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Artificial intelligence (AI) provides novel technological pathways and research
perspectives tomitigate global carbon emissions. This study empirically examines
the impact of AI on carbon productivity utilizing panel data from 286 prefecture-
level cities in China, covering the period from 2003 to 2021. The results indicate
that AI enhances urban carbon productivity (CP). Mechanism analysis reveals that
AI indirectly improves carbon productivity via industrial optimization and
innovation promotion impacts, with environmental regulation (ER) and
internet penetration (IP) rates serving as positive moderating factors in this
process. A subsequent study reveals that the influences of AI, human capital
(HC), and financial development (Fin) on carbon productivity display threshold
effects marked by escalating marginal returns. Heterogeneity research indicates
that the impact of AI on carbon production differs markedly across various
resource endowments, city sizes, regions, and urban agglomerations. This
study’s conclusions provide novel theoretical frameworks for implementing AI
technology in carbon emission reduction and furnish critical insights for
advancing low-carbon transitions.
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1 Introduction

Since the onset of the Fourth Industrial Revolution, the large-scale development and use
of fossil energy has driven the infrastructure of the information industry to take root,
contributing to the rapid growth of the global economy (Xi and Shao, 2025; Shi et al., 2024).
Nonetheless, this affluence has incurred considerable environmental expenses. The
significant rise in atmospheric carbon dioxide emissions has resulted in various
environmental challenges, including increased extreme weather occurrences, elevated
sea levels, and exacerbated urban heat island effects (Wei et al., 2025; Nordhaus, 1991),
presenting a considerable threat to human existence and progress. Although sustained GDP
growth is perceived as an indicator of national wealth, the increase in carbon emissions has
emerged as the foremost impediment to global sustainable development, rendering the
equilibrium between GDP growth and carbon reduction a global issue. Carbon productivity,
a fundamental statistic for evaluating the economic value produced per unit of carbon
emissions, was introduced by Kaya and Yokobori in 1997. Amid this contradictory context,
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this statistic has progressively emerged as a focal point of global
scrutiny. Amid escalating climate change, enhancing carbon
productivity has become a pivotal problem of collective concern
among nations (Dong et al., 2025). As the preeminent global energy
user and carbon emitter, China must rapidly address and reconcile
this issue. The 2024 National Air Quality Report indicates that the
yearly average PM2.5 concentration in 339 prefecture-level and
higher cities in China attained 22 μg/m3, far beyond the World
Health Organization’s recommended safe limit of 5 μg/m3. This
pollution-intensive, high-emission growth paradigm jeopardizes
public health and presents significant obstacles to the sustainable
development of China’s economy (Ma et al., 2024). Faced with this
problem, the Chinese government formally pledged to the
international community at the 75th United Nations General
Assembly in 2020 to achieve peak carbon emissions by 2030 and
to attain carbon neutrality by 2060 (Luo et al., 2022).

To effectively reduce emissions and enhance efficiency, identify
the primary factors affecting carbon productivity, which is crucial
for advancing climate actions and developing emission reduction
policies in China (Auffhammer and Carson, 2008). Artificial
intelligence (AI), a fundamental technology of the Fourth
Industrial Revolution, injects new momentum into economic
growth and exhibits considerable potential in energy
management, industrial intelligence, and the research and
development of green technologies (Zhou et al., 2024; Alruwaili
and Mohamed, 2024; Liang et al., 2022). In the realm of global
climate governance and carbon-neutral objectives, artificial
intelligence is becoming an essential instrument for emission
reduction and efficiency enhancement. Nonetheless, the dual
nature of AI’s impact is becoming more apparent: it transforms
conventional economic frameworks by optimizing energy
distribution, improving renewable energy efficiency, and fostering
green technology innovation, thereby creating opportunities for
decoupling economic growth from carbon emissions (Gao et al.,
2025; Tao, 2024). Conversely, its substantial energy consumption
requirements for computational power may increase carbon
footprints and potentially negate some benefits of emission
reductions (Brevini, 2020). Achieving China’s “2030 carbon peak
and 2060 carbon neutrality” goals necessitates a strategic focus on
balancing the technological benefits of AI with its associated energy
consumption challenges, while also exploring avenues to enhance
carbon productivity. The potential of AI to enhance carbon
productivity has garnered considerable attention; however, the
systematic mechanisms and intrinsic relationships between AI
and carbon productivity remain inadequately explained
theoretically and empirically. Is AI an “accelerator” for enhancing
carbon productivity or an “invisible enabler” of potential carbon
risks? Understanding the mechanisms by which AI influences
carbon productivity facilitates the realization of its technological
benefits and offers a scientific foundation for China to achieve a
balance between economic growth and carbon emissions. This study
examines data from 286 prefecture-level cities in China spanning
2003 to 2021 to explore the correlation between artificial intelligence
and carbon production.

The marginal contributions of this study are reflected in three
aspects: first, it examines the influence of artificial intelligence (AI)
levels on carbon productivity, offering empirical support for AI-
facilitated low-carbon transformation; second, it investigates the

mechanisms through which AI improves carbon productivity by
optimizing industries and promoting innovation, while also
elucidating the moderating roles of environmental regulation and
internet penetration on AI’s impact; third, in contrast to the
prevailing reliance on traditional linear panel regression models,
this research employs a threshold model to uncover the nonlinear
dynamics of “increasing marginal effects” of AI, human capital, and
financial development on carbon productivity from a
multidimensional perspective.

This study is structured as follows: Section 2 examines the
relevant literature. Section 3 delineates the theoretical analysis
and articulates the research hypotheses. Section 4 delineates the
model architecture and the selection of variables. Section 5 presents
the empirical findings. Section 6 further investigates threshold
effects and heterogeneity. Section 7 ends the research and offers
policy recommendations.

2 Literature review

2.1 Research on artificial intelligence

In recent years, artificial intelligence has emerged as the pivotal
force driving global technological transformation, capturing
significant attention across various industries.

However, research on measurement methodologies for artificial
intelligence remains in its nascent stage, leading to diverse scholarly
explorations of quantification approaches (Calabrese et al., 2023).
Ding et al. (2023) developed a framework from an innovation
perspective, constructing dimensions of supportiveness, vitality,
and advantage, while Zhou et al. (2024) adopted a
multidimensional approach considering environmental support
capacity, technological innovation capability, and industrial
competitiveness. Furthermore, proxy variable methods have
become important supplementary research tools due to their data
accessibility and representativeness.

The application of proxy variables such as industrial robot data
to reflect artificial intelligence development levels has gained
widespread usage (Graetz and Michaels, 2018; Fan et al., 2021;
Yu et al., 2023). With the rapid advancement of big data and natural
language processing technologies, textual analysis methods have
gradually emerged, providing new perspectives and tools for
measuring artificial intelligence levels.

Artificial intelligence levels can be measured through Python-
based word frequency analysis extracting relevant keywords from
corporate annual reports or policy documents (Chen and Jin, 2023),
while the annual count of newly registered AI enterprises by region
has also emerged as a novel research paradigm (Luo and Wang,
2025). Textual analysis methods can more directly capture the
dynamic changes in artificial intelligence while avoiding the
subjectivity inherent in indicator system construction and the
limitations of proxy variable selection. Based on these
considerations, this study also employs textual analysis
methodology. The development of artificial intelligence
technologies has profoundly influenced human production and
daily life (Graetz and Michaels, 2018). With continuous
advancements in global digital technologies including quantum
computing and energy blockchain, scholars have increasingly

Frontiers in Environmental Science frontiersin.org02

Yuan et al. 10.3389/fenvs.2025.1603633

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1603633


focused on artificial intelligence’s impacts on environmental energy
and economic systems. Artificial intelligence can predict and assess
climate change trends, providing scientific foundations for climate
governance (Shobanke et al., 2025). Moreover, AI algorithms have
enhanced energy utilization efficiency and reduced operational costs
through intelligent detection in electric vehicle thermal circulation
systems (Li and Wen, 2025). In the economic domain, artificial
intelligence technology has been widely applied to enterprise process
innovation, generating annual total cost savings for businesses
(Rammer et al., 2022). Simultaneously, artificial intelligence can
reshape labor market structures through technological
transformation, creating employment opportunities and reducing
unemployment rates (Ma et al., 2022; Bachmann et al., 2024).

2.2 Research on carbon productivity

Since the proposal of the “dual carbon” goals, green and low-
carbon development has become a focal issue attracting widespread
attention across society. Current research on carbon productivity
primarily concentrates on measurement methods and their
influencing factors. Regarding measurement approaches,
academia mainly adopts two types of metrics: single-factor and
multi-factor methods. Kaya and Yokobori (1997) first proposed the
single-factor calculation method in 1999, whose core concept treats
carbon dioxide emissions as an input variable equally important as
production factors like labor and capital, measuring the economic
benefits per unit of carbon emission by calculating the ratio between
regional GDP and carbon dioxide emissions within a specific period.
This method reflects the direct relationship between carbon
emissions and economic growth, and has been widely adopted
due to its simplicity and operability (Liu and Oka, 2024; Li et al.,
2024). Furthermore, some scholars have incorporated additional
influencing factors into the single-factor approach to
comprehensively consider differences across industries and
technologies, thereby promoting the emergence of multi-factor
calculation methods (Watanabe and Tanaka, 2007; Tian and
Pang, 2022). This study primarily investigates the equilibrium
between carbon reduction and economic growth, and therefore
employs the single-factor method to measure carbon
productivity. The factors influencing carbon productivity are
diverse, encompassing economic development, government
regulation, and technological innovation (Li et al., 2024). Both
the digital economy and traditional economic growth positively
impact carbon productivity (Chen and Yao, 2024; Chen et al., 2024).
Moreover, environmental regulations and policy interventions play
crucial roles in enhancing carbon productivity. Government
attention to environmental issues significantly affects the
outcomes of green total factor productivity (Yuan et al., 2025),
while green credit policies can guide high-pollution enterprises to
substantially reduce carbon emissions by improving carbon
productivity (Zhang et al., 2024). Simultaneously, technological
innovation also contributes to carbon productivity (Liu and
Zhang, 2021), with particularly notable improvement effects
coming from low-carbon energy technology advancements
(Zhao, 2023).

2.3 On human capital and financial
development in relation to artificial
intelligence and carbon productivity

Current research on artificial intelligence in carbon reduction
has gradually expanded. Research indicates that artificial intelligence
can significantly diminish carbon intensity in both labor-intensive
and technology-intensive sectors (Liu et al., 2022), with equally
excellent performance at the city level (Li et al., 2022). Meanwhile,
artificial intelligence not only suppresses carbon emissions but also
enhances green productivity in socioeconomic systems. The
application of artificial intelligence positively influences corporate
green innovation (Xi and Shao, 2025) while generating dual effects
on employee productivity (Chuang et al., 2025). However, these
studies have mainly explored the linear relationship between the two
and paid less attention to the possible non-linear characteristics of
their mechanisms of action. From a human capital perspective, the
human capital level of a region or a firm affects the AI technology
absorption and innovation capacity (Bastida et al., 2025). High
human capital levels can promote deep AI applications, and their
effects can shift from simple efficiency gains to deeper green
technology innovations that contribute to environmental and
economic sustainability (Al-Romeedy and Alharethi, 2024).
Conversely, low levels of human capital may limit the release of
the potential of AI (Kychko et al., 2021), or even lead to a “green
paradox” due to inadequate technology adaptation. From the
perspective of financial development, the level of financial
development affects the carbon reduction and efficiency of AI
through capital allocation efficiency (Wang et al., 2023). A sound
financial system can alleviate the financing constraints of green
technology R&D (Zhao et al., 2022), and thematurity of the financial
market constitutes a key critical condition for the diffusion of AI
technology.

The above paragraphs review relevant research on artificial
intelligence and carbon productivity. Literature analysis reveals
that although research on artificial intelligence in carbon
reduction has achieved certain results, gaps remain regarding
how artificial intelligence simultaneously reduces carbon
emissions while improving economic efficiency. Furthermore,
most existing studies rely on traditional linear regression
methods, failing to systematically examine the nonlinear
characteristics of artificial intelligence’s impacts. Building
upon existing research, this study makes several key
contributions:First, it examines the immediate impacts of
artificial intelligence on carbon productivity; Second, it
introduces environmental regulation and internet penetration
rate as moderating variables, revealing how these factors
influence artificial intelligence’s effects on carbon productivity;
Finally, breaking through traditional linear analysis frameworks,
this study employs threshold models to uncover the “increasing
marginal effects” nonlinear characteristics of artificial
intelligence, human capital, and financial development on
carbon productivity from multiple perspectives, providing new
insights for understanding the complex mechanisms of artificial
intelligence in carbon reduction. Figure 1 illustrates the
framework of our study.
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3 Mechanism analysis and research
hypothesis

3.1 The direct impact of artificial intelligence
on carbon productivity

The ecological modernization theory asserts that improved
resource efficiency can mitigate environmental problems (Zhu
et al., 2012). Within this theoretical framework, artificial
intelligence (AI) serves as a transformative technology that offers
novel avenues and instruments to enhance resource efficiency. This
study asserts that the direct influence of AI on carbon productivity
can be examined through two dimensions: the enhancement of
economic growth efficiency and the decrease of carbon emission
intensity. AI optimizes resource allocation efficiency via data-driven
and machine-learning technologies, which reduces resource waste
and energy consumption in production processes (Li et al., 2025). As
AI technology continues to mature, its reliability and efficiency will
increase significantly, showing super-linear characteristics after
crossing the technological threshold. This enhancement
contributes to economic growth efficiency while decreasing
carbon emission intensity (Shamshiri and Sohn, 2022). AI
directly decreases carbon emissions through enhanced energy
utilization efficiency. Artificial intelligence technologies are
capable of real-time monitoring of energy consumption and
predicting the variability of renewable energy sources using

machine learning algorithms (Ren et al., 2025). Optimizing the
grid-connection ratio of clean energy through AI diminishes
dependence on fossil fuels and improves the scheduling efficiency
of renewable energy sources. In this process, organizational rigidity
creates benign pressures that create resistance to technology
implementation. However, the adaptive learning ability of AI can
force organizational change, forming a positive cycle of
“organizational adaptability - technology effectiveness”. The
subsequent hypothesis is proposed based on the preceding analysis.

H1: The improvement of AI levels can significantly enhance
urban carbon productivity.

3.2 Mechanism analysis of AI’s impact on
carbon productivity

3.2.1 Mediation effect analysis
3.2.1.1 Industrial optimization effect

Upgrading industrial structures is essential for transforming
economic growth patterns and attaining emission reductions and
efficiency improvements (Li et al., 2019). The rise of AI provides a
new growth engine for upgrading industrial structures. AI
technologies enhance the growth of high-value-added service
industries through the automation of low-end labor, resulting in
decreased pollution emissions and improved energy efficiency.

FIGURE 1
Mechanism pathway diagram.
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Advanced information and data, as represented by AI, function as
new production factors that drive the rapid growth of emerging
industries, including industrial robots and AI-driven vehicles. These
innovations replace traditional high-energy-consumption and low-
efficiency production models, facilitating the transformation of
enterprises towards technology-intensive and service-oriented
industries, thus optimizing industrial structures (Yi, 2025). With
the advancement of industrial structures, there is a gradual increase
in the share of technology- and service-oriented industries.
Industries characterized by such economic structures are more
likely to implement green production technologies that exhibit
lower energy intensity, thereby further decreasing carbon
emissions (Chen and Lee, 2020). The subsequent hypothesis is
proposed based on the preceding analysis.

H2a: AI levels can promote carbon productivity through the
industrial optimization effect.

3.2.1.2 Innovation promotion effect
Green technological innovation refers to technological

advancements designed to achieve ecological protection,
minimize resource waste, and facilitate the swift development of
the enterprise economy (Li, 2021). Artificial intelligence (AI) serves
as a key driver for the advancement of green technology innovation,
leveraging its robust data processing and analytical capabilities. AI
technology turns processes that use legions of energy and produce
scores of pollution into ones that are efficient and last a long time. It
does this by analyzing large amounts of data and using machine
learning to find the best ways to use green technologies. It also helps
green technologies be used on a large scale and makes scheduling
renewable energy more efficient. New and improved green
technologies are key for industrial production because they help
change how energy is produced and used, reducing our reliance on
fossil fuels (Wang et al., 2025), cutting down on energy waste, and
achieving big reductions in emissions and gains in efficiency. We
propose the following hypothesis based on the preceding analysis.

H2b: AI levels can enhance carbon productivity via the
innovation promotion effect.

3.2.2 Moderating effect analysis
3.2.2.1 Moderating effect of environmental regulation

Environmental regulation enhances economic performance by
promoting competition among businesses (Zhang, 2021). The
compensation effect view says that in an ecological regulatory
system under a well-functioning ecological regulatory system, the
benefits derived from the ecological efficiency of resource utilization
can outweigh the offsetting effects caused by the internalization of
environmental costs (Luo et al., 2021). Stringent carbon tax
regulations push forward businesses to implement AI-driven
energy usage monitoring systems to attain compliance with
mandates for emission reduction and efficiency enhancement.
Simultaneously, environmental regulations compel corporations
to adopt advanced technology to enhance output by increasing
the cost of pollution. In the realm of carbon emissions trading,
AI can help companies manage their carbon quotas in real time and
come up with dynamic ways to cut down on emissions. In light of the
preceding analysis, we propose the below hypothesis.

H3a: The rigor of environmental regulation positively moderates
the influence of AI levels on urban carbon productivity.

3.2.2.2 Moderating effect of internet penetration rate
The Internet serves as a dynamic capability that facilitates the

reconfiguration of components such as labor and capital (Lin and
Zhou, 2021). Internet penetration is a critical infrastructure for the
deployment of AI technologies. On the one hand, high-speed
internet and cloud computing platforms enable real-time
transmission and processing of large-scale data, thereby
enhancing the training and optimization of AI algorithms,
facilitating real-time monitoring and scheduling, and ultimately
optimizing energy allocation while reducing carbon emissions.
On the other hand, internet penetration promotes the diffusion
and application of AI technologies by improving technology
dissemination and knowledge sharing. The initiative fosters
optimal conditions for the cross-regional implementation of AI
technologies, enhancing energy efficiency and decreasing carbon
emission intensity thus facilitating notable progress in carbon
productivity. We propose the following hypothesis based on the
previous analysis.

H3b: The rate of internet penetration positively moderates the
relationship between AI levels and urban carbon productivity.

3.3 Threshold effects of AI on carbon
productivity

3.3.1 Threshold effect of AI levels
The diffusion of innovations theory asserts that the adoption

and dissemination of new technologies adhere to a diffusion curve,
generally advancing from early adopters to mass adopters. This
provides an essential perspective for understanding the impact of AI
technologies on carbon productivity at different stages of
development (Patnaik and Bakkar, 2024). The initial phases of AI
technology application exhibit a low level of development,
concentrating mainly on localized process optimization and basic
data analysis. This limited integration into production systems
hinders substantial enhancements in carbon productivity through
global resource allocation. Businesses are limited Enterprises are
limited by technology maturity and data integration capabilities. AI-
driven technologies that reduce emissions are still mostly in the pilot
stage, with high marginal abatement costs that do not lead to big
improvements in carbon production efficiency. As AI technologies
advance, they become increasingly integrated into the entire
production process. Through real-time monitoring of energy use,
clean energy scheduling, and supply chain coordination
optimization, intelligent algorithms can systematically lower the
amount of carbon emissions per unit of output. In the end, it creates
a dynamic strategy for lowering emissions across regions and
industries and encourages a big increase in the marginal effect of
carbon production efficiency. We propose the following hypothesis
based on the above analysis.

H4a: The impact of AI levels on urban carbon productivity
demonstrates a nonlinear characteristic of “increasing
marginal effects.”
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3.3.2 Threshold effect of human capital level
Knowledge spillovers have been widely recognized as an enabler

of spatial socio-economic growth, which improves the capital
dimension of the population, and high levels of human capital
can facilitate the diffusion of technological knowledge and
localization improvements (Khurshid et al., 2023). At lower levels
of human capital, workers’ understanding and application
capabilities of AI technologies are limited, making it difficult to
effectively operate complex intelligent systems or participate in
technological iterations, thereby hindering the full realization of
AI’s emission reduction potential. With the gradual accumulation of
human capital, the highly educated labor force is able to deeply
participate in the localized improvement of AI technology (Ahsan
and Haque, 2017; Liu and Zhang, 2021). Through technical training
and knowledge diffusion, the scale-up application of AI abatement
technologies is accelerated, driving a nonlinear enhancement of the
marginal effect of carbon production efficiency. Based on the above
analysis, the following hypothesis is proposed.

H4b: The enhancing effect of human capital levels on urban
carbon productivity exhibits a nonlinear characteristic of
“increasing marginal effects.”

3.3.3 Threshold effect of financial
development level

Financial development minimizes barriers to capital access and
expands its coverage (Wang et al., 2025; Majeed et al., 2025). At lower
levels of financial development, enterprises face financing constraints,
making it difficult to bear the high costs of AI technology R&D and
infrastructure upgrades, leading to fragmented technology
applications. When financial development reaches a higher level,
sufficient capital supply supports the systematic implementation of
AI technologies through channels such as green credit and venture
capital (Yang and Wang, 2022). Mature financial markets can
diversify technology investment risks, incentivizing enterprises to
explore cutting-edge emission reduction technologies and driving a
significant leap in the marginal effects of carbon productivity. Based
on the above analysis, the following hypothesis is proposed.

H4c: The enhancing effect of financial development levels
on urban carbon productivity exhibits a nonlinear
characteristic of “increasing marginal effects.”

4 Research design

4.1 Model specification

4.1.1 Baseline effect model
In order to examine the effect of AI level on carbon production

efficiency, the endogeneity problem caused by unobservable
individual heterogeneity and time trend is mitigated, so as to
identify the net effect of AI on carbon production efficiency
more accurately. Following the existing literature (LeSage and
Pace, 2009), this study chooses the two-way fixed effects model
as the benchmark model, which is as follows:

CPit � a0 + a1AIit + ΣkαkControlskit + μi + γt + εit (1)

Among these, the carbon productivity of cities is denoted as CP, AI
development level as AI, control variables as Controls, k represents
the number of control variables, i and t denote city and time,
respectively, μi and γt represent city fixed effects and time fixed
effects, and ε is the random error term.

4.1.2 Mediation effect model
To analyze the mechanism through which AI levels influence

urban carbon productivity, drawing on Dong et al. (2022), the
following mediation effect model is constructed:

UISit � a0 + a1AIit + ΣkαkControlskit + μi + γt + εit (2)
EnvrPatit � a0 + a1AIit + ΣkαkControlskit + μi + γt + εit (3)

Among these, UIS and EnvrPat represent mechanism variables,
including industrial structure and green innovation. Other variables
and symbols are consistent with those in Equation (1).

4.1.3 Moderating effect model
Following Chen and Jin (2023), a model incorporating

environmental regulation and internet penetration rate as
moderating variables is constructed as follows:

CPit � a0 + a1AIit + a2ERit + +a3ERit × AI + ΣkαkControlskit + μi

+ γt + εit

(4)
CPit � a0 + a1AIit + a2IPit + +a3IPit × AI + ΣkαkControlskit + μi

+ γt + εit

(5)
Among these, ERit × AI represents the interaction term between
environmental regulation and AI levels, IPit × AI represents the
interaction term between internet penetration rate and AI levels.
Other variables and symbols are consistent with those in Equation (1).

4.1.4 Threshold effect model
Drawing on the research approach ofWang et al. (2024), a threshold

model is constructed with AI levels, human capital levels, and financial
development levels as threshold variables, specified as follows:

CPit � α0 + α1AIit × θ AIit <Φ1( ) + α2AIit × θ AIit ≥Φ1( )
+ ΣkαkControlskit + εit (6)

CPit � α0 + α1AIit × θ HCit <Φ1( ) + α2AIit × θ HCit ≥Φ1( )
+ ΣkαkControlskit + εit (7)

CPit � α0 + α1AIit × θ Finit <Φ1( ) + α2AIit × θ Finit ≥Φ1( )
+ ΣkαkControlskit + εit (8)

Among these, Φ1 represents a specific threshold value, Φ1 is an
indicator function, AIit、HCit、 Finit are threshold variables. Other
variables and symbols are consistent with those in Equation (1).

4.2 Variable selection

4.2.1 Dependent variable
The dependent variable in this study is carbon productivity,

defined as the ratio of regional GDP (in billion yuan) to carbon
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emissions (in million tons). Carbon dioxide emissions are calculated
from energy consumption statistics across nine categories: raw coal,
coke, crude oil, kerosene, fuel oil, gasoline, diesel, natural gas, and
electricity, utilizing the carbon emission coefficients specified in the
IPCC’s 2006 Guidelines for National Greenhouse Gas Inventories.
Regional GDP figures are adjusted for inflation using 2003 as the
base year, with data obtained from the China Energy Statistical
Yearbook and province statistical yearbooks. Calculation of carbon
productivity is based on Equation 9:

CP � GDP/∑
7

n�1
Ein · CFin · CCin · COFin · 4412( ) (9)

Among these, the subscripts i and n denote the consumption of the
nth fossil energy in the ith city, E represents the final consumption of
various fossil energy types, CF represents the average lower heating
value of various fossil energy types, COF represents the carbon
content per unit of heat value, 44

12 represents the carbon oxidation
rate, and (CFin · CCin · COFin · 4412) represents the CO2 gasification
coefficient. These are collectively referred to as the CO2 emission
coefficients.

4.2.2 Core explanatory variable
In this study, the degree of artificial intelligence (AI) serves as the

central explanatory variable. Using Luo and Wang et al. (2025)
study, the “Qichacha” enterprise credit information platform is
applied. Using Python web scraping technology, fuzzy matching
searches on keywords linked to AI applications in the “business
scope” and “company name” sections on Qichacha. The keywords
are selected based on the AI-related terms provided by Yao et al.
(2024) and collated from the World Intellectual Property
Organization (WIPO). Year and area help to aggregate the panel
data of AI companies in every city from 2003 to 2021; the measure of
AI development level is the logarithmic value of the number of AI
companies in each city for each year.

4.2.3 Mediating variables
Drawing on the research of Wang (2024), this study selects

industrial structure and green innovation as mediating variables.

4.2.3.1 Industrial structure
The industrial structure is an important indicator of regional

development patterns. Due to the relatively low quality of
industrialization in China, traditional high-energy-consumption
and high-pollution industries still account for a significant
proportion. Therefore, when the industrial sector dominates a
city’s industrial structure, it may hinder the city’s transition to
green industries and limit improvements in carbon productivity.
This study uses the proportion of the tertiary sector in GDP as a
proxy for industrial structure to reflect the optimization level of the
urban economic structure.

4.2.3.2 Green innovation
Green innovation is quantified by the logarithmic value of the

quantity of green patent applications. Green innovation serves as a
key driver for the development of low-carbon technologies,
effectively promoting energy conservation and emission reduction
in production processes, thereby enhancing carbon productivity. An

increase in green patent applications indicates a city’s investment
and achievements in green technology research and application,
making it a crucial indicator of green innovation capability.

4.2.4 Moderating variables
Following the approach of Xiao and Li (2023), this study

includes environmental regulation intensity and internet
penetration rate as moderating variables.

4.2.4.1 Environmental regulation intensity
Environmental regulation intensity refers to the stringency of

policies and regulations implemented by local governments to
reduce environmental pollution and promote sustainable
development. As an important policy tool, environmental
regulation can directly influence urban production behaviors and
technological innovation directions. This study employs the
comprehensive utilization rate of general industrial solid waste in
each city as an indicator of environmental control intensity.

4.2.4.2 Internet penetration rate
The Internet penetration rate is a key indicator of the level of

information technology development in a region. As a critical
medium for information dissemination and data exchange, the
Internet can enhance the awareness and acceptance of low-
carbon technologies among enterprises and the public, thereby
driving low-carbon innovation and green transformation.
Therefore, this study uses the number of the Internet users per
100 people as a proxy for internet penetration rate.

4.2.5 Threshold variables
Drawing on the literature of Wang et al. (2024), the threshold

variables in this study include AI level, human capital level, and
financial development level.

4.2.5.1 AI level
As the core explanatory variable, the AI level also serves as a

threshold variable to examine its nonlinear impact on carbon
productivity. The effectiveness of AI technology applications may
exhibit phased changes as their development level varies, making it a
suitable threshold variable to reveal its differential impacts on
carbon productivity at different development stages.

4.2.5.2 Human capital level
Human capital level is a critical indicator of a city’s innovation

capacity and development potential. A higher human capital level
can provide intellectual support for the application and promotion
of AI technologies, thereby more effectively driving improvements
in carbon productivity. This study uses the number of higher
education students per 10,000 people as a measure of human
capital level.

4.2.5.3 Financial development level
The level of financial development indicates the activity of a

city’s capital market and the efficacy of resource distribution. An
elevated level of financial development can provide capital assistance
for green technology innovation and industrial enhancement,
consequently advancing carbon productivity. This study use the
ratio of the year-end balance of deposits and loans of financial
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institutions to regional GDP as an indicator of the level of financial
development.

4.2.6 Control variables
To address endogeneity concerns arising frommissing variables,

factors aside fromAI level that may affect urban carbon productivity
are controlled. This study, informed by current literature (Zheng
et al., 2022), identifies five indicators as control variables: population
density, level of openness, degree of government interference,
intensity of fiscal investment, and level of science and
technology. Population density influences energy consumption
and carbon emissions, quantified as the ratio of the resident
population to the urban area, with a logarithmic transformation
implemented. The degree of openness, frequently associated with
technological advancement and industrial enhancement, may affect
carbon productivity, defined as the ratio of total import and export
volume to regional GDP. The amount of government intervention
indicates the degree of governmental involvement and regulation in
economic operations. Government policy orientation may affect
regional technology selections and production patterns, quantified
as the ratio of total government fiscal expenditure to regional GDP.
The intensity of fiscal investment influences technical advancement
and industrial growth, which may affect carbon productivity,
defined as the ratio of fixed asset investment to total government
fiscal spending. The level of science and technology denotes a
region’s proficiency in scientific research and its implementation.
Advancements in scientific and technological domains frequently
facilitate the implementation and creation of low-carbon
technologies, quantified as the ratio of science and technology
expenditures to overall government fiscal expenditures.

4.3 Sample selection and data sources

This study selects 286 prefecture-level cities in China from
2003 to 2021 as the research sample. Due to data availability
constraints, cities in the Tibet Autonomous Region with
significant missing data are excluded. Additionally, to ensure
temporal consistency, cities with sporadic missing data during
the sample period, such as Linfen, Shuozhou, Lüliang, Karamay,
Jiayuguan, Jinchang, Guyuan, Dingxi, and Zhongwei, are excluded.
Data for calculating AI level and carbon productivity, as well as other
data, are sourced from the China Statistical Yearbook, China Energy
Statistical Yearbook, China Tertiary Industry Statistical Yearbook,
China City Statistical Yearbook, China Regional City Statistical
Yearbook, provincial statistical yearbooks, and city statistical
bulletins. Missing data are supplemented using methods such as
linear interpolation.

5 Empirical results and analysis

5.1 Descriptive statistics

Table 1 presents the descriptive statistics of the primary
variables. Table 2 indicates that the average urban carbon
productivity is 0.789, with highest and minimum values of
12.870 and 0.041, respectively, highlighting considerable

variations in carbon productivity among various cities in China.
The average AI level is 4.027, with maximum and minimum values
of 11.031 and −5.721, respectively, indicating disparate development
of AI levels among Chinese cities.

5.2 Baseline regression

To further demonstrate the robustness of the regression results,
a stepwise regression approach is adopted for the baseline regression
using Equation (1). The results are presented in Table 3. Column (1)
of Table 3 presents the regression results without control variables,
showing a coefficient of 0.111 between AI level and carbon
productivity, which is significant at the 1% level. This indicates
that the AI level significantly promotes urban carbon productivity.
Columns (2) to (6) present the regression results of the impact of the
digital economy on urban low-carbon development after
sequentially adding control variables. As control variables are
added, the model’s goodness-of-fit improves, and the regression
coefficients remain significantly positive at the 1% level. In Column
(6), the coefficient between AI level and carbon productivity is 0.098,
indicating that a 1 percentage point increase in AI level leads to a
0.098 percentage point increase in carbon productivity. This reflects
the positive role of AI level in improving carbon productivity,
validating Hypothesis 1.

5.3 Robustness tests

To verify the robustness of the baseline regression results, this
study draws on the approach of Zhou et al. (2024) and Zhao et al.
(2020) and conducts tests from the perspectives of variable
replacement and sample adjustment.

5.3.1 Excluding municipality samples
To avoid the potential impact of municipality samples on the

empirical results, the sample data of Beijing, Chongqing, Tianjin,
and Shanghai are excluded before re-regression. As special
administrative regions, municipalities may have significant
differences in policy support and economic structure compared
to other cities. After excluding municipality samples, the re-
regression results, as shown in Column (1) of Table 4, indicate
that the coefficient of AI level is 0.113, significant at the 1% level,
consistent with the baseline regression results.

5.3.2 Excluding major coal-consuming provinces
The energy structure of major coal-consuming provinces may

significantly affect carbon productivity. After excluding samples
from major coal-consuming provinces such as Shanxi and Inner
Mongolia, the re-regression results, as shown in Column (2) of
Table 4, indicate that the coefficient of AI level is 0.066, significant at
the 1% level.

This suggests that the conclusion remains valid after excluding
major coal-consuming provinces.

5.3.3 Excluding western region samples
The underdeveloped economic status of the western region may

affect the regression outcomes. Upon eliminating samples from the
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western region, the re-regression results presented in Column (3) of
Table 4 reveal that the coefficient for AI level is 0.120, significant at
the 1% level. This indicates that the finding remains valid despite
omitting samples from the western region.

5.3.4 Winsorize
In order to prevent the influence of extreme values, this study

sorts all samples of carbon production efficiency according to the
magnitude of the values, and replaces the data less than 1% and
greater than 99% quantile with 1% and 99% values respectively for
the shrinking tail treatment, and conducts regression analysis based
on this. The regression coefficients for AI in column (4) of Table 4
are consistent with the baseline regression in both sign and absolute
value, the empirical results are relatively robust, and the deletion of
potential CP outliers does not affect the hypothesized underlying
conclusions.

5.3.5 Controlling for fixed effects
The improvement of urban carbon productivity may be affected

by differences in the level of regional economic development,
especially since the application of AI technology tends to be
more popular in economically developed regions. To mitigate
this potential bias, this study introduces province fixed effects to
mitigate changes in themacro-systemic environment that may result
from the widespread development of AI technology. The robustness
test results in column (5) of Table 4 show that the conclusions
remain robust after accounting for systematic changes in
macro factors.

5.4 Endogeneity texts

To address potential endogeneity issues, this study employs the
instrumental variable (IV) approach. Following the approach of
Nepal et al. (2025), the one-period lagged AI level is selected as the
instrumental variable for urban carbon productivity. This choice is
based on two considerations. From the perspective of correlation, AI
development relies on pre-infrastructure and R&D investment, and

its level shows continuity in the time dimension, and the level of AI
in the lagging period is highly correlated with the level of AI in the
current period. From the perspective of exogeneity, the AI in the
lagging period precedes the current carbon production efficiency in
time, will not be affected by the inverse of the current carbon
production, and has a very weak correlation with the current carbon
production. Therefore, choosing the level of AI in the lagged period
as an instrumental variable helps to avoid a direct correlation with
carbon production efficiency. The regression results are shown in
Table 5. The first-stage regression results show that the coefficient of
the instrumental variable is 0.856, significant at the 1% level. This
indicates a significant correlation between the instrumental variable
and AI level. The second-stage regression results show that the
coefficient of AI level is 0.119, also significant at the 1% level.
Additionally, the Anderson canon LM statistic is 3852.174, with a
p-value of 0, rejecting the null hypothesis of the “unidentified
instrumental variable” at the 1% level. The Cragg-Donald Wald F
statistic is 17213.80, exceeding the 10% critical value of the Stock-
Yogo weak identification test, passing the Wald test for weak
instrumental variables. Therefore, the instrumental variable
selected in this study is reasonable and valid. The above results
indicate that, even after introducing the instrumental variable, the
AI level continues to promote urban carbon productivity.

5.5 Mechanism effect analysis

5.5.1 Mediation effects
5.5.1.1 Industrial optimization effect

Based on Equation 2, Column (1) of Table 6 presents the
regression results of the mediation effect of AI level on industrial
structure upgrading. The regression coefficient of the AI level is
0.007, significant at the 1% confidence level, indicating that the
application of AI technology significantly promotes industrial
structure upgrading. Meanwhile, industrial structure
transformation can stimulate economic development and
improve energy utilization efficiency, thereby enhancing carbon
productivity (Zhao et al., 2022). Therefore, AI can indirectly

TABLE 1 Artificial intelligence keywords.

Keywords

Artificial intelligence Internet of things Machine learning Intelligent
computing

Intelligent search

Computer Vision Human-Computer Interaction Deep Learning Neural Networks Biometrics

Image Recognition Data Mining Feature Recognition Speech Synthesis Speech Recognition

Knowledge Graph Intelligent
Banking

Intelligent Insurance Human-Computer
Collaboration

Intelligent
Supervision

Intelligent Education Intelligent
Customer Service

Intelligent Retail Intelligent
Agriculture

Intelligent
Investment

Augmented Reality Virtual Reality Intelligent Healthcare Smart Speaker Smart Voice

Intelligent
Government

Automatic
Driving

Intelligent
Transportation

Convolutional
Neural Network

Voiceprint
Recognition

Feature Extraction Driverless Intelligent Home Q&A System Face Recognition
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TABLE 2 Descriptive statistics of the main variables.

VarName Obs Mean SD Min Median Max

CP 5,149 0.789 0.841 0.041 0.540 12.870

AI 5,149 4.027 1.982 −5.721 3.871 11.031

UIS 5,149 0.400 0.098 0 0.389 0.839

EnvrPat 5,149 4.097 2.040 0 4.111 10.372

ER 5,149 80.353 23.416 0.240 88.870 328.310

IP 5,007 2.013 11.210 0 0.125 355.180

HC 5,149 0.021 0.028 0 0.010 0.264

Fin 5,149 2.263 1.148 0.508 1.949 21.302

POP 5,149 5.776 0.884 0.683 5.923 7.887

Ope 5,149 0.020 0.023 −0.032 0.012 0.376

Gov 5,149 0.167 0.090 0.031 0.146 1.936

FI 5,149 4.742 2.047 0.012 4.464 17.168

ST 5,149 0.014 0.015 0 0.008 0.207

TABLE 3 Baseline regression results.

Dependent variable: CP

(1) (2) (3) (4) (5) (6)

AI 0.111*** 0.096*** 0.097*** 0.104*** 0.105*** 0.098***

(5.833) (5.077) (5.116) (5.568) (5.602) (5.353)

POP 0.395*** 0.381*** 0.372*** 0.370*** 0.355***

(8.584) (8.304) (8.200) (8.175) (7.980)

Ope −2.622*** −2.137*** −2.041*** −1.525***

(−7.383) (−6.038) (−5.670) (−4.291)

Gov −1.239*** −1.278*** −0.971***

(−10.738) (−10.783) (−8.190)

FI −0.007 −0.001

(−1.450) (−0.283)

ST 8.063***

(13.530)

_cons 0.173*** −2.059*** −1.895*** −1.747*** −1.713*** −1.707***

(3.657) (−7.794) (−7.187) (−6.695) (−6.536) (−6.635)

year Yes Yes Yes Yes Yes Yes

city Yes Yes Yes Yes Yes Yes

Obs 5,149 5,149 5,149 5,149 5,149 5,149

R2 0.367 0.377 0.384 0.398 0.398 0.420

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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promote carbon productivity growth through the industrial
optimization effect, validating Hypothesis H2a.

5.5.1.2 Innovation promotion effect
Based on Equation 3, Column (2) of Table 6 presents the regression

results of the mediation effect of AI level on green technology
innovation. The regression coefficient of the AI level is 0.285,
significant at the 1% confidence level, indicating that AI technology
significantly promotes green technology innovation. Additionally, data-
driven technological innovation tends to favor environmental
protection and energy conservation, thereby promoting carbon
productivity improvement (Gao et al., 2022). Therefore, AI can
indirectly promote carbon productivity growth through the
innovation promotion effect, validating Hypothesis H2b.

5.5.2 Moderating effect analysis
To validate Hypotheses H3a and H3b, based on Equation 4, the

regression results are presented in Table 7. Based on Equation 5,
Column (2) of Table 6 shows that the regression coefficient of the
interaction term between AI level and environmental regulation

intensity is 0.001, significant at the 1% level. Based on Equation 5,
Column (2) shows that the regression coefficient of the interaction
term between AI level and the internet penetration rate is 0.005,
significant at the 1% level. This indicates that environmental
regulation intensity and internet penetration rate can strengthen
the promoting effect of the AI level on urban carbon productivity.
Strict environmental policies compel enterprises to apply AI
technology for emission reduction, amplifying its carbon
productivity improvement effect, while high internet penetration
accelerates the dissemination of AI technology and reduces the cost
of technology application for enterprises. Therefore, Hypotheses
H3a and H3b are validated.

6 Further research

6.1 Threshold effects

Based on Equations 6–8, the threshold characteristics are tested
using the Bootstrap method with 500 repeated samplings. The

TABLE 4 Robustness test results.

Dependent variable: CP

(1) (2) (3) (4) (5)

Excluding municipalities directly
under the central government

Eliminate coal
consumption in

provinces

Eliminate
western
provinces

Winsorize Excluding
systematic
changes in

macro-factors

AI 0.113*** 0.066*** 0.120*** 0.087*** 0.097***

(6.179) (3.172) (6.258) (6.022) (5.247)

POP 0.340*** 0.110 0.463*** 0.106*** 0.353***

(7.687) (1.612) (8.798) (3.038) (7.889)

Ope −1.599*** −1.507*** −1.463*** −1.195*** −1.635***

(−4.483) (−3.546) (−4.040) (−4.286) (−4.519)

Gov −0.923*** 0.151 −1.356*** −0.970*** −0.964***

(−7.804) (1.105) (−9.016) (−10.430) (−8.076)

FI 0.001 0.019*** 0.000 0.002 −0.001

(0.311) (3.221) (0.027) (0.481) (−0.282)

ST 8.027*** −0.544 7.860*** 5.093*** 7.917***

(13.430) (−0.843) (12.467) (10.894) (13.159)

_cons −1.661*** −0.426*** 0.120*** −0.269 −1.688***

(−6.510) (3.851) (6.258) (−1.332) (−6.524)

province No No No No Yes

year Yes Yes Yes Yes Yes

city Yes Yes Yes Yes Yes

Obs 5,073 3534 4,769 5,149 5,083

R2 0.416 0.340 0.435 0.491 0.422

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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specific test results are presented in Table 8. Table 8 shows the
threshold effect test results for the AI level, human capital level, and
financial development level. All three variables pass the single
threshold test and are significant at the 1% level, indicating a
significant nonlinear characteristic of “increasing marginal
effects” on carbon productivity, robustness tests for threshold
effects are provided in the Supplementary Material. The specific
analysis is as follows:

6.1.1 Threshold effect of AI level
The threshold value for the AI level is 7.797. When the AI

level is below 7.797, its regression coefficient is 0.104 (Column
1 of Table 9). When the AI level exceeds the threshold, the
coefficient significantly increases to 0.191, significant at the 1%
level. This indicates that the promoting effect of AI level on

carbon productivity exhibits increasing marginal effects as the
scale of technology application expands. This result validates
Hypothesis H4a. At low AI levels, technology applications are
mostly limited to basic process optimization, with limited
emission reduction and efficiency improvement. When the
AI level surpasses the threshold, technology is deeply
integrated into production systems, achieving large-scale
carbon emission reductions through intelligent scheduling
and energy efficiency optimization, significantly enhancing
marginal benefits.

6.1.2 Threshold effect of human capital level
The threshold value for the human capital level is 0.056. When

the human capital level is below 0.056, its regression coefficient is
0.098 (Column 2 of Table 9). When it exceeds the threshold, the
coefficient rises to 0.178, significant at the 5% level, supporting
Hypothesis H4b. This suggests that higher human capital levels
provide better intellectual support for the application of AI
technologies. At low human capital levels, limited technology
absorption capacity hinders the full realization of emission

TABLE 5 Endogeneity test results.

Dependent variable: CP

(1) (2)

First Second

L.AI 0.856***

(131.200)

AI 0.119***

(5.462)

POP 0.060*** 0.328***

(3.962) (7.571)

Ope 0.283** −1.548***

(2.063) (−3.945)

Gov 0.030 −1.020***

(0.735) (−8.788)

FI 0.006*** −0.001

(3.784) (−0.145)

ST 0.038 7.810***

(0.182) (13.244)

_cons 0.667*** −0.670**

(5.982) (−2.074)

year Yes Yes

city Yes Yes

Obs 4,878 4,878

Anderson canon. corr. LM statistic 3852.174 [0.000]

Cragg-Donald Wald F statistic 17213.80
{16.38}

Note:① t statistics in Column (1), z statistics in Column (2)② * p < 0.1, ** p < 0.05, *** p <
0.01③ Using Anderson canon. corr. LM, statistic Identify the test, and the value in [] is the

p-value of the corresponding statistic. ④ Using the Cragg-Donald Wald F statistic to test

the weak tool variables, the value in {} is the critical value at the 10% level of the Stock-Yogo

weak identification test.

TABLE 6 Mediation regression results.

Dependent variable: CP

Industrial optimization
effect

Innovation promotion
effect

(1) (2)

UIS EnvrPat

AI 0.007*** 0.285***

(3.902) (12.044)

POP 0.012*** −0.078

(2.628) (−1.353)

Ope −0.085** −1.069**

(−2.340) (−2.333)

Gov 0.017 −0.278*

(1.419) (−1.821)

FI −0.004*** −0.000

(−8.668) (−0.052)

ST 0.207*** 8.603***

(3.377) (11.202)

_cons 0.296*** 1.859***

(11.200) (5.606)

year Yes Yes

city Yes Yes

Obs 5,149 5,149

R2 0.653 0.887

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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reduction potential. At high human capital levels, efficiency in low-
carbon production applications is significantly improved through
technology R&D and management innovation, driving increasing
marginal benefits.

6.1.3 Threshold effect of financial
development level

The threshold value for the financial development level is 3.870.
When the financial development level is below 3.870, its regression
coefficient is 0.115 (Column 3 of Table 9). When it exceeds the
threshold, the coefficient increases to 0.184, significant at the 1%
level, validating Hypothesis H4c. Improvements in financial
development level can alleviate financing constraints for green
technologies and optimize resource allocation efficiency,
providing financial support for the large-scale application of AI-
driven low-carbon technologies, thereby amplifying emission
reduction effects. At low financial levels, capital shortages may
limit technology implementation, while high financial levels
leverage capital to drive nonlinear growth in marginal benefits.

6.2 Heterogeneity tests

6.2.1 Heterogeneity of urban resource
endowments

Resource-based cities in China are primarily dominated by
resource industries, especially traditional industries such as
energy and chemical sectors. These traditional industries heavily
rely on fossil fuels, the consumption of which generates substantial
carbon dioxide, hindering improvements in carbon productivity and
thereby constraining low-carbon urban development. Therefore, the
impact of AI level on urban carbon productivity may vary across
cities with different resource endowments.

Based on the National Sustainable Development Plan for
Resource-Based Cities (2013–2020) issued by the State Council
and referencing the work of Xu et al. (2022), this study
categorizes sample cities into resource-based and non-resource-
based cities and conducts separate regressions. The results are
shown in Columns (1) and (2) of Table 10. It can be observed
that the regression coefficients of AI level are significantly positive in
both groups, but the inter-group coefficient difference reveals that
AI level has a stronger promoting effect on low-carbon development
in resource-based cities. This suggests that resource-based cities,
where resource extraction and processing dominate economic
activities, often experience high energy consumption and carbon
emissions during production. The application of AI technologies can
significantly enhance carbon productivity by optimizing resource
utilization, improving production efficiency, and reducing waste.
The theory of directed technological change suggests that firms will
actively choose greener technological paths when faced with
resource constraints. The application of artificial intelligence
technologies can significantly improve carbon productivity by

TABLE 7 Moderating effect results.

Dependent variable: CP

(1) (2)

AI*ER 0.001***

(3.799)

ER −0.002***

(−3.204)

AI*IP 0.005***

(15.651)

IP −0.038***

(−14.466)

AI 0.048** 0.098***

(2.125) (5.346)

POP 0.356*** 0.291***

(8.014) (6.620)

Ope −1.478*** −1.143***

(−4.160) (−3.136)

Gov −0.953*** −0.766***

(−8.042) (−6.426)

FI −0.001 0.004

(−0.148) (0.778)

ST 7.892*** 7.638***

(13.220) (12.341)

_cons −1.549*** −1.398***

(−5.919) (−5.504)

year Yes Yes

city Yes Yes

Obs 5,149 5,007

R2 0.422 0.454

TABLE 8 Threshold effect existence test.

Threshold BS Fstat Prob threshold value Critical value

AI Single 500 511.90*** 0.000 7.797 39.480 45.096 81.900

HC Single 500 149.95** 0.003 0.056 66.871 89.825 150.878

Fin Single 500 237.87*** 0.000 3.870 54.002 68.178 104.482

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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optimizing resource use, increasing productivity and reducing
waste. Therefore, the effect of AI on carbon productivity is
more pronounced in resource-based cities. Additionally,
resource-based cities are more inclined to invest in
technological innovation to address resource depletion and
environmental pressures, further amplifying the impact of AI.
In non-resource-based cities, although the improvement in AI
level also positively affects carbon productivity, the magnitude of
the effect is smaller. This may be because non-resource-based cities
have more diversified economic structures and relatively complex

production processes, which may limit the scope and effectiveness
of AI technology applications. Furthermore, non-resource-based
cities may lack sufficient motivation and resources to fully
implement AI technologies, thereby constraining their impact
on carbon productivity.

6.2.2 Heterogeneity of city size
City size is an essential factor influencing economic

development, resource allocation, and technology application.
Cities of different sizes differ significantly in terms of economic
structure, technological base, and policy support, and according to
the theory of governance capacity, differences in city sizes lead to
systematic differentiation in governmental governance efficacy and
technological application environments, which leads to
heterogeneity in the impact of AI levels on carbon production
efficiency. Based on the Notice of the State Council on Adjusting
the Standards for City Size Classification, this study categorizes
sample cities into megacities, large cities, and small- and medium-
sized cities, and conducts separate regression analyses. The results
are shown in Columns (3), (4), and (5) of Table 10. It can be
observed that the regression coefficients of AI level are significant at
the 1% level across cities of different sizes, but the direction and
magnitude of the effects vary significantly. In megacities, the
coefficient of AI level is −0.776, indicating that the increase in AI
level has a significant negative impact on carbon productivity in
these cities. This may be due to the high intensity of economic
activities in megacities, the complexity of their industrial structure,
their large energy consumption and carbon emission bases, and the
complexity of governance in megacities, which can also reduce the
efficiency of policy implementation. Although AI technologies can
optimize resource allocation and improve production efficiency, the
complexity and cost of technology application in megacities may be
higher, making it difficult to significantly enhance carbon
productivity in the short term. Additionally, issues such as traffic
congestion and industrial concentration in megacities may offset
some of the positive effects of AI technologies, even leading to a
decline in carbon productivity. In large cities, the coefficient of AI
level is 0.222, indicating that the increase in AI level has a significant
positive impact on carbon productivity. Large cities typically have
relatively well-developed infrastructure and technological support,
enabling better absorption and application of AI technologies. At the
same time, the industrial structure of large cities is relatively
balanced, with a solid industrial base and strong potential for
service sector development, allowing AI technologies to
significantly enhance carbon productivity by optimizing
production processes and improving energy utilization efficiency.
In small- and medium-sized cities, the increase in AI level also has a
positive impact on carbon productivity, but the magnitude of the
effect is smaller. This means that the limitations of small and
medium-sized cities in terms of financial capacity and technical
talent reserves will constrain their ability to absorb and transform
new technologies, and the smaller economic scale of small cities in
the centers and their relatively homogeneous industrial structure
may not have as sound an infrastructure for technology application
as that of large cities. Although AI technologies can improve carbon
productivity to some extent, the effects are relatively limited due to
delays in technology diffusion and insufficient resource investment.

TABLE 9 Threshold estimation results.

Dependent variable: CP

(1) (2) (3)

Threshold variable AI HC Fin

POP 0.342*** 0.371*** 0.351***

(8.070) (8.445) (8.072)

Ope −1.006*** −1.520*** −1.187***

(−2.962) (−4.337) (−3.407)

Gov −0.787*** −0.911*** −1.059***

(−6.941) (−7.786) (−9.124)

FI 0.010** −0.000 0.004

(2.134) (−0.008) (0.926)

ST 5.046*** 7.122*** 7.298***

(8.631) (12.016) (12.479)

AI × I1 (AI ≤7.749) 0.104***

(5.936)

AI × I1 (AI >7.749) 0.191***

(10.593)

AI × I2(HC ≤ 0.056) 0.098***

(5.404)

AI × I2(HC > 0.056) 0.178***

(9.211)

AI × I3(Fin≤3.870) 0.115***

(6.416)

AI × I3(Fin>3.870) 0.184***

(9.781)

_cons −1.716*** −1.837*** −1.760***

(−6.997) (−7.237) (−6.997)

year Yes Yes Yes

city Yes Yes Yes

Obs 5,149 5,149 5,149

R2 0.473 0.437 0.446

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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6.2.3 Heterogeneity of regional development
The uneven regional economic development in China, with

significant differences in resource endowments, industrial
structures, and policy support among the eastern, central,
western, and northeastern regions, according to the theory of
regional innovation systems, there are systematic differences in
the degree of innovation factor agglomeration, knowledge flow
efficiency, and technology absorptive capacity in different
regions, which may lead to heterogeneity in the impact of the
level of AI on carbon production efficiency. Based on the
regional classification standards of the National Bureau of
Statistics, this study categorizes sample cities into eastern, central,
western, and northeastern regions and conducts separate
regressions. The results are shown in Columns (1) to (4) of
Table 11. In the eastern region, the coefficient of AI level is
0.159, significant at the 1% level, indicating the most pronounced
promoting effect on carbon productivity. The eastern region has a
developed economy, a strong technological base and a high
concentration of innovation factors, which makes it easier to
realize technological synergies and provide strong policy support
(Nepal et al., 2025). For example, in the “dual-carbon” target

demonstration zone, AI technology can significantly improve
carbon production efficiency by optimizing the energy efficiency
of high-end manufacturing and service industries. In the central
region, the coefficient is 0.110, significant at the 1% level, with a
relatively smaller impact. The central region is undergoing industrial
transformation, promoting green upgrading while accepting the
transfer of industries from the east. and AI technologies can play
a role in the transformation of traditional industries. However, due
to weaker technological application depth and financial investment
compared to the eastern region, the effects are relatively limited. In
the western region, the coefficient is 0.002, not significant, indicating
that the promoting effect of AI technologies on carbon productivity
does not pass statistical tests. The relative economic backwardness of
the western region, its weak infrastructure and its dependence on
resource-based industries, and the inadequacy of its innovation
networks hinder the spillover effects of knowledge. Additionally,
weaker enforcement of environmental policies and a lack of regional
motivation to fully promote AI technologies contribute to this
outcome. In the northeastern region, the coefficient is 0.081,
significant at the 1% level but lower than that of the eastern and
central regions. The northeastern region, dominated by heavy

TABLE 10 Heterogeneity analysis of urban resource endowments and city size.

Dependent variable: CP

Classification of resource-based cities City classification

(1) (2) (3) (4) (5)

Resource-based
cities

Non resource cities Megacity Big city Small and medium-sized cities

AI 0.138*** 0.081** −0.776*** 0.222*** 0.114***

(8.073) (2.553) (−3.151) (5.026) (7.505)

POP 0.028 0.570*** 10.770*** 0.037 0.056

(0.592) (8.640) (28.175) (0.649) (1.147)

Ope 0.090 −1.192*** 14.292*** −2.769*** −0.040

(0.162) (−2.614) (7.319) (−5.708) (−0.107)

Gov −1.364*** −0.662*** −4.439** −0.439*** −1.231***

(−9.073) (−4.109) (−2.543) (−2.966) (−9.059)

FI 0.004 0.004 −0.072 −0.010 0.017***

(0.718) (0.566) (−1.011) (−1.410) (3.643)

ST 0.501 9.538*** 7.309*** 3.464*** 1.155*

(0.615) (11.798) (2.779) (4.093) (1.708)

_cons 0.043 −3.012*** −66.822*** −0.318 −0.011

(0.162) (−7.589) (−30.175) (−0.870) (−0.042)

year Yes Yes Yes Yes Yes

city Yes Yes Yes Yes Yes

Obs 2014 3135 133 1767 3249

R2 0.395 0.458 0.971 0.536 0.420

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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industries, faces pressure to transform traditional industries.
Although AI technologies can reduce energy consumption
through equipment intelligence, the effects are relatively limited
due to slow technological updates and path dependency.

6.2.4 Heterogeneity of urban agglomerations
Urban agglomerations in China are vital conduits for regional

economic advancement. There are significant differences between
different city clusters in terms of industrial structure, technology
level and policy support. According to the theory of green transition
structure, the degree of greening of regional industrial structure
directly affects the space for the emission reduction effect of
technology, which leads to the heterogeneity of the impact of the
level of AI on carbon production efficiency. This study classifies
sample cities into the Beijing-Tianjin-Hebei, Yangtze River Delta,
Pearl River Delta, Middle Yangtze River, and Chengdu-Chongqing
urban agglomerations according to the urban agglomeration
categorization guidelines outlined in China’s 14th Five-Year Plan
and performs distinct regressions for each category. The outcomes
are presented in Columns (1) through (5) of Table 12. In the Beijing-
Tianjin-Hebei urban agglomeration, the coefficient of AI level
is −0.279, significant at the 1% level, indicating a significant
negative impact on carbon productivity. The Beijing-Tianjin-
Hebei region is dominated by heavy industries and energy-

intensive sectors. Heavy industry-dominated industrial structures
can have a lock-in effect and impede the penetration and diffusion of
green technologies. Although AI technologies can optimize resource
allocation, the high energy consumption and emission-intensive
industrial structure are difficult to change in the short term. The
high costs of technology application may offset some of the positive
effects, even leading to a decline in carbon productivity. In the
Yangtze River Delta urban agglomeration, the coefficient is 0.185,
significant at the 1% level, indicating a significant positive impact of
AI technologies on carbon productivity. The Yangtze River Delta
(YRD) region has a developed economy and a strong technological
base, and is dominated by high-end manufacturing and service
industries. The synergistic development of service industry and
high-end manufacturing industry can provide a more favorable
industrial ecology for green technology innovation. Artificial
intelligence (AI) technology can significantly improve carbon
production efficiency by optimizing production processes and
improving energy efficiency. In the Pearl River Delta urban
agglomeration, the coefficient is 3.797, significant at the 1% level,
representing the largest impact. At the forefront of China’s reform
and opening up, the Pearl River Delta region exhibits active
technological innovation and rapid industrial upgrading (Huang
et al., 2023). The application of AI technologies in green
manufacturing and smart cities is particularly effective, greatly
promoting carbon productivity. In the Middle Yangtze River
urban agglomeration, the coefficient is 0.116, significant at the
5% level, indicating a relatively weaker impact. This region is
undergoing industrial transformation, and while AI technologies
can play a role in the transformation of traditional industries, the
effects are relatively limited due to shallow technological application
depth and insufficient financial investment. In the Chengdu-
Chongqing urban agglomeration, the coefficient is −0.020, not
significant, indicating that the promoting effect of AI
technologies on carbon productivity does not pass statistical tests.
The Chengdu-Chongqing region is dominated by traditional
manufacturing, and the application of AI technologies for carbon
reduction is in its early stages, requiring substantial financial
investment. The weak foundation for technology application,
insufficient enforcement of environmental policies, and
geographical constraints hinder the realization of its effects.

7 Conclusions and policy
recommendations

The rapid development of artificial intelligence (AI) technology is
becoming a key driver for promoting low-carbon transitions and
enhancing carbon productivity. Although the potential of AI in
carbon emission reduction has attracted significant attention, its
specific impact on carbon productivity, the underlying mechanisms,
and its heterogeneous effects across regions and industries still lack
systematic empirical support. Based on data from 286 prefecture-level
cities in China from 2003 to 2021, this study empirically examines the
direct impact and mechanism pathways of AI on carbon productivity,
further explores themoderating effects of environmental regulation and
internet penetration rate on this impact, and conducts threshold effect
tests from a multidimensional perspective while investigating the
heterogeneity of AI’s influence.

TABLE 11 Heterogeneity of urban regional development.

Dependent variable: CP

(1) (2) (3) (4)

East Central West Northeast

AI 0.159*** 0.110*** 0.002 0.081***

(2.983) (4.436) (0.061) (3.570)

POP 2.308*** 0.281*** 0.084 −0.089

(12.592) (4.195) (1.509) (−0.462)

Ope −3.688*** −0.497 5.689*** −0.526

(−5.404) (−0.876) (4.611) (−1.408)

Gov −1.052*** −1.749*** −0.727*** −0.778***

(−3.513) (−4.852) (−4.335) (−4.688)

FI 0.020* −0.057*** −0.012 0.015***

(1.947) (−7.068) (−1.266) (2.837)

ST 13.130*** 2.051*** 7.414*** 2.013

(11.240) (2.878) (4.364) (1.185)

_cons −14.157*** −1.176*** 0.019 0.697

(−12.387) (−2.939) (0.065) (0.708)

year Yes Yes Yes Yes

city Yes Yes Yes Yes

Obs 1,634 1,482 1,406 627

R2 0.477 0.551 0.470 0.479

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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This study produces mostly the following results: First, carbon
productivity benefits much from artificial intelligence. In particular,
a one percentage point rise in AI level results in a 0.098 percentage
point rise in carbon productivity. Second, mechanism analysis
shows that by means of industrial optimization effects and
innovation promotion effects, artificial intelligence can foster an
increase in carbon productivity. Meanwhile, environmental
regulation intensity and internet penetration rate play positive
moderating roles in this impact. Furthermore, additional analysis
shows that the impact of AI on carbon productivity is subject to a
single threshold effect characterized by “increasing marginal
effects,” with AI development level, human capital level, and
financial development level as threshold variables. Homogeneity
analysis reveals significant regional changes in the impact of artificial
intelligence on carbon productivity. Particularly in terms of urban
resource endowments, resource-based cities are more likely to
achieve low-carbon transitions using artificial intelligence due to
the urgent need for energy efficiency improvements in conventional
sectors. Depending on the size of the city, factors such as the
complexity of industrial structures and the high costs associated
with technological application may lead to a decline in the marginal
benefits of emission reduction in the near future. The eastern region
has significant scale effects from technology empowerment thanks
to its advanced digital infrastructure and policy support. The

western region, on the other hand, has not fully embraced
technology and is behind the times when it comes to green
innovation, so AI has not yet fully realized its potential to reduce
emissions. When it comes to urban areas, the Yangtze River Delta
and the Pearl River Delta show especially impressive technological
empowerment effects. On the other hand, the Beijing-Tianjin-Hebei
region, which is limited by its heavy industry-dominated industrial
structure, does not show as much emission-reducing effectiveness
from technology application.

These findings enrich the research on AI in carbon reduction
and provide important theoretical value for further expanding the
application of AI in improving carbon productivity. The policy
implications of this study are as follows:

First, increase investment in AI innovation to unlock emission
reduction and efficiency improvement potential. A lot more money
should be put into research and development (R&D) in artificial
intelligence technologies. There should also be special funds set up to
help with innovations in basic technologies like low-carbon
algorithm optimization and grid-connection ratio. Finally, AI
should be used more in monitoring carbon emissions and
optimizing energy allocation.

Second, take advantage of the empowering possibilities of
artificial intelligence innovation to create a synergistic mechanism
between industrial optimization and effects caused by innovation.

TABLE 12 Heterogeneity of urban agglomerations.

Dependent variable: CP

(1)
Beijing Tianjin

Hebei

(2)
Yangtze River

Delta

(3)
Pearl River

Delta

(4)
The Yangtze River

Midstream

(5)
Chengdu
Chongqing

AI −0.279*** 0.185*** 3.797*** 0.116** −0.020

(−3.373) (2.634) (7.019) (2.459) (−0.405)

POP 0.276 0.005 3.687*** 1.789*** −1.220

(0.625) (0.029) (8.086) (6.961) (−0.936)

Ope −2.138 −0.312 3.536 8.264*** 2.733

(−1.140) (−0.536) (0.964) (4.736) (1.136)

Gov −3.629*** −1.177** −8.491** −6.810*** −0.962

(−3.939) (−2.072) (−2.171) (−8.411) (−1.430)

FI −0.102*** −0.072*** 0.185* −0.150*** −0.154***

(−5.627) (−8.185) (1.849) (−8.976) (−4.450)

ST 23.680*** −1.066 10.913** −2.246 8.330

(7.051) (−1.325) (2.386) (−1.614) (1.537)

_cons 0.145 0.354 −38.208*** −9.536*** 8.773

(0.054) (0.289) (−11.984) (−6.202) (1.093)

year Yes Yes Yes Yes Yes

city Yes Yes Yes Yes Yes

Obs 266 475 171 532 285

R2 0.614 0.816 0.757 0.647 0.762

Note: t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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On the other hand, accelerate green technology R&D using AI, lower
the trial-and-error costs of green technologies, and promote the
large-scale application of clean energy and low-carbon technologies
to enhance the efficiency and effectiveness of green innovation.

Third, optimize AI governance effectiveness and build a
coordinated system of environmental regulation and digital
infrastructure. On one hand, improve carbon trading markets
and dynamic monitoring mechanisms, mandating high-emission
enterprises to deploy AI-driven energy consumption monitoring
systems. On the other hand, accelerate the construction of 5G base
stations and cloud computing centers, increase internet coverage in
remote areas, and provide foundational support for the diffusion of
AI technologies.

Fourth, apply phased and differentiated measures to successfully
progress efficiency enhancement and emission reduction. On the one
hand, areas with low levels of human capital should improve vocational
education and skills training to help workers understand and use AI
technologies better. “AI + skills” training programs should be pushed,
and technology should be easier to absorb so AI can be used in more
ways to reduce emissions and make things run more smoothly. On the
other hand, improve the green financial system, encourage financial
institutions to develop “AI emission reduction performance-linked”
credit products, establish green technology risk compensation funds,
lower financing barriers for enterprise technology upgrades, and
provide sufficient financial support for the R&D and promotion of
AI technologies to drive their large-scale application in emission
reduction and efficiency improvement.

Fifth, based on local circumstances, create focused policy
measures to advance low-carbon urban development. Give
resource-based cities and developed eastern areas a priority for
implementing circular economy demonstration zones driven by
artificial intelligence. Look at integrated emission reduction
strategies integrating “smart transportation + industrial internet”
for megacities. Overcome technology application obstacles in
western and small-sized as well as medium-sized cities using
digital technology transfer and infrastructure support.
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