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This perspective addresses the critical issue of soil pollution, exacerbated by rapid
urbanization, intensive agriculture, and climate change, which introduces a
complex mix of contaminants such as heavy metals, pesticides, per- and
polyfluoroalkyl substances, and microplastics into the soil. These pollutants
pose severe risks to environmental health and agricultural productivity by
altering soil functionality and contaminant mobility. This perspective
summarizes innovative monitoring and remediation technologies, including
advanced sensors and bioremediation strategies, that enable real-time
detection and effective management of soil pollutants. The integration of
artificial intelligence and machine learning offers significant advancements in
predicting and managing soil contamination dynamics. Furthermore, the
perspective discusses the challenges and future directions in soil pollution
research, particularly the need for robust policy frameworks and international
cooperation to effectively manage and mitigate soil contamination. Emphasizing
a multidisciplinary approach, this study calls for enhanced global standards,
public engagement, and continued scientific research to develop sustainable
solutions for soil remediation and to ensure the protection of vital soil resources
for future generations.
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Introduction

Soil pollution, driven by rapid urbanization, intensive agriculture, and industrial
expansion, represents a critical environmental concern (Zhang et al., 2023; Roy et al.,
2022). The mixed matrix of pollutants in soils, such as heavy metals, pesticides,
pharmaceuticals, per- and polyfluoroalkyl substances (PFAS), and microplastics, poses
significant risks to soil health and agricultural productivity, complicating remediation
efforts (Maddela et al., 2022; Liu et al., 2024). Climate change further affects soil pollution
dynamics, altering pollutant behavior, mobility, and environmental fate (Biswas et al.,
2018). Concurrently, advances in analytical methods, sensors, and artificial intelligence
present opportunities for precise and real-time monitoring and management of soil
contamination (Fan et al., 2022; Aniagor et al., 2022). This paper examines recent
advances in understanding soil contaminants, the impact of extreme climate-induced
changes on pollutant dynamics, and innovative technologies for pollution monitoring,
assessment, and remediation. Furthermore, it explores integrated policy frameworks,
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social-economic initiatives, and education efforts for protecting
soil resources, aiming to guide future research, policy
development, and global collaboration.

Emerging challenges

Soil co-contamination with inorganic and organic pollutants, along
with particle matters is increasingly common due to complex industrial
activities and the reuse of waste materials (Bian et al., 2024).
Understanding these interactions is challenging since coexisting
pollutants can alter each other’s physicochemical behavior and
toxicity, subsequently affecting the effectiveness of soil remediation
strategies (Nie et al., 2024; Zeng et al., 2024). For example, combined
metals, organic contaminants (such as petroleum, pesticides,
pharmaceuticals, and PFAS), or microplastics can exacerbate toxicity
beyond individual effects or enhance each other’s mobility and
persistence in the soil matrix (Deng et al., 2017; Kastury et al., 2023).
Current soil pollution studies primarily focus on a single pollutant or a
group of similar pollutants; thus, improving knowledge of pollutant
interactions is critical for risk assessments and effective remediation.

Extreme weather conditions, including temperature fluctuations,
flooding, and drought, significantly affect the fate and transport of soil
contaminants. Elevated temperatures can increase the volatilization of
pollutants (e.g., mercury or polycyclic aromatic hydrocarbons),
promoting their atmospheric transport and deposition (Chételat
et al., 2022; Gbeddy et al., 2020). Flooding alters soil
physicochemical conditions, mobilizing contaminants previously
bound to soil matrices and significantly increasing pollutant
mobility (Ciszewski and Grygar, 2016). Additionally, intense rainfall
events accelerate contaminant leaching, potentially altering transport
patterns of pollutants (Stuart et al., 2011). Drought concentrates
contaminants and enhances soil oxidation, which may shift redox-
sensitive species and alter organic pollutant transformation pathways
(Zhang and Furman, 2021). Due to the increasing frequency of
extreme weather events, future research should integrate climate
variables into soil pollution migration models.

Rapid urbanization and intensified agriculture introduce soil to
a wide range of contaminants, thereby disrupting soil health and its
ecological functions (Chen, 2007; Li et al., 2018). Urban sources like
industrial emissions, road dust, construction materials, and waste
disposal contribute contaminants such as heavy metals,
hydrocarbons, PFAS, and hazardous particles (Goonetilleke et al.,
2017; Sager, 2020; Yao et al., 2024). Agricultural practices add
significant loads of pesticides, herbicides, synthetic fertilizers, and
veterinary pharmaceuticals, which accumulate in soil over time (Yan
et al., 2022). These contaminants pose risks to human health
through direct exposure, bioaccumulation in food chains, and
groundwater contamination (Baweja et al., 2020). Innovative
approaches are needed to prevent soil pollution amid sustainable
urbanization and agricultural intensification.

Innovative monitoring and remediation
technologies

Advanced sensing technologies enable specific, real-time
detection of soil contaminants such as molecularly imprinted

polymers, aptamers, microbial biosensors, and
microelectromechanical systems-based arrays (Shah et al., 2023).
Integrated with wireless platforms, these tools support continuous
monitoring, timely data delivery, and informed mitigation strategies
for stakeholders (Tsakiridis et al., 2023). Recent advances in sensor
technology for monitoring soil contaminants are characterized by
breakthroughs in microfluidics, miniaturization, and multiplexing
techniques. Microfluidics enables precise control of flow and
reaction conditions, thus promotes sample processing efficiency
(Aryal et al., 2024). Miniaturized sensors allow for portable or
field-deployable detection for in-situ monitoring with reduced
field sampling and laboratory analysis (Satish, 2024). Multiplexed
platforms are cost-effective and designed for the simultaneous
detection of multiple pollution (Coskun et al., 2019). These
innovations are driving the development of next-generation
sensors for scalable soil pollution monitoring.

Artificial Intelligence (AI) and advanced statistical methods
represent emerging tools for tackling the complexity of soil
pollution dynamics (Wani et al., 2024). Deep-learning algorithms,
such as convolutional neural networks, analyze high-dimensional
sensor data and hyperspectral images for soil pollution identification
and spatial mapping (Wang et al., 2024). Machine learning
approaches, such as random forests, support vector machines,
and gradient-boosting models, have been applied in modeling
source attribution or soil contaminant distribution (Wei et al.,
2019; Sakizadeh et al., 2017; Wang et al., 2020). Additionally,
advanced geostatistical techniques, such as Bayesian hierarchical
modeling and kriging interpolation, provide frameworks to quantify
uncertainties and predict contaminant transport at large scales
(Wang et al., 2023; Boente et al., 2019). Future research should
integrate AI-driven analytical workflows for proactive pollution
management.

Advances in bioremediation are revolutionizing soil remediation
efforts using biological agents to degrade persistent contaminants
such as PFAS (Ye et al., 2017; Lee et al., 2025). Recent studies have
utilized engineered microbial strains, which can defluorinate PFAS
under anaerobic conditions, significantly reducing PFAS toxicity
and persistence (Smorada et al., 2024). Phytoremediation research
has led to a new direction using genetically engineered plants with
enhanced detoxifying enzymes for the degradation of broader
organic pollutants (Abhilash et al., 2009). To enhance
bioremediation of soil contaminants, future research should
explore targeted genetic improvements in plants and microbes,
along with the optimization of metabolic pathways for pollutant
degradation with emphasis on field-scale validation.

Policy and regulatory developments

Strengthening global regulatory standards is critical for
effectively managing soil pollution, particularly for contaminants
with transboundary impacts, such as airborne heavy metals,
persistent organic pollutants (POPs), or PFAS. International
agreements, like the Stockholm Convention on POPs and the
United Nations Environment Programme (UNEP)’s guideline for
PFAS, emphasize global cooperation for managing traditional and
emerging contaminants in soil. (Cheng et al., 2023; Fiedler et al.,
2022). However, substantial gaps remain due to a lack of unified
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guidelines and consistent monitoring protocols for pollutants
globally. Future policymaking should enhance global standards
and cooperation frameworks to improve the capacity to manage
the risks associated with transboundary soil contamination.

Evidence-based policymaking for soil pollution control
requires the integration of regulatory decisions with scientific
data. Recent examples include the European Union’s Soil
Strategy for 2030, which incorporates data from large-scale
monitoring programs and advanced risk assessment
methodologies, and the U.S. EPA’s evolving guidelines on
PFAS, informed by ongoing toxicological and environmental
research (Panagos et al., 2022). Leveraging machine learning
and data analytics for predictive scenario modeling, current
research data enable risk forecasting to support policy-related
decision-making processes. Future research efforts should focus
on improving the transparency and accessibility of scientific data,
enhancing collaboration, and developing adaptive policy
frameworks that can incorporate new scientific insights rapidly.

Public engagement and education are crucial for soil pollution
prevention and management. Recent community science projects,
such as citizen-led microplastic monitoring campaigns, have
demonstrated that informed community participation can
enhance data collection capabilities and increase public awareness
(Sinha et al., 2024). By combining science with community outreach,
“SoilSHOP” initiative led by the U.S. Agency for Toxic Substances
and Disease Registry empowers individuals to take action and
reduce exposure risks in their own environments (Saikawa et al.,
2023). Future outreach efforts should prioritize developing
accessible educational resources encouraging community
participation for collaborative approaches toward sustainable soil
management.

Soil contamination reduces agricultural productivity imposes
significant social and economic burdens, exacerbating social
inequalities (Martinho, 2020). Economically, soil pollution
contributes to substantial losses, land devaluation, and high
remediation costs (Graves et al., 2015). Future research should
prioritize incorporating socio-economic vulnerability indicators
into pollution risk assessment frameworks, that could enhance
the equitable pollution control policies, thus better protecting
vulnerable communities. Economic modeling quantifies the long-
term economic benefits of soil protection and pollution
management should also be emphasized to reinforce the soil
remediation investment.

Conclusion

Co-contamination, extreme weather events, rapid urbanization,
and intensified agriculture pose significant challenges for protecting
soil resources. These challenges highlight the importance of
integrating advanced monitoring technologies, precise analytical
tools, and science-based policies. Embracing sustainable practices
combined with enhanced global standards and targeted

bioremediation can effectively manage soil contaminants and
facilitate restoration. Addressing socioeconomic impacts, actively
promoting and engaging local communities, and continuous
collaboration among scientists, policymakers, and the public
remain essential for protecting soil resources and promoting
soil health.
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