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Off-road vehicle (ORV) activity has emerged as a growing ecological disturbance
in arid and semi-arid grasslands, yet its combined impact with topographic
factors such as slope remains poorly understood. A 4-year field compaction
test was conducted in Otindag Sandy Land to explore changes in the vegetation
community and soil properties under different degrees of off-road vehicle
compaction and different slope conditions and investigate the effect of ORV
activity on grassland vegetation and soil. The results showed that ORV activity
caused a marked reduction (P < 0.05) in plant community species diversity, and
the Shannon—-Wiener (SWI), Margalef's (MI), Simpson dominance (SDI), and Pielou
evenness (PEI) indices decreased by 58.62%—-81.31%, 24.44%—-48.78%, 52.22%—
77.78% and 50.00%—75.68%, respectively, in ORV treatments compared to that in
the control treatments. Additionally, ORV activity caused a significant increase in
soil bulk density and a notable decrease in soil organic matter, water and clay
contents, available phosphorus and potassium, and soil enzyme activity.
Redundancy analysis showed that the species diversity of the plant
community was closely related to soil factors. MI, SWI, SDI, and PEl were
positively correlated with pH, available phosphorus and potassium, alkali-
hydrolyzable nitrogen, soil organic matter, and soil water, silt, and clay
contents and negatively correlated with bulk density and sand content. The
slope and ORV activity interacted significantly with the Simpson dominance
index, soil particle composition, pH, total nitrogen, alkali-hydrolyzable
nitrogen, soil sucrase activity, and solid-urease activity. The impact of ORV
activity on the vegetation community and soil properties became more severe
with an increase in the slope. Assessing the impact of ORV activity on soil and
vegetation can provide a scientific basis for the sustainable development and
management of outdoor cross-country activities.
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1 Introduction

Outdoor off-road activities typically encompass long-distance hiking, running, cycling,
and off-road vehicle (ORV) driving in natural environments. With the rapid proliferation of
these activities, the substantial influx of tourists into natural areas has exerted both direct
and indirect effects on the ecosystem (Navas et al., 2019). Land trampling associated with
off-road activities can lead to soil erosion and vegetation destruction (Schlacher and
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Thompson, 2008; Gill et al., 2023). In fragile ecosystems, such as
nature reserves, these activities may irreversibly damage plant and
soil quality. Thus, investigating changes in vegetation and soil
during off-road activities is of significant importance for a deeper
understanding of grassland degradation processes and for
scientifically guiding the development and management of off-
road activities.

Recently, numerous scholars have investigated the impact of
ORYV activity on the structure and function of ecosystems in the
context of outdoor activities. ORV activity has been identified to
exert potential adverse effects on soil, plants, and animals (Navas
et al, 2019 Yu et al, 2017). Wilshire and Nakata (1976)
demonstrated that ORV activity induce physical damage to the
soil in the Mojave Desert, which may subsequently reduce soil
permeability, through wheel compaction. Westcott and Andrew
(2015) found that ORV activity influenced the growth of plant
seedlings, thereby altering species diversity. In lowland areas, trails
formed by ORV tracks can cause localized impacts, such as the
melting of permafrost and changes in the drainage density of river
wetlands. These changes can, in turn, affect hydrological conditions
and aquatic habitats downstream (Arp and Simmons, 2012). ORV
activity can modify animal habitats by altering soil physicochemical
properties, reducing vegetation cover, and
Wildlife concentrated
forested areas were also directly affected (Schlacher and
Thompson, 2008).

Researchers use various methods, including field surveys,

altering plant

communities. in coastal, desert, and

remote sensing image analyses, and site experiments, to
investigate the ecological impacts of ORV activities (Yeh et al,
2021; Dewidar et al., 2016). Westcott and Andrew (2015) used high-
precision MaxEnt models to predict the distribution of ORV tracks
and analyzed the correlation between off-road activities and the
environment. Dewidar et al. (2016) quantified the impact of ORV
activity on vegetation and soil in central Saudi Arabia using field
surveys and image analysis. Arp and simmons (2012) used outdoor
mapping and aerial photography to monitor and analyze the soil and
river basins of ORV trails in Alaska’s Wrangell-St. Elias National
Park found that ORYV trails can alter watershed processes, potentially
increasing drainage density and changing river water quality and
aquatic habitats. In addition, some researchers have conducted
studies from a microscopic perspective using field surveys and
site experiments. Robert and Douglas (1978) quantified soil bulk
density, soil moisture, and other indicators to study the impact of
ORYV activity and explore the challenges of vegetation restoration.
Rickard et al. (1994) monitored changes in vegetation height and
cover under different vehicle compaction and pedestrian trampling
intensities to assess the vegetation recovery status in South African
dune shrublands. These studies provide valuable data and insights
into the environmental impacts of off-road activities.

The Otindag Sandy Land is one of China’s five major sandy
lands and is characterized by strong winds, abundant sand, low
annual precipitation, and fragile habitats. Numerous studies on the
ecological impacts of degraded grassland restoration and grazing
utilization have been conducted in this region (Zhang et al., 2023;
Zhao et al., 2023). However, studies of the effects of ORV activity on
grassland ecosystems are limited. Therefore, we used the Otindag
Sandy Land as the research area and explored the effects of ORV
activity on grassland vegetation and soil under different slope

Frontiers in Environmental Science

10.3389/fenvs.2025.1601724

gradient conditions using site experiments. The aim of this study
was to understand the relationship between vegetation and soil
during the degradation of grasslands in the Otindag Sandy Land and
to provide scientific evidence for maintaining the stability of sandy
grassland ecosystems and promoting sustainable development and
management of off-road activities.

2 Materials and methods
2.1 Study area and experiment design

The Otindag Sandy Land (41°56'-44°26'N, 112°22'-117°57'E) is
located in the eastern part of the Inner Mongolia Plateau, China. It is
bordered by the Yin Mountains and Yan Mountains to the south, the
Xilingol Prairie to the north, and the Greater Khingan Range to the
east. The terrain of this area slopes gently from southeast to
northwest, with minor undulations and a total area of
approximately 29,500 km?. It is one of China’s well-known sandy
areas with abundant water resources. The region has a temperate
continental climate, with an annual average temperature ranging
from 0 °C to 3 °C and an annual evaporation rate of
1,455.4-2,116.4 mm. It features mobile, semi-fixed, and fixed
dunes, inter-dune depressions, and wetlands. The vegetation is
dominated by sandy grassland herbaceous plants, including
Cynodon dactylon L., Caragana microphylla, Salix gordejevii, and
Amygdalus pedunculata, etc. The zonal soils are primarily chestnut
and brown calcic soils, whereas the azonal soils are mainly
aeolian sands.

The Otindag Sandy Land is a crucial component of the
ecological barrier in northern China and plays an irreplaceable
role in protecting the ecological environment and biodiversity. In
addition, this region has become a popular destination for ORV
activities, with a total loop distance of over 2,700 km for self-driving
and off-road routes. More than 12,000 ORVs visit the area annually
to participate in these activities.

An experimental strip plot (length 500 m, width 60 m) was
selected in Saiyin Huda Gacha, Zhenglan Banner, in the southern
part of the Otindag Sandy Land. Three parallel off-road routes
spaced 30 m apart were established. A compaction experiment was
conducted on grassland using three different compaction
frequencies (HS: high-intensity disturbance, 100 passes per year,
LS:low-intensity disturbance, 10 passes per year; CK: control, no
ORYV activity) from June 2020 to October 2023. Off-road routes
traversed flat terrain and two areas with different slopes (SO:
0.0°-2.5% S1: 8.5°-10.5% S2: 16.0°-17.5°). A Toyota Prado off-road
vehicle (Automatic TX, 2018) was used as the experimental vehicle
(weight: 2,300 kg, Tire width: 265 mm), and the speed was 40 km h™".
In each treatment-slope combination, four replicate plots were
established. This replication level follows common practice in
long-term grassland ecology and soil disturbance experiments
conducted under comparable field conditions, where logistical
constraints (e.g., site accessibility, protection of surrounding
habitats) limit the feasible number of experimental units. Four
replicates represent a balance between ensuring adequate
statistical analysis and minimizing cumulative disturbance to the
study area caused by repeated ORV passes and sampling.
Preliminary field surveys prior to the experiment indicated
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Details of the experiment design.

relatively homogeneous vegetation and soil conditions within each
slope category, which supported the use of this replication level. The
details of the experimental design and sampling process are shown
in Figure 1.

A survey of the diversity of herbaceous plants was conducted in
36 quadrats (1 m x 1 m) in June 2024 to measure plant height,
density, and coverage. Concurrently, soil samples from the 0-15 cm
layer were collected from each quadrat. These samples were taken
back to the laboratory, air-dried, passed through a 2 mm sieve after
removing plant roots and gravel, and analyzed for soil properties.

2.2 Analysis of plant community
species diversity

Margalef’s (MI), Simpson dominance (SDI), Shannon-Wiener
(SWI), and Pielou evenness (PEI) indices were used to reflect plant
community species diversity using the following formulas:

RC = (Total basal area of the species/Total basal area of all the species)
x 100%
RH = (Average height of the species/
Sum of the average height of all species) x 100%

RD = (No. of individuals of the species/
No. of individuals of all species) x 100%

P, = (RC+RH+RD)/3
MI = (S - 1)/InN
SDI=1-)p?

i=1

SWI=-)"P;In(P;)

i=1
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PEI = _ZS:P‘ h’l(P‘)/ ln(S)

i=1

where RC represents the relative coverage, RH denotes the relative
height, RD denotes the relative density, P; denotes the species
importance value of i, and S represents the number of species.

2.3 Soil properties analysis

The soil properties included soil bulk density (BD), soil porosity
(SP), soil water content (SWC), pH, soil particle size distribution,
soil organic matter (SOM), total nitrogen (TN), total potassium
(TK), total phosphorus (TP), available potassium (AK), alkali-
hydrolyzable nitrogen (AN), available phosphorus (AP), soil
sucrase activity (S-SC), soil urease activity (S-UE), and alkaline
phosphatase activity (ALP). The selected soil physical, chemical, and
biochemical indicators comprehensively represent the structural,
hydrological, nutritional, and biological dimensions of soil function,
which are essential for capturing the mechanisms through which
ORV activity and slope gradient affect grassland ecosystem
dynamics. Table 1 provided the corresponding analysis methods
for these properties. All measurements were conducted in duplicate
for each composite field and the coefficient of
variation (CV) < 5%.

sample,

2.4 Statistical analysis

Data were analyzed using SPSS 22.0, with all data presented as
mean + standard deviation (Mean + SD). Prior to analysis, all data
were tested for normality test and homogeneity of variance. A two-
way analysis of variance (ANOVA) was used to evaluate the main

frontiersin.org


mailto:Image of FENVS_fenvs-2025-1601724_wc_f1|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1601724

Wang et al.

TABLE 1 Measuring methods for soil properties.

Properties Measuring method

Bulk density Cutting-ring method

Soil porosity Cutting-ring method

Soil water content Oven drying method

pH pH meter (soil-to-water ratio of 2.5:1)
Soil particle composition = laser particle analyzer (Messing et al., 2024)

Potassium dichromate volumetric method with a
UV-Vis spectrophotometer (Shamrikova et al., 2022)

Soil organic matter

Total Nitrogen Elemental analyzer (Vario EL-III, Elementar

United Kingdom Ltd., Germany)

Total Potassium Flame photometry (Zhang et al., 2017)

Total Phosphorus Molybdenum-antimony resistance colorimetric method

(Ku et al., 2023)

Alkali-hydrolyzable
nitrogen

Alkali diffusion method (Zhang and Gong, 2012)

Available phosphorus Molybdenum-antimony resistance colorimetric method

(Ku et al., 2023)

Available potassium Flame photometry (Zhang et al., 2017)

Soil sucrase activity Spectrophotometry (Gao et al., 2013)

Solid-Urease activity Spectrophotometry (Gao et al., 2013)

Alkaline phosphatase
activity

Spectrophotometry (Gao et al., 2013)

and interactive effects of slope gradient and ORV activity intensity
on vegetation community diversity, soil physicochemical properties,
and enzymatic activities. Multiple comparisons were conducted
control the

using Bonferroni-adjusted post-hoc tests to

familywise error rate. For each significant result, the
corresponding effect size (Cohen’s d) was also reported.
Detrended correspondence analysis (DCA) was performed on
the plant community characteristics and soil properties using
Canoco 5.0, and redundancy analysis (RDA) was used to
between

characteristics and soil properties. GraphPad Prism software was

determine the relationships plant  community

used for data visualization and graphing.

3 Results

3.1 Changes in plant community
species diversity

ORYV activity caused a marked reduction in plant community
species diversity (Figure 2). The SWI, ML, SDI, and PEI in the LS and
HS treatments decreased by 58.62%-81.31% (P < 0.01; Cohen’s d =
6.52-10.11), 24.44%-48.78% (P < 0.01; Cohen’s d = 3.85-6.79),
52.22%-77.78% (P < 0.01; Cohen’s d = 4.26-7.93), and 50.00%-—
75.68% (P < 0.01; Cohen’s d = 6.48-10.14), respectively, compared
to that in the control treatments. Specifically, these indices showed
consistent declines in the LSO vs. CKO, LS1 vs. CK1, and LS2 vs.
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CK2 comparisons, as well as in the HSO vs. CKO0, HSI vs. CK1, and
HS2 vs. CK2 comparisons. The magnitude of the decrease varied
slightly among the indices and conditions; however, the overall
trend was a notable reduction in species diversity measures due to
ORV activity.

The SWI and PEI demonstrated a significant decline with an
increasing slope gradient. SWI and PEI in CK2 exhibited a reduction
of 0.11 and 0.05, respectively, when compared to that in CKO0. A
significant interaction effect on SDI (F = 4.46, P < 0.01) was observed
between the slope gradient ORV activity (Supplementary Table S1).

3.2 Changes in soil physicochemical
properties and enzymatic activities

3.2.1 Soil physical properties

Figure 3 shows that as the ORV disturbance intensity increased,
the BD significantly increased, and the soil water content decreased.
BD in treated plots (LSO, HS0, LS1, HS1, LS2, and HS2) increased by
0.08-0.26 g cm™ compared to that in the respective controls (CKO,
CK1, CK2) (P < 0.05, Cohen’s d = 1.50-4.13). The soil water content
in these plots decreased by 2.47%-4.37% compared to that in the
controls (P < 0.01, Cohen’s d = 2.43-4.29). ORV activity also notably
changed soil particle composition, with clay content in treated plots
decreasing by 0.20%-1.39% compared to that in the controls (P <
0.05, Cohen’s d = 2.01-12.09). The interaction between slope and
ORV  activity significantly affected soil particle composition,
including clay (F = 4.19, P < 0.01), silt (F = 3.79, P < 0.01), and
sand contents (F = 5.62, P < 0.01) (Supplementary Table SI).

3.2.2 Soil chemical properties

As shown in Figure 4, ORV activity caused a significant decrease
in SOM (P < 0.01; Cohen’s d = 2.57-5.29), TN (P < 0.05; Cohen’s d =
1.37-4.57), AN (P < 0.05; Cohen’s d = 1.59-5.63), TP (P < 0.05;
Cohen’s d = 1.62-2.43), AP (P < 0.05; Cohen’s d = 1.86-3.62), and
AK (P < 0.01; Cohen’s d = 3.61-5.93). SOM content declined by
1.10-2.20 g kg™, TN by 0.06-0.15 g kg!, AN by 4.53-16.04 mg kg'’,
TP by 0.02-0.04 g kg, AP by 2.35-4.58 mg kg, and AK by
22.53-71.23 mg kg' in ORV-affected plots compared to that in
the respective controls. Specifically, soil pH in highland areas
(CK1 and CK2) decreased by 0.27-0.38 units compared to that
in the lowland control (CKO0), with further reductions in ORV-
affected plots (LSO, HSO, LS1, and HS1). Additionally, soil pH, TN,
and AK significantly decreased with increasing slope gradient, and
the interaction between slope gradient and ORV activity had a
significant effect on pH (F = 6.37, P < 0.01), TN (F = 3.03, P < 0.05),
and AN (F = 4.73, P < 0.01) (Supplementary Table S1).

3.2.3 Soil enzyme activities

ORV activity and slope gradient significantly affected soil
enzyme activity (Figure 5). Sucrase activity decreased by
3.30-8.63 mg g' d" in ORV-affected plots (LSO, HSO, LS1, HSI,
LS2, and HS2) compared to that in the respective controls (CKO,
CKl, and CK2), with the largest reduction observed in HS2. ALP
activity declined by 0.06-0.12 mg g' d' in HS plots relative to that in
the controls. Solid-urease activity decreased by 0.06-0.15 mg g* d!
in specific ORV-affected plots (HS1, LS2, and HS2) compared to
that in the control plots. The interaction between slope and ORV

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1601724

Wang et al. 10.3389/fenvs.2025.1601724

% 0.8 0.6
] a a .
2 0.6 a . a
% b '“é 0.4 b be
= = cd 4 d
5 0.4 ko)
§ c Tgn [
= cd e =02
£ 02 of ¢ £ =
:

0.0-

CKO LSO HSO0 CK1 LSI1 HS1 CK2 LS2 HS2 CKO LSO HS0 CK1 LS1 HSI CK2 LS2 HS2

04— 0.6
5 a
E 034 a £
8 i &
g @
‘E 0.2 g
kS b g
= be b b =
] o
Z 0.1 d cd s}
£ &
w2

CKO LSO HSO CK1 LS1 HS1 CK2 LS2 HS2 CKO LSO HSO CKI1 LS1 HS1 CK2 LS2 HS2
FIGURE 2

Plant community species diversity in different treatments. Mean values + S.D. are shown. Different letters denotes significant difference (P < 0.05).

activity significantly affected sucrase (F = 2.92, P < 0.05) and solid-
urease activity (F = 7.15, P < 0.01) (Supplementary Table SI).

3.3 RDA of vegetation community and soil
properties

The results of RDA are shown in Figure 6. The first two ordination
axes of the RDA accounted for 89.99% of the relationship between
vegetation community characteristics and soil properties. This
indicated that the first and second axes can effectively reflect the
relationship between grassland vegetation community characteristics
and soil properties under ORV activity. Among them, MI, SWI, SDI,
and PEI were positively correlated with pH (r = 0.56-0.74, P < 0.05),
AP (r = 0.75-0.81, P < 0.05), AK (r = 0.76-0.86, P < 0.05), AN (r =
0.50-0.81, P < 0.05), SWC (r = 0.75-0.83, P < 0.05), SOM (r =
0.67-0.85, P < 0.05), and clay content (r = 0.56-0.74, P < 0.05) and
negatively correlated with BD (r = -0.73 to —0.84) and sand content
(r = —0.73 to —0.88, P < 0.05) (Supplementary Figure SI).

4 Discussion

4.1 Effect of ORV activity on plant
community characteristics and soil
properties

ORYV activity significantly affected the growth and community
structure of grassland vegetation. We found that species diversity
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within the grassland community significantly declined as ORV
activity intensified, which is consistent with previous research
results (Yang et al., 2009). This decline can be attributed to the
mechanical damage inflicted on plants by ORV activity, which
reduces plant height and cover. Additionally, soil compaction
and destruction of root systems by ORV activity impede plant
growth and reproductive capabilities, thereby diminishing plant
abundance (Schlacher and Thompson, 2008). In this study, the
Shannon-Wiener index exhibited a 40.30%-81.13% reduction as the
ORYV disturbance increased, indicates that grasslands reached the
threshold for moderate (30%-50%) to severe (>50%) degradation
(Magurran, 20215 Luo et al,, 2022). As disturbance levels increase,
plant community structures tend to simplify, with species
composition shifting towards those more tolerant to disturbance.
Perennial plants predominated in the study area of the Otindag
Sandy Land, and their root systems survived, even when the
aboveground parts were damaged. However, the diversity of
perennial vegetation significantly decreased following ORV
disturbance, with species such as Cynodon dactylon L. and Aster
pilosus demonstrating relatively strong survival capabilities. In
addition, ORV activity causes physical damage to the soil and
affects vegetation communities by limiting water and nutrient
availability.

ORV activity significantly alters the physical and chemical
properties of soil, which are closely related to vegetation
community characteristics (Ploughe et al., 2022). In this study,
ORYV activity increased soil bulk density (BD) by 14.00%-19.54%
and reduced clay content by more than 40%. According to the
Parameters for Degradation, Sandification and Salinization of
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Rangelands (GB 19377-2003), such a substantial reduction in fine
particles places the grassland within the category of severe
sandification. This increase in BD can be attributed to soil
compaction caused by ORV. Moreover, the destruction of surface
vegetation exposes finer soil particles to wind erosion, increasing the
coarse sand content and BD (Goossens and Buck, 2009). RDA
indicated that the first two ordination axes together accounted for
89.99% of the relationship between vegetation community
characteristics and soil properties, and that key vegetation
diversity indices were positively associated with SWC, SOM, and
available nutrients (AP, AK, AN). These findings were consistent
with those reported by Amrein et al. (2005). Vegetation in sandy
grasslands stabilizes sand and reduces water evaporation. When
vegetation is disturbed, the reduction in root systems significantly
diminishes the water-retention capacity of the soil. As the physical
structure of the soil changes, precipitation is less likely to be retained
in the surface soil with a reduction in fine sand and silt content.
Additionally, the lack of vegetation cover leads to rapid surface
warming, further exacerbating soil water evaporation.
Additionally, our results demonstrated that ORV activity
markedly reduced soil organic matter (SOM) by 17.90%-41.60%.
Based on GB 19377-2003, this magnitude of SOM loss indicates that
grasslands in the LS treatment reached the threshold for light to
moderate degradation, whereas those in the HS treatment
corresponded to moderate to severe degradation. We found a
close relationship between soil particles and soil nutrients, with
clay content positively correlated with SOM, AP, AK, and AN, these
findings align with those of Arocena et al. (2006) and Jiang et al.
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(2016). Fine soil particles contain high levels of C, N, P, and K
nutrients (Sujatha and Jaidhar, 2024). These fine particles were more
easily blown away by the wind after ORV disturbances, leading to a
decline in SOM content and nutrient loss (Wei et al., 2018). In
contrast, a reduction in fine particles decreases the soil adsorption
capacity, thereby reducing the ability of the soil to retain nutrients.
Under severe disturbance, a significant reduction in surface
vegetation leads to a decrease in organic matter entering the soil
(Ning et al., 2019).

Soil enzyme activity is an important biological indicator of
changes in soil quality. The RDA revealed positive correlations
between soil enzyme activity and SOM, AN, AK, and clay
content. Soil enzyme activity was the lowest in severely disturbed
areas due to reduced plant litter and the consequent decrease in
organic matter input into the soil. This reduced the availability of
substrates and energy for soil microorganisms, thereby affecting the
microbial activity. Additionally, ORV activity altered the soil texture
and disrupted the living environment of soil enzymes, leading to a
decline in their activity (Zhu et al., 2021).

4.2 Interactive effects of slope gradient and
ORYV activity on soil and vegetation

The impacts of human disturbances on grassland soil
properties
characteristics vary significantly under different site conditions

physicochemical and  vegetation = community

(Yuan et al,, 2019). Previous research reported that the vegetation
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FIGURE 4
Soil chemical properties in different treatments. Mean values + S.D. are shown. Different letters denotes significant difference (P < 0.05).

community was significant differences in different slopes and  occur, thereby intensifying water erosion (Gerhardus et al., 2012).
directions (Timothy et al, 2008). Slope influences hydrological =~ We observed significant interactive effects of the slope gradient and
processes; as slope increases, surface runoff is more likely to ~ ORV intensity on the SDI (F =4.46, P < 0.01), clay content (F = 4.19,
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Soil enzyme activities in different treatments. Mean values + S.D.

are shown. Different letters denotes significant difference (P < 0.05).

P < 0.01), TN (F = 3.03, P < 0.05), AN (F = 4.73, P < 0.01), soil
sucrase activity (F = 2.92, P < 0.05), and solid-urease activity (F =
7.15, P < 0.01) in this study. This indicated that the impact of ORV
activity on vegetation and soil became more pronounced as the slope
gradient increased. Under sloped conditions, ORV activity can lead
to soil slippage or shear failure. Steep-slope areas, characterized by
shallow topsoil and poor nutrient content, are inherently
ecologically fragile, making them more susceptible to structural
damage caused by trampling. Additionally, the ORV activity
disrupted the soil surface structure more readily in these areas,
reducing the resistance of the soil to erosion. Once the soil surface
was compacted or damaged, soil sandification by rainfall or wind
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becomes more likely, with steeper slopes posing a higher risk of soil
sandification.

Therefore, it is essential to consider the combined effects of these
factors when managing and protecting grasslands. Effective
measures should be implemented to regulate ORV activity and
mitigate the damage caused by vehicle traffic, particularly in
areas with high slopes.

4.3 Future research and management
implications

While our statistical analyses indicated significant responses of
multiple vegetation and soil indicators to ORV disturbance, these
results should be interpreted with caution when generalizing to
broader landscapes or different environmental contexts. In natural
grassland systems, spatial variability in vegetation composition and
soil properties can be substantial even within short distances,
incorporating hierarchical sampling across multiple sites could
improve the representativeness.

Future research should focus on several key directions. First,
identifying disturbance thresholds at which ORV activity causes
irreversible degradation to vegetation communities and soil
functions is essential. The thresholds could inform the definition
of safe carrying capacities and usage limits. Second, consider
conducting field experiments under various environmental
conditions (site conditions, seasons, vehicle types, and tires, etc.).
Third, long-term and multi-seasonal monitoring would help capture
inter-annual variability and delayed ecological responses, including
vegetation succession and soil recovery dynamics. Finally, optimize
the spatial distribution of ORV activities and explicit management
strategies, such as restricting ORV wuse to high-slope areas,
establishing buffer zones.

5 Conclusion

With the intensification of ORV activity, the species diversity
of grassland vegetation communities decreased significantly. ORV
activity led to a significant increase in soil bulk density and a
notable decrease in soil organic matter, water and clay contents,
available phosphorus and potassium, and soil enzyme activity.
Plant community species diversity (MI, SWI, SDI, and PEI) was
positively correlated with pH, AP, AK, AN, soil water content,
SOM, silt content, and clay content and negatively correlated with
soil BD and sand content. The slope gradient and ORV activity
significantly interacted with the SDI, soil particle composition,
TN, AN, soil sucrase activity, and solid-urease activity. The
impact of ORV activity on vegetation and soil in the sandy
grasslands became more

pronounced as the slope

gradient increased.
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