the total provinces selected (in this study, n = 31), and
Xi,Xj represent agricultural carbon emissions and digital agriculture
levels for provinces i and j, respectively. �x denotes the average value
of the sample, and wij represents the adjacency-based spatial
weighting matrix, where the value equals 0 if provinces i and j
do not share a boundary and equals 1 if they do. Moran’s I ranges
between −1 and 1, with positive values suggesting positive spatial
autocorrelation, negative values suggesting negative spatial
autocorrelation, and a zero value indicating no spatial
autocorrelation. Since Moran’s I is designed to evaluate spatial
autocorrelation for cross-sectional data, the test was conducted

separately for each year, and the result showed that the Moran’s
I values from 2013 to 2020 are consistently greater than zero and
statistically significant, indicating the presence of spatial
autocorrelation in each year.

Moran’s I � n∑n
i�1∑n

j�1wij + xi − x−( ) + xj − x−( )
∑n

i�1∑n
j�1wij∑n

j�1 xi − x−( )2 (15)

Before performing the spatial econometric analysis, multiple
statistical procedures were applied to determine the appropriate
model specification. Using the spatial adjacency weight matrix, we
conducted LM, Wald, LR, Hausman, and fixed-effect tests. The
significant LM test results suggested the use of a spatial econometric
approach. Additionally, Wald and LR tests rejected the null
hypothesis that the SDM could be simplified into either the
Spatial Autoregressive Model (SAR) or Spatial Error Model
(SEM), validating the suitability of the Spatial Durbin Model
(SDM) model. The Hausman test indicated a preference for the
fixed-effects approach over random-effects, confirming that the
fixed-effects Spatial Durbin Model (SDM) using the spatial
adjacency matrix is appropriate. Therefore, this study adopted
the Spatial Durbin Model (SDM), incorporating bidirectional
fixed effects. The choice of the Spatial Durbin Model (SDM) over
the Spatial Autoregressive Model (SAR) and Spatial Error Model
(SEM) is justified based on the results of the Wald and LR tests,
which rejected the restrictions needed to simplify SDM into SAR or
SEM. Moreover, SDM can capture both direct and indirect
(spillover) effects, aligning with the study’s aim to investigate
spatial externalities associated with digital agriculture. Therefore,
SDM provides a more comprehensive framework for analyzing
spatial dependencies.

4.2.2 Spatial effect analysis
The spatial spillover effects were further separated into direct

and indirect components. The direct effect represents how digital
agriculture affects local agricultural carbon emissions, while the
indirect effect measures its spillover to neighboring regions. Table 3
summarizes the direct, indirect, and total effects of digital agriculture
on agricultural carbon emissions using the spatial adjacency weight
matrix. All coefficients are negative and statistically significant at the
1% level, confirming that digital agriculture effectively reduces
agricultural carbon emissions both locally and in adjacent regions
(Ma et al., 2022). The spatial autocorrelation parameter (ρ) is
positive and significant at the 5% level, supporting Hypothesis 2.
Additionally, the indirect (spillover) effects of digital agriculture on
carbon emissions surpass the direct effects, highlighting the growing
significance of spatial spillovers.

4.3 Endogeneity and robustness tests

4.3.1 Endogeneity discussion
To address potential endogeneity, two instrumental variables

were introduced, following Shen et al. (2022): the number of post
offices per million people in 1984 (post) and the spherical distance
from provincial capitals to Hangzhou (dis). Historically, post offices
were vital for information transmission, which correlates with digital
agriculture without directly influencing agricultural carbon

TABLE 2 Baseline regression analysis.

Variables (1) (2)

CO2 CO2

D-agriculture −32.555*** −24.049***

(9.259) (8.162)

stru 154.005**

(64.378)

lnmachine 0.014***

(0.002)

lnelect 0.058**

(0.026)

Id FE YES YES

Year FE YES YES

R2 0.996 0.997

Standard errors in parentheses***p < 0.01, **p < 0.05, *p < 0.1.
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emissions, satisfying the exclusivity requirement. Additionally, since
Hangzhou leads digital agricultural development, provinces closer to
it are likely to have higher digital agriculture levels. The spherical
distance from Hangzhou does not affect agricultural carbon
emissions, fulfilling both the relevance and exclusivity requirements.

Columns (1) and (2) in Table 4 present the estimation results
using two instrumental variables: post and dis. The instrumental
relevance was verified through the first-stage F-statistic, which
exceeded the conventional threshold of 10, indicating the absence
of weak instruments. The Sargan overidentification test also
confirmed the validity of the instruments. The first-stage
coefficient is significantly positive, with an F-statistic value of
28.54, which exceeds the threshold of 10, indicating that weak

instrumental variables are not an issue. Additionally, the Sargan
statistic of 21.46 is significant at the 1% level, suggesting no over-
identification problems. The findings from column (2) demonstrate
that digital agriculture significantly reduces agricultural carbon
emissions, remaining statistically significant at the 1% level even
after addressing potential endogeneity issues related to
omitted variables.

4.3.2 Robustness checks
Exclusion of specific samples: Due to the unique administrative

characteristics of Chinese municipalities, this study excludes
municipalities from the sample. The regression outcomes
following this exclusion are presented in Table 5. The coefficient

TABLE 3 Spatial effect analysis.

Variables SDM (W1) SDM (W2)

(1) (2) (3) (4) (5) (6)

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

D-agriculture −24.712*** −52.142*** −72.134*** −25.452*** −71.45*** −83.865***

(6.543) (10.653) (10.152) (6.253) (23.198) (18.396)

ρ 0.387** 0.462*

(0.103) (0.196)

sigma2_e 234.87*** 254.86***

(24.49) (27.84)

Control variables YES YES YES YES YES YES

Id FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Standard errors in parentheses***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 4 Endogeneity and robustness tests.

Variables (1) (2)

D-agriculture CO2

Post 0.0004***

(0.0001)

Dis 0.00067**

(0.0003)

D-agriculture −43.343*

(23.546)

Control variables YES YES

Id FE YES YES

Year FE YES YES

R2 0.797 0.945

Sargan 21.46***

First stage F value 28.54

Standard errors in parentheses***p < 0.01, **p < 0.05, *p < 0.1.

TABLE 5 Robustness tests.

Variables (1)

co2

D-agriculture −26.468***

(9.370)

stru 163.297**

(66.498)

lnmachine 0.014***

(0.002)

lnelect 0.063**

(0.030)

Control variables YES

Id FE YES

Year FE YES

R2 0.996

Standard errors in parentheses***p < 0.01, **p < 0.05, *p < 0.1.
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magnitude, direction, and significance of digital agriculture remain
consistent with the baseline estimations, confirming the robustness
of the results.

Alternative spatial weightingmatrices: This research replaces the
adjacency matrix with a geographic distance-based matrix. The
resulting regression outcomes are presented in columns (4), (5),
and (6) of Table 3. The estimated coefficient magnitude, direction,
and significance levels of digital agriculture remain stable, further
validating the robustness of the findings.

4.4 Mechanism tests

The results of the mechanism tests are shown in Table 6.
In Mechanism I: digital agriculture significantly promotes green

technology innovation (GTI), which passes the significance test at
the 1% level. Both digital agriculture (D-agriculture) and green
technology innovation (GTI) significantly reduce agricultural
carbon emissions at the 1% level, aligning with theoretical
expectations. This outcome suggests that digital agriculture
fosters the adoption and dissemination of green agricultural
technologies, generating knowledge spillover effects, reducing
pollution, and ultimately lowering agricultural carbon emissions
(Wang H. et al., 2021).

In Mechanism II: digital agriculture (D-agriculture)
significantly influences environmental regulation (ER), passing
the 10% significance test. Both digital agriculture
(D-agriculture) and environmental regulation (ER) show a
significant negative effect on agricultural carbon emissions, also
passing the 10% significance test, consistent with theoretical
expectations. This result can be explained by digital
technologies mitigating information asymmetry, leading to
more comprehensive environmental disclosures, increasing
pressure on local governments to strengthen regulations, and
encouraging agricultural operators to comply with
environmental laws, ultimately promoting green agricultural
production and reducing carbon emissions.

4.5 Heterogeneity analysis

4.5.1 Heterogeneity in production structure
The adaptability of digital agricultural solutions to local

conditions, including climate, crop types, and farming practices,
is crucial for achieving optimal carbon reduction effects across
diverse regions. In 2003, the China Ministry of Finance (CMF,
2003) designated 13 provinces as major grain-producing regions. In
these areas, grain farming constitutes a larger share of agricultural
activities, while non-major grain-producing regions focus more on
other types of cultivation. Separate regression analyses were
conducted for each group, with results shown in columns (1) and
(2). Column (1) presents results for provinces primarily engaged in
grain production, whereas column (2) displays findings for areas
with lower grain production levels. The empirical results suggest that
digital agriculture has a more substantial carbon emission reduction
effect in regions predominantly focused on grain production. This is
likely due to the specialized agricultural structures and larger-scale
farming practices typical of grain-producing areas, which enhance
resource use efficiency—particularly in water and fertilizer
application—thereby reducing carbon emission intensity and
bolstering carbon sequestration capacity (Zhu et al. 2022).

4.5.2 Heterogeneity in geographic location
Economic development disparities between coastal and inland

provinces in China result in variations in the adoption of digital
agriculture and its associated carbon reduction impacts. Separate
regression analyses were performed for these two regional groups,
with results provided in columns (3) and (4) of Table 7. The
findings show that digital agriculture’s effect on carbon emission
reduction is more significant in inland provinces. This may be
attributed to the comparatively lower level of agricultural
infrastructure development in inland regions, where carbon
emission intensity is usually higher. Thus, the benefits of digital
agriculture in emission reduction are more pronounced in these
areas, reflecting a “latecomer advantage” when compared to
coastal areas.

TABLE 6 Mechanism tests.

Variables Mechanism I Mechanism Ⅱ

→GTI → CO2 →ER → CO2

D-agriculture 0.1678*** −23.155*** 0.1802* −25.588*

(0.0387) (8.409) (0.100) (8.627)

GTI −33.997***

(14.531)

ER −8.839*

(5.232)

Id FE YES YES YES YES

Year FE YES YES YES YES

Proportion of total effect that is mediated 19.76% 5.6%

Standard errors in parentheses***p < 0.01, **p < 0.05, *p < 0.1.
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5 Conclusion and implications

This research systematically examines the conceptual
mechanism through which digital agriculture affects agricultural
carbon emissions. It integrates environmental regulation and green
technological innovation into the explanatory model, considering
the externalities of agricultural carbon emissions. Using data from
31 Chinese provinces between 2013 and 2020, it calculates digital
agriculture and total agricultural carbon emissions, while
conducting empirical tests.

The findings indicate that digital agriculture significantly
reduces agricultural carbon emissions, exhibiting considerable
spatial spillover effects. Specifically, digital agriculture reduces
emissions within provinces and also impacts neighboring regions.
Mechanism testing reveals that both green technological innovation
and environmental regulation show significant mediating effects.
While green technological innovation has been extensively studied
as a mediator in agricultural carbon emissions research,
environmental regulation has often been overlooked. This study
emphasizes the critical, yet often neglected, role of environmental
regulation in reducing agricultural carbon emissions
(Pawson, 2020).

The heterogeneity analysis reveals significant regional
differences in the carbon reduction effects of digital agriculture.
These effects are more pronounced in inland regions and major
grain-producing areas, especially when comparing grain-producing
to non-grain-producing regions.

The study offers several policy recommendations. First, to
ensure that smallholder farmers and rural communities can
effectively access and benefit from digital agricultural
technologies, it is essential to implement government subsidies,
promote inclusive digital infrastructure development, and
establish targeted support programs to bridge the digital divide.
Second, there is a need for enhanced government support for rural
digital infrastructure, agricultural e-commerce, and the promotion
and training of agricultural digital technologies. Recent studies (e.g.,
Dayıoğlu and Turker, 2021) highlight that digital agriculture plays a
vital role in addressing rural economic challenges and improving
livelihoods, underscoring the necessity for increased policy support.
Furthermore, there is a pressing need to establish comprehensive
digital literacy and technical training programs for farmers to

enhance their capacity to effectively utilize new agricultural
technologies. Thirdly, regional coordination in carbon reduction
governance should be strengthened. Given the observed spatial
spillover impacts associated with agricultural carbon emissions,
governance and regulation should not be confined to individual
regions but should involve collaboration across different areas. This
requires neighboring local governments to align on environmental
standards, policies, and actions, with stronger oversight from
higher-level governments to ensure consistency. Fourth, the
emission-reducing potential of digital agriculture should be
supported by environmental regulations and green innovation
policies. The carbon-reducing impacts of digital agriculture, both
direct and indirect, can be amplified when combined with other
supporting policies. Fifth, enhancing regional carbon reduction
policies is crucial. Considering the significant differences in
carbon emissions between coastal and inland areas, as well as
between grain-producing and non-grain-producing regions,
government investments in digital infrastructure should prioritize
rural, inland, and major grain-producing areas to bridge the “digital
divide” and ensure equitable development across regions.

This study contributes to the literature on agricultural carbon
emissions by exploring carbon reduction pathways through China’s
rapidly advancing digital agriculture sector. However, limitations
arise due to data availability. By using provinces as the spatial unit of
analysis, this approach may obscure regional differences within
provinces. For instance, a single province in China can span
multiple climate zones and diverse terrains with varying levels of
agricultural development. Therefore, conclusions drawn at the
provincial level may not fully capture the carbon reduction
effects and mediating mechanisms of digital agriculture at smaller
spatial scales. Moreover, provincial-level data may not entirely
reflect theoretical expectations. For example, data on total
agricultural machinery power at the provincial level overlooks the
mobility of mechanization services, and environmental regulation
based on industrial pollutants ignores cross-regional pollutant flows.
Future research should focus on collecting and analyzing data on
digital agriculture and carbon emissions at smaller spatial scales,
enabling a more detailed exploration of digital agriculture’s carbon
reduction effects in diverse rural areas. Future research could
systematically assess the environmental impacts of digital
agricultural technologies by adopting a full life cycle assessment

TABLE 7 Heterogeneity analysis.

Variables (1) (2) (3) (4)

(1) Major grain-producing
regions

(2) Non-major grain-producing
regions

(3) Coastal
regions

(4) Inland
regions

D-agriculture −42.746*** −5.066 −34.581** −16.381*

(13.350) (8.548) (13.946) (9.476)

Control
variables

YES YES YES YES

id FE YES YES YES YES

Year FE YES YES YES YES

R2 0.996 0.996 0.997 0.997

Standard errors in parentheses***p < 0.01, **p < 0.05, *p < 0.1.
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(LCA) approach. This would involve defining system boundaries
covering raw material extraction, manufacturing, distribution,
operation, and disposal phases; collecting comprehensive
inventory data; modeling environmental impacts using
established LCA software tools; and analyzing carbon emission
hotspots to identify opportunities for optimization and greener
design of digital agriculture systems. Moreover, to ensure
accountability and transparency, advanced verification and
monitoring technologies such as remote sensing, blockchain-
based ledgers, and AI-driven data analytics should be employed
to validate carbon emission reductions achieved through digital
agriculture.
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