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The rapid growth of the global population, coupled with the expansion of
industrial, agricultural, commercial, and service activities, has led to a
significant increase in microplastic contamination in aquatic environments. An
estimated 265 million metric tons of plastic waste are produced globally each
year, with about 4.8–12.7 million metric tons ending up in the ocean.
Microplastics can infiltrate the food chain or come into contact with humans
through the skin, eventually penetrating and accumulating in the body. Globally,
individuals are estimated to consume between 11,845 and 193,200 microplastic
particles per year, with drinking water identified as the primary source. The
toxicity of microplastics stems from both their inherent properties and their
ability to interact with other pollutants, such as heavy metals. Adverse health
effects linked to microplastic exposure include metabolic disruptions, transport
to internal organs, inflammatory responses, oxidative stress, cytotoxicity, and
potential damage to the nervous and reproductive systems, along with possible
carcinogenic outcomes. Despite these concerns, there are currently no
standardized methods for assessing the human health risks associated with
microplastic exposure. There is a critical need for in-depth research to clarify
the toxicological impacts and health risks of microplastics, along with the
development of reliable risk assessment frameworks. This review seeks to
present a comprehensive summary of microplastic levels in aquatic systems,
their possible effects on human health, and the methodologies currently used to
assess these risks.
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1 Introduction

The sharp increase in plastic production and use has resulted in
widespread environmental contamination, especially in marine
environments (Wang T. et al., 2024). As larger plastic materials
break down, they contribute substantial quantities of microplastic
particles to aquatic systems, including water columns and sediments
(Rezania et al., 2018). Research estimates that over 250,000 tons of
plastic debris have accumulated in the oceans, primarily due to
improper waste management (Kowsari et al., 2023). In 2010, more
than 190 coastal nations collectively produced over 265 million
metric tons of plastic waste, with an estimated 4.8 to 12.7 million
metric tons entering the marine environment (Jambeck et al., 2015).

Microplastics (MPs), defined as plastic particles smaller than
5 mm, can be readily absorbed by various organisms, leading to
bioaccumulation in higher organisms, including humans (Darabi
et al., 2021; Prata et al., 2020). This raises concerns about the
potential toxicity of MPs, which may be especially severe for
human health. The most common components in the
microplastics found in aquatic environments include polymers,
additives, and dyes (Darabi et al., 2021; Yao et al., 2019).
Common toxic substances in plastic products include
polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS),
polyurethane (PUR), polylactic acid (PLA), polyethylene
terephthalate (PET), low-density polyethylene (LDPE), and high-
density polyethylene (HDPE) (Darabi et al., 2021).

Microplastics can exert two types of toxicity: direct and indirect.
Direct toxicity is attributed to harmful chemicals present in plastic
products and microplastic particles themselves (Thacharodi et al.,
2024). This includes additives used to enhance polymer properties,
such as flexibility and UV resistance (Li K. et al., 2023). Indirect
toxicity arises from the interactions of MPs with organic and
inorganic substances, including heavy metals and persistent
organic pollutants like polybrominated diphenyl ethers (PBDEs)
and polycyclic aromatic hydrocarbons (PAHs) (Santos et al., 2021).

Microplastic particles can enter living organisms and humans
through ingestion, which is primarily facilitated via the food chain
(Darabi et al., 2021; Prata et al., 2020). Once in aquatic ecosystems,
MPs accumulate and subsequently enter the human body through
food consumption (Al Mamun et al., 2023). This is considered as the
primary pathway through whichmicroplastics enter the human body.
Although dermal contact is a less significant route, it is still a potential
exposure pathway (Elizalde-Velázquez and Gómez-Oliván, 2021).

Despite the limited number of studies specifically addressing
human health risks, existing research indicates that exposure to
elevated concentrations of MPs may lead to various toxic effects in
humans (Bexiga et al., 2011; Stock et al., 2019). Reported adverse
effects include cancer, cytotoxicity, metabolic changes, organ
transport, inflammation, neurotoxicity, and reproductive damage
(Rahman et al., 2021). Given the scarcity of data on direct human
health impacts, literature on risk assessment methodologies remains
limited. The Global Average Rate of Microplastic Ingestion
(GARMI) is increasingly referenced to support risk assessment
efforts related to MP pollution (Senathirajah et al., 2021).
Therefore, this review consolidates current knowledge on
microplastic (MP) concentrations in aquatic environments, their
pathways of exposure, including ingestion, inhalation, and dermal
contact, and the mechanisms underlying their toxicity. It further

explores the associated implications for human health, emphasizing
the need for comprehensive risk assessment frameworks. In
addition, this review highlights existing research gaps and offers
key recommendations for future studies aimed at improving the
detection, impact evaluation, and mitigation strategies for
microplastic pollution in aquatic systems.

2 Microplastics in the
aquatic ecosystem

2.1 Level and distribution of MPs in water
and sediments

Nowadays, advanced analytical methods for microplastic (MP)
detection have increasingly relied on spectroscopic and AI-based
approaches to enhance accuracy, efficiency, and scalability (Jung
et al., 2021). Spectroscopic techniques such as Fourier-transform
infrared spectroscopy (FTIR), Raman spectroscopy, and near-
infrared (NIR) spectroscopy are widely used for identifying polymer
types based on their characteristic molecular vibrations (Prata et al.,
2020). FTIR and Raman, in particular, allow for non-destructive, high-
resolution analysis of MPs down to the micrometer scale, including
chemical mapping and particle size determination (Wang M. et al.,
2024). However, these methods can be time-consuming and data-
intensive when processing large environmental samples. To address
this, AI-based approaches, especially machine learning and deep
learning algorithms are being integrated with spectroscopic data to
automate MP classification, reduce human bias, and accelerate data
interpretation (Nguyen et al., 2022). For instance, Tran et al., 2023
reported that convolutional neural networks (CNNs) have been applied
to automate image-based particle recognition and distinguish MPs
from non-plastic debris. Additionally, AI models can optimize spectral
data analysis, enabling real-time detection, pattern recognition, and
improved classification of polymer types across complex matrices such
as water, and sediment.

The surge in plastic consumption has led to increased
microplastic presence in aquatic environments (Jiang, 2018).
Various sources release MPs into the environment, including the
breakdown of larger plastic debris, industrial processes, tourism, and
everyday human activities (Darabi et al., 2021; Jung et al., 2021;
Nguyen et al., 2022; Rezania et al., 2018). Microbeads found in
personal care products also contribute to MP pollution (Gao et al.,
2020). Microplastics travel through drainage systems into rivers and
ultimately the ocean. (Tran et al., 2023).

MPs manifest in numerous forms and are produced through
various processes, including oxidative decomposition and friction
(Yao et al., 2019). Studies indicate that microplastics in aquatic
environments range in size primarily from 0.5 to 2 mm, appearing as
fragments, fibers, beads, pellets, and films (Table 1). The most
common colors detected include transparent, blue, green, black,
white, and red (Nguyen et al., 2022).

The distribution of MPs in aquatic ecosystems hinges on
numerous factors, including human activities, physical and
chemical properties of the microplastics, and environmental
conditions (Darabi et al., 2021). Research indicates that Asia is the
leading contributor to global microplastic emissions, primarily due to
activities in China (Wang M. et al., 2024). Meijer et al. (2021) showed
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TABLE 1 Distribution of MPs in water and sediments worldwide [Updated based on Elizalde-Velázquez and Gómez-Oliván (2021)].

Country Study area Water Sediments Types Shapes References

Canada Ottawa River and its
tributaries

0.05–0.24 fragments/L Red and blue microfibers
and microbeads

Vermaire et al.
(2017)

Wascana Creek 0.5–9.7 particles/m3 Fragments, fibers, beads Campbell et al.
(2017)

East coast of
Vancouver Island

139.01–1,180.75 particles/
m3

<1.0–123.6 particles/kg Clear and blue fibers and
fragments

Collicutt et al.
(2019)

Mexico Banderas Bay 0.013–0.044 pieces/m3 PP, PVC, PAN Fragments, fibers, film,
line

Xu et al. (2020)

Northern Gulf of
Mexico

4.8–18.4 particles/m3 Fibers, Bead Di Mauro et al.
(2017)

US Charleston Harbor
and Winyah Bay

3–88 particles/L 33.7–1,389.6 particles/m2 PE, PA, PP Black fragments, white
foam, blue fibers, green
spheres

Brignac et al.
(2019)

Hawaii Beach 18.1 (±22.9) particles/km2 LDPE, HPDE, PP Foam, fragment, line,
sheet, whole, pellet

Norway South and southwest
of Svalbard

0–1.31 items/m3 PET, PA, PE,
PMMA, PVC,
cellulose

Fibers, fragments and
films

Lusher et al. (2015)

Italy Southern subalpine
lakes

1,300–93,000 particles/km2 PE, PP, EPS Fragments, filaments and
sheets

Sighicelli et al.
(2018)

Portugal Antuã River 58–1,265 items/m3 18–629 items/kg PE, PP, PS, PET,
PVA, EVA,
PTFE, Cellulose

White, black, transparent
and blue foams, fibers and
fragments

Rodrigues et al.
(2018)

South Korea Coast of South
Korea

1,051 particles/m3 PP, PE Fragment and fiber Song et al. (2018)

China Xiangxi River 0.55 × 105–342 × 105

items/km2

80–864 items/m2 PE, PP, PS, PET Blue and red sheet,
fragment, lines and foam

Zhang et al. (2017)

Three Gorges
Reservoir

1,597–12,611 n/m3 25–300 n/kg ww PS, PP, PE Fiber, fragment, pellet,
film and Styrofoam

Di and Wang
(2018)

Qiantang River and
Hangzhou Bay

0.23 ± 0.06 and 0.15 ±
0.03 particles/g

PE, PS Fragment, fiber Fraser et al. (2020)

Hanjiang River and
Yangtze River

1,020.9–10,561 n/m3 PET, PP, PE,
PA, PS

Transparent, blue, purple
and red fiber, granule, film
and pellet

Wang et al. (2017)

Yangtze River 0.48–21.52 items/L 35.76–3,185.33 items/kg PP Fibers and fragments Hu et al. (2018)

Three Gorges
Reservoir

1,597–12,611 n/m3 25–300 n/kg PS, PP, PE Transparent fibers Di and Wang
(2018)

West Dongting
Lake

433.33–2,216.67 items/m3 320–480 items/m3 PS, PP, PE,
PVC, PET

transparent, white, blue,
black and green fibers,
fragment, film and pellet

Wang et al. (2018)

South
Dongting Lake

366.67–2,316.67 items/m3 200–1,150 items/m3 PS, PP, PE,
PVC, PET

transparent, white, blue,
black and green fibers,
fragment, film and pellet

Jiang et al. (2018)

Wei River 3.67–10.7 items/L 360 to 1,320 items/kg PE, PVC, PS Fiber, films, fragments,
foam, pellets

Ding et al. (2019)

Iran Persian Gulf 61 particles/kg dw PE, PET, nylon Fragment, films, and
fibers

Naji et al. (2017)

India Vembanad lake 96–496 particles/m2 LDPE, PS, PP Film, foam, fragment,
fiber and pellets

Naji et al. (2017)

Indonesia Jakarta Bay 18,405–38,790 particles/kg PP Fibers, fragments and
pellets

Sruthy and
Ramasamy (2017)

(Continued on following page)
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that Asia is the geographical region with the most microplastics
emissions in the world (80.99%) with the main contribution
coming from China. Hu et al. (2018) reported microplastic
abundances of 0.48–21.52 items/L in surface water and
35.76–3,185.33 items/kg in sediments of Yangtze River. Significant
amounts of MPs were also presented in Three Gorges Reservoir with
concentrations of 1,597–12,611 n/m3 and 25–300 n/kg, respectively
(Di andWang, 2018). Microplastic concentrations were also recorded
in the range of 433.33–2,216.67 particles/m3 and 320–480 particles/m3

in surface water and sediments of West Dongting Lake, respectively
(Jiang et al., 2018). The contributions of other continents are much
less than Asia, i.e. 7.99% from Africa, 5.51% from South America,
4.5% from North America, 0.6% from Europe, 0.37% from Oceania,
and 0.04% from others (Meijer et al., 2021). Meijer et al. (2021)
showed that 31,904 locations released plastic wastes into the ocean
with leakage into the marine environment (of 0.8–2.7 million
tons) in 2015.

Moreover, regional and socio-economic disparities significantly
influence microplastic (MP) exposure through food and water. For

example, in high-income areas, advanced regulations and water
treatment may reduce MP levels, though high consumption of
packaged foods still poses risks (Hossain et al., 2021; Ma et al.,
2024). In contrast, low and middle-income regions often face higher
exposure due to limited infrastructure, weak regulation, and reliance
on untreated water and seafood (Kurniawan et al., 2024). Socio-
economic status also affects dietary habits and access to safe food
and water, with disadvantaged populations more likely to consume
contaminated sources and have less awareness of MP risks (Prata
et al., 2020). These factors underscore the need for context-specific
exposure assessments and interventions.

2.2 Concerns regarding microplastics in the
aquatic ecosystem

There are several critical concerns raised by microplastics in
aquatic ecosystems including envirnmental health effects,
bioaccumulation, ecological effects, health risks, and biodiversity

TABLE 1 (Continued) Distribution of MPs in water and sediments worldwide [Updated based on Elizalde-Velázquez and Gómez-Oliván (2021)].

Country Study area Water Sediments Types Shapes References

Malaysia Kuala Nerus and
Kuantan port

0.13–0.69 particles/L PS, PA, PVC,
PE, PP

filament, fragment
and irregular shape

Khalik et al. (2018)

Philippines Negros Oriental 0.082 items/g Rayon, PE, PVC Fibers Bucol et al. (2020)

Turkey Mediterranean Sea 16,339–520,213 particles/
km2

PTHC resin, PS,
PA resin, PE, PP

Fibers and hard plastic Güven et al. (2017)

Jamaica Kingston Harbour 0–5.73 particles/m3 PP, PE Fragments Rose and Webber
(2019)

Kenya Indian Ocean 33.3–275 particles/m3 PP, LDPE Black, filaments,
fragments granules and
foams

Kosore et al. (2018)

FIGURE 1
Sources, pathways, and impact of microplastics pollution on aquatic environment.
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loss (Figure 1). MPs can disrupt the self-cleaning capacities of
ecosystems and alter their degradation pathways, ultimately
affecting aquatic health (Prata et al., 2020). They can impair the
self-cleaning ability of environments. The fate of MPs is related to
their degradation pathways and interactions with aquatic
ecosystems. The accumulation of MPs in sediments can harm
nutrient cycles and overall ecosystem functioning, affecting a
range of aquatic organisms (Rezania et al., 2018; Xu et al., 2020).
MPs can accumulate in sediments and enter organisms through food
webs, thereby affecting nutrient cycles and ecosystem health
(Figure 2). Benthic organisms are particularly susceptible to MP
accumulation, while marker species across various aquatic food
webs are increasingly being documented with MP presence (Ajith
et al., 2020; Darabi et al., 2021; Zhang et al., 2019). In a nutshell,
microplastics pose complex challenges in aquatic ecosystems,

affecting both environmental health and biodiversity. Therefore,
the long-term effects of MPs on ecosystems and human health still
need further investigation.

3 Microplastics toxicity potential

Once MPs enter the environment, humans and other organisms
including aquatic and terrestrial organisms can get exposed via
diverse pathways, directly causing health risks (Elizalde-Velázquez
and Gómez-Oliván, 2021). Coupled with the small sizes of MPs, they
are easily ingested by organisms at all trophic levels, causing
increased bioaccumulation in higher trophic levels including
humans (Figure 3). For instance, researchers have presented that
human exposure to MPs mainly occurs via the food chain (Al

FIGURE 2
The occurrence of microplastics in aquatic environments.

FIGURE 3
Exposure pathways and potential effects of microplastics in human.

Frontiers in Environmental Science frontiersin.org05

Hoang et al. 10.3389/fenvs.2025.1606332

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1606332


Mamun et al., 2023; Mercogliano et al., 2020; Pironti et al., 2021),
implying that the severity of any associated toxicity may be higher in
humans compared to other organisms. In addition, owing to the
adsorption of MP particles to other inorganic and organic
contaminants, for instance, heavy metals, the toxicity of MPs can
also be indirect. Recently, toxicological studies increasingly use
receptor-level pathways and molecular biomarkers to assess
microplastic (MP) impacts on human health, focusing on
mechanisms such as the aryl hydrocarbon receptor (AhR),
peroxisome proliferator-activated receptors (PPARs), and
estrogen receptors (ERs) that mediate oxidative stress,
inflammation, and endocrine or immune disruption (Al Mamun
et al., 2023; Mercogliano et al., 2020). Biomarkers like reactive
oxygen species (ROS), pro-inflammatory cytokines, apoptosis
proteins, DNA damage indicators, and epigenetic changes help
quantify MP-induced effects, providing critical mechanistic
insights for risk assessment (Zhang et al., 2020; Zimmermann
et al., 2019). Accordingly, we examine recent literature findings
on the toxicity of MPs in relation to chemicals in plastic products,
the MP particles themselves (direct toxicity), and the indirect effects
they pose to organisms.

3.1 Toxicity of chemicals in plastic products

Across the globe, plastic products that are frequently used
today include polypropylene, polystyrene, polyethylene
terephthalate (PET), polycarbonate, polytetrafluoroethylene
(PTFE–Teflon), and polyurethane (PUR) coatings) (Barnes
et al., 2009; Cole et al., 2011; Lambert et al., 2013). Primary
MPs originate from several types of products including plastics,
synthetic textiles, abrasion of tires through driving, road markings,
city dust, marine coatings, intentionally added MPs in products of
personal care, for instance, engineered plastic pellets, and
microbeads in facial scrubs. Most of these consumer plastic
products are synthetic of various polymers, chemical additives,
including antioxidants, stabilizers, plasticizers, catalysts, and flame
retardants, and other byproducts (Rochman et al., 2019). These
additives are added to improve the plasticity, and resistance to
ultraviolet radiation, and reduce decomposition and flammability
of fairly pure polymers. In addition, other desirable physical
properties of the finished product are also achieved thanks to
the addition of additives (Andrady and Neal, 2009; Lambert et al.,
2013), and most of them are toxic in vitro, yet largely remain
unidentified (Zimmermann et al., 2019). From the chemical
composition contained in the manufactured plastic products
and their combination with contaminants in the water and
sediments, plastics have the potential to become a source of
pollution. Thus, there is a rising concern about their
toxicological influences on aquatic organisms, but also
organisms that are either directly dependent on aquatic life
(Teuten et al., 2009).

Owing to their small size and large surface to volume ratio,
MP particles are prone to adsorption to other pollutants, thereby
accumulating them from environmental media such as water
(Brennecke et al., 2016; Holmes et al., 2014; Menéndez-Pedriza
and Jaumot, 2020; Santos et al., 2021). This tendency for MPs
adsorption to pollutants can depend on the properties of both the

MPs themselves and the pollutants. Such properties include the
type and age of the MPs, but also the polarities of both the MP
and the pollutants. For instance, when Wang and Wang (2018)
studied the sorption process of pyrene (Pyr) – a polycyclic
aromatic compound in water and sediments on types of
plastic particles, including polystyrene (PS), high-density
polyethylene (PE), and polyvinylchloride (PVC), they reported
that PE indicated the strongest connection for Pyr compared to
PS and PVC. Further, results from a study that investigated
the sorption actions of fuel-related water contaminants such
as ethyl benzene, benzene, and xylene (BTEX) on plastic
pellets showed that the formation of the oxidized facet layer
on PS due to aging led to less sorption of BTEX (Müller et al.,
2018). In addition to other properties such as the polarity,
environmental conditions (pH and salinity) are also reported
to influence the capacity of pollutants to sorb on MPs. For
instance, the sorption of heavy metals, including Pb, Ni, Co,
and Cd on pellets of PE have been shown to increase at high
pH values (Holmes et al., 2014).

The heterogeneity of MPs is determined by their physical
properties (shape, size, and color), and their chemical
composition (polymers, additives, and by-products).
Accordingly, the toxicity of MPs depends on the polymer
types or the chemical ingredient of a plastic product, and
consequently its fragments (Renzi et al., 2019). It should be
remarked that high molecular mass polymers are inert, thus,
not hazardous in terms of toxicity. Rather, it is the existence of the
low molecular mass polymers, chemical additives, and other
residual monomers that may affect the transport capacity of
chemical materials from polymeric substances (Sheftel, 2000).
In fact, most of the plastic monomers and additives are perilous in
diverse ways to both humans and other organisms. For instance,
bisphenol A and di (2-ethylhexyl) phthalate (DEHP) are toxic for
reproduction; acrylonitrile, vinyl chloride, 1,3-butadiene, and
benzene are carcinogenic; acrylonitrile, formaldehyde, methyl
methacrylate, and toluene diisocyanate (TDI) are allergenic;
phenol, benzene, and 1,3-butadiene are mutagenic; benzene
also has high chronic toxicity, phosgene and TDI also has high
acute toxicity, whiles others such as acrylonitrile,
pentabromodiphenyl ether (PeBDE), and TDI are known to be
environmentally risky and with long-term influences (Knight,
2006; Lithner et al., 2009).

Different types of plastic products that are available on the
market can contain one or more varieties of chemicals that may be
toxic. A recent study that analyzed the chemical signatures of plastic
consumer products composed of eight major polymer types:
polyethylene terephthalate (PET), polyvinyl chloride (PVC), low-
density polyethylene (LDPE), high-density polyethylene (HDPE),
polyurethane (PUR), polylactic acid (PLA), polypropylene (PP), and
polystyrene (PS) prioritized up to 27 different chemicals (Zhang
et al., 2020; Zimmermann et al., 2019). In total, the authors detected
as much as 1,411 features, which included monomers, additives, and
non-purposely added substances. Most chemicals contained in
plastic products such as plasticizers, antioxidants, colorants,
residual monomers and oligomers, polymerization byproducts,
flame retardants, and other compounding impurities (Muncke,
2009) are weakly connected to the polymer matrix through van
der Waals forces. This makes them easier to enter the environment
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TABLE 2 Toxicological impacts of microplastics on human health [Source: Hua et al. (2022); Goodman et al. (2022); Hou et al. (2022); Zurub et al. (2024)].

Human
organ/
system

Experimental model
used

Microplastic types
(size)

Microplastic
concentrations
(μg/mL)

Exposure
time

Health impacts

Forebrain 3D structured organoids
(human forebrain cortical
spheroids)

Polystyrene (1 and 10 μm), and
phthalates

5, 50, and 100 7 and 27 days Short-term exposure: Polystyrene
microplastic (PS-MPs) boosted cell
growth and the expression of brain
progenitor genes such as Nestin and
PAX6, while also elevating the
oxidative stress response indicator,
SOD2.
Long-term exposure: PS-MPs
lowered cell survival and changed
gene expression associated with
brain tissue patterning, including β-
tubulin III and TBR1, indicating a
possible hindrance to neural
development.
Particle size and penetration: Tiny
PS-MP particles (1 µm) exhibited
higher cell penetration,
underscoring the potential
neurotoxicity of PS-MPs.

Lungs/
Respiratory
tract

3D structured organoids
(human airway organoids are
generated from the lung tissue-
resident stem cells)

Polyester fibers (700 ± 400 μm),
and stabilizers (e.g., UV
stabilizers, antioxidants)

1, 10, and 50 7 days SCGB1A1 expression: There was a
decrease in SCGB1A1 expression,
an important indicator of lung
damage and healing, even though
there was no notable inflammation.
Epithelial markers: Other
epithelial markers remained
relatively stable, the reduction in
SCGB1A1 indicates possible
interference with lung repair
processes.
Oxidative stress: Minor elevations
in markers of oxidative stress were
observed, suggesting potential
oxidative harm, necessitating
additional investigation into the
lasting effects of MPFs on lung
function.

Heart 3D structured organoids
(cardiac organoids generated
from pluripotent stem cells)

Polystyrene (1 μm), and
Antimicrobials like silver
nanoparticles and triclosan

0.025, 0.25 and 2.5 3 days Cardiotoxicity: Microplastics
(MPs) can harm the heart, resulting
in oxidative stress, cell death,
inflammatory reactions, and build-
up of collagen in heart tissues.
Cardiac hypertrophy: MPs
exposure led to higher levels of
genes and markers associated with
hypertrophy, suggesting possible
development of cardiac
hypertrophy.

Kidney Human embryonic kidney
293 cells (HEK 293)

Polystyrene (1 μm), and Flame
Retardants (e.g., brominated
compounds, organophosphates)

5 3 days Cellular proliferation: Exposure to
1 μm PS-MPs caused a notable
decrease in cell growth
Morphological changes: PS-MP
particles exhibit significant
morphological alterations, and
absorptionwas observed in both cell
types after 3 days.
Reactive Oxygen Species (ROS):
Elevated levels of ROS were seen in
both cell types, suggesting the
presence of oxidative stress.
Gene expression: Exposure to
enzymes leading to a reduced
capacity of cells to detoxify ROS.

Liver Human hepatocellular
carcinoma cells (Hep G2 or
HEPG2)

Intestine Intestinal organoids Polystyrene nanoparticles (PS-
NPs) (50 nm), and

10 and 100 2 days Selective accumulation: PS-NPs
preferentially target endocrine,

(Continued on following page)
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and be absorbed by organisms in the aquatic environments
(Oehlmann et al., 2009).

In relation to aquatic environments, major contaminants that
have been detected in plastic materials include phthalates,
polybrominated diphenyl ethers (PBDEs), polycyclic aromatic
hydrocarbons (PAHs), polychlorinated biphenyls (PCBs),
bisphenol A (BPA), organochlorine pesticides (OCPs),
alkylphenols, as well as heavy metals such as Zn, Al, and Zn
(Engler, 2012). Different types of plastic materials have different
rates of sorption to chemical compounds in aquatic
environments. Owing to the low solubility of hydrophobic
compounds such as PCBs, PAHs, and OCPs, they tend to
partition to plastic debris in aquatic environments (Engler,
2012). For instance, results from a study on contaminant
sorption to plastic materials indicated that compared to PET
and PVCs, PCBs sorbed more easily to low- and high-density
polypropylene and polyethylene (Rochman et al., 2014b). Due to
the persistence of plastic materials in the aquatic environment,
the chemicals, and other ingredients such as monomers and
additives may easily leach into surrounding waters, thereby
serving as sinks for accumulation of other chemicals such as
persistent, bioaccumulation, and toxic (PBT) pollutants (Engler,
2012). Further, these plastic compounds can be toxic to aquatic
organisms when consumed. For example, a study that
investigated the hazardous chemical emissions of plastic
products to water found that leaching of these chemical
compounds from plastic consumer products into the aquatic
environments led to acute toxic influence for Daphnia magna
in 9 out of 32 products and the leachates ranged between 5 and
80 g plastic material per liter (Lithner et al., 2009).

3.2 Particle toxicity of MPs

Due to their microscopic size and omnipresence in different
media, MPs are bioavailable to many organisms (Table 2).
Organisms can easily interact with MPs, thereby consuming
them together with their food. The literature is replete with
reports of ingestion of MPs by different types of organisms, for
instance bivalves, zooplankton, and vertebrates (Wieland et al.,
2022). Upon ingestion, these MP particles are known to enter
circulatory systems and tissues of organisms (Lu et al., 2016). In
aquatic ecosystems, filter-feeding organisms such as mussels have
been reported to ingest MP particles in large amounts as they feed on
particulate matter (Moore, 2008), potentially causing adverse effects.
Toxic effects of consumed MP particles that have been shown in the
previous studies include reduction in number of offspring and
changes in the proteomic profiles in the mussel Dreissena and
Daphnia, as well as changes in the antioxidative capacity of
Dreissena (Trotter et al., 2021; Weber et al., 2021). Further, when
Wieland et al. (2022) exposed Dreissena bugenis (D. bugenis), a
freshwater mussel to fragments of polyamide, polylactic acid,
polystyrene, and polyethylene terephthalate from drinking bottles,
the authors reported that ingestion of these fragments caused
polymer type-dependent negative effects such as proteomic
alterations and antioxidant enzymes, which were associated to
chemicals and residual monomers such as BHT–a synthetic
phenolic antioxidant that is used as a thermostabilized in the
production of plastics, as well as modifiers like isophthalic acid
(IPA) and diethylene glycol (DEG), and phenylene-bis-oxazoline
(PBO) that are found in MPs. In addition to ingestion by organisms,
humans can also consume MPs through contaminated food such as

TABLE 2 (Continued) Toxicological impacts of microplastics on human health [Source: Hua et al. (2022); Goodman et al. (2022); Hou et al. (2022); Zurub
et al. (2024)].

Human
organ/
system

Experimental model
used

Microplastic types
(size)

Microplastic
concentrations
(μg/mL)

Exposure
time

Health impacts

Antimicrobials like silver
nanoparticles and triclosan

goblet, and Paneth cells in the
intestine, indicating variable
susceptibility among cell types.
Oxidative stress and
inflammation: PS-NPs induce
oxidative stress and inflammation,
resulting in cellular damage.
Apoptosis: PS-NPs induce
apoptosis in intestinal cells,
highlighting the detrimental effects
of nanoplastic accumulation.
Prolonged exposure: Increased
exposure time and concentration of
PS-NPs heighten the risk of cellular
damage.
Endocytosis inhibition:
Chlorpromazine (CPZ) inhibitor
reduces PS-NP uptake, leading to
decreased apoptosis and
inflammation in intestinal
organoids.

Placenta Maternal surface, maternal-
fetal exchange region, and fetal
surface

Polystyrene (PS), polypropylene
(PP), polyethylene (PE), and
polyvinyl chloride (PVC)
(2–60 μm), and Colorants like
dyes, pigments.

- - Fetal growth and development:
PS-MPs in the placenta suggest a
potential disruption of normal fetal
growth and development, raising
concerns regarding the possibility
of long-term developmental effects.
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seafood and plastic packaging containing drinks and foods (Jadhav
et al., 2021), and these pose risks to human health and food security
(De-la-Torre, 2020).

Plastic is not digested by organisms and humans but remains in
body parts. Thus, they can cause gastrointestinal dysmotility and
obstruction (Figure 4). In aquatic environments, interactions of MP
particles with other impurities could harm organisms, thereby
affecting humans when consume. Studies has shown that MP
particles with sizes 1.5 µm can dause direct damages to cells by
penetrating tissues (Revel et al., 2018). Through consumption of
seafoods such as fish, crabs, and oysters, the average person is
reported to ingest approximately 11, 000 MPs and nanoplastics
annually (Galloway, 2015; Van Cauwenberghe and Janssen, 2014).
Moreover, apart from these direct toxic effects, findings from a
recent study suggest that MPs have the potential to exert damaging
effects to humans by modifying the dynamics of vector-borne
diseases and the exposure to pathogens (Loiseau and Sorci, 2022).

Recently, emerging evidence indicates that microplastics (MPs),
especially those smaller than 10 μm, may penetrate the placental
barrier, leading to potential fetal exposure during gestation
(Anifowoshe et al., 2025). For instance, Ragusa et al. (2021)
evaluated microplastic observation in six human placentas. In
this study, Raman Microspectroscopy detected 12 microplastic
fragments (5–10 μm) in four out of six human placentas,
including the fetal side (5), maternal side (4), and chorioamniotic
membranes (3). These particles have been identified in human
placental tissue, where they may interfere with essential biological
processes like nutrient transfer and immune system modulation
(Paul et al., 2024). Furthermore, the chemical additives and
pollutants carried by MPs can function as endocrine disruptors,
raising concerns about their effects on fetal development. Early
studies also associate MP exposure with oxidative stress,

inflammation, and changes in gene expression within placental
cells, underscoring the need for more in-depth investigation into
their prenatal health implications.

3.3 Indirect effects of MPs

Over the years, researchers have observed MPs of varying
characteristics in different compartments of the environment
such as the ocean (Andrady, 2011), in freshwater resources
(Sarijan et al., 2021), floodplains (Scheurer and Bigalke, 2018), in
soils (Rillig, 2012), and in the atmosphere (Chen et al., 2020). Due to
the ubiquity of MPs in all these compartments, several organisms
can be directly or indirectly exposed to either the MP particles
themselves, or the chemical contaminants they are associated with.
As already indicated, MPs have been in detected several marine
organisms including commercial edible bivalves such as mussels,
clams, and oysters all over the world. Apart from the direct negative
effects of MPs on activities such as filtration, feeding behavior, and
reproductive health in these organisms, other indirect effects could
occur as a result of the organism’s association with MPs. Indirect
effects that have been reported in bivalves include changes to the
structure of their sedimentary habitats, impairment of their food
resources, and delivery of persistent organic pollutants (Zhang et al.,
2020). Further, since these organisms and potentially several other
aquatic organisms are produced at commercial scales such as in
aquaculture for human consumption, this has indirect impact on
food safety in relation to human exposure to MPs, consequently
posing risks to human health.

MPs can also worsen the toxic effects of chemicals on organisms
as they enhance the bioaccumulation of toxic chemicals. Results
from the work of Rochman et al. (2013) indicated that mean

FIGURE 4
Impact of microplastics on human organ systems and cellular functions.
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concentrations of hydrophobic compounds including
polybrominated diphenyl ethers, polycyclic aromatic
hydrocarbons, and PCBs in a fish sample with MPs were
between 1.2 and 2.4 times higher compared to concentrations in
fish samples without MPs. Moreover, just as the polymers and
additives, heavy metals could also be added during the
manufacture of plastic products (Nakashima et al., 2012). In
addition to those added during manufacturing, metals already
present in water column and sediments can sorb to MPs. Several
types of heavy metal ions including Fe, Cu, Pb, Co., Mn, Al, Cd, and
Zn have been reported to sorb to plastic debris (Beaman et al., 2016;
Rochman et al., 2014a; Rochman et al., 2014b). These results imply
that MPs can be important sources of heavy metal contamination in
aquatic environments.

Apart from indirect effects on aquatic organisms and potentially
humans, organisms in other environments such as soils are also
known to be affected indirectly by MPs. That is, by modifying the
physicochemical and soil biological properties, organisms that live
in soils tend to be affected indirectly. For instance, the tensile
strength and aggregate formation of soils are reported to be
influenced by MPs (de Souza Machado et al., 2019).

Further, by causing changes in the physiological properties of
soils, MPs could also pose indirect threats to the survival of plants in
terrestrial environments, and potentially reduce crop yield. Studies
have reported detection of MP particles in soils from diverse areas
including industrial zones and farmlands (Fuller and Gautam,
2016). In farmlands, MP contamination arises from abandoned
agricultural film degradation after being used to minimize soil
moisture loss and protect crops against changes in ambient
temperature (Chen et al., 2013). These practices are known to
indirectly influence crop yield. For instance, up to 15% reduction
in the production of cotton in China has been attributed to long-
term coverage of agricultural topsoil with such plastic films (Liu
et al., 2014). Thus, seeing as plastics are used for similar purposes in
agricultural lands all over the world, it is possible that MPs from
those plastic films might be indirectly affecting crop yield. MP
pollution in agricultural soils could also be caused by other
common agricultural activities, for instance, the use of sewage
sludge as fertilizer, application of organic manures, and plastic
mulching (Watteau et al., 2018). It has shown that when MP
particles sizes are much bigger (e.g., 100 nm–5 mm), they can
indirectly harm plants through modifications or disruptions in the
soil structure, clogging of seed pores, inhibition of water uptake
(Bosker et al., 2019). According to these authors, up to 78%
reduction in seed germination occurred after exposing the seeds
of Lepidium sativum to MPs in different sizes for 8 h.

Dong et al. (2020) studied the effects of polytetrafluoroethylene
and polystyrene on Arsenic (As) contents in the roots and the leaves
of rise seedlings, the researchers reported that samples treated with a
combination of MPs and As demonstrated more changes in
physiological and biochemical features compared to those tread
with only As. In addition, the authors found that As adsorption in
the roots of the seedlings decreased with increasing concentrations
of the MPs. Since As is one of the most harmful environmental
pollutants, the decrease in its uptake by plants potentially caused by
MPs may be an advantage. Nonetheless, this also highlights the
adsorption capabilities of MPs to As and possibly other harmful
metals in the soil. That is, this demonstrated ability of MP particles

to take over available adsorption sites on the roots could inhibit
relevant root activities such as water and nutrient uptake, but also
microbial activities on the roots, consequently affecting crop yield.
Moreover, MPs have the potential to increase soil temperature by
absorbing and transmitting solar radiation. This could increase the
temperature of the microclimate of root zones of crops, which may
enhance evaporative water loss, potentially inhibiting growth, and
crop yield.

Microplastic waste intersects with climate strategies and lifecycle
pollution in multiple, interconnected ways. From the extraction and
refining of fossil fuels used in plastic production to the
manufacturing, transportation, and eventual disposal of plastic
products, each stage contributes significantly to greenhouse gas
emissions (e.g., CO2, CH4, N2O) (de Souza Machado et al.,
2019). These emissions exacerbate climate change, undermining
efforts to achieve net-zero targets (Nakashima et al., 2012).
Additionally, the persistence of plastic in the environment leads
to widespread pollution across terrestrial and aquatic ecosystems,
often degrading into microplastics that pose chronic risks to human
and ecological health (Rochman et al., 2014a; Rochman et al.,
2014b). The incineration of plastic waste further contributes to
air pollution and climate-forcing emissions, while landfilling can
result in leachate and methane release (Sarijan et al., 2021).
Addressing plastic pollution, therefore, is not only an
environmental imperative but also a critical component of
integrated climate strategies that consider the full life cycle of
materials and their cumulative impacts on planetary health.

4 Routes of exposure

The main routes of exposure of microplastics in aquatic
environments to humans include ingestion and dermal contact
(Enyoh et al., 2020; Prata et al., 2020). Microplastics are ingested
by humans through the consumption of contaminated water and
food products, for instance, fish, shrimp, and crabs, and are absorbed
through dermal contact (Prata et al., 2020). The following sections
will provide more information about these exposure
pathways (Figure 3).

4.1 Ingestion

Ingestion can be considered the main route of entry of MPs from
aquatic environments into the human body (De-la-Torre, 2020;
Elizalde-Velázquez and Gómez-Oliván, 2021). These particles can
enter the human body through drinking contaminated water,
incidentally drinking water while swimming, and consuming
foods (Elizalde-Velázquez and Gómez-Oliván, 2021; Prata et al.,
2020). Of these three pathways, food consumption is the most
common route of exposure based on the low concentrations of
MPs found in drinking water and the infrequency of incidental
ingestion while swimming (Prata et al., 2020). Food chain exposure
is based on human consumption of MP-contaminated aquatic
organisms. Through this process, people may have introduced
plastic particles into their bodies. Based on food consumption,
microplastic intake is estimated to be 39,000–52,000 particles per
person per year (Enyoh et al., 2020; Prata et al., 2020). There are
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many previous studies that have reported the presence of MPs in
various aquatic organisms ranging from plankton to invertebrates
and vertebrates (Darabi et al., 2021; de Souza Machado et al., 2019;
Issac and Kandasubramanian, 2021). In particular, shellfish
consumption is the route through which MPs are absorbed into
the body most effectively (11,000 microplastics per person per year)
due to the high accumulation of MPs in these species (Smith et al.,
2018). In addition, salt consumption is also reported to be a route for
introducingMPs into the human body (Prata et al., 2020; Yang et al.,
2015). Yang et al. (2015) estimated that in China, each person
ingested 100 microplastic particles per year through salt
consumption.

4.2 Inhalation

Inhalation of microplastics (MPs) is an emerging pathway of
exposure that raises significant health concerns (Chen et al., 2025).
Airborne MPs are generated from various sources, including
synthetic textiles, vehicle tire degradation, plastic breakdown, and
industrial activities (Santizo et al., 2025). Research indicates that
indoor air can have MP concentrations ranging from 0.1 to
1.2 particles per cubic meter, with urban areas often showing
higher levels due to plastic waste degradation (Li et al., 2021).
The size of inhaled MPs can vary, with fine particles (less than
10 µm) reaching the lungs, and even smaller particles (below 1 µm)
potentially penetrating deeper into the respiratory system and
entering the bloodstream (Ageel et al., 2024). These particles are
particularly concerning as they can be inhaled during everyday
activities, especially in indoor environments where MPs accumulate
in dust and air.

Health risks linked to inhaling MPs include respiratory
inflammation, oxidative stress, lung fibrosis, and potential
damage, with long-term effects such as asthma, chronic
obstructive pulmonary disease (COPD), and even cancer (Geng
et al., 2023). Research has demonstrated that inhaled MPs can
trigger inflammatory responses in lung tissues, which are
worsened by their small size and large surface area (Cao and Cai,
2023). Particularly small MPs (less than 0.1 µm) can move to other
organs, potentially leading to systemic health issues, including
neurotoxicity, immune disruption, and cardiovascular damage
(Lu et al., 2023). Studies suggest that individuals living in urban
environments may inhale between 39,000 and 52,000 microplastic
particles annually through the air, with additional exposure from
food and beverages adding up to an estimated total of around
74,000 particles per year (Eberhard et al., 2024; Tomonaga et al.,
2024). This exposure, coupled with the increasing presence of
microplastics in the environment, highlights the pressing need
for more detailed research on inhalation risks, exposure levels,
and potential chronic health consequences (Soo et al., 2024).

4.3 Dermal contact

MPs can be absorbed through the skin when humans come in
contact with contaminated water or sediment (Galloway, 2015).
MPs particles will penetrate through skin pores to penetrate inside
the human body (Galloway, 2015; Prata et al., 2020). Therefore, this

exposure route depends on the sensitivity as well as the skin
structure characteristics of each person. MPs fibers with very
small sizes (<25 μm) can penetrate skin pores (Sharma and
Chatterjee, 2017). MPs with sizes smaller than 100 nm can
penetrate the skin barrier (Revel et al., 2018). Microplastics can
enter the human body through dermal contact, though this route is
less significant than ingestion or inhalation. Exposure can occur via
personal care products containing microbeads, which may adhere to
the skin or enter through pores or hair follicles, especially if the skin
is damaged (Naji et al., 2017; Rahman et al., 2021). Contact with
microplastic-contaminated water during bathing or swimming,
particularly in warm conditions, may also increase skin exposure
(Zhao et al., 2024). Wearing synthetic clothing can release
microplastic fibers that accumulate on the skin, especially in hot,
humid environments (Enyoh et al., 2020; Prata et al., 2020). In
occupational settings, repeated skin contact with microplastic dust
may allow limited penetration into the outer skin layers, particularly
when the skin barrier is compromised (Yuan et al., 2022). There is
still a lack of comprehensive studies on human dermal exposure to
MPs. Nonetheless, the dermal contact exposure pathway to
microplastics cannot be ignored.

Dermal absorption of microplastics (MPs) is an emerging
research area, with in vitro studies using reconstructed human
epidermis (RHE) models showing limited penetration of particles
larger than 1 μm, primarily accumulating on the outer skin layers
(Abafe et al., 2024; Li et al., 2024). Nanoplastics (<100 nm) exhibit
greater absorption potential, potentially inducing oxidative stress or
skin damage (Yang et al., 2025). In vivo studies with animal models
confirm minimal absorption in healthy skin but suggest that
damaged or inflamed skin may allow deeper penetration,
particularly of smaller particles (Liu and You, 2023). Key
knowledge gaps include a lack of standardized testing methods,
limited data on chronic exposure, and insufficient understanding of
how MP size, shape, and surface chemistry affect absorption.
Further research, particularly on nanoplastics and aged MPs, is
needed to better assess dermal risks.

5 Potential health impact and health
risk assessment

5.1 Potential human health risks

Microplastics pose several potential health risks to humans,
although research is still ongoing. When ingested or inhaled, they
can accumulate in the gastrointestinal tract or lungs, potentially
causing inflammation, oxidative stress, and disruption of the gut
microbiota or respiratory function (Enyoh et al., 2020; Prata et al.,
2020). Microplastics often contain chemical additives, such as
phthalates and bisphenol A, and can also absorb environmental
pollutants like heavy metals and persistent organic pollutants (Prata
et al., 2020). These chemicals may leach into the body, potentially
interfering with the endocrine system and contributing to
reproductive, neurological, and immune disorders, as well as
increasing cancer risk (Rahman et al., 2021). Research has
demonstrated that MPs smaller than 10 µm can penetrate organs
and cellular structures (Zhao et al., 2024). Studies indicate that
smaller MPs can infiltrate the circulatory system, affecting lymph
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nodes (Yuan et al., 2022). Although there is limited direct research
on the impact of MPs on human health, evidence suggests that high
concentrations may result in toxicity (Naji et al., 2017; Rahman et al.,
2021). For instance, exposure to polystyrene at elevated levels has
been linked to cell death through apoptotic mechanisms (Maity
et al., 2023). Moreover, exposure of human brain cells to
polyethylene and polystyrene has been correlated with increased
levels of reactive oxygen species (Zhao et al., 2024).

As shown in Figure 4, microplastic exposure has been associated
with various health effects, including oxidative stress, inflammatory
responses, neurotoxic effects, and reproductive and developmental
toxicity (Chelomin et al., 2024; Liu and You, 2023). Research
suggests that microplastics can induce oxidative stress in cells
and organs, significantly impairing cellular functions and
promoting chronic diseases (Osman et al., 2023). For instance,
Chen et al. (2022) reported that a total of 65 microfibers were
detected in one hundred lung tissue samples from humans, which
included 24 microplastics measuring greater than 25 μm in size.
Moreover, the presence of microplastics can trigger an inflammatory
response, which is a key factor in numerous chronic diseases,
including cardiovascular conditions, diabetes, and potentially
cancer (Zhao et al., 2024). Furthermore, microplastics are capable
of crossing the blood-brain barrier, potentially leading to
neurotoxicity (Li Y. et al., 2023). Preliminary evidence suggests
that microplastics can adversely affect reproductive health and fetal
development (Figure 3).

Previous study have demonstrated that microplastic exposure
can disrupt reproductive hormones and lead to developmental
abnormalities (Wang M. et al., 2024). For instance, Zurub et al.
(2024) noted that microplastics were found to accumulate in
placental tissue at levels between 0.28 and 9.55 particles per
Gram of tissue. This accumulation significantly impacted normal
fetal growth and development by disrupting the metabolism of
amino acids, glucose, and cholesterol, which in turn led to
imbalances in uterine and placental immune cells. While
definitive evidence in humans is still emerging, the potential for
long-term health impacts from chronic microplastic exposure is a
growing concern.

5.2 Health risk assessment

As previously mentioned, ingestion is the primary route for MP
accumulation in humans (Table 2). Due to a lack of studies directly
linking MPs to human health outcomes, risk assessment
methodologies remain underdeveloped. Currently, the a global
average rate of MP ingestion (GARMI) is being explored as a
means to evaluate health risks resulting from MP consumption
Senathirajah et al. (2021). GARMI is calculated based on
the formula:

GARMI � ANMP × AMIMP.

Where ANMP represents the average number of MPs ingested,
and AMIMP indicates the average mass of individual microplastics.
Based on data from Senathirajah et al. (2021), annual ingestion rates
vary widely depending on the source, with commonly consumed
items such as shellfish, table salt, drinking water, and beer used to
calculate the Global Average Rate of Microplastic Ingestion

(GARMI, expressed in g/year/person) due to the availability of
reliable data. Microplastics are now recognized as pervasive
throughout the food chain. Drawing from diverse datasets on MP
quantity and mass, recent studies like Zhao et al. (2024) have sought
to identify gaps in current knowledge, refine future research
priorities, and estimate a global average for MP ingestion. These
findings are intended to support comprehensive human health risk
assessments and inform targeted policies. Globally, individuals may
ingest between approximately 11,845 and 193,200 MP particles
annually, with drinking water representing a major exposure
pathway. AMIMP values were categorized based on particle size,
typically within the 0–1 mm range (Senathirajah et al., 2021). Under
different modeling scenarios assuming spherical and cubic shapes
typical of aquatic microplastics, estimated weekly intake ranges from
0.1 to 5 g. However, this intake is influenced by a range of highly
variable factors, includingMP characteristics and personal attributes
such as age, body size, location, diet, lifestyle, and environmental
context (Lee and Jeong, 2023).

However, GARMI model has limitations in accounting for
variations in microplastic (MP) characteristics, such as shape,
polymer type, and surface chemistry, which can significantly
affect dose-response relationships (Zhuo et al., 2025; Chen et al.,
2025). Different MP shapes influence ingestion rates and toxicity,
with fibers posing higher risks than spheres. Polymer types, like
polystyrene and PET, vary in toxicity due to differences in chemical
composition and additives. Surface chemistry, including roughness
and charge, affects interactions with biological systems, while
adsorbed contaminants can alter toxicity (Mutlu et al., 2025).
These factors can lead to differing bioaccumulation and toxicity,
highlighting the need for GARMI refinement to incorporate these
variations for more accurate risk assessment (Opitz et al., 2025). In
recent years, other risk assessment models have been widely used,
such as Hazard Quotient (HQ) models, which compare exposure
levels to reference doses, and Weight-of-Evidence frameworks,
which integrate diverse data to provide a more nuanced
understanding of biological impacts (Gangula et al., 2023; Ruijter
et al., 2020). Integrating GARMI with these models could lead to a
more robust and comprehensive approach to microplastic risk
assessment.

6 Conclusions and future
recommendations

Microplastics pose a significant environmental challenge, with
concentrations in marine surface waters reaching up to 1.9 million
particles/m3 in heavily polluted areas and sediments containing over
500,000 particles/kg. In freshwater systems, levels can range from
100 to 100,000 particles/m3. Human exposure is estimated at
39,000 to 52,000 particles annually through food and beverages,
with additional inhalation contributing up to 74,000 particles per
year. Their pervasive presence in water systems necessitates a
comprehensive understanding of their sources and pathways. The
scientific community must prioritize targeted strategies to combat
this pressing issue through:

• To address existing knowledge gaps, interdisciplinary
integration is essential, linking microplastic research with
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climate science, food security, and public health policy. This
approach can help assess broader implications, such as the
potential contribution of microplastics to chronic health
conditions like cardiovascular disease, which remain poorly
understood. Moreover, advancing this field requires
overcoming methodological limitations, particularly in
detecting and characterizing particles smaller than 1 μm,
which are likely more biologically active and capable of
systemic translocation. Integrating scientific, technological,
and policy perspectives will be critical for developing
comprehensive risk assessments and effective mitigation
strategies.

• Conducting more specific tests on the toxicity of each type of
microplastic to establish a clearer foundation for assessing
their impact on human health. Toxicological studies should
consider individual properties, various environmental
conditions, and effects on different organs. It is essential to
gain a deeper understanding of the critical doses at which
microplastics can cause adverse effects on human health.

• Standardized testing protocols and regulatory thresholds for
microplastics (MPs) are still in development, with
international efforts by ISO, OECD, ASTM, and the U.S.
EPA aiming to harmonize sampling, identification, and
quantification methods. While ISO 21960 and EU REACH
initiatives offer early frameworks, no globally accepted
thresholds exist, and most methods target particles >1 µm
using spectroscopic techniques. Proposed benchmarks, such
as the EU’s 10 μg/L for drinking water and California’s pilot
limits, highlight growing regulatory interest. However, key
challenges remain, including inconsistent methodologies,
limited toxicological data, and the need to address
microplastics. Further progress requires validated protocols
and health-based risk assessments.

• Encouraging research and development of biodegradable
alternatives such as natural fibers and, bioplastic for
products like packaging, textiles, and microbeads can
significantly reduce dependency on synthetic plastics
(Osman et al., 2025). Additionally, further study will
highlight the environmental and economic advantages of
upcycling, such as minimizing plastic waste, conserving
natural resources, lowering carbon emissions, and
promoting the circular economy.

• Extended Producer Responsibility (EPR) schemes, plastic
taxes, and compostable certifications are key tools to reduce
plastic pollution. EPR holds producers accountable for waste,
plastic taxes discourage single-use items, and certifications
ensure true biodegradability. Their impact depends on strong
regulation and supporting infrastructure, which need to be
clarified in further studies.

• Recommending additional studies on the effects of
microplastics on various human organs, exploring both
carcinogenic and non-carcinogenic effects of microplastic
accumulation in the body. Developing standardized methods
for characterizing, analyzing, quantifying, and assessing
potential human health risks from microplastic pollution.

• The implications of microplastic exposure on human health
are profound, necessitating urgent attention from researchers,
policymakers, and healthcare providers to develop strategies

for mitigation and prevention. Understanding the
mechanisms of toxicity is crucial for establishing effective
public health guidelines and protective measures against
this pervasive environmental issue.

These initiatives are crucial for mitigating the negative impacts
of microplastics, fostering a healthier environment and promoting
sustainability for future generations.
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