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Hail-producing convective thunderstorms are a major threat to agriculture and
infrastructure causing large financial losses. Remote sensing techniques such as
dual-polarimetric weather radar can provide hail observations over large areas,
but do not necessary reflect the situation on the ground. Current ground-based
observations—such as automatic hail sensors, hail pads, and crowd-sourced
reports—provide valuable information but exhibit limitations for validating radar
products in terms of area coverage. Drone-based hail photogrammetry coupled
with machine-learning (ML) techniques has the potential to close this
observational gap by sampling thousands of hailstones within the hail core
across large areas of hundreds of square meters and provide a hail size
distribution estimation. However, the reliability of this new technique has not
yet been assessed. In this study, we conducted experiments on different grass
surfaces using synthetic hail objects of known sizes and quantity to assess the
uncertainty of the ML-based hail size distribution retrievals. The findings of the
experiments are then compared with a real hail event surveyed using drone-
based hail photogrammetry. Using drone-based hail photogrammetry coupled
with ML, 987% of the synthetic hail objects and 81% of hailstones were correctly
detected. Additionally, sizes of the detected objects were retrieved with a minor
underestimation of around —0.75 mm across all sizes for both synthetic hail
objects (10-78 mm) and hailstones (3—24 mm). Hence, the high accuracy
coupled with a large sampling area provides an estimation of representative
hail size distributions on the ground. These reliable ground observations are a
valuable basis for applications such as validation of weather radar hail estimates.

hail observation, ground observation, machine-learning, fieldwork, drone
photogrammetry, synthetic hail
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1 Introduction

Hail bears a major threat to society, with single regional events
of up to CHF 400 million
(Gebdudeversicherung Luzern GVL, 2022). Such a particular

causing economic losses
extreme event related to a severe convective weather outbreak in
Switzerland is described in detail by Kopp et al. (2023b), while event
intensity tends to increase in the future across many regions around
the globe (Battaglioli et al., 2023; Raupach et al., 2021).

Current hail warning systems rely on a combination of products
including satellite imagery, lightning data, numerical weather
prediction models, digital elevation models, and importantly,
weather radar observations. Weather radar observations enable
the detection of hail in thunderstorm cells, along with the
prediction of the cell evolution in the next minutes to hours
2022). the MeteoSwiss
thunderstorm radar tracking (TRT) algorithm, operational since
the early 2000s (Hering et al., 2004). TRT uses an object detection
technique combined with velocity advection schemes to extrapolate

(Germann et al, An example is

storm movements and to identify warning areas. Various algorithms
have been developed and are running operationally to identify the
probability of hail (POH, Witt et al., 1998; Waldvogel et al., 1979)
and the maximum expected severe hail size (MESHS, Treloar, 1998)
based on radar signatures (Hering and Betschart, 2012). Additional
use of polarimetric signatures of weather radar data enables
hydrometeor classification, which could enhance operational hail
detection (Besic et al., 2016; Grazioli et al., 2019) and nowcasting
(Rombeek et al., 2024) in the future. Nowadays, machine-learning
(ML) techniques integrate these data sources to predict storm cell
evolution more accurately (Leinonen et al., 2023). However, all these
observations only serve as indirect proxies for hail in the
atmosphere, and thus extrapolation to predict the impact of hail
on the ground involves significant uncertainty (Schuster et al., 2006).
Therefore, ground-based observations are essential to verify and
improve hail estimations.

Various ground-based observation technologies are widely used
to verify and improve these indirect hail estimations. In the late
seventies, 330 hail pads were installed in a large-scale field
experiment in Switzerland to analyze hail size distributions
(HSD) and associated properties, such as kinetic energy (Federer
et al, 1986). Hail pads are still commonly used in many field
campaigns nowadays thanks to their ease in installation and low
cost (e.g., Dessens et al., 2007; Punge and Kunz, 2016; Brimelow
et al, 2023). Since 2018, a network of automatic hail sensors is
operational in three hail-prone regions in Switzerland. These sensors
estimate the size of individual hailstones by measuring the kinetic
energy of their impact. The associated datasets have been extensively
studied: they have been used to infer the spatio-temporal invariance
of normalized hail size distributions and to model them (Ferrone
etal., 2024), and they have been compared with hail pad data (Kopp
et al.,, 2023a) and crowd-sourced hail data (Barras et al, 2019).
Crowd-sourced hail data is currently the third method operationally
used by MeteoSwiss to observe hail on the ground providing
information about the size of single hailstones in populated areas
(Kopp et al., 2024).

Within the last decade,
complementary observational

these three
methods,

independent and
pads,
automatic hail sensors and crowd sourcing, lead to large progress

namely, hail
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in characterizing the regional distribution of hail. However,

gaps
distribution is of interest. In fact, weather radar data can provide

observational remain, particularly when hail size
hail size estimation and information about the probability of hail
across large areas, but only via an indirect estimation at a resolution
of roughly 1 km®. Hail pads have limitations due to their manual
data collection process and missing time information. Automatic
hail sensors provide precise point observations of HSD, but only
across the observational area of 0.2 m*. Crowd-sourced data offers
extensive spatial coverage but with limited accuracy and observer
bias towards populated areas (Barras et al., 2019; Allen and
Tippett, 2021).

Photogrammetry is widely used in many fields to map, measure
and reconstruct objects of interest from individual images (e.g.,
Kraus, 2007; Groos et al., 2019; An et al,, 2025). In recent years,
innovative methods based on aerial photogrammetric data from
uncrewed autonomous vehicles (UAVs or drones) for observing hail
size distributions have emerged. Images of hail on the ground
recorded by a drone were analyzed using a ML method to
estimate the HSD (Soderholm et al, 2020; Lainer et al., 2024).
Thanks to UAVs, large areas of several hundred square meters can
be covered, with corresponding HSDs that can include thousands of
individual hailstones. Given that automatic hail sensors record a
number of impacts typically in the order of 10-80 per event, the
integration of observations from UAVs coupled with ML is expected
to complement and improve estimations of HSD.

However, this UAV coupled with ML method involves several
challenges. Firstly, in terms of logistics, it is difficult to perform the
measurements at the right location and at the right time, as this involves
to be physically present within the center of the hail core, shortly after
the event, before significant melting occurs. Secondly, the data collection
process is time-consuming as it involves preparing the UAV and its
flight path, placing reference objects on the ground and flying over the
area in a grid-like manner. Another challenge is the assessment of its
performance, given the absence of ground truth measurements. The
two published events so far rely on size estimations from
imagery, supplemented by limited field
observations by eye and comparisons with nearby automatic hail

photogrammetric

sensors (Soderholm et al., 2020; Lainer et al, 2024). However, the
true sizes and number of hailstones remain undetermined. Additionally,
the UAV cannot be operated in the hail streak itself due to the
environmental conditions, such as severe wind gust, hail damaging
the UAV, or intense precipitation. Thus, the observations are
temporally separated and melting can occur during the time delay
between the hail event and the drone flight (usually in the order of
5-10 min). The surface on which the photogrammetric data is collected,
which can vary between events, further adds complexity. The most
promising surfaces are soccer fields, which can be identified prior and
during the storm chase based on map data, and are usually of uniform
conditions (short grass without bare soil spots). However, the choice of
surfaces is also limited by regulatory restrictions on drone operations.
Finally, light conditions during data collection play a critical role. The
diurnal cycle of (large) hail usually peaks in the afternoon to evening
(Nisi et al., 2020; Hulton and Schultz, 2024) and natural illumination is
reduced underneath thunderstorm clouds, impacting the collection of
suitable photogrammetric data.

In this study, we conducted an experiment using the approach
demonstrated by Soderholm et al. (2020) and Lainer et al. (2024) in
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TABLE 1 Hardware and settings used during the photogrammetric data collection of the cases presented in this paper, synthetic hail experiment and the real
hail event that occurred in 2022 in Locarno, with regards to those used in Lainer et al. (2024).

Parameter

Synthetic hail experiments

Real hail event

1SO Auto (280-800) Auto (2260-4030) 25,600
Exposure time 1/1000 s 1/250 s 1/1000 s
Aperture Auto (f/4- fI8) f12.8 f15.6
Flight altitude (AGL) 8§ m 12m 12 m
Flight speed 1ms™! 1ms™! 1ms™!

Image overlap 75% 70% 70%
Number of Images Variable 44 116
Survey area Variable 220 m’ 750.4 m*
Flight duration Variable 1 min 49 s 3 min 51 s
GSD 1 mm/px 1.5 mm/px 1.5 mm/px
Motion blur 1 mm 2.67 mm 0.67 mm

Parameters marked with a grey background are the same across all the events. Parameters marked as “variable” in the synthetic hail experiments, namely, number of images, survey area, and the
flight time, were adjusted to fine-tune the image quality in the environment of the experiment locations.

order to assess the performance of the drone-based hail
photogrammetry method in retrieving HSDs. In the framework
of a master thesis (Portmann, 2024), we tested the approach on
synthetic hail objects of known number and size on different types of
grass. This allowed us to quantify the differences between the HSD
of the synthetic objects and the drone-derived HSD.

The current paper is structured as follows. Section 2 presents
the equipment used to collect the photogrammetric data, the
characterization of the three synthetic hail objects employed to
mimic hail properties (expanded polystyrene EPS, glass pebbles,
and ice cones), illustrates the various surfaces selected for the
experiment, and describes a hail event occurred on 28 June
2022 in Locarno (Switzerland), which serves as a comparison
for the
methodology, followed by a presentation of the results in
Section 4, showing that around 98% of synthetic hail objects

experimental results. Section 3 describes the

were correctly detected, with a mean bias of around (-0.75+ 1.6)
mm and 81% of hailstones in the real event were correctly
detected with a mean bias of around (-0.79 + 1.5) mm. In the
discussion (Section 5), the results are put into context with data
collected from the real hail event in Locarno. Finally, Section 6
presents the conclusions of the study and discusses future
research directions.

2 Materials and equipment

In this section, we first present the hardware used to collect the
photogrammetric images for the experiments and the real hail event
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(Section 2.1), followed by a detailed description of the synthetic hail
objects used and the grass surfaces selected for the experiments
(Section 2.2) and finally, we provide a characterization of the hail
event in Locarno (Section 2.3).

2.1 Photogrammetry system

Photogrammetric methods can be used to determine the
location, shape and size of objects in measurements retrieved
from cameras. This enables the derivation of various products,
such as point clouds (PC), geometric models or rectified images
(orthophotos) (Kraus, 2007).

Data collection was performed using the commercial
multicopter drone DJI Matrice 300 RTK and the DJI Zenmuse
P1 camera (DJI, 2020a; 2021). This setup is described in more detail
in Lainer et al. (2024). Whilst the hardware is similar, specific
settings vary between the synthetic hail experiments, the real hail
event presented in Section 2.3, and the hail event presented in Lainer
et al. (2024). An overview of the hardware and settings is provided
in Table 1.

The flight planning software UgCS was used to setup the drone
flight paths with the specific parameters (SPH Engineering, 2024).
Digital elevation models (DEM) can be loaded, which are available
for Switzerland in high resolution (0.5 m) as 1 km? grid cells (Federal
Office of Topography swisstopo, 2023), providing detailed surface
elevation information. This allows the drone to maintain a constant
altitude above ground level (AGL), which is essential for a uniform
ground sampling distance (GSD). Photogrammetry parameters can
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Synthetic hail objects used for the experiments. (A) EPS hail objects (10 mm-78 mm) with their measurements in mm, (B) Oblate, painted glass

pebbles (\diameter 19.5 mm), (C) ice hail objects (25 mmx25 mm).

be directly defined in the software. These parameters include the
flight patterns, the GSD, the overlap between images, the flight speed
and the camera angle. With UgCS, the minimum altitude AGL
corresponds to 6 m, while in the DJI Pilot 2 app, as used by Lainer
et al. (2024), the minimum flight altitude was restricted to 12 m
AGL, resulting in a GSD of 1.5 mm/px (Table 1). The individual
photos are taken with a constant exposure time during the flight
while the drone is moving, leading to motion blur. The exposure
time is set as low as possible and the speed is chosen such that
motion blur is below or at the resolution of the GSD. Motion blur b is
calculated as:

_v'te
" GSD

where v is the flight speed of the drone, t, the exposure time. For a
GSD of 1 mm/px, the motion blur is exactly 1 px at an exposure time
of t, = 1/1000 s. These values were used during the synthetic hail
experiments. Due to low light conditions, an exposure time of
1/250 s was used for the real hail event (Table 1). Aperture
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opening (f-number) and sensor sensitivity (ISO setting) were set
to automatic, with metering set to average.

2.2 Synthetic hail experiments

This section introduces the synthetic hail objects used for the
experiments (Section 2.2.1), the different surfaces (Section 2.2.2) and
the experimental setup (Section 2.2.3).

2.2.1 Synthetic hail objects used for experiments

Commercially available synthetic objects were used to mimic
hail in terms of optical properties, size and number distributions.
Hereafter, these objects are referred to as “synthetic hail objects” and
include EPS spheroids, painted oblate glass pebbles and ice from a
consumer-grade ice maker (Figure 1).

First, EPS hail objects were used to imitate different sizes (major
axes from 10-78 mm) and axis ratios (spheres, spheroid ovals) of
hail. The size distribution of the EPS spheroids are listed in Table 2,
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TABLE 2 Number (N) and size (d) of spherical (diameter) and oval (major and minor axes) EPS objects used per experiment: d,.s refers to the sizes reported
by the manufacturer, while d,.; indicates the measured mean + standard deviation of the actual objects used in this study.

Spheres Oval spheroids
dret [Mmm] dact [mm] dmaj,ref [mm] dmaj,act [mm] Aminyrer [Mm] dminact [mm]
1 60 59.7 0.2 1 78 787 + 0.6 53 53.9 + 0.1
2 40 39.7 + 0.3 2 60 59.2 + 0.3 40 404 + 0.1
6 32 325 402
8 27 262+ 0.6
12 15 145 + 0.3
18 10 95 +0.7

Oval spheroid EPS objects are available only for the two largest size classes. The values are colored red (blue) if d, is larger (smaller) than di..

where d, is the size reported by the manufacturer, which slightly
deviates from the actual size (d,y). For the subsequent size
estimation, the reference sizes given by the manufacturer are
used. The
uncertainties

intrinsic limitation of this approach and the
introduced are discussed in Section 5. In the
experimental setup, the EPS hail objects were fixed to the ground
with wooden sticks to prevent unintended displacement caused by
drone-induced rotor wind or natural wind at the experiment site. In
half of the experiments with EPS hail objects, the largest three EPS
spheres were substituted by spheroid oval EPS objects to assess the
axis ratio of non-spherical objects (see Table 2). In total, 50 EPS hail
objects were used in each experiment.

Second, glass pebbles with a flat base and coated with a thin layer
of white spray-paint were used to replicate the translucent
characteristic of hail, which cannot be represented by EPS hail
objects (Figure 1). These glass pebbles are off-the-shelf aquarium
decoration of uniform size (19.5 mm x 19.5 mm x 0.9 mm) and are
thereafter referred to as glass hail objects. During each synthetic hail
experiment, 50 glass hail objects were used.

Third, ice produced by an ice maker in cylindrical form were
used to emulate hail in terms of albedo, translucency and color
(Figure 1). These ice objects have a size of 25 mm x 25 mm X 25 mm
(measured in the field before placement). They were produced in the
evening prior to the experiment and stored in the freezer over night.
In the morning, the ice objects were transferred to a thermally
isolated container until used in the field experiment. Since the ice
objects start to melt when laid out in the field, their size will
subsequently be smaller than initially determined. During each
synthetic hail experiment, 50 ice hail objects were used.

2.2.2 Experiment surfaces

In order to assess the sensitivity of automatic HSD retrievals as a
function of different surfaces, synthetic hail experiments were
conducted on various grass surfaces with distinct visual
properties. Five sites with varying grass coverage were selected,
from dense and uniform soccer fields to patchy meadows,
occasionally featuring some flowers such as dandelions or

clovers (Figure 2).
2.2.3 Experimental setup and dataset

On each surface, an experiment area of 5 mx5 m was defined
and divided into four quadrants (Figure 3A). The hail objects (EPS,
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glass and ice, see Section 2.2.1) were sparsely distributed in two of
the quadrants, arranged according to a predefined template to
ensure consistent placement across the different surfaces. In one
of the quadrants with EPS synthetic hail objects, the largest spheres
were replaced by the oval spheroid counterparts with a similar minor
axis (diameters 60 mm and 40 mm, Table 2). Ground control points
(GCP) with 150 mm side length were placed in the middle and to the
side of the experiment area to verify the GSD. One type of synthetic
hail objects was placed in the area, and the experiment flight was
then completed. This process was repeated for each type of synthetic
hail object and on each surface type.

For the training and validation of the ML process, a leave-one-
out cross-validation (LOOCYV) is applied, as shown in Figure 3B. A
single test dataset consists of the two quadrants from the experiment
surface with the same name, whereas the quadrants from the
remaining experiments are used for model training and
validation. Each quadrant is split into tiles of 600 px x600 px,
which overlap 50 px in each direction with each other. This tiling
process and splitting of datasets is further detailed in Section 3.2.

The experiments on surfaces a and b were conducted slightly
differently from those on surfaces c-e. Instead of repeating the
experiments in the same 5 m x 5 m square, three separate squares
were set up, with each type of hail object placed in one of them in
four quadrants instead of two, resulting in configurations a and b. A
single flight was conducted over all these setups, leading to longer
flight times (4 min 30 s) compared to the other experiments (around
2-3 min). Additionally, the time delay between the placing of the ice
hail objects and capturing the first image was longer in this
experiment and thus influenced by melting. Furthermore, the ice
objects were placed only once, meaning configuration b does not
exist for them. As a result, the other configurations with ice objects
use data from only three surfaces, whereas EPS and glass use four.

2.3 Real hail event

In addition to the experimental setup described above, data from
a real hail event is used to assess the performance of the automatic
HSD
(Switzerland) on 28 June 2022, after a passage of a hail-

retrieval. The data was collected in Locarno-Monti
producing thunderstorm cell. Besides the operational weather

radar and crowd-sourced reports, several instruments on-site
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FIGURE 2
Surfaces of the experiments (a—e). Top row: Excerpts from orthophotos. Bottom row: Images showing the surroundings of the experiment sites.

Surfaces (a—d) are soccer fields and e is an airfield for remote-controlled model airplanes. The surfaces can be characterized as follows: (a,b) short, high-
density grass of uniform length with small dirt patches, (c) short, very low-density grass of uniform length with large dirt patches, (d) long, medium density
grass with high plant variety and no dirt patches, (e) long, very high-density grass of varying lengths with no dirt patches. Due to a different setup
(Section 2.2.3), configurations (a,b) share the same type of surface. Experiments on surface (a—d) were conducted during April 2024 in Ticino (southern
Switzerland), while experiments on surface e were conducted in August 2024 near Zurich (northern Switzerland).

(A) (B)

Test Train/Validation

Configurations
(@)

Tiles

FIGURE 3
Design of the experiments with synthetic hail objects. (A) Setup of the experiments with the 5 mx5 m square, subdivided into the quadrants and

quadrants 1 and 2 are used for this study. Each quadrant is split into 25 tiles of 600 pxx600 px, including a 50 px overlap in each direction to prevent
cutting off hail objects. (B) All tiles of the two quadrants from each configuration (a—e), are used in a leave-one-out cross-validation (LOOCV) during the
ML process. Thus to train the ML model for testing on surface a, all quadrants of the remaining surfaces (b—e) are used as training and validation set

and the tiles of the quadrants from surface a is used as the test dataset. This is referred to as configuration (a).
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recorded the event. The automatic rain gauge, located directly at the
drone survey site, recorded precipitation rates of 90 mm h™* (15 mm/
10 min). In addition, the automatic hail sensor, situated 30 m from
the drone survey location, registered the first hailstone impact at 07:
51:58 UTC and the last at 07:58:27 UTC, with the largest estimated
size of 1.4 cm (see Kopp et al. (2023a) for more details on the
automatic hail sensors). Radar-derived maximum expected severe
hail sizes (MESHS) indicated hail of up to 4-5 cm, while crowd
sourced reports suggested sizes of around 2-3 cm.

The drone survey was only started 19 min 31 s after the hail

! and the intense

stopped, due to strong wind gusts of up to 15 ms~
precipitation rates. The first image was captured by the drone at 08:
17:58 UTC, while the last image was captured at 08:19:47 UTC. The
flight duration of the photogrammetry mission was 1 min 49 s. Due
to complications with some of the drone’s sensors, only a single
flight could be completed.

This event was surveyed under challenging light conditions,
resulting in low contrast between the hail and the surface in the
images (see the generated orthophoto in Figure 10). Additionally,
the presence of numerous clover flowers and other objects pose a
challenge for both human experts and ML models to distinguish hail
from unrelated objects and the background.

3 Methods

This section describes the full workflow, from processing the
captured photogrammetric data to the final detection and evaluation
of hail objects. First, the collected images from both synthetic
experiments and real hail events are processed to generate high-
resolution orthophotos (Section 3.1). These orthophotos are divided
into smaller tiles, used as the training, validation, and test datasets for a
region-based convolutional neural network (R-CNN) for automatic hail
detection, with hail objects within these tiles manually annotated to
enable supervised learning (Section 3.2). The ML model is then trained
using these annotated datasets (Section 3.3). Once trained, the model is
applied to the test datasets and additional tiles from the real hail event to
automatically detect hail objects and estimate the HSD (Section 3.4).
Finally, this section describes the error metrics used to evaluate the
terms of detection and size

model’s  performance in

estimation (Section 3.5).

3.1 Orthophoto generation

The photogrammetric data gathered in the field is first separated
into groups corresponding to each flight for further processing.
Then, the open-source photogrammetry tool OpenDroneMap
(ODM) is used to generate the orthophoto (OpenDroneMap
Authors, 2020; Groos et al.,, 2019). It uses structure from motion
(SfM) and scale-invariant feature transform (SIFT) to match
multiple images together and create a three-dimensional point-
cloud, from which a textured 3D mesh is generated. The textured
mesh is then used to compute the orthophoto by projecting it onto a
horizontal plane. An in-depth explanation of the orthophoto
generation process for hail photogrammetry can be found in
Lainer et al. (2024) and a more general workflow for using ODM
in Groos et al. (2019).
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The theoretical GSD (matching the setting used during flight
planning in UgCS) is passed as an option to ODM for generating the
orthophoto. The GSD of the resulting orthophoto may slightly
deviate from the theoretical GSD in different regions of the
orthophoto due inconsistent flight altitude during the survey and
distortion effects during reconstruction of the point-cloud. To verify
the resulting GSD, we therefore use the GCP placed in the area of the
orthophoto. If the sides of a GCP deviate more than 5% in the
orthophoto from its actual size, the orthophoto is scaled manually to
the correct size.

An important limitation of the automatic hail detection is
related to potential misclassification of objects in regions where
hail detection is not desired (e.g., in bushes covered by the
orthophoto of the real event or the GCPs containing white dots).
To mitigate this, these areas are visually identified and masked in
black on the orthophoto to exclude them from the ML process. For
the real hail event (Figure 10), we therefore only use an area of 194.6
for the hail detection compared to the total area of 220.2 m* covered
by the orthophoto.

3.2 Data preparation for ML

In this section, the steps needed to prepare the generated
orthophoto for the ML process are detailed. The orthophoto is
split into smaller, overlapping tiles (Section 3.2.1) and then the tiles
are partitioned into training, validation and test datasets
(Section 3.2.2).

3.2.1 Tile splitting and manual annotations

After its generation, the orthophoto is split into tiles of 600 x
600 px for the ML process. This tile size is necessary to not
exceed computational limitations and prevent excessive resizing
during the ML process. In addition, the tiles overlap with each
other in all directions by 50 px to prevent cutting off hail objects
at the edges of the image. Detected objects in a given tile with
their center inside the overlap area are ignored and will be
included in the adjacent tile. The method using overlapping tiles
is also used by Soderholm et al. (2020), but not by Lainer
et al. (2024).

Manual annotation, i.e., the visually determined hail objects in
an image by a human expert, is crucial for supervised learning in the
framework of image-based ML. These annotations, together with the
image data, serve as train, validation and test datasets for the
ML process.

To annotate the image tiles we used CVAT (CVAT.ai
Corporation, 2023), a tool specifically designed for annotation of
images. In each of the tiles, a polygon is manually drawn around the
hail objects (both synthetic or real) to define its perimeter, which is
further used for the ML process (training, validation and test). In
this study, the annotation process is conducted by three different
human experts (referred to as EI, E2 and E3), resulting in three
independent training, validation and test datasets, based on the same
orthophotos.

Annotated tiles are exported in the COCO (Common Objects in
Context, Lin et al. (2014)) annotation format, which stores
annotations and image metadata in JavaScript Object Notation
(JSON). This is a widely used and preferred format for the image
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detection toolbox detectron2 used subsequently in this

analysis (Section 3.3).

3.2.2 Partitioning of training, validation and
test datasets

For the synthetic hail experiments, all tiles were annotated and
partitioned into a training, a validation and a test dataset to be used
in the LOOCV framework. The test dataset always consists of the
annotated tiles from a single surface (Figure 3). The remaining
annotations were randomly split into training (80%) and validation
(20%) subsets using a fixed seed to ensure repeatability. The seed
initializes the pseudo-random number generator, guaranteeing the
same split is reproduced consistently for test: 20%, validation: 16%,
and training: 64%. As an example, all tiles of configuration a are used
for the test dataset, while training and validation is performed using
the annotated tiles from configurations b to e.

For the real hail event, 40 out of 435 tiles were randomly selected
for annotation and further partitioned into a test (10 tiles), a
validation (6) and a training (24) dataset. The remaining
395 tiles are not annotated and only used for the detection with
the trained model.

3.3 ML model training

In ML, the process of training (or learning) refers to iteratively
adjusting model weights, such that an input leads to the preferred
output defined by the user. After each intermediate step, the loss
(measure of the difference between the predicted and actual values)
is calculated based on a loss function against the validation dataset.
The goal of training is to minimize this loss. Following the work
done in Lainer et al. (2024), the learning rate (LR), gamma (y) and
batch-size (BS) hyper-parameters were used. The tested LR values
are 0.0001, 0.000 25, 0.0005, 0.001 and y values 0.1, 0.5, which are
both the same as Lainer et al. (2024) used. For BS, it was observed
that 128 was never among the models with the lowest loss, thus
256 and 512 were used (instead of 128 and 256 in Lainer
et al. (2024)).

We used the library detecron2 (Wu et al., 2019) to train and
apply the model to our data. We selected a pretrained mask R-CNN
model, which is a widely used type of neural network for object
detection and image segmentation He et al. (2016) and He et al.
(2018). In our case, it consists of a FPN (feature pyramid network,
Lin et al. (2017)) as the backbone, a region proposal network (RPN)
and region of interest (ROI) heads, which in conjunction allows us to
detect hail from images. We use the baseline model for the COCO
instance segmentation task and an LR schedule of 3x' as a starting
point (same as in Lainer et al., 2024). Since the training is based on
an existing model, the training process is called fine-tuning, which
means training a general-purpose model on specific data (in our
case: synthetic hail or real hail). Training is performed on servers of
the Swiss National Supercomputing Center (CSCS), using Nvidia

1 Model weights from https://github.com/facebookresearch/detectron2/
blob/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_
FPN_3x.yaml
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V100 GPU (NVIDIA, 2017). The synthetic hail experiments use

600 iterations, while the real hail event is trained over
2,000 iterations to account for the more numerous annotations

and less optimal conditions of the image data.

3.4 Hail detection and size estimation

The trained model is then used to detect synthetic hail objects in
the test datasets of the experiments and real hail in the test dataset of
the real hail event, respectively. The process of applying the model to
a dataset is generally called model-inference and the output is a
prediction. In this study we use the verb “detect” to refer to inference
and “detection” to refer to the model predictions. A detection
consists of three parts: (1) a bounding box around the object of
interest with a confidence value between 0 and 1 (called object
detection), (2) a detection mask (area of pixels) of the proposed
borders of the detected object (called image segmentation), and (3)
the assignment of the class label. The class is assigned to each
detected object which in the present analysis only covers one single
class: hail or hail object, respectively. Therefore, we only have to set a
confidence threshold to categorize the proposed detections into
binary classifications of hail or no-hail. The optimal threshold is
found at the maximum of the F;-score. We limit the selection to
thresholds >0.5 because lower scores indicate that an object is more
likely to be not hail than to be hail. This threshold is determined
based on data independent of the training dataset to avoid
overfitting to the training dataset. We use the test dataset to find
the ideal threshold for each model.

Aside of the detection itself, the size of the detected object and its
corresponding annotation is of high interest in automatic hail
detection. To estimate the major axes from a detection or
annotation mask, the minimal area bounding box is fitted to
each mask using OpenCV’s implementation (Bradski, 2000).
These bounding boxes can be rotated relative to the image
coordinates, such that the axes of asymmetrical hail objects are
estimated correctly. The length in pixels of the longer side of the
bounding box is then used to retrieve the major axis by multiplying it
with the GSD to get the size in mm. Detections and annotations
within the overlapping area of 50 px are ignored.

The estimations of the major axes retrieved from the detection
masks are evaluated against the major axis retrieved from the
annotations in both the experiments and the real hail event. For
the experiments, the estimated major axes can also be evaluated
against the real size of the synthetic hail objects. We use the
annotated sizees to assign the closest real size d.f to each
detection (Table 2).

3.5 Error metrics for model evaluation

The performance of the automatic HSD retrieval is assessed
from two perspectives. First, the detections are assessed in terms
of number of correctly- and misclassified hail objects, and second
the size estimation retrieved from the detections is compared to
the size retrieved from the annotations and in case of the
experiments against the known real size of the synthetic
hail objects.
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In order to determine if a detection is correct, it needs to be
compared with the corresponding annotation. To this aim, the pixel
mask from the model is compared with the mask from the
annotation, which in general do not perfectly coincide. Therefore,
the intersection-over-union (IoU, also called Jaccard-Index) is used
(e.g., Miiller et al., 2022). This measure quantifies to what degree the
two masks overlap and thus further allows us to determine if a
detection is true-positive (TP, correct detection), false-positive (FP,
false detection) and false-negative (FN, missed detection). The IoU
is calculated as:

ANB

ToU =
T AUB

where A and B are pixel masks from the annotation and the
detection, respectively. A TP detection is defined as a detection
from the model, which has an IoU >0.5 with an annotation.

To assess the model performance in terms of detection, precision
and recall are computed, which are two common metrics applied to
evaluate image segmentation models (e.g., Ding et al., 2021; Miiller
et al., 2022; Lainer et al., 2024).

Precision measures the proportion of correctly identified hail
objects relative to the total number of detected objects:

TP

precision = m

where TP represents true positives and FP represents false positives.
Recall quantifies the proportion of correctly identified hail
objects among all hail objects:

TP

all = ——
A TP N

where FN represents false negatives.

Given the trade-off between precision and recall, the F-score
(F1), computed as their harmonic mean, serves as a critical metric in
the performance assessment:

F =2 precision - recall
precision + recall

Note that for the current analysis, only the annotations of one
expert (E3) are used as a reference to assess the performance in terms
of detection. The annotations from the remaining two experts are
only used for the model training, the model validation, and for
evaluating the model performance in terms of size estimation. This
enables to consistently quantify the performance of the models
trained with different training data, allowing to estimate the
influence of the subjective process of manual visual annotation.
Expert E3 did annotate all visible synthetic hail objects in the
different experiments, whereas experts E1 and E2 missed a few
individual hail objects.

To assess the model performance in terms of the size estimation,
we restrict our analysis to the estimation of the major axis, as done
by Lainer et al. (2024). To this aim, the bias and the relative bias are
computed between the major axis retrieved from model detections
(dget) and the major axis from the ground truth (dg).

Bias:

>

QU

1]

| —
™M=

(di,det - di,gt)
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Relative bias:

1 i di,det - di,gt

Adg = —
rel N di,gt

i=1

where the index i refers to a pair of major axes of a TP detection and
the corresponding ground truth major axis in the total number of TP
detections of a dataset. For the real hail event, the ground truth
corresponds to the annotations given in the test dataset. For the
experiments with synthetic hail objects, the ground truth either
corresponds to the annotations given in the test dataset or the real
sizes of the synthetic hail objects. The assessment against the real size
of the synthetic hail objects allows us to estimate the uncertainty
introduced by the manual annotation process.

4 Results

The main challenge in evaluating HSD retrieval based on
photogrammetric data lies in the absence of a known ground
truth, which is essential for verifying how well hail objects of
different sizes are detected and their sizes estimated by the
model. For real hail events, the only available ground truth stem
from manual annotations. In contrast, the experimental setup
presented in this study provides a known ground truth, allowing
for a precise assessment of correctly detected hail objects and their
estimated sizes. First, the model’s performance in terms of detection
is analyzed (Section 4.1), followed by an evaluation of its accuracy in
terms of size estimation (Section 4.2), both based on the data from
the experiments. The effect of the manual annotations on the model
performance is examined in more detail in Section 4.3. Finally, the
findings are compared with the results from the real hail event to
estimate the uncertainty of a real-world case (Section 4.4).

4.1 Assessing model performance in terms
of detection

The visible ground truth slightly deviates from Table 2, since some
hail objects are hidden in the orthophoto and can thus not be identified
by the models. To assess the model performance in terms of detection,
thus we use the annotations from E3 as the ground truth to compute the
scores, which reflects the visible ground truth, while the other experts
tended to miss a few visible hail objects. In Figure 4 the scores for the
different experiment configurations (a-e) are grouped according to the
type of objects used (EPS, ice and glass), the three experts (E1, E2, E3)
annotated up to 244 EPS objects (E1: 240, E2: 235, E3: 244), 252 glass
objects (E1: 251, E2: 252, E3: 251) and 199 ice objects (E1: 197, E2: 197,
E3:199). There are 6 EPS ( < 15 mm only), 1 ice and 0 glass invisible hail
objects across all experiments. In Figure 5 the FN and FP detections are
shown as a function of the size.

In the following, we present results for EPS hail objects, which allow
us to assess detection performance across different size classes. Then, we
report results for ice and glass hail objects, which are of uniform size.

4.1.1 EPS hail objects
In Figure 4A the model performance in terms of detection scores
are shown for the EPS hail objects. The precision is in a range of
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Scores to assess the model performance in terms of detection (Ist row: precision, 2nd row: recall, 3rd row: f;) and number of FN detections (4th
row) and FP detections (5th row) of EPS (A), ice (B) and glass (C) hail objects in configurations a, b, ¢, d and e (surface of the test set, Figure 2), annotated by
3 different experts E1-E3 (colors). Note that the axis is cropped to only show the range [0.8, 1], while 1 corresponds to a perfect score. Over all
experiments, a total of 250 EPS objects, 200 Ice objects and 251 glass objects have been placed. Note that for the glass objects, in one experiment
26 instead of the planned 25 objects were placed. Across all different types of objects, 7 objects (1.00%) were not visible (i.e., could not be annotated by

the experts) in the orthophoto.

0.907-1.000, recall is in a range of 0.854-1.000 and the F; scoreisina
range of 0.911-1.000 across all experiment configurations.

The F; scores for all experts are above 0.95 for the
configurations a-d, and above 0.85 for configuration e.
Configuration e exhibits 6-7 FN, indicating missed hail objects
by the model. This is also reflected in lower recall scores
compared to the other experiment configurations. 1 to 5 FP
detections were observed, indicating detections of objects
without an annotated ground truth, in all experiment
configurations except configuration d.

In Figure 5A the FN and FP detections depending on the size
class are shown. All EPS hail objects above the 10-20 mm bin are
correctly detected in all experiments (i.e., no FN), while most FP
detections occur below 20 mm. The FP in the size bin of (50-60 mm)
can be assign to a highly reflective leaf with a size of 57 mm in
configuration a, which was falsely detected by the models of all
experts. Overall, both FP and FN detections tend to occur for small
size classes below 20 mm and fewer FN than FP detections can be
observed, with rare FP detections of large objects as hail (e.g., leaves
or flowers).

The results indicate that independent of the background, the
ML-based model can detect EPS hail objects correctly with only few
FP detections (below 5%) and even less FN detections (below 3%)
across all surfaces. However for the surfaces with higher and more
dense grass (experiment e) slightly enhanced FN detections thus
lower the scores.
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4.1.2 Ice and glass hail objects

In Figure 4B, the model performance in terms of detection
scores for ice hail objects are shown. Similar to the EPS objects, the
precision is above 0.9, recall is above 0.85 and the F; scores above
0.89 for all model configurations. For the experiment configuration
a, the F; scores are dominated by 6 FN detections, indicating missed
ice objects for the models for all experts. Note that for the ice objects,
the experiment configuration b is not available due to a different
setup during the data collection (see 2.2.3). In configurations c-e, all
ice hail objects were correctly detected.

In Figure 4C, the model performance in terms of detection
scores for glass hail objects are shown. As for EPS and ice objects, the
precision is above 0.9, recall is above 0.95 and the F; scores above
0.94 for all model configurations. In general, the F; scores of the
glass experiments are more consistent than the F; scores of the ice
and EPS experiments, for which one experiment configuration
exhibits F, EPS
configuration a for ice). Only a slight degradation of scores in

lower scores (configuration e for and

configuration ¢ can be observed for the glass objects.

4.2 Assessing model performance in terms
of size estimation

To assess the model performance in terms of size estimation, the
major axis determined from the detections of the hail objects is
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Sizes of FN (top row) and FP (bottom row) detections for hail object types EPS (A), ice (B) and glass (C) hail objects in all experiment configurations,
annotated by 3 different experts E1-E3 (colors). The results are binned with a bin size of 10 mm. In the upper row (FN) the sizes are estimated based on the
corresponding annotation, because the object was missed and the size of the object can only be inferred from the corresponding annotated object. Vice
versa, the FP detections in the lower row are estimated based on the detection and do not have a corresponding annotation, and thus the size
estimated based on the detections is shown. The binning is done because both, the detections and the annotations, are expected to not exactly
correspond to the real size of the objects used in the experiments (with diameters 10, 15, 27, 32, 40, 60, 78 as shown in Table 2).

compared with two ground truths, the major axis estimation of the
annotations and the real size of the objects. This allows estimate the
uncertainty of the size estimation based on the visually determined
annotation by including the real size of the objects which in real hail
case are not available.

Similarly to Section 4.1, we first present results for EPS hail
objects, followed by those for ice and glass hail objects.

4.2.1 EPS hail objects

Figure 6 shows the biases Ad grouped by experiment
configurations in (A) and total in (B). The bias is computed with
the annotations as a reference (light shade) and the real size as a
reference (dark shade) for each expert. The magnitude of the biases
in configuration a and b are below 1 mm with a spread of the IQR of
1-2 mm (black lines) for all experts, while the major axis tends to be
overestimated compared to the real size but underestimated
compared to the annotations. The bias in configurations c-e are
slightly higher within the range —0.5 to —1.0 with a spread of about
2 mm and thus the detections tend to underestimate the major axis
compared to both, the annotation and the actual real size of the
objects. The biases are computed across all configurations and all
sizes for the experts E1-E3 as bias + standard-deviation (E1: (—0.41
+1.41) mm, E2: (0.03 + 1.78) mm and E3: (-0.30 + 1.48) mm). The
relative biases do not show a different pattern but lie in a range
of —10%-5%, with a mean bias around —5% (not shown).

Figure 7 presents the biases (top) and relative biases (bottom) of
the EPS objects, grouped by shape (spherical and oval spheroid). In
(A), the biases Ad are grouped by their real size classes over all
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experiment configurations with spherical EPS hail objects are
shown. Similarly, the biases over all experiment configurations
with oval spheroid EPS hail objects are shown in (B). The bias is
computed with the annotations as reference (light shade) and the
real size as reference (dark shade) for each expert. The horizontal
grey bars represent the objects’ measured ranges as shown in
Table 2. The bias for spherical objects with a size of <40 mm is
in the range of £1 mm) with a IQR spread of up to 2 mm), while the
oval objects with larger sizes (60 mm and 78 mm exhibit a larger bias
from —2.7 to 1.2 mm and the IQR spread is also increased, reaching
values of up to 6 mm. The relative biases are shown for spherical EPS
hail objects in (C) and for oval spheroid hail objects in (D). The
largest relative biases are observed for the smallest size class (10 mm)
with values reaching —8%. The relative bias is smallest in magnitude
for the 40 mm size class, with values near 0%, but increases again for
size classes >40 mm. Oval spheroid objects exhibit a substantially
higher relative bias, approaching that of the 10 mm spherical EPS
hail objects.

4.2.2 Ice and glass hail objects

In Figure 8A, the bias Ad for ice and glass hail objects is shown.
In contrast to the EPS objects, only one size was used and thus the
bias can only be assessed as a function of the different experiment
configurations. For the ice objects, largest biases are observed for
experiment configuration a with biases between —3 mm and -2 mm
against the real size as reference. The biases tend to be smaller in
magnitude for experiment configuration a if the annotations are
used as reference. In the other experiment configurations (c-e), the
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Bias (Ad) of detected major hail object axes compared to annotated major axes (light shade) and real major axes (dark shade) for each expert E1-E3
(colors) of TP detections. The black lines show the inter-quartile range (IQR). (A) The biases are grouped by configuration over all sizes. In each
configuration (surface of the test set, Figure 2), there are a similar amount of annotations and detections. (B) Bias across all configurations and sizes.

biases are in the order of —0.5 mm to —1 mm, and a tendency for
larger biases in magnitude is prevalent if the real sizes are used as
reference. The biases for the glass objects, shown in panel (C), are
similar for all experiment configurations between -1 mm
and -2 mm. Only in the experiment configuration c larger biases
are observed, when the real sizes are used as a reference, whereas for
the other experiments, the biases tend to be higher if the annotation
size is used as a reference.

Regarding the difference between using the annotation or the
real size as reference, the results indicate a complex behavior. In
some experiments, the biases between the detected size and the real
size are smaller than the biases between the detected size and the
annotated size. This is the case for configurations a and b with EPS
hail objects, for annotations from experts E1 and E2 (Figure 6), ice
experiment d with annotations from expert El and E2,
configurations ¢ with glass hail objects for annotations of all
experts. The occurrence of these larger biases in the annotations
is not consistent for different types of hail objects, e.g., they appear in
configuration a and b for EPS hail objects, but in configuration d for
ice hail objects.

4.3 Direct comparison between annotated
and real sizes

The major limitation of the ML-based approach to automatically
retrieve the HSD from photogrammetric data is related to the
absence of real ground truth data. The only ground truth that
can be used is the manually annotated test dataset. The visual
annotation is partially subjective to the expert and highly
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depends on the quality of the orthophoto. In the experiment
setup for this study, the real ground truth is known, which
allows to estimate an uncertainty of the annotations itself.

In Figure 9, the bias between the annotated major axes and the
real major axes of EPS hail objects are shown. This bias corresponds
to the difference between the dark and light bars from Figure 6.
Across all EPS experiment configurations and sizes (panel (C)), the
mean bias and the spread differ between the experts, but the biases
between them is even smaller compared to the ML-based retrievals.
El and E3 are very close to the real sizes with slight over- and
E2  exhibits
overestimation compared to the real size (E1: (0.09 + 1.35) mm,
E2: (0.82 + 1.53) mm, E3: (-0.10 + 1.43) mm). This highlights the
subjectivity of annotations, as each expert has a different bias when
the The
underestimation also depends on the surface type, as shown in

underestimations, while a more pronounced

annotating same images. subjective over- and
panel (A). Experts E1 and E2 tend to underestimate the real size for
experiments a and b, whereas E1 and E3 tend to underestimate the
size in configuration c-e. Similarly, for the real size classes, E2 tends
to overestimate all sizes with the largest positive bias for large sizes,
whereas E1 and E3 tend to underestimate the sizes for most size
classes, shown in panel (B). Generally, the biases between the
annotations and real sizes are smaller in magnitude than the
biases of detected sizes compared to the references. E2 is an
exception, where large annotations lead to a counteraction of the
underestimation (compare Figure 6). A similar pattern was observed
for ice (E1: (=0.11 £ 2.12) mm, E2: (0.31 + 2.21) mm, E3: (-0.48 +
1.98) mm) and glass (E1: (0.09 + 1.34), E2: (0.41 + 1.40), E3: (-0.08 +
1.28)) (not shown). Across all types of hail objects, the biases

between the references (annotated and real sizes) tend to be
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Bias (Ad) of detected major hail object axes compared to annotated major axes (light shade) and real major axes (dark shade) for each expert E1-E3
(colors) of TP detections. The black lines show the inter-quartile range (IQR). Top: absolute bias Ad, the horizontal grey bars show the measured size as
mean + standard deviation (Table 2). Bottom: relative bias Ad\e. (A) biases of all EPS spheres ranging from 10 mm to 60 mm, grouped by size class. (B)
biases of all EPS oval spheroid objects 60 mm and 78 mm, grouped by size class. (C) relative biases of all EPS spheres ranging from 10 mm to 60 mm,
grouped by size class. (D) relative biases of all EPS oval spheroid objects 60 mm and 78 mm, grouped by size class.

smaller in magnitude than the biases between both the detected and
the real size as well as between the detected and annotated size.

4.4 Real hail event

In addition to the experiments, data from a real hail event is used
to assess the performance of the ML-based HSD retrieval in a real-
world case. Figure 10 shows the processed orthophoto of the event
described in Section 2.3, with masked areas as described in Section
3.1. The meadow on which the orthophoto was taken can be
described as having irregular density, with medium to long grass
and many clover flowers (most similar to experiment background e).

In Figure 11, the scores to assess the model performance for the
real hail event verified against the annotations in the test dataset of
each of the experts are shown. In general, slightly lower scores
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compared to the experiments are achieved. Precision is in range of
0.69-0.81) (panel (A)), recall is in range of 0.77-0.83) (panel (B))
and the F; score is in the range between 0.75 and 0.82 (panel (C)).
Regarding FP and FN detection depending on the size, the peak of
FP detections is found between 6 mm and 8 mm, while there are no
FP detections larger than 14 mm. There are fewer FN detections
than FP detections (E1: 23, E2: 19 and E3: 31). The FP detections
range from 4 mm to 14 mm for all models. Most FN detections are
also between 6 mm and 8 mm, with only few FN detections >10 mm.

In Figure 12, the retrieved HSD are shown for the annotations in
the test dataset in panel (A), for the detections in the test dataset in
panel (B), and for the detections in the full dataset including train,
validation and test in panel (C). The total number of detections in
the full set are for the experts E1: 4087, E2: 4420, E3: 4180. The
annotations in the test dataset range from 3 mm to 18 mm, while the
detections in the test dataset range from 4.5 mm to 15 mm. The peak
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of the HSD of the annotations in the test dataset are for all models
between 10 mm and 12 mm, while the peak of the detections in the
test dataset is shifted to slightly smaller major axes between 8 mm
and 10 mm, which is similar to the peak of the detections of the full
dataset. The HSD of annotations (A) is wider than the HSD of the
detections (B), partially due to the FN detections >14 mm by the
models of all experts (Figure 11E). The model of expert E1 performs
better than the models of E2 and E3, as indicated by the higher F,
score, as well as lower FP and FN counts and no larger (>16 mm)
hailstones missed. The KDEs of the full dataset (panel (C)) show
good agreement between the models from different experts in the
range of 6 mm-14 mm, while there is more agreement between
E2 and E3 below that range and more agreement between E1 and
E3 above it. All models agree on the largest size of around 24 mm.

Figure 13, shows the biases between the experts annotations and
the model detections of the hail event in the test dataset, grouped by
their annotated major axes in 2 mm bins from 2 mm to 18 mm in
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panel (A), and across all sizes in panel (B). Only TP detections can be
analyzed, since FN are not detected and FP do not have an
annotation to compare against. There is a single detection in the
bin 16 mm-18 mm, which is estimated with a bias of nearly 3 mm,
thus, it shows up in the 12-14 mm bin in Figure 12. For the number
of detections in each bin of the test dataset, refer to Figure 12A. Over
all sizes, the biases for the models of the experts are E1: (-0.84 +
1.36) mm, E2: (-0.16 + 1.50) mm, E3: (—1.22 + 1.47) mm, which are
comparable to the biases found in the experiments, but the
difference between the experts is more pronounced. Compared to
the 10 mm and 15 mm EPS hail objects from the experiments, the
biases of the hail event do not follow the same characteristics. The
biases for small EPS hail objects are smaller than for large EPS hail
objects, but there is only a small difference between 10 mm and
15 mm hail objects. Since the experiments lack hail objects below
10 mm, there is no comparison available for these small sizes from
the experiments.
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FIGURE 10
Orthophoto of the hail event surveyed on 28 June 2022 in Locarno-Monti (Switzerland) covering 220.2 m? and generated based on 44 individual

drone images. The excerpt on the left shows the challenging conditions for annotation and detection due to low contrast and similar appearance of hail
(magenta), flowers of clover (yellow) and other unknown objects (cyan). The excerpt also shows the ground control point (GCP) with a side-length of
150 mm. The orange areas indicate the masked areas such as tall grass, bushes and the GCPs, which do not show any hailstones. This area is filled

with solid black color for detection, leaving 194.6 m?.

5 Discussion experiments. The sizes of the hail objects were estimated with
only a small underestimation and slight variations depending on

The results show that small hail objects were more frequently  the experts annotations for the model training. Previous research
missed on taller grass. Similar results were obtained for different  (Soderholm etal, 2020; Lainer et al., 2024) showed promising results
types of hail objects, with some differences in individual from drone-based hail photogrammetry, but could not accurately
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FIGURE 11

Scores to assess the model performance in terms of detection: precision (A), recall (B), F; (C) and number of FP detections (D) and FN detections (E)
of the real hail event annotated by 3 different experts E1-E3 (colors). Note that the axis is cropped to only show the range [0.55, 1] (different from Figure 4),

while 1 corresponds to a perfect score.

quantify the errors of the method, due to a lack of a known ground
truth. We also compared the results from the synthetic hail
experiments to a real hail event, where we found slightly larger
biases and reduced detection performance for real hailstones due to
challenging light conditions.

The experiments conducted in this study allowed us to quantify
the performance of drone-based hail photogrammetry coupled
with ML, in detecting synthetic hail objects of various types and
retrieve their size classes on different grass surfaces. In this section,
we first highlight the key factors influencing the model’s
performance (Section 5.1) based on the findings from the
experiments. Then these findings and their implications for real
hail events are discussed in (Section 5.2). Finally, we address
the limitations of our experimental setup and suggest areas for
improvement (Section 5.3).

5.1 Factors influencing the model
performance

In terms of detecting synthetic hail objects, the models perform
well, independent of the type of synthetic hail object used (EPS,
glass, ice) with a F; score >0.95 for most configurations. This
indicates that drone based HSD retrievals are overall highly
accurate and able to correctly detect individual synthetic hail
objects. However, with backgrounds exhibiting long grass
(experiment e) slightly lower scores in terms of detection are
reached for EPS hail objects, but not for ice and glass objects.
This is likely related to EPS hail objects partially or fully hidden by
the grass. This can be related to the positioning of the EPS hail
objects, which were fixed to the ground using wooden toothpicks.
Therefore some small size EPS objects ( < 15 mm) were placed lower
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in the grass to imitate the position in real hail events. In contrast, ice
and glass objects were of uniform size and mostly stayed on top of
the grass and were thus less prone to be covered by longer grass.

The translucent characteristics of real hail can pose significant
challenges for the identification of hailstones in the orthophoto for
both human experts and ML models by lowering the lightness as
reported by Lainer et al. (2024). To imitate the translucency of real
hail, ice and glass objects were used. In particular for configuration a
with the ice hail objects, a higher number of missed objects is
observed, which can be attributed to more translucent ice. This
particular setup of configuration a (Section 2.2.2) lead to longer
melting times compared to the other configurations of the
experiments with ice objects. Therefore, the lowered performance
is likely explained by more translucent ice objects.

Similarly, in experiments with glass, configuration ¢ exhibits a
higher number of FP detections. This can be attributed to an
interplay between lower light availability due to a cumulus clouds
passing above the survey area and the translucent characteristic of
glass hail objects. The reduction in sunlight lowered the image
quality and therefore the contrast of the glass hail objects in the
Under these the
(translucent) glass hail objects exhibit similar characteristics as

orthophoto. environmental conditions,
non-hail objects (i.e., clover flowers and bright stones). Therefore,
more FP detections can occur. This effect was not observed for
experiments with EPS and ice hail objects, where no clouds
were present.

Based on the experiments with the EPS hail objects, the
performance of detection was further assessed according to the
size of the objects. Generally, missed hail objects (i.e., FN counts)
tend to be of smaller size (<15 mm), while misclassified non-hail
objects (i.e., FP counts) can also be large objects, such as a highly
reflective leaf with an axis of around 57 mm, which was identified as
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hail by the models of all experts one configuration a with EPS hail
objects. Therefore, it is important to manually check the largest
detections for FP detections manually and remove non-hail objects
from the final HSD, such that the largest size reported is actually hail.
Furthermore, on site observations during the data collection
procedure should be carefully documented to be aware of objects
that might be misclassified (e.g., leaves or flowers). In some
configurations, perfect F; scores of 1.00 were achieved, indicating
perfect model performance. This is likely attributed to the nature of
the experiments representing best-case scenarios and limited
number of hail objects and thus can likely not directly be
transferred to real hail events.

Beside the detection itself, a correct estimation of the retrieved
size of the detections is crucial for further use of such data. The
performance of the size estimation in EPS experiments overall yields
a small underestimation of less than 1 mm when compared to both,
the real and the annotated sizes, with only small variations between
the experts. This indicates that the retrieved HSD overall closely
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follows the real HSD. But the bias depends on the actual size and
shape of the EPS hail objects, where larger absolute biases are found
for large oval spheroid hail objects. In relative terms, the largest
biases are observed for small EPS hail objects (< 15 mm). To further
translate those error estimates from EPS hail objects to real hail
events, the biases found for ice and glass hail objects are taken into
account. For those transparent objects, the biases are generally
higher compared to the same size of EPS objects. Thus the
translucent characteristics of hail—which is imitated by the ice
and glass objects—tends to increase the errors. For the ice objects
with a size of around 25 mm, the errors are up to 3 mm, whereas the
EPS objects of 27 mm indicate errors below 1 mm. Similarly, glass
objects with a size of 19.5 mm exhibit errors up to 2 mm, whereas the
errors for EPS objects of similar size are smaller than 1 mm. Thus the
uncertainty in the retrieved HSD estimation for a real event will
likely be increased compared to the findings based on the
experiments with EPS objects. Another aspect, in particular for
ice objects, is related to the melting. As discussed above for the
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Bias of detected major hail object axes (Ad) compared to annotated major axes for each expert E1-E3 (colors). The black lines show the IQR, if at
least two values are present in the bin. (A) biases grouped into 2 mm bins, (B) biases across all sizes.

performance regarding the detections, ice hail objects show a more
pronounced underestimation for configuration a, which can be
attributed to the different setup and longer flight time, what
leads to longer melting an therefore to smaller ice hail objects
during the data collection. If configuration a is excluded from the
analysis, the biases still tend to be larger compared to EPS hail
objects, but similar to the glass hail objects. In comparison to
existing methods for hail size estimations on the ground,
automatic hail sensors use size classes of 5 mm due to
uncertainties related to the estimation of the kinetic energy of up
to 20%, which are reported by the manufacturer (Kopp et al.,, 2023a).
Thus, the biases found for EPS hail objects in the experiments, as
well as the increased errors found based on ice and glass objects are
comparable to the uncertainties of automatic hail sensors and can
therefore be a valuable complementary data source.

The third aspect is related to the annotation process of the hail
objects in the orthophoto. The annotations among the three experts
indicate differences of up to 2 mm for the largest EPS size class, but
depending on the background (i.e., experiment configuration) the
biases show only small variations between the experts. These biases
are in a similar range as the biases between the size of the detection
(model retrievals) and the size of the annotations and the real sizes
respectively.

Subjectivity of annotations also has an influence on the final
model predictions. For example, annotations from expert E2 were
larger than the real object’s sizes and annotations from other experts.
The ML model trained with annotations from E2 showed less
underestimation of object sizes compared to models trained with
annotations from other experts, with some instances even showing
overestimation. Thus, this resulted in a smaller bias compared to the
real sizes, showing that under these circumstances, a higher
performance can be achieved on inaccurate annotations.

Thus the differences between the experts are small, but they still
highlight the subjectivity of the annotations and the importance of
quantifying the accuracy of the annotations that are used to train the
ML models. We suggest to place some hail-like reference objects
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(such as the synthetic hail objects used in this study) in the survey
area during the data collection, which allows to quantify the
associated to the annotation process from
different experts.

uncertainty

5.2 Implications of synthetic hail
experiments for application to real
hail events

In the real event, slightly reduced F; scores for detection and
slightly increased biases in size estimation were observed compared
to the experiments with synthetic hail objects. Both recall and
precision are lower compared to the experiments, as a result of
more FP and FN detections. Overall the biases between the detected
size and the annotations in the real event are larger (up to 4 mm)
compared to the biases estimated based on the EPS experiments, but
is in good agreement when the biases of the ice and glass
experiments are taken into account. In the real event, biases in
size estimation show a tendency to increase towards larger
hailstones (10-20 mm) (note that the largest annotation is
20 mm). Likewise for the EPS experiments, increased biases are
found mainly for large hail objects. The larger biases are only
apparent at sizes of >60 mm for the EPS experiments, while the
10-27 mm EPS objects tended to be underestimated. This increase of
the bias towards larger objects in the HSD can be related to two
factors. Firstly, in the real event the number of large hailstones is
much lower than the number of small hailstones, which leads to
higher uncertainties for large hailstones. This distribution is also
present by design for the synthetic hail objects. Secondly, this
observation could partially be explained with an inherent bias of
the ML models towards a center size (mean around 9-10 mm in the
real event, depending on the expert) for all hailstones or hail objects
in the training set, meaning that small hailstones were overestimated
and large hailstones were underestimated. This could partially be
observed for EPS hail objects in the experiments as well. However,
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this effect was already apparent at 14-16 mm with hailstones, while
the experiments with EPS exhibited it only for oval spheroid objects
with sizes >60 mm, while the smallest size classes still tended to be
underestimated. Further examination of this effect is necessary and
other models could be examined to better understand and quantify
this effect. The biases of the experts’ annotations should also be
taken into account to separate their effects from the model biases.

The real hail event discussed here is a representative case that
highlights the challenges of hail photogrammetry. The low light
conditions during the thunderstorm leading to reduced contrast of
hail in the photogrammetric data and clover flowers make detection
more challenging compared to the experimental setup. The
detection performance score in the test dataset F; = 0.75, is of

the same order of the score reported in Lainer et al. (2024) (F,
0.80) for a different event. The exact number of hailstones and the
minimum survey area required for a representative HSD depend on
the specific conditions of the event. Soderholm et al. (2020)
that of 40.1
2,088 hailstones, is sufficient based on their observed distribution.

estimated a survey area m’, containing
In our case, approximately 4,000 hailstones were detected in the
orthophoto, suggesting that a representative estimation of the HSD
is achievable. In comparison, Lainer et al. (2024) detected around
18,000 hailstones, which reflects the significantly larger survey area
of 750.4 m?, as opposed to our 194.6 m”. In Lainer et al. (2024) only
the test dataset was annotated by 3 experts, here we annotated all
datasets (training, validation and test) by 3 experts. This allows to
assess differences in the final HSD distribution, retrieved by the
models trained with the dataset from the different experts. In the test
dataset, similar variations between the models of the experts are
observed, as for the event analyzed by Lainer et al. (2024).
Additionally the variations in the final HSD for all experts are
similar, which indicates that the retrieved HSD are robust despite the
subjective annotation process. Overall, these biases with respect to
the annotations in the real event are larger in magnitude (up to
4 mm) compared to the biases with respect to the annotations in the
EPS experiments (>1 mm) and as well compared to biases for the ice
and glass experiments (>2 mm). Thus we conclude that in case of
real events, the uncertainty of the size estimation increases, but are
similar to the uncertainties obtained with other ground observation
systems (e.g., automatic hail senors).

Based on the results with synthetic hail objects, we recommend
to perform surveys on surfaces with short and uniform grass cover,
with a minimum amount of flowers or other objects that could be
mistaken for hail. Additionally, a minimum delay between the last
falling of hail and the start of the survey is crucial for high quality
data. These strategies were already mentioned in Soderholm et al.
(2020) and supported by our experiments. Surveys on different
surfaces such as asphalt could also be considered, but exhibit other
problems, including the washing away of hailstones by liquid
precipitation, increased melting rates due to the likely warmer
ground, as well as shattering of hailstones on impact. These are
however only hypotheses and would need to be evaluated further.

In the real event presented in this study, hail was followed by
strong winds and intense rain. Therefore, the data collection using
the drone started roughly 20 min after the hail strike ceded, time
during which the hailstones continued to melt. Research on the
melting behavior of hailstones focuses on the atmosphere (e.g.,
Fraile et al, 2003). Investigation of hailstones melting on the
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ground was first performed in Lainer et al. (2024) using drone-
based photogrammetry. Assuming the same hypothetical melting
rate of 0.5 mm/min during the delay between the end of the hail
strike and start of the survey (18.65 min in Lainer et al. (2024)), we
estimate the largest size of about 35 mm for the largest hailstones at
the time of the photogrammetry flight. This estimation is within the
order of the reports from the crowd-sourced data of 20-30 mm in a
radius of 2 km, even though the same melting rate is not directly
applicable to the event in Locarno due to different environmental
conditions (such as temperature, humidity, wind, grass, hailstone
size). The melting of the event in Lainer et al. (2024) was observed at
ambient temperatures of around 20 °C with relative humidity
around 85%, while the melting of the event in Locarno was
observed around 17 °C at a relative humidity between 90 % and
100%. Further experiments to assess melting behavior of hailstones
on the ground, such as presented in Lainer et al. (2024), under
different ambient conditions would be of high value.

The objects in the experiments are more distinct compared to
the hailstones in the real event, but even under ideal conditions,
there was some disagreement in the annotations between experts.
The uncertainty of the annotations in the real event is considerably
higher, as it is impossible to know if the annotations are correct. This
means that, by accident, a model could be trained that detects both
clover leaves and hail, because the annotations include annotations
of clover flowers as hail, leading to high F, scores, while detecting a
large proportion of clover leaves as hail. Therefore it is helpful for the
experts to know the conditions during the event at the survey site to
increase the confidence when annotating. However, even with this
uncertainty, the models of all experts agree on the largest hailstone
(with a size of 25 mm) and the resulting HSDs have similar shapes.
The lower tail of the HSD is most prone to false detections, since
small objects are harder to identify for both human experts and the
ML models, as shown in the experimental setup. Since hailstones
>5 mm are not considered as hail (American Meteorological
Society, 2025), this could serve as threshold for inclusion, which
is also used for data from the automatic hail sensors (Ferrone
et al., 2024).

5.3 Limitations and uncertainties in the
experimental setup

For the size comparison of EPS objects, we used the reference
size reported by the manufacturer. To confirm the reported sizes, the
objects were measured in the lab and revealed slightly deviating axes
than reported. We found that the deviation from the reported
manufacturer’s sizes (Table 2) correlates with the biases found in
EPS experiments (Figure 6). For example, 32 mm EPS hail objects
were overestimated by the models, while also being larger than the
manufacturer’s size. However, the used objects vary by up to 0.7 mm
in size within a size class. To eliminate the influence of the varying
object’s axes, the experiments should be repeated with calibrated
objects in future studies.

The larger biases observed for oval spheroid EPS objects
(Figure 7) can be partly attributed to deviations from the
manufacturer’s reported sizes. However, only the 60 mm objects
are smaller than specified (grey cell in Table 2), while the 78 mm
objects tend to be larger than the manufacturer’s specification.
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Another factor explaining the larger biases, is the fitted bounding
box being slightly rotated to the major and minor axes of the object,
since the algorithm tries to minimize the area of the bounding box.
In case of low axis ratios, the major axis gets underestimated and the
minor axis gets overestimated. Additionally, the subjectivity of the
annotation process might again play a role here. It was observed that
coarse annotations influenced the resulting bounding box more than
for spherical objects. For events with hailstones with low axis ratios
(i.e, non-spherical), the current approach might need to be
improved to correctly estimate the axes.

Another limiting factor is that the optimal threshold for the ML
detection (Section 3.4) was determined based on the test dataset,
which could lead to overfitting, since we optimize the model to the
conditions of the test set. Due to the design of the LOOCYV, it is not
suitable to set the thresholds based on the validation dataset, as the
validation dataset is constructed based on the data from all surfaces
except the surfaces used for the test dataset. Setting the threshold
based on the test dataset means that the detection scores represent a
best-case scenario and real-world applications are expected to
perform slightly worse, which is confirmed by the observations
from the real hail event.

We noticed that in certain experiment configurations, hail
objects were hidden in the corresponding orthophoto. Overall,
this corresponds to only 1% of placed hail objects, only affecting
EPS hail objects <15 mm. The amount of hidden objects mostly
depends on the length of grass, with most hidden hailstones present
in configuration e. Therefore, we highly recommend to avoid
surfaces with long grass (>30 mm) and be aware that the lower
tail of the HSD is affected by such invisible hailstones. Currently, we
cannot accurately account for hidden hailstones in real hail events,
since in this case the distribution of hidden hailstones is unknown. A
suggested solution could be to count hailstones in a predefined area
(i.e., 1 m?) in the filed prior to performing the survey. The ratio of
hailstones counted in field to annotated hailstones in the orthophoto
could be used to estimate the ratio of hidden hailstone over the entire
survey area (Soderholm et al., 2020). This ratio could be used to
estimate the amount of hidden hailstones more accurately.

The scores reported need to be interpreted using detailed expert
knowledge about the event, the surface and the environmental
conditions. In particular for photogrammetric data from real
events, a high F; score alone does not automatically mean that a
model is well trained to detect hail. The experts annotating the
dataset may encounter uncertainty in classifying objects as hail,
which is hard to quantify (e.g., clover, leaves, other objects), meaning
that the annotated ground truth is not representative. In the
experiments, the distribution and number of the hail objects are
known and thus we have high confidence in the annotations and by
extension in the reliability of the resulting F; scores to indicate
model performance. However, for real hail events, where a ground
truth is absent, faulty annotation of non-hail objects by experts
cannot be excluded.

In the experiments, the aperture of the lens varies between f/4
and f/8, while for the real event it is fixed at f/2.8. An open aperture
(low f-number) leads to decreased optical resolution, but allows for
shorter exposure times, since more light reaches the sensor. This
allows us to reduce the exposure time, limiting motion blur. A trade-
off between optical resolution (aperture opening and lens
characteristics), motion blur (exposure time) and noise (ISO
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value) is always present for photogrammetric data capture. More
events and experiments with systematic variation of these
parameters under different conditions need to be analyzed to
accurately quantify these effects The
theoretical uncertainties that arise from the GSD are 1 mm/px

in practical terms.
for the synthetic hail experiments and 1.5 mm/px for the real
hail event, from motion blur are 1 mm for the synthetic
experiments and 2.67 mm for the real hail event. Additionally,
the uncertainty in scaling the orthophoto is around 5%
(measurements accurate only to 2-3 px). These uncertainties are
similar or larger than the magnitude of the bias (<2 mm for ice and
glass hail objects, <1 mm for EPS hail objects) in the estimated
major axes for the synthetic hail experiments under ideal
conditions—compared to the measured real major axes of the
synthetic hail objects. The uncertainties found from this study
are generally small in regard to the application of verifying radar
estimates, where POH and MESHS are measured in cm.

6 Conclusion and outlook

Drone-based  hail
potential to retrieve accurate HSDs of hail on the ground,

photogrammetry shows promising
which provide valuable data that can complement existing
ground observation systems. While previous studies applied
this approach, a systematic comparison against a known
ground-truth HSD was with

synthetic hail objects of known sizes addressed this gap by

lacking. Our experiments
assessing the performance of drone-based photogrammetry
coupled with ML, in detecting and estimating the size of
individual hail objects on different types of grass.

Overall, the type of grass cover only had a small impact on the
performance, but the length of the grass affected the detection of
small hail objects. A comparison to the performance of this
approach applied to a real event revealed that the real-world
conditions pose greater challenges for hail detection and size
estimation. Despite these challenges, our results indicate that
drone-based retrievals of real hail provide reliable HSD retrievals.
Further, we improved several aspects of the hail photogrammetry
process by combining the advantages of Soderholm et al. (2020),
such as using a overlapping area to prevent cutting off hail, and the
advantages of Lainer et al. (2024), such as using the R-CNN model
for direct size estimation.

The key results from our experiments with artificial hail objects
and the real hail event are the following:

o There are only small differences between the types of artificial
hail in terms of detection and size estimation

e Large hail objects were detected correctly, but smaller hail
objects are harder to detect

o The estimated sizes of the hail objects in the experiments agree
well with the ground truth (with Ad in the order of —0.75 mm)

e Experiments on different grass types lead to similar results, but
long grass leads to more hidden hail objects in the orthophoto
and thus missing in the HSD

e Detection of hailstones in the orthophoto of the real event is
more challenging due to lower contrast as a result of low light
conditions and melting
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o The bias between annotated sizes of the real hailstones are
slightly larger in magnitude compared to the experiments but
overall remain small

e Annotation styles vary among experts, leading to small but
systematic differences in the trained models

These results demonstrate the reliability of drone-based HSD
retrievals and serve as a evaluation framework for further
improvement.

However, there are limitations that were not assessed in this
study, such as the melting of hail on the ground and the model
performance on surfaces other than grass. A key limitation
remains the dependence on natural light. The experiments
were conducted during bright sunlight conditions, which is
usually not the case during hail producing thunderstorms. An
artificial light source on the drone or at the survey site would thus
be highly valuable to extend the applications of drone-based hail
photogrammetry. During the design of the experiments, we
considered using the DJI Zenmuse H20T (DJI, 2020b) infrared
(IR) camera. However, the limited resolution of 640 pxx521 px, it
is unsuitable for hail photogrammetry. Since then, DJI released
the Zenmuse H30T (DJI, 2024), quadrupling the resolution to
1280 pxx1024 px, resulting in a GSD of around 4 mm/px. Further
advances in IR hardware could enable photogrammetry in the
infrared spectrum, reducing the reliance on visible light. But
currently, thermal cameras have greatly reduced image
resolutions and are very costly.

To better understand the performance under real conditions,
more surveys of real hail events would be highly valuable. In
addition to the recommendations from Lainer et al. (2024), we
suggest to add reference hail objects, such as used for the
experiments, in the area of the orthophoto. These reference
objects should be annotated the same way as hailstones, and
the annotated sizes should be compared to the reference values.
The LOOCV showed low dependency on the training data in
terms of surface type, as long as the hail objects were visible.
Experiments used the same objects and were conducted under
similar conditions in terms of light (bright daylight). During real
events, these parameters are likely to vary. Therefore, we
recommend to train models using event-specific data. With
more hail data becoming available from real events in the
future, training a single, generalizable model for different
events and surfaces may become feasible.

Although drone-based hail photogrammetry will likely not
be useful in an operational manner, it could provide invaluable
data when combined with other hail measurement devices, such
as hailpads and automatic hail sensors. In particular, hailpads or
compact radar systems for measuring fall speeds of hailstones
(e.g., Gartner and Brimelow, 2024) could be deployed quickly in
the field during a drone survey. A combination of these
instruments could be highly beneficial for field campaigns,
different types
concentrated in a small area to observe hail at different stages

where of measurement devices are
from formation to the impacts on the ground and as a
representative ground-truth for the validation of polarimetric

weather radar products.
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