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The establishment of green finance reform and innovation pilot zones (GFRIPZ) is
a crucial initiative in China’s advancement of green finance development.
Whether this policy can effectively enhance carbon unlocking efficiency (CUE)
constitutes a significant research question. Utilizing panel data from 267 Chinese
cities spanning 2011 to 2022 and treating the GFRIPZ policy as a quasi-natural
experiment, this study employs a double machine learning (DML) model to
empirically investigate the impact of green finance policy on urban carbon
unlocking efficiency. The results show that: (1) GFRIPZ significantly enhances
CUE, and this conclusion remains valid after undergoing a series of robustness
checks. (2) Mechanism validation reveal that GFRIPZ enhances CUE through three
pathways: optimizing industrial structure, reducing energy intensity, and
strengthening public environmental concern. (3) Heterogeneity analysis
indicates that the carbon unlocking effects of GFRIPZ are more pronounced
in eastern regions, large cities, non-resource-based cities, cities with higher
internet development levels, and cities with advanced financial development.
Concurrently, the applicability of GFRIPZ also benefits from regional institutional
contexts such as public data openness, carbon emissions trading, and green
resource endowment. (4) Spatial spillover effects demonstrate that GFRIPZ
significantly enhances CUE in surrounding areas. This research not only
provides a novel analytical framework for regional carbon unlocking pathways
but also offers policy recommendations for enhancing green finance systems and
overcoming carbon lock-in dilemmas.
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1 Introduction

Since the advent of industrialization, the global economy has achieved remarkable
development. However, the unrestrained expansion of energy consumption and surging
carbon emissions have led to continuous climate deterioration and frequent extreme
weather events (Su, et al., 2021), posing significant threats to Earth’s ecosystems and
human survival. According to statistics from the International Energy Agency (IEA),
traditional fossil fuels account for over 80% of global carbon emissions. The unsustainability
of this high-carbon model has become increasingly evident, urgently requiring systematic
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solutions. Therefore, controlling carbon emissions has become
humanity’s imperative action against climate change,
necessitating a rapid transition from a fossil fuel-dependent
extensive economy to low-carbon, decarbonized, and ultimately
zero-carbon economic models (Niu and Liu, 2021). As the
world’s second-largest economy and biggest carbon emitter,
China has actively assumed emission reduction responsibilities.
At the 2020 United Nations Climate Change Conference, China
solemnly pledged to “strive to peak carbon dioxide emissions by
2030 and achieve carbon neutrality by 2060.” However, while
experiencing rapid economic development, China’s economy
demonstrates rigid characteristics of high energy demand and
carbon intensity. The deep institutionalization of fossil fuel-based
energy systems within existing technological and institutional
frameworks has created path dependency that is difficult to alter,
resulting in a “carbon lock-in effect” (Unruh, 2000). This
phenomenon severely impedes the realization of the dual carbon
goals. Consequently, identifying effective carbon unlocking
pathways and enhancing CUE is a critical practical challenge that
China must urgently address.

It should be noted that a reduction in carbon emissions cannot
be simplistically equated with carbon unlocking. The former focuses
more on flow control, while the latter emphasizes systemic
restructuring. Specifically, carbon emissions refer to the total
greenhouse gases released directly or indirectly by human
activities. Their reduction is typically achieved through
temporary governance measures such as improving energy
efficiency and clean energy substitution, exhibiting greater
immediacy (Li, et al., 2024). In contrast, carbon unlocking
underscores breaking the socio-economic system’s dependence on
high-carbon development pathways. It aims to achieve profound
decoupling between economic growth and carbon emissions (Li,
et al., 2023) by restructuring the industrial, technological, and
institutional systems (Unruh, 2000). It can thus be regarded as a
sufficient but not necessary condition for carbon
emission reduction.

Finance, functioning as a pivotal pillar of economic
development, maintains an inseparable relationship with carbon
emissions (Scholtens and Dam, 2007). Specifically, the progression
of green finance demonstrates direct relevance to the attainment of
carbon neutrality and carbon peaking objectives. Green finance,
fundamentally characterized as a high-efficiency investment and
financing mechanism, pursues the dual goals of environmental
preservation and high-quality economic advancement. This
mechanism achieves carbon reduction and environmental quality
improvement through regulatory alignment (Brandi, et al., 2020),
while concurrently enabling carbon unlocking via industrial
restructuring (Wang, et al., 2020), energy system optimization (Li
and Jia, 2017; Wang, et al., 2021), innovation-driven compensation
(Wang et al., 2024a), and public awareness cultivation (Wang et al.,
2024b). These multifaceted approaches collectively establish
innovative pathways for overcoming carbon lock-in constraints.
To achieve the “dual carbon” goals and resolve the dilemma between
economic development and carbon emissions, China implemented
the GFRIPZ policy in 2017, strategically leveraging financial
instruments as a powerful lever to drive green development. This
policy focuses on precisely directing funds to green industries,
prioritizing key areas such as renewable energy development and

clean energy infrastructure construction. According to official
statistics from the People’s Bank of China, by June 2022, the
total green loans in pilot cities had reached RMB 1.1 trillion,
constituting 11.7% of all loans, while the balance of green bonds
stood at RMB 238.832 billion, with a year-on-year increase
exceeding 40%. During policy implementation, the pilot zones
not only established special green industry funds to ensure stable
capital reserves for green projects, but also provided preferential
loan interest rates to reduce financing costs for green enterprises,
thereby fully opening capital financing channels for green projects.
These measures demonstrate that green finance policy play a crucial
role in breaking carbon lock-in and promoting low-carbon
economic transformation. However, while existing research has
extensively discussed the economic (Irfan, et al., 2022; Zhang,
et al., 2021), social (Feng and Zhou, 2024; Yu, 2024), and
environmental effects (Feng, et al., 2025; Wang and Gao, 2024)
of green finance policies, evidence regarding their impact on CUE
remains scarce. Relevant studies have predominantly focused on the
effects on carbon emissions (Lei and Wang, 2023; Wang and Gao,
2024; Zhou, et al., 2019), and no study has yet incorporated green
finance policies and CUE within a unified framework. Therefore,
unlike merely affecting carbon emissions, does green finance policy
exhibit a significant carbon unlocking effect? If so, what is the
intrinsic transmission mechanism between them? What
heterogeneous variation patterns and spatial spillover effects does
it possess? How can the universal applicability of policies be
ensured? These unresolved issues undoubtedly warrant further
exploration. In light of this, we utilize the double machine
learning model to provide direct empirical evidence on the
impact of green finance policy on CUE, and propose rational
policy recommendations based on the research findings and
conclusions.

Based on the aforementioned research motivation, the marginal
contributions of this paper primarily lie in: (1) A novel research
perspective. This paper breaks through the limitations of existing
literature on environmental effect assessment (Feng, et al., 2025; Lei
and Wang, 2023; Wang and Gao, 2024; Zhou, et al., 2019),
innovatively integrates green finance policy and CUE into a
unified analytical framework, and is the first to reveal the carbon
unlocking effect of green finance policy, filling a critical research gap
in this key area. (2) Innovative research methodology. Addressing
the challenges of model specification bias and linear constraints
faced by mainstream literature relying on traditional Difference-in-
Differences (DID) models (Lei andWang, 2023; Wang, et al., 2024a;
Wang and Gao, 2024), this paper innovatively constructs a DML
model to conduct an in-depth discussion on the causal relationship
between GFRIPZ and CUE; this method effectively overcomes issues
such as overfitting, model bias, and the curse of dimensionality,
significantly enhancing the robustness and precision of policy effect
evaluation. Furthermore, moving beyond the local effects of green
finance policy (Yan, et al., 2022), this paper additionally constructs a
Spatial Difference-in-Differences (SDID) model to empirically
capture the cross-regional carbon unlocking effect of GFRIPZ,
revealing the spatial connection between them, in order to
provide more reference basis for cross-regional collaborative
carbon unlocking. (3) In-depth mechanism analysis. This paper
constructs a multi-dimensional transmission pathway and
contextualized heterogeneity framework. It not only
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systematically clarifies the main channels and intrinsic logic of the
carbon unlocking effect of GFRIPZ through three pathways:
industrial structure optimization, energy intensity reduction, and
enhanced public environmental awareness. Simultaneously, this
paper also innovatively constructs a multi-dimensional contextual
analysis framework; this framework incorporates both fundamental
characteristics including geographical location, city size, resource
endowment, internet and financial development, and institutional
contexts encompassing data openness, carbon trading, and green
resource endowment, deeply revealing the complex heterogeneity
patterns of policy effects. This provides rich empirical reference for
governments to implement corresponding green finance policy
measures based on local conditions.

The remainder of this paper is structured as follows. Section 2
reviews the literature on CUE and green finance policy. Section 3
elaborates the policy background and theoretical mechanisms.
Section 4 introduces the DML model and research design.
Section 5 presents empirical results from the DML model and
provides normative analysis. Section 6 conducts the mechanism
validation, heterogeneity analysis, spatial spillover effects analysis,
and extended analysis. Section 7 concludes the findings and
proposes policy recommendations.

2 Literature review

2.1 Research on CUE

Driven by global carbon neutrality goals, the technological lock-
in and institutional inertia inherent in traditional high-carbon
development models have emerged as central obstacles to climate
governance. Carbon unlocking, as a novel theoretical framework for
breaking such path dependence, has attracted extensive scholarly
attention in recent years.

Unruh first proposed the concept of carbon lock-in (Unruh,
2000), defined as a phenomenon where economic development
becomes locked into fossil fuel-based carbon-intensive energy
systems due to the formation of “Techno-Institutional Complexes
(TIC).” Building on this, Unruh (2002) introduced the concept of
carbon unlocking, which fundamentally entails replacing or
decarbonizing carbon-based technological regimes to break the
carbon lock-in state. However, with escalating environmental
challenges and constraints from economic development goals,
“efficiency” has become a primary focus for scholars. Based on
TIC theory (Unruh, 2002) and socio-technical transition theory
(Geels, 2002), numerous studies have explored CUE.

Unlike “carbon intensity (Ang, 2004)” and “carbon productivity
(Chung, et al., 1997)”, CUE emphasizes both the degree of carbon
lock-in mitigation and the improvement of resource utilization
efficiency (Yang and Kim, 2022). Essentially, it quantifies the
extent to which carbon lock-in can be overcome within
institutional, technological, and societal input frameworks. Wu,
et al. (2025) further clarify that CUE, as a core metric for
assessing an economic system’s capacity to break carbon lock-in
and achieve low-carbon transitions, not only focuses on absolute
carbon emission reductions but also emphasizes breaking high-
carbon path dependencies through systemic transformations (Wu,
et al., 2025). From a static perspective, CUE reflects a region or

industry’s low-carbon transition capability at a specific time point.
From a dynamic perspective, variations in CUE track transitional
progress over time (Chen, et al., 2024).

Regarding the measurement of CUE, mainstream scholars
generally construct input-output systems through an “institution-
technology-society” framework and employ Data Envelopment
Analysis (DEA) models to assess CUE. For example, He, et al.
(2023) applied conventional DEA models to measure China’s
industrial CUE levels. Li, et al. (2023) adopted US-SBM models
to investigate provincial industrial CUE dynamics in China.
Furthermore, Chen, et al. (2024) developed Super-SBM models to
quantify regional CUE.

Regarding the influencing factors of CUE, improvements in
CUE depend on the choice of carbon unlocking pathways. Scholars
widely recognize technological breakthroughs as the primary
pathway for carbon unlocking (Niu and Liu, 2021; Xu, et al.,
2021). However, when carbon lock-in reaches a certain threshold,
systematic change becomes difficult without significant exogenous
shocks or behavioral changes (Pierson, 2000). Therefore, to
destabilize a society’s core institutions, it is essential to effectively
utilize such external shocks and specific events (Li, et al., 2023).
Geels, et al. (2017) proposed a multi-level perspective for carbon
unlocking, decomposing pathways into three interactive
dimensions: technological innovation, institutional adjustments,
and social changes. From a cost-benefit perspective, Kalkuhl,
et al. (2012) and Mattauch, et al. (2015) explored how tax and
subsidy policy play a vital role in enhancing CUE. Similarly,
empirical studies have demonstrated the CUE-enhancing effects
of policy innovations such as carbon emission trading (Shen, et al.,
2020) and innovation-driven urban policy (Zhao, et al., 2023).
Additional research has examined the relationships between CUE
and infrastructure (Mattauch, et al., 2015), market structures
(Carley, 2011), and individual/public behaviors (Mi, et al., 2017).

2.2 Research on green finance policy

As a quintessential green finance instrument, the GFRIPZ policy
integrates dual attributes of financial resource allocation and
environmental regulation, serving as a critical achievement in
advancing green transition and transitioning toward a low-
carbon economy. In recent years, green finance policy has
garnered increasing scholarly attention, with research primarily
focusing on the following aspects:

Firstly, the economic effects of green finance policies. A general
consensus has formed regarding the role of green finance policies in
promoting economic growth (Irfan, et al., 2022; Zhang, et al., 2021;
Zhou, et al., 2022). They are recognized not only for strengthening
the macroeconomic financial structure (He et al., 2019a) but also for
enhancing regional economic resilience (Zhang, et al., 2023) by
improving capital allocation efficiency (Ning, et al., 2023) and
increasing total factor productivity (Li and Yang, 2022).
Secondly, the social effects of green finance policies. These
policies narrow the credit gap between small and medium-sized
enterprises and traditional enterprises, effectively mitigating
financing discrimination and financing constraints (Yu, 2024).
Simultaneously, they improve public health (Feng and Zhou,
2024) by promoting low-carbon industry development, green
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governance investment, and green food supply, while also creating
substantial new employment opportunities (Fu, et al., 2025).
Thirdly, the environmental effects of green finance policies.
Existing research widely acknowledges the environmental benefits
and sustainable development potential of green finance (Feng, et al.,
2025; Wang and Gao, 2024; Xiao and Chen, 2024). Specifically,
green finance policies not only guide high-pollution production
behaviors towards low-pollution alternatives (Xu and Li, 2020)
through the capital support effect, inducing social investment
(Ma and Fei, 2024), but also leverage the capital allocation effect
(Yu, et al., 2021) and technological innovation effect (Hu, et al.,
2021) to promote low-carbon technological innovation, reduce
energy consumption intensity, and optimize industrial structure
(He et al., 2019a; Lei and Wang, 2023). Consequently, they deliver a
series of environmental performances, including reducing industrial
water pollution (Feng, et al., 2025), lowering carbon emissions
(Zhou, et al., 2019), promoting ecosystem restoration, and
enhancing biodiversity conservation (Ma and Fei, 2024).

In conclusion, although scholars have extensively discussed the
economic, social, and environmental effects of green finance
policies, evidence regarding their impact on CUE remains scarce.
Related research has often focused on the impact on carbon
emissions (Lei and Wang, 2023; Wang and Gao, 2024; Zhou,
et al., 2019). Therefore, this research gap presents a potential
contribution for our study. To address these gaps, this study
treats the GFRIPZ as a quasi-natural experiment, employing
DML methods to directly investigate the causal relationship
between green finance policy and CUE, while systematically
analyzing their underlying mechanisms and heterogeneous
variation patterns.

3 Policy background and
theoretical analysis

3.1 Policy background

Green finance constitutes financial activities aimed at
environmental improvement, mitigating climate deterioration,
and resource conservation. To accelerate financial institutions’
green transition and explore carbon unlocking pathways, China
launched the GFRIPZ policy. In June 2017, the State Council
Executive Meeting designated five initial pilot zones: Zhejiang,
Jiangxi, Guangdong, Guizhou, and Xinjiang. Subsequently,
Lanzhou New District (Gansu Province) and Chongqing were
incorporated into the pilot system in November 2019 and August
2022, respectively. This has established a structured network
encompassing seven provinces (regions) across ten pilot zones.
GFRIPZ, driven by top-down institutional design, aligns with
China’s dual carbon goals and the 14th Five-Year Plan. It
leverages the distinct geographical advantages, resource
endowments, and industrial characteristics of each pilot zone to
pursue differentiated green finance strategies. Concurrently,
through synergistic policy incentives (e.g., fiscal subsidies, risk
compensation mechanisms) and market-based instruments (e.g.,
carbon trading, green credit), the policy redirects financial resources
toward green sectors, fostering deep integration between green
finance and regional economies.

The dual forces of goal-oriented governance and policy
prioritization are expected to significantly alleviate carbon lock-in
effects in pilot cities compared to non-pilot counterparts. This
institutional setting provides a robust quasi-natural experiment
for evaluating green finance policy efficacy.

3.2 Theoretical analysis

3.2.1 Direct effects
As an innovative green finance policy in China, the GFRIPZ

systematically addresses carbon lock-in through differentiated
incentive mechanisms, optimized green credit resource allocation,
and low-carbon technology R&D (Yan, et al., 2022). First, GFRIPZ
establishes an institutional framework incentivizing low-carbon
investments via instruments such as green credit, green bonds,
and carbon trading (Flammer, 2021; He et al., 2019b). This
integration of financial incentives with environmental objectives
disrupts the institutional lock-in of high-carbon industries. Second,
GFRIPZ reduces capital costs and shares risks to catalyze the
development and diffusion of low-carbon technologies
(Taghizadeh-Hesary and Yoshino, 2020). Such technological
advancements are critical for overcoming the technological lock-
in of fossil fuel systems. Third, GFRIPZ lowers the costs of adopting
low-carbon products and services by offering financial products like
green mortgage loans and vehicle loans, thereby promoting green
consumption behaviors (Geddes, et al., 2018). This behavioral shift
helps dismantle the social lock-in of carbon-intensive lifestyles.
Based on this analysis, we propose:

H1: GFRIPZ significantly enhances CUE.

3.2.2 Mechanism analysis
The GFRIPZ can enhance CUE by optimizing industrial

structures and reducing frictional costs during economic
transitions. First, GFRIPZ redirects capital flows to low-
carbon industries. For example, by employing financial
instruments such as preferential loans and green bonds,
GFRIPZ fosters the growth of service sectors and low-carbon
industries (He et al., 2019b). This process not only optimizes
industrial structures but also enhances resource utilization
efficiency while lowering the carbon intensity of the entire
economy. Second, GFRIPZ acts as a lubricant during
industrial upgrading. It alleviates financing constraints for
low-carbon enterprises (Taghizadeh-Hesary and Yoshino,
2020) through capital provision and mitigates risks linked to
technological innovation and industrial transition via green
insurance and venture capital funds (Zhang, et al., 2019).
These interventions effectively reduce economic transition
frictions, establish a smoother pathway for industrial
restructuring, diminish dependence on high-carbon industries
(He et al., 2019b), and ultimately dismantle the sectoral lock-in
of carbon emissions. Based on this analysis, we propose:

H2: GFRIPZ enhances CUE through industrial structure
optimization.

Financial support under the green finance framework is a critical
factor in reducing energy intensity. First, the GFRIPZ facilitates the
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aggregation of green financial resources, offering renewable energy
and energy-saving enterprises within the pilot zones more favorable
financing conditions and accessible funding channels. In contrast,
high-energy-consuming, high-polluting, and high-emission (“three-
high”) enterprises face stricter financing constraints (Song, et al.,
2021). This mechanism compels high-energy-consuming firms to
transition toward low-carbon practices, thereby transforming the
coal-dominated energy consumption structure. Second, through
government interventions such as fiscal interest subsidies and
risk compensation mechanisms, the GFRIPZ not only mitigates
risks for environmental enterprises engaged in low-carbon
technological innovation and equipment R&D but also reduces
energy transition risks for high-energy-consuming firms. These
measures collectively lower energy intensity and advance
structural energy adjustments alongside low-carbon development
(Wang, et al., 2021). Based on this analysis, we propose:

H3: GFRIPZ enhances CUE through energy intensity reduction.
The GFRIPZ strengthens public environmental concern

through multidimensional channels. First, by influencing
corporate green investment decisions, the GFRIPZ enhances
environmental performance and information disclosure (Zhang,
et al., 2024), thereby heightening public awareness of the
environmental impacts of economic activities. Second, the
development of green financial products and services
progressively intensifies public attention to environmental issues
(Pedersen, et al., 2021). Furthermore, GFRIPZ implementation
strengthens public environmental concern through environmental
education initiatives and the dissemination of green development
principles (Yan, et al., 2022). This reinforced public environmental
concern resonates with green financial policy, functioning as both
a “booster” for policy implementation and an “amplifier” of policy
effectiveness, ultimately contributing to the disruption of carbon
emission social lock-ins. Specifically, this strengthening effect
creates bottom-up pressure for governments to provide
enhanced policy safeguards for carbon unlocking activities
(Zhang, et al., 2024), while incentivizing enterprises to preserve
their environmental reputation through accelerated low-carbon
technology adoption (Khatibi, et al., 2021). Concurrently, it reflects
the formation of individual low-carbon values and consumption
behavior constraints among the public (Zhang, et al., 2024).
Collectively, these impacts enhance CUE through policy
reinforcement, technological innovation, and behavioral
regulation. Based on this analytical framework, we propose
Hypothesis 4:

H4: GFRIPZ enhances CUE through the strengthening of public
environmental concern.

3.2.3 Spatial spillover effects
With the advancement of the First Law of Geography, spatial

correlation has become a critical and non-negligible issue in
environmental policy research (Feng, et al., 2020), a principle that
equally applies to green financial policy. First, from the perspective of
geographical proximity spillovers, the GFRIPZ generates radiation
effects on neighboring regions through technology diffusion, capital
flows, and industrial linkages, resulting in synergistic unlocking
effects. Second, regarding industrial transfer, although the GFRIPZ

may drive pollution-intensive industries to relocate to non-pilot areas,
it simultaneously compels surrounding regions to pursue low-carbon
technological innovation (Dai, et al., 2023), thereby enhancing their
capacity to break carbon lock-ins. Third, in terms of technology
diffusion, the GFRIPZ promotes regional low-carbon technological
innovation. Such innovation is not confined to local areas but spreads
to adjacent regions through spatial spillover effects, further driving
interregional collaborative innovation in low-carbon technologies
(Yu, et al., 2022), which helps dismantle technological carbon lock-
ins in neighboring areas. Based on this analysis, we propose
Hypothesis 5:

H5: GFRIPZ exhibits positive spatial spillover effects, meaning that
it can enhance CUE in neighboring regions.

Figure 1 illustrates the specific impact pathways in this paper.

4 Research design

4.1 Model construction

Current research on evaluating the effects of green finance
policy predominantly employs the DID model. However, DID
approaches are often constrained by model specification biases
and restrictive linear assumptions. In this context, the Double
Machine Learning (DML) methodology proposed by
Chernozhukov, et al. (2018) has emerged as a revolutionary
tool for addressing complex causal inference challenges. While
traditional causal inference methods suffer from multiple
limitations due to their reliance on stringent assumptions,
DML effectively integrates the flexibility of machine learning
with the unbiased framework of econometrics. This innovative
approach successfully overcomes critical methodological
challenges including multicollinearity (Hansen and Kozbur,
2014), sample selection bias (Belloni, et al., 2014), model
misspecification (Knaus, et al., 2021), and the curse of
dimensionality (Chernozhukov, et al., 2018).

Therefore, drawing on the research by Chen and Wang (2024),
Qian, et al. (2025), and Wang, et al. (2025), we establish a DML
model to identify the influence of GFRIPZ on CUE. The specific
model is as shown in Equation 1 and Equation 2:

Yit � θ0Policyit + g Xit( ) + Uit (1)
E Uit |Xit, Policyit( ) � 0 (2)

Where t and i denote the year and city, respectively; Yit

represents the dependent variable, namely, CUE; Policyit is the
treatment variable, defined as a policy dummy variable for the
establishment of GFRIPZ. It takes the value 1 if city i is listed as
a pilot zone in year t, and 0 otherwise; θ0 denotes the treatment effect
coefficient;Xit constitutes a set of control variables influencing CUE,
the specific forms of which are selected via machine learning
methods; and Uit is an error term with a conditional mean of
zero. However, the DML approach employs machine learning
algorithms with regularization to estimate the functional form
ĝ(Xit), which introduces the “regularization bias” problem. This
results in the estimator of the treatment coefficient failing to satisfy
unbiasedness. To accelerate the convergence rate and mitigate the
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regularization bias issue, we construct an auxiliary regression model
incorporating Equation 3 and Equation 4:

Policyit � M Xit( ) + Vit (3)
E Vit |Xit( ) � 0 (4)

WhereM(Xit) denotes the regression function of the treatment
variable on the high-dimensional control variables, which is also
estimated using machine learning algorithms to determine its
specific functional form M̂(Xit). Vit represents the error term.
The operational procedure is as follows:

First, we estimate M(Xit) in Equation 3 via machine learning
methods to obtain the estimator M̂(Xit), thereby deriving the
residual estimator as shown in Equation 5:

V̂it � Policyit − M̂ Xit( ) (5)

Next, we estimate the regression function g(Xit) in Equation 1
via machine learning methods to obtain its estimator ĝ(Xit), thereby
reformulating the primary regression model as Equation 6:

Yit − ĝ Xit( ) � θ0Policyit + Uit (6)
Finally, using the residual estimator V̂it obtained in the first step

as the instrumental variable for Policyit, we perform an instrumental
variable regression to derive the final unbiased coefficient estimator,
as shown in Equation 7:

θ̂0 � 1
n

∑
i ∈ I,t ∈ T

V̂itPolicyit
⎛⎝ ⎞⎠−1

1
n

∑
i∈I,t∈T

V̂it Yit − ĝ Xit( )( ) (7)

Through the aforementioned two-step machine learning
estimation, we effectively eliminate the influence of confounding
variables Xit on the treatment variable Policyit. This approach
simultaneously accelerates the convergence rate of θ0, thereby
enabling accurate estimation under finite-sample conditions.

4.2 Variable selection

4.2.1 Dependent variable
The CUE metric seeks to balance socioeconomic benefits and

ecological sustainability by evaluating both the efficiency of input
utilization in production activities and the ecological costs incurred
to achieve desired outputs. Therefore, drawing on existing research
(Chen, et al., 2024; Feng, et al., 2025) and integrating the TIC theory,
this paper constructs a “Technology-Institution-Society” input
framework. Simultaneously, it treats carbon lock-in level as the
undesirable output and economic effects as the desirable output,
thereby establishing an input-output system for CUE. Building upon
this foundation, it employs the super-efficiency SBM model to
quantify CUE. Specifically, the technology input dimension
includes technological support and technical talent are measured
by the number of authorized green patents and the count of scientific
research and technical service personnel, respectively. The
institutional input dimension incorporates environmental
regulation intensity and institutional quality, proxied by fiscal
expenditures on energy conservation and environmental
protection, and the degree of marketization. The community
input dimension encompasses environmental awareness and

FIGURE 1
Mechanism framework.
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green consumption, operationalized through the green coverage rate
in urban built-up areas and the number of operational public buses.
For outputs, real GDP (with 2011 as the base year) quantifies the
desired output, while carbon lock-in levels serve as the undesired
output. The integrated CUE evaluation framework is systematically
illustrated in Figure 2.

4.2.2 Core explanatory variable
Green financial policy. We treat the GFRIPZ as a quasi-natural

experiment. Drawing on relevant research (Feng, et al., 2025), the
green finance policy effect (Policy) is represented by the interaction
term (Treat × Time) between the pilot city dummy variable and
policy timing dummy variable. Specifically, Treat denotes the
dummy variable for pilot cities, assigned a value of 1 if a city is
included in the pilot zones and 0 otherwise. Time indicates the
policy timing dummy variable, set to 1 for the policy
implementation year and subsequent years, and 0 otherwise.

4.2.3 Control variables
To ensure the accuracy of policy effect estimation, we further

controlled for other factors potentially influencing CUE in the
model. Drawing on existing research, the control variables in this
paper are selected as follows: Urbanization level (UR) is measured by
the urbanization rate. Based on urban agglomeration theory, while
urbanization can enhance energy efficiency through scale effects
(Glaeser and Kahn, 2010), it may also exacerbate carbon lock-in due
to the rapid expansion of infrastructure (Zhao, et al., 2024); The
degree of openness (OPEN) is measured by the ratio of actual
utilized foreign direct investment to GDP. International trade
theory suggests foreign investment can generate technology

spillover effects (Jia, et al., 2019), but the “Pollution Haven
Hypothesis” indicates it may also facilitate the transfer of high-
carbon industries (Khanna, et al., 2025); Human capital level (HC) is
measured by the proportion of college students enrolled, as the
higher-educated population is more likely to drive low-carbon
technology innovation (Zhou, et al., 2024); Fiscal dependence
(FD) is measured by the ratio of local fiscal revenue to GDP.
According to fiscal decentralization theory, higher fiscal
dependence may weaken the intensity of local government
environmental governance (Khan, et al., 2021); Internet
penetration rate (IP) is measured by the number of internet users
per 100 people. From the perspective of the digital economy, the
development of information and communication technology can
break carbon lock-in by optimizing resource allocation (Añón
Higón, et al., 2017); Consumption level (SCL) is measured by per
capita retail sales of consumer goods, as consumption upgrading
may compel low-carbon transformation on the supply side through
demand-side pressure (Fan, et al., 2022).

4.3 Data sources and analysis

Due to severe data unavailability at the county level, such as
variables within the dependent variable system including the
number of authorized green patents, the count of scientific
research and technical service personnel, fiscal expenditures on
energy conservation and environmental protection, and the
degree of marketization, as well as a series of control variables
including UR and OPEN which are even more inaccessible, we were
unable to examine district-level differences more granularly.

FIGURE 2
The evaluation system of CUE.
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Consequently, this study ultimately selected the period
2011–2022 as the sample period and focused on 267 prefecture-
level cities in China as the research subjects. All data used were
sourced from the China City Statistical Yearbook, the CEIC
database, and government work reports.

Simultaneously, to ensure the integrity of the data structure,
enable a comprehensive assessment of the green finance policy
effects, and facilitate subsequent spatial effect analysis, this paper
employed the linear interpolation method to supplement partially
missing data. The selection of this method is based on the following
considerations: On one hand, indicators in Chinese city-level panel
data typically exhibit gradual changes between adjacent years,
aligning with the assumption of a continuous and smooth trend
required for linear interpolation. On the other hand, the proportion
of missing values in the raw data is low, and the missing values are
predominantly isolated occurrences within single years, significantly
reducing the risk of systematic bias. Furthermore, compared to more
complex methods such as spline interpolation or KNN
interpolation, linear interpolation generally offers better
computational efficiency and interpretability.

However, it must be specifically noted that the linear
interpolation method inevitably leads to some underestimation of
the true variability of the variables. This underestimation may
manifest, on one hand, as a weakening of the time-varying effects

of policy shocks, and on the other hand, as a compression of
heterogeneity among cities. Therefore, this paper will validate the
scientific soundness of this method through two approaches: first, a
comparison of descriptive statistics, and second, robustness checks.
Table 1 presents the descriptive statistical results of the main
variables before and after interpolation. It is evident that the
changes in all statistical metrics before and after interpolation
remain minimal. In particular, the rates of change for the
standard deviation, median, and coefficient of variation are
largely close to zero. This clearly indicates that the impact of

TABLE 1 Descriptive statistics results.

Variable N Mean SD Min p50 Max CV

CUE Before Interpolation 2,996 0.335 0.138 0.114 0.307 1.654 0.412

After Interpolation 3,204 0.333 0.138 0.112 0.304 1.654 0.414

Rate of Change — −0.006 0.000 −0.018 −0.010 0.000 0.006

UR Before Interpolation 2,996 0.563 0.151 0.181 0.542 1 0.268

After Interpolation 3,204 0.558 0.151 0.181 0.538 1 0.271

Rate of Change — −0.009 0.000 0.000 −0.007 0.000 0.009

OPEN Before Interpolation 2,996 0.168 0.179 0.017 0.116 1.909 1.065

After Interpolation 3,204 0.166 0.177 0.014 0.114 1.909 1.066

Rate of Change −0.012 −0.011 −0.176 −0.017 0.000 0.001

HC Before Interpolation 2,996 0.181 0.197 0.001 0.113 1.1 1.088

After Interpolation 3,204 0.176 0.193 0.001 0.11 1.1 1.097

Rate of Change — −0.028 −0.020 0.000 −0.027 0.000 0.008

FD Before Interpolation 2,996 0.872 0.300 0.156 0.696 3.271 0.344

After Interpolation 3,204 0.844 0.303 0.155 0.689 3.271 0.359

Rate of Change — −0.032 0.010 −0.006 −0.010 0.000 0.044

IP Before Interpolation 2,996 0.099 0.127 0.003 0.049 1.015 1.283

After Interpolation 3,204 0.096 0.126 0.003 0.047 1.015 1.313

Rate of Change — −0.030 −0.008 0.000 −0.041 0.000 0.023

SCL Before Interpolation 2,996 0.009 0.002 0.000 0.009 0.025 0.222

After Interpolation 3,204 0.008 0.002 0.000 0.009 0.025 0.250

Rate of Change — −0.111 0.000 0.000 0.000 0.000 0.125

TABLE 2 Results of the baseline regression.

Variables Lasso-CV Elastic Net-CV SVM

(1) (2) (3)

Policy 0.076*** (0.008) 0.076*** (0.008) 0.066*** (0.013)

Control YES YES YES

City FE YES YES YES

Time FE YES YES YES

Obs 3,204 3,204 3,204

Note: Standard errors in parentheses, *p < 0.1, **p < 0.05, ***p < 0.01.
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linear interpolation on variability is very limited. Additionally, this
paper further conducts robustness checks later on, and the results
similarly demonstrate that the interpolation method has no
significant impact on the regression conclusions, further
reinforcing the rationality of employing interpolation.

5 Empirical result

5.1 Results of the baseline regression

Table 2 reports the estimation results of the baseline regression.
To assess the robustness of the policy treatment effect, we employ
three machine learning methods: Lasso regression with cross-
validation (Lasso-CV), Elastic Net regression with cross-
validation (Elastic Net-CV), and Support Vector Machine (SVM).
The results show that the estimated treatment effect of Policy
remains positive and statistically significant at the 1% level across
all specifications. This implies that the implementation of GFRIPZ
causally enhances CUE, thereby strongly supporting Hypothesis 1.

5.2 Robustness test

5.2.1 Eliminating the impact of interpolation
Given that the linear interpolation method employed in this

studymay lead to underestimation of the true variability of variables,
thereby affecting the accurate estimation of policy effects, we
conducted additional regressions using non-interpolated data.
The estimation results are presented in Column (1) of Table 3. It
is evident that after eliminating the impact of linear interpolation,
the treatment coefficient remains significantly positive and
consistent with the baseline regression results. This not only
ensures the robustness of the baseline regression findings but also
demonstrates that the interpolation method has no significant
impact on the regression conclusions.

5.2.2 Exclusion of special samples
Given the unique advantages of municipalities directly under the

central government (e.g., Beijing and Shanghai) in policy
environments, infrastructure development, and public service
levels, including all cities in the regression analysis may introduce
estimation bias. To address this, we exclude these municipalities

from the sample and re-estimate the model using the remaining
observations. As shown in Column (2) of Table 3, the treatment
coefficient remains statistically significant and positive after
excluding special samples, demonstrating the robustness of the
baseline regression results.

5.2.3 Controlling for confounding policy
During the implementation of GFRIPZ, other concurrent

policy—including the Comprehensive Demonstration Pilot for
Energy Conservation and Emission Reduction Fiscal Policy (Ren,
et al., 2024), the Pilot on Paid Use and Trading of Energy
Consumption Rights (Du, et al., 2023), and the Pilot on Emission
Rights Trading (Zhou, et al., 2019)—may influence the CUE of pilot
cities, leading to biased policy effect estimates. To control for these
confounding policy effects, we added dummy variables representing
the aforementioned policy to the baseline model and re-estimated it
using the DML approach. As presented in Column (3) of Table 3, the
DML estimates remain robust after accounting for potential
interference from other policy, confirming the consistency of
our findings.

5.2.4 Model parameter adjustments
To mitigate potential bias in the model specification of the

DML method and enhance data utilization efficiency, we re-
estimate the model by varying the sample splitting ratios to
10 and 3. The results, as presented in Columns (4) and (5) of
Table 3, show that the estimated treatment coefficients remain
positive and statistically significant at the 1% level, indicating that
the GFRIPZ significantly enhances CUE. This outcome further
confirms the robustness of the baseline regression findings.

5.2.5 Change of estimation model
To further verify the robustness of the baseline regression

results, this study conducts robustness checks by constructing a
traditional Difference-in-Differences (DID) model. The specific
model is specified as shown in Equation 8:

CUEit � β0 + θ0Policyit + β1Xit + λi + ωt + εit (8)

Where β0 represents the intercept term, λi and ωt denote
individual fixed effects and time fixed effects respectively, and εit
is the random error term. All other symbols retain their
original meanings.

TABLE 3 Robustness test.

Non-
interpolated

Remove special samples Other policy implications Cutting ratio DID

(1) (2) (3) (4) (5) (6)

Policy 0.078*** (0.013) 0.076*** (0.008) 0.076*** (0.008) 0.075*** (0.008) 0.075*** (0.008) 0.077***
(0.017)

Control YES YES YES YES YES YES

City FE YES YES YES YES YES YES

Time FE YES YES YES YES YES YES

Obs 2,996 3,156 3,204 3,204 3,204 3,204
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The estimation results of the DID model are presented in
Column (6) of Table 3. It shows that even after replacing the
model, the treatment coefficient remains significantly positive at
the 1% level, consistent with the baseline regression results. This not
only confirms the robustness of the baseline findings but also
reaffirms the significant causal relationship between
GFRIPZ and CUE.

Subsequently, we employ an event study approach to further
examine the pre-treatment parallel trends and post-treatment
dynamic effects. The dynamic model is specified as shown in
Equation 9:

CUEit � β0 + ∑3
k�−5

θkPolicy
k
it + β1Xit + λi + ωt+εit (9)

Where Policyk
it is a dummy variable for the k-th year relative to the

implementation of GFRIPZ, with k indicating the timing of policy
implementation. The variable takes the value of 1 if a city is a pilot city in
year k, and 0 otherwise. Observations more than 5 periods before policy
implementation are collapsed into the fifth pre-treatment period, while

those beyond 3 periods after implementation are collapsed into the third
post-treatment period. The first implementation period serves as the
reference period. All other variables remain consistent with the baseline
regression.

Figure 3 presents the parallel trends test results. It demonstrates
that prior to GFRIPZ implementation, there were no significant
differences in CUE between pilot and non-pilot zones, indicating
parallel development trends that satisfy the parallel trends
assumption.

Additionally, we conduct a randomized placebo test to mitigate
potential confounding effects from unobservable variables.
Specifically, we randomly select a “pseudo-treatment group” from
all sample cities, matching the size of the actual treatment group in
the baseline regression. The interaction term between this pseudo-
group and the policy timing dummy constitutes a “pseudo-policy
variable,” which replaces the original policy variable in the
regression. By repeating this process 500 times, we obtain
500 estimated coefficients and their p-values. Figure 4 displays
the placebo test results. It reveals that most estimated coefficients
cluster around zero and deviate significantly from the true estimated
coefficient, confirming that the placebo test is passed.

6 Further analysis

6.1 Mechanism validation

Based on the theoretical framework established earlier, the
GFRIPZ enhance CUE through three primary pathways:
industrial structure optimization, energy intensity reduction, and
strengthened public environmental concern. To empirically identify
these mechanisms, we follow the approach of Shen, et al. (2024) and
specify the mechanism validation model as shown in Equations
10, 11:

MEVit � θ1Policyit + g Xit( ) + Uit (10)
CUEit � α1Policyit + α2MEVit + g Xit( ) + Uit (11)

WhereMEV denotes the mechanism variable, and θ1 represents
the treatment effect of the policy variable on the mechanism
variable; other symbols retain their original definitions.

6.1.1 Industrial structure mechanism
The GFRIPZ reduces frictional costs in corporate

transformation through the implementation of green financial
instruments, providing smooth transition pathways for industrial
structure optimization. This facilitates the shift of traditional “three-
high” industries toward low-carbon sectors. Such structural
optimization helps cities reduce their reliance on high-carbon
industries (He et al., 2019b), thereby breaking carbon lock-in and
improving carbon unlocking efficiency. To validate this mechanism,
this study adopts the ratio of the tertiary industry’s added value to
the secondary industry’s added value as a measure of industrial
structure optimization (ISO). The mechanism test results are
presented in Columns (1) and (2) of Table 4. The results in
Column (1) show that the coefficient of Policy is significantly
positive at the 1% level, indicating that the implementation of
GFRIPZ significantly optimizes industrial structure. The results

FIGURE 3
Parallel trends test results.

FIGURE 4
Placebo test results.
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in Column (2) demonstrate that after incorporating the mediating
variable ISO, the treatment coefficient of Policy on CUE remains
significantly positive at the 1% level. However, its absolute value
decreases compared to the baseline regression, while the coefficient
of ISO is significantly positive at the 5% level. This suggests the
existence of a positive partial mediation effect, meaning GFRIPZ
implementation enhances CUE by promoting industrial structure
optimization. Furthermore, the Sobel test yields a Z-statistic of
2.142, significant at the 5% level. The 95% confidence interval from
1,000 bootstrap tests is (0.001, 0.006), which is positive and
excludes zero. These results further confirm the presence of a
mediation effect through industrial structure optimization.

6.1.2 Energy intensity reduction mechanism
The GFRIPZ employs a dual approach to reduce societal energy

intensity. On one hand, it mitigates risks for enterprises engaging in
low-carbon technology innovation and energy transition through
incentive mechanisms (Wang, et al., 2021). On the other hand, it
compels high-energy-consuming enterprises to pursue low-carbon
transformation and achieve energy conservation and emission
reduction via regulatory constraints (Song, et al., 2021). These
combined effects effectively lower overall energy intensity and
enhance CUE. To validate this mechanism, this study adopts the
ratio of energy consumption to GDP as the metric for Energy
Intensity (EI), following the methodology of Li and Lin (2015).
The mechanism test results are presented in Columns (3) and (4) of
Table 4. Column (3) shows that the coefficient of Policy is
significantly negative at the 1% level, indicating that GFRIPZ
implementation significantly reduces energy intensity. Column
(4) results demonstrate that after introducing the mediating
variable EI, the treatment coefficient of Policy on CUE remains
significantly positive at the 1% level. However, its absolute value
decreases compared to the baseline regression, while the coefficient
of EI is significantly negative at the 1% level. This confirms a positive
partial mediation effect, implying that GFRIPZ enhances CUE
through reducing energy intensity. Additionally, the Sobel test
yields a Z-statistic of 3.802, significant at the 1% level. The 95%
confidence interval from 1,000 bootstrap tests is (0.005, 0.015),

which is positive and excludes zero. These findings further verify
the mediating role of energy intensity.

6.1.3 Public environmental concern mechanism
The implementation of the GFRIPZ has expanded channels for

public access to environmental information and enriched incentive
mechanisms for civic participation, thereby strengthening public
environmental concern (Pedersen, et al., 2021; Zhang, et al., 2024).
This strengthened public environmental concern fosters low-carbon
awareness among individuals and induces self-regulating
consumption behaviors (Fu and Ding, 2024), which reduce
unnecessary resource depletion and carbon emissions. This process
further contributes to breaking societal lock-ins and enhancing CUE.
To validate this mechanism, we employ the Baidu search index for
“environmental pollution” following the methodology of Liu and Mu
(2016) to quantify the strength of public environmental concern
(PEC). The mechanism test results are presented in Columns (5)
and (6) of Table 4. Column (5) indicates that the coefficient of Policy is
significantly positive at the 1% level, demonstrating that GFRIPZ
implementation significantly strengthens public environmental
concern. Column (6) results reveal that after including the
mediating variable PEC, the treatment coefficient of Policy on CUE
remains significantly positive at the 1% level. However, its absolute
value decreases relative to the baseline regression, while the coefficient
of PEC is significantly positive at the 1% level. This provides evidence
for a positive partial mediation effect, implying that GFRIPZ enhances
CUE by strengthening public environmental concern. Moreover, the
Sobel test yields a Z-statistic of 5.194, significant at the 5% level. The
95% confidence interval from 1,000 bootstrap tests is (0.003, 0.014),
which is positive and excludes zero. These results robustly validate the
mediating role of public environmental concern.

6.2 Heterogeneity analysis

6.2.1 Geographical location heterogeneity
Since the implementation of the 14th Five-Year Plan, key

national policy documents including the Guidance on Promoting

TABLE 4 Impact mechanism validation.

(1) (2) (3) (4) (5) (6)

ISO CUE EI CUE PEC CUE

Policy 0.197*** (0.036) 0.071*** (0.009) −0.196*** (0.039) 0.073*** (0.013) 1.346*** (0.234) 0.066*** (0.013)

ISO — 0.013** (0.005) — — — —

EI — — — −0.025*** (0.005) — —

PEC — — — — — 0.039*** (0.002)

Control YES YES YES YES YES YES

City FE YES YES YES YES YES YES

Time FE YES YES YES YES YES YES

Obs 3,204 3,204 3,204 3,204 3,204 3,204

Sobel-Z — 2.142** — 3.802*** — 5.194***

Bootstrap confidence interval (0.001,0.006) (0.005,0.015) (0.003,0.014)
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a New Landscape in Western Development in the New Era and the
*14th Five-Year Plan for Regional Coordinated Development* have
established “leveraging the first-mover advantages of eastern regions
to boost the rise of less-developed western regions” as their core
strategic orientation. These policies explicitly propose developing an
“Eastern Leadership-Regional Synergy-Industrial Linkage”model to
build a new pattern of opening-up featuring land-sea coordination
and east-west reciprocity. This strategic framework not only
emphasizes the exemplary role of eastern regions in technological
innovation, institutional reform, and factor allocation, but also
prioritizes concrete mechanisms such as east-west pairing
assistance, joint construction of industrial parks, and
infrastructure connectivity. These measures aim to facilitate the
flow of advanced production factors to western regions.
Geographically, the GFRIPZ may exhibit differential impacts
depending on whether cities are located in eastern or western
China. Accordingly, we divide all city samples into eastern and
western groups based on the Hu Huanyong Line (also known as the
Heihe-Tengchong Line), assigning a value of 1 to cities east of the
line and 0 to those west of it, thereby constructing a geographical
dummy variable (EW). We then incorporate an interaction term
(EW × Policy) between this dummy and the policy dummy into the
baseline regression model. The estimation results in Column (1) of
Table 5 show that the coefficient of EW × Policy is statistically
significant at the 1% level with a positive sign, indicating that the
GFRIPZ exerts stronger enhancing effects on CUE in regions east of
the Hu Huanyong Line.

The underlying causes lie in two structural disparities between
eastern and western regions. Firstly, differences in developmental
foundations shape policy transmission efficiency. As the forefront of
China’s reform and opening-up, eastern regions have cultivated a
multi-dimensional opening network through four decades of
export-oriented growth. Centered on international financial hubs
like Shanghai and Shenzhen, with the Yangtze River Delta and Pearl
River Delta as pivotal clusters, this geographical advantage has
accumulated substantial institutional capital. In contrast, western
regions—despite their locational potential as Belt and Road land
corridors—suffer from inadequate infrastructure density. This
impedes agglomeration of cross-border capital, technology, and

talent essential for green finance policies, directly constraining
GFRIPZ’s real-economy transmission efficiency. Secondly, the
innovation capacity gradient affects policy outcomes. Eastern
regions leverage integrated industrial chains to demonstrate dual
excellence in low-carbon innovation quantity and quality, creating
strong agglomeration effects. Western regions, however, face
multidimensional bottlenecks: insufficient human capital,
overdependence on traditional industries, and underdeveloped
technology markets, severely restricting intra-regional innovation
circulation. This technological generation gap prevents western
regions from achieving developmental leaps through
technological advancement under GFRIPZ, unlike their eastern
counterparts. Consequently, GFRIPZ exerts stronger CUE-
enhancing effects east of the Hu Huanyong Line (China’s
geographical demarcation line).

6.2.2 Heterogeneity of city size
As an important dimension measuring urban development

disparities, city size not only reflects differences in population
agglomeration, economic aggregate, and spatial distribution, but
is also closely related to key factors such as industrial structure
optimization capacity, technological innovation intensity, and
resource allocation efficiency. Cities of different scales
undoubtedly exhibit significant divergences in absorption
capacity for green financial resources, efficiency of low-carbon
technology conversion, and carbon emission governance models.
Therefore, from the perspective of city size, GFRIPZ may
demonstrate significant differential characteristics due to city size.
In this regard, based on the definition of city size in China’s
2015 Notice on Adjusting City Size Classification Standards, this
study divides sample cities into large cities and small-medium cities
according to municipal district population size, where cities with
municipal district population exceeding 3 million are defined as
large cities and assigned a value of 1, otherwise as small-medium
cities and assigned a value of 0. This constructs a city size dummy
variable (SIZE), and its interaction term (SIZE × Policy) with the
policy dummy variable is introduced into the baseline model for
regression. The estimation results are shown in column (2) of
Table 5, where the coefficient of SIZE × Policy is significantly

TABLE 5 Heterogeneity analysis.

(1) (2) (3) (4) (5)

CUE CUE CUE CUE CUE

EW × Policy 0.084*** (0.010) — — — —

SIZE × Policy — 0.077*** (0.016) — — —

RESCITY × Policy — — 0.051*** (0.009) — —

NET × Policy — — — 0.085*** (0.013) —

FIN × Policy — — — — 0.075*** (0.010)

Control YES YES YES YES YES

City FE YES YES YES YES YES

Time FE YES YES YES YES YES

Obs 3,204 3,204 3,204 3,204 3,204
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positive at the 1% level, indicating that the effect of GFRIPZ on
enhancing CUE is significantly better in large cities than in
western regions.

The reasons are as follows: first, large cities usually possess
denser financial institution networks and specialized service
capabilities, and this agglomeration effect strengthens the synergy
of policy implementation. Relatively, small-medium cities are
constrained by limited numbers of financial institutions and
shortage of professionals, making it difficult to meet policy
requirements; second, the industrial structure of large cities is
mainly dominated by high-value-added services and advanced
manufacturing, where innovation in financial instruments is
more effective for their low-carbon transition. The proportion of
such enterprises in small-medium cities is low, with relatively
insufficient policy demand, leading to diluted policy effects;
additionally, large cities concentrate more research institutions
and consumer markets, and the resulting scale effects provide
strong driving force for green technology application. Small-
medium cities find it difficult to replicate such infrastructure,
resulting in relatively weaker policy effects. Therefore, GFRIPZ
has a stronger CUE-enhancing effect in large cities.

6.2.3 Heterogeneity of resource endowment
Resource endowment, as the foundational condition for regional

development, not only determines the initial direction of factor
allocation, but also shapes long-term development trajectories
through industrial lock-in effects. China’s resource-based cities
universally exhibit the typical trinity of “heavy industrial
structure, singular growth drivers, and concentrated
environmental pressures.” This development model, formed
through resource extraction, exhibits a non-negligible inherent
tension with the low-carbon transition logic required by the
GFRIPZ policy. Given varying resource endowment levels, the
GFRIPZ may exert differential effects across cities. To investigate
this, we categorize all sample cities into two groups based on the
criteria for resource-based cities defined in China’s National
Sustainable Development Plan for Resource-Based Cities
(2013–2020), assigning a value of 1 to non-resource-based cities
and 0 to resource-based cities. This creates a resource endowment
dummy variable (RESCITY), and an interaction term
(RESCITY × Policy) is introduced into the baseline regression
model. The estimation results in Column (3) of Table 5
demonstrate that the coefficient of RESCITY × Policy is
significantly positive at the 1% level, suggesting that the
GFRIPZ’s enhancing effect on CUE is stronger in non-resource-
based cities than in resource-based cities. This finding aligns with the
traditional “resource curse” hypothesis (Sachs and Warner, 2001).

The reasons are as follows: on the one hand, the industrial
structure lock-in effect in resource-based cities leads to policy
transmission blockages. Resource-based cities face dependence on
three paths—factor allocation inertia, sunk cost constraints, and
associated industry attachment—which commonly form “high-
carbon lock-in” characteristics. The resulting investment
preference for traditional resource industries means that even
though GFRIPZ introduces substantial incentive policies for low-
carbon industries, it still lacks attractiveness to social capital, thereby
weakening policy effectiveness. On the other hand, resource-based
cities also confront dual constraints of market demand limitations

and institutional transformation resistance. Specifically, resource-
based cities generally face population shrinkage pressure, resulting
in insufficient scale of low-carbon markets. Simultaneously, fiscal
revenue in resource-based cities is highly dependent on resource-
related taxes, causing local governments to face the trade-off
dilemma between “short-term fiscal pains” and “long-term
uncertain benefits” when promoting green transitions,
consequently leading to rigid policy response mechanisms.
Therefore, compared to resource-based cities, GFRIPZ exhibits
stronger CUE-enhancing effects in non-resource-based cities.

6.2.4 Heterogeneity of internet development levels
Against the backdrop of rapid digital economy development,

green finance is undergoing profound technological transformation.
Internet technologies—through underlying infrastructures like 5G
communications, big data analytics, and blockchain smart
contracts—deeply integrate with operational scenarios such as
green credit, green insurance, and carbon finance, spawning a
new “Internet Plus Green Finance” ecosystem. This technology
empowerment not only revolutionizes financial supply modes but
also possesses the potential to reshape policy transmission
mechanisms. Consequently, the GFRIPZ may exhibit significant
differential effects depending on the level of urban internet
development. To address this, this study employs the number of
internet users per 100 people in each region as a proxy for urban
internet development. Cities with internet development levels above
the median are assigned a value of 1, while those below the median
are assigned 0, constructing a dummy variable for internet
development level (NET). The interaction term between NET
and the Policy dummy variable (NET × Policy) is then
incorporated into the baseline model as a core explanatory
variable. The estimation results, presented in Column (4) of
Table 5, show that the coefficient of NET × Policy is
significantly positive at the 1% level. This indicates that internet
development level indeed leads to heterogeneous implementation
effects of GFRIPZ, with regions enjoying higher internet
development demonstrating greater improvements in CUE
through GFRIPZ.

The reasons are as follows: on the one hand, regions with high
internet development levels possess stronger technology
empowerment capabilities, which can provide diversified support
for implementing green finance policies. Advanced network
infrastructure reduces geographical constraints on green financial
services, enabling widespread application of digital tools like
blockchain traceability and AI risk assessment, creating market
spaces unreachable by traditional finance, promoting innovative
businesses such as green supply chain finance, and significantly
enhancing cross-regional green capital allocation efficiency. On the
other hand, internet technology also reconstructs the policy
transmission environment and social interaction patterns. For
example, enhanced government digital governance capabilities
greatly improve cross-departmental data sharing efficiency,
breaking “information silos” in traditional policy implementation.
Simultaneously, in high-internet-development regions, policy
signals can rapidly penetrate to enterprises and the public
through channels like social media and government platforms.
Enterprises can precisely capture green finance policy dividends
via big data analytics to proactively adjust production processes
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to meet green credit standards, while the public can more
conveniently invest in green financial products. This dual
mechanism of technology empowerment and social synergy
enables GFRIPZ to more effectively activate green production
factors in internet-developed regions. Therefore, GFRIPZ
exhibits stronger CUE-enhancing effects in cities with higher
internet development levels.

6.2.5 Heterogeneity of financial
development levels

Due to significant gradient differences in dimensions such as
capital allocation efficiency, risk pricing capacity, and completeness
of financial instruments across regional financial systems, such
structural disparities cause the functional performance of
financial systems in mobilizing social capital, dispersing
environmental risks, and optimizing resource allocation to exhibit
marked geographical differentiation. Consequently, GFRIPZ may
similarly demonstrate significant differential characteristics due to
disparities in regional financial development levels. To address this,
this study employs the ratio of deposit and loan balances to GDP as
an indicator of urban financial development. Cities with financial
development levels above the median are assigned a value of 1, while
those below are assigned 0, thereby constructing a financial
development level (FIN) dummy variable. The interaction term
between FIN and the Policy dummy variable (FIN × Policy) is
introduced into the baseline model as the core unlocking variable. As
shown in Column (5) of Table 5, the coefficient of FIN × Policy is
significantly positive at the 1% level, indicating that GFRIPZ exerts
stronger enhancement effects on CUE in regions with higher
financial development.

The underlying reasons are twofold: firstly, regions with higher
financial development levels possess more efficient capital allocation
mechanisms that enable precise channeling of policy dividends
released by GFRIPZ toward low-carbon technology innovation
and green industry projects through market-based screening.
This facilitates the transformation of low-carbon industries,
thereby amplifying policy-driven effects on carbon efficiency
enhancement. Secondly, stronger risk pricing capabilities and
comprehensive financial instruments provide risk buffering and
fund mobilization advantages for policy implementation.
Financial institutions can hedge market uncertainties arising
from environmental policies by developing derivatives like carbon
futures and carbon options, reducing risk premiums for green
investments. Simultaneously, this generates investment
demonstration effects, continuously attracting long-term capital
such as insurance funds and pension funds, forming sustained
and stable green capital supply, consequently strengthening
policy effects on CUE enhancement. Therefore, GFRIPZ exerts
stronger CUE-enhancing effects in cities with higher financial
development levels.

6.2.6 Heterogeneity analysis of institutional
contextualization

Considering that the success of GFRIPZ in pilot zones may
benefit from certain unique institutional conditions, thus limiting its
generalizability. Therefore, this study conducts heterogeneity
analysis of institutional contextualization from three dimensions:
public data openness, carbon emission trading, and initial green

resource endowment, to reveal differentiated mechanisms of
policy effects.

Public data openness serves as a crucial institutional foundation
for green finance development, where enhanced data transparency
helps reduce information asymmetry and strengthens supervision
and feedback mechanisms for policy implementation. In regions
with higher data openness, financial institutions canmore accurately
identify green projects and optimize resource allocation efficiency,
thereby improving carbon unlock efficiency. For example, by
disclosing corporate environmental data and carbon emission
information, financial institutions can assess project risks more
precisely, reducing “greenwashing” behaviors. Consequently,
GFRIPZ is likely to benefit from local public data openness
levels. In view of this, based on the presence of public data
openness platforms, this study divides sample cities into two
groups for regression analysis, with specific heterogeneity results
shown in Columns (1) and (2) of Table 6. The regression results
show that in cities with public data openness platforms, the
treatment coefficient is significantly positive at the 1% level,
whereas in cities without public data openness platforms, the
treatment coefficient is insignificant. This result indicates that
GFRIPZ indeed benefits substantially from local public data
openness levels.

Carbon emission trading pilots, as market-based emission
reduction mechanisms, can guide corporate behavior through
price signals and enhance synergistic effects of green finance
policies. By establishing carbon emission trading markets, pilot
regions form clear carbon pricing mechanisms that incentivize
enterprises to invest in low-carbon technologies and green
projects. Therefore, GFRIPZ is likely to benefit from institutional
advantages generated by carbon emission trading pilots. In view of
this, based on whether they are carbon emission trading pilot cities,
this study divides sample cities into two groups for regression
analysis, with specific heterogeneity results shown in Columns
(3) and (4) of Table 6. The regression results show that in
carbon emission trading pilot cities, the treatment coefficient is
significantly positive at the 1% level, whereas in non-pilot cities, the
treatment coefficient is insignificant. This difference suggests that
GFRIPZ’s success likely benefits from more mature market
mechanisms and stronger policy enforcement in pilot regions.

Green resource endowment is a critical factor for green finance
development. Regions with abundant forest resources and high
green resource endowment undoubtedly possess stronger carbon
sink capacities, providing more stable ecological foundations for
green finance projects. Therefore, GFRIPZ’s success is highly likely
to benefit from local green resource endowment levels. In view of
this, based on initial forest coverage rates, this study divides sample
cities into two groups: those above the average are defined as high
green resource endowment cities, and those below as low
endowment cities, both undergoing regression analysis, with
specific heterogeneity results shown in Columns (5) and (6) of
Table 6. The regression results show that in cities with higher green
resource endowment, the treatment coefficient is significantly
positive at the 1% level, whereas in resource-scarce regions, the
treatment coefficient is insignificant. This result closely relates to the
ecological value of forest carbon sinks, as regions with high green
resource endowment can enhance policy emission reduction effects
through natural carbon sequestration mechanisms. Therefore,
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GFRIPZ’s success indeed partially benefits from pilot regions’ green
resource endowment levels.

The above analysis confirms that the impact of GFRIPZ on CUE
is not homogeneous, but rather benefits considerably from
empowerment by its unique and relatively superior institutional
environments (such as public data openness, carbon emission
trading pilots, and green resource endowment). This implies that
direct replication of pilot experiences may fail to achieve target
expectations, since non-pilot regions lacking similar data support,
mature carbon markets, or corresponding green foundations will
likely face severely constrained policy effectiveness manifestation.
Therefore, enhancing the universal applicability and effectiveness of
policies hinges crucially on identifying and bridging gaps in critical
institutional elements between target regions and successful pilot
zones, following context-specific principles to differentially
construct supporting systems for policy implementation.

6.3 Spatial effects analysis

6.3.1 Spatial DID model specification
The preceding analysis indicates that green financial capital

guided by GFRIPZ exhibits distinct spatial characteristics. It may
generate spillover effects on neighboring regions through channels
such as low-carbon technology diffusion, capital flows, and
industrial linkages, thereby helping to dismantle green financial
barriers between regions and jointly enhance regional CUE. To
identify these spatial spillover effects, this study constructs a SDID
model. The model is specified as shown in Equation 12:

CUEit � α1 + ρWCUEit + α2Policyit + α3WPolicyit + β1Xit

+ β2WXit + μi + λt + εit (12)

Where W denotes the spatial weight matrix. WCUEit,
WPolicyit, and WXit represent the spatial lag terms of carbon
unlock efficiency, green financial policy, and control variables,
respectively. μi and λt indicate individual fixed effects and time
fixed effects, while εit it is the error term. To ensure robustness, we
employ three spatial weight matrices: an economic distance matrix
(W1), an inverse geographical distance matrix (W2), and an
economic-geographical nested matrix (W3).

6.3.2 Spatial econometricmodel specification tests
Based on three spatial weight matrices, this study employs the

Global Moran’s I index to examine the spatial dependence of urban
CUE - a prerequisite for constructing spatial regression models. As
shown in Table 7, the Moran’s indices of urban CUE have been
significantly greater than zero since 2012. This indicates the
existence of distinct positive spatial autocorrelation among
cities’ CUE, with an overall strengthening trend over time,
thereby justifying the necessity of establishing spatial
econometric models.

6.3.3 Global spatial autocorrelation test
To validate the rationality of spatial model construction, this

study employs Lagrange Multiplier (LM), Likelihood Ratio
(LR), and Wald tests to examine whether the Spatial Durbin
Model (SDM) degenerates into Spatial Error Model (SEM) or
Spatial Lag Model (SAR) under different spatial weight
matrices. As shown in Table 8, all test results demonstrate
statistical significance at conventional levels. Therefore, the
SDM does not degenerate into either SEM or SAR models,
confirming the appropriateness of maintaining the general
SDM specification.

6.3.4 Spatial effects analysis
Building on the preceding analyses that have validated the

rationality and necessity of the constructed SDID, we proceed to
detailed regression analysis. Columns (1), (2), and (3) in Table 9
present the regression results under the economic distance matrix,
inverse geographic distance matrix, and economic-geographic
nested matrix, respectively. The spatially lagged term WPolicy
exhibits statistically significant positive coefficients at the 1%
level, indicating that the GFRIPZ in neighboring regions also
enhances local CUE. This validates Hypothesis H5 by confirming
the presence of positive spatial spillover effects from GFRIPZ.

The underlying mechanism lies in the dual role of GFRIPZ:
while directly promoting regional low-carbon technological
innovation, it facilitates the diffusion of low-carbon technologies
to adjacent areas through spatial knowledge spillovers, thereby
driving collaborative innovation in low-carbon technologies
across neighboring regions. Furthermore, the deepening
interregional green financial cooperation enhances the absorptive

TABLE 6 Heterogeneity analysis of institutional contextualization.

Whether there is a public data
open platform

Whether it is a pilot city for carbon
emission trading

The level of green resource
endowment

Yes No Yes No High Low

(1) (2) (3) (4) (5) (5)

Policy 0.067*** (0.015) 0.021 (0.04) 0.183*** (0.048) −0.058 (0.053) 0.095*** (0.016) 0.005 (0.012)

Control YES YES YES YES YES YES

City FE YES YES YES YES YES YES

Time FE YES YES YES YES YES YES

Obs 599 2,605 360 2,844 1,572 1,632
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capacity for such spillovers, creating a virtuous cycle that
synergistically improves urban CUE.

6.4 Extended analysis

The institutional environment serves not only as the “soil” for
policy implementation but also as a key variable constraining the
generalizability of research findings. Significant divergences
undoubtedly exist across regions and countries in institutional
dimensions like government governance paradigms and market
maturity, which may limit the transferability of this study’s
conclusions. In view of this, this study systematically
deconstructs the mechanisms through which institutional
environments affect the extrapolability of research results from
governmental and market dimensions, aiming to provide
theoretical support for precise adaptation and effective

TABLE 7 Global spatial autocorrelation test.

Year W1 W2 W3

Moran’s I P -value Z -value Moran’s I P -value Z -value Moran’s I P -value Z -value

2011 −0.008 0.882 −0.149 0.037 0.000 8.008 0.034 0.218 0.218

2012 0.063 0.037 2.086 0.069 0.000 13.447 0.125 0.000 3.989

2013 0.101 0.001 3.272 0.077 0.000 14.933 0.167 0.000 5.291

2014 0.093 0.002 3.068 0.059 0.000 11.689 0.137 0.000 4.392

2015 0.079 0.010 2.573 0.058 0.000 11.432 0.126 0.000 4.012

2016 0.097 0.002 3.156 0.056 0.000 11.128 0.141 0.000 4.455

2017 0.144 0.000 4.633 0.055 0.000 10.834 0.183 0.000 5.757

2018 0.176 0.000 5.589 0.055 0.000 10.883 0.207 0.000 6.474

2019 0.186 0.000 5.859 0.05 0.000 9.791 0.215 0.000 6.672

2020 0.194 0.000 6.092 0.049 0.000 9.629 0.224 0.000 6.95

2021 0.201 0.000 6.302 0.045 0.000 8.991 0.225 0.000 6.962

2022 0.240 0.000 7.486 0.047 0.000 9.273 0.258 0.000 7.961

TABLE 8 Spatial econometric model selection test.

Testing method W1 W2 W3

Statistic P-value Statistic P-value Statistic P-value

LM Lag 15.159 0.000 1840.403 0.000 187.405 0.000

LM Error 40.472 0.000 4194.396 0.000 247.237 0.000

Robust LM Lag 2.915 0.088 33.515 0.000 19.349 0.000

Robust LM error 27.674 0.000 2357.344 0.000 60.781 0.000

LR test (SEM) 180.690 0.000 55.040 0.001 172.230 0.000

LR test (SAR) 165.400 0.000 52.990 0.000 156.950 0.000

Wald test (SAR) 168.830 0.000 52.940 0.001 159.920 0.000

Wald test (SAR) 183.890 0.000 54.390 0.000 174.570 0.000

TABLE 9 Results of the spatial regression.

Variables W1 W2 W3

(1) (2) (3)

Policy 0.056*** (0.012) 0.066*** (0.012) 0.056*** (0.012)

WPolicy 0.142*** (0.027) 0.071*** (0.021) 0.130*** (0.031)

Control YES YES YES

WControl YES YES YES

Wy YES YES YES

City FE YES YES YES

Time FE YES YES YES

Obs 3,206 3,206 3,206
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implementation of GFRIPZ policies in broader
governance contexts.

6.4.1 Governmental context
Government environmental regulation, as a crucial

component of the institutional environment, represents the
legalization degree and enforcement efficiency of
environmental regulations, playing pivotal guiding and
constraining roles in GFRIPZ implementation. On one hand,
stringent and effective environmental regulations provide robust
institutional safeguards for the carbon unlocking effects of
GFRIPZ policies. Specifically, higher environmental regulation
levels imply increased environmental costs for enterprises,
thereby forcing enterprises to boost investments in green
technology innovation and enhance energy use efficiency (Qin,
et al., 2024), ultimately strengthening GFRIPZ’s promotion effect
on CUE. On the other hand, lower government environmental
regulation levels may result in insufficient motivation for green
transition among enterprises, constraining GFRIPZ policy
effectiveness. Under such circumstances, even with policy
implementation, enterprises may prioritize funding short-term
profitable projects over low-carbon development, thereby
weakening policy carbon unlocking effects. Therefore,
government environmental regulation levels may be key
factors affecting the transferability of GFRIPZ’s carbon
unlocking effects.

In view of this, referencing Bao and Liu (2022), this study uses
Python to analyze and compile frequencies of environment-related
keywords in municipal government work reports from 2011 to 2022,
characterizing government environmental regulation levels by their
ratio to total word counts. Cities with regulation levels above the
median are assigned a value of 1, others 0, constructing a
government environmental regulation level (GOV) dummy
variable. Its interaction term with the policy dummy (Policy ×
GOV) is introduced as the core unlocking variable into the
baseline model for regression. Specific regression results in
Column (1) of Table 10 show the interaction coefficient
significantly positive at 1%, indicating stronger carbon unlocking
effects in regions with higher environmental regulation levels. This
demonstrates that the legalization degree and enforcement efficiency
characterized by government environmental regulation levels are
indeed critical factors affecting GFRIPZ policy transferability, thus
validating the above analysis.

6.4.2 Market context
Market integration degree reflects the efficiency and breadth of

market resource allocation, representing another vital dimension of
institutional environments. In regions with higher market
integration, resources flow freely across broader areas, creating
favorable conditions for effective GFRIPZ implementation. On
one hand, market integration helps break regional barriers,
facilitating optimal allocation of green financial resources (Chen,
et al., 2021). When market integration is high, green finance funds
flow more efficiently to enterprises and projects with strong low-
carbon innovation capabilities and high emission reduction
potential, improving fund utilization efficiency, promoting green
technology diffusion, and thereby enhancing GFRIPZ’s promotion
effect on CUE. On the other hand, in regions with severe market
fragmentation, green finance resources may suffer from local
protectionism, causing inefficient allocation and reducing policy
effectiveness. Local protectionism might direct support to high-
pollution enterprises while depriving low-carbon firms of necessary
resources, hindering carbon unlocking processes. Therefore, market
integration degree may also be a key factor affecting the
transferability of GFRIPZ’s carbon unlocking effects.

In view of this, referencing Yue and Han (2025), this study
characterizes market integration indices using reciprocals of market
segmentation indices. Cities with integration indices above the
median are assigned a value of 1, others 0, constructing a market
integration index (MAR) dummy variable. Its interaction term with
the policy dummy (Policy × MAR) is introduced as the core
unlocking variable into the baseline model for regression. Specific
regression results in Column (2) of Table 10 show the interaction
coefficient significantly positive at 1%, indicating stronger carbon
unlocking effects in regions with higher market integration indices.
This demonstrates market integration degree as a critical
institutional factor affecting research generalizability: higher
integration enhances policy effectiveness while lower integration
weakens it, thus validating the above analysis.

7 Conclusions and policy
recommendations

7.1 Conclusions

The GFRIPZ policy is a crucial initiative for breaking carbon
lock-in in China, with significant implications for achieving the dual
carbon targets. Using panel data from 267 Chinese cities spanning
2011 to 2022, this study constructs a green finance policy dummy
variable using GFRIPZ and applies the DML method to empirically
examine the impact of green finance policy on CUE. The specific
conclusions are as follows: (1) GFRIPZ significantly enhances urban
CUE, and this finding remains valid after a series of robustness
checks. (2) Mechanism validation reveals that GFRIPZ enhances
CUE through optimizing industrial structure, reducing energy
intensity, and strengthening public environmental concern. (3)
Heterogeneity analysis reveals stronger carbon unlocking effects
in eastern regions, large cities, non-resource-based cities, cities with
higher internet development levels, and cities with advanced
financial development. Simultaneously, GFRIPZ’s applicability
benefits from institutional contexts including regional public data

TABLE 10 Extended analysis.

(1) (2)

CUE CUE

Policy × GOV 1.093*** (0.364) —

Policy × MAR — 0.200*** (0.036)

Control YES YES

City FE YES YES

Time FE YES YES

Obs 3,204 3,204
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openness, carbon emission trading, and green resource
endowment. (4) Spatial effect analysis indicates that GFRIPZ
generates positive spatial spillover effects, significantly
enhancing CUE in neighboring regions. (5) Institutional
environments significantly influence the extrapolability of
GFRIPZ’s carbon unlocking effects, with stronger policy
impacts in regions exhibiting higher governmental
environmental regulation levels and market integration degrees.

7.2 Policy recommendations

First, it is imperative to continuously optimize green finance
policy while strengthening policy coordination and dynamic
adjustments. On one hand, enhanced coordination should be
established between green finance policy and industrial, energy,
and environmental sectors through cross-departmental policy
coordination mechanisms. A unified green finance policy
framework should be formulated to ensure alignment of policy
objectives and complementarity of policy instruments. On the
other hand, dynamic adjustments to policy instrument portfolios
should be implemented based on the developmental stages of pilot
zones, transitioning from initial incentive-driven approaches to
later-stage market-oriented decentralization to enhance policy
sustainability. Additionally, a policy evaluation and feedback
mechanism should be established to timely adjust policy
priorities, ensuring continuous alignment with regional
development needs.

Second, concerted efforts should be made to promote the
synergistic improvement of industrial structure, energy
intensity, and environmental accountability. For carbon-locked
industries, differentiated green finance support policy should be
formulated to implement incentive and constraint mechanisms.
Concurrently, low-carbon technological innovation should be
encouraged through strategic support for emerging industries.
Green finance instruments should be utilized to incentivize
enterprises to enhance energy efficiency and optimize energy
mix. The construction of energy internet infrastructure should
be accelerated, leveraging digital technologies to optimize energy
allocation and reduce overall energy intensity. Furthermore,
environmental information disclosure requirements should be
strengthened to enhance transparency of environmental
responsibilities among enterprises and financial institutions.
Environmental performance metrics should be incorporated
into corporate credit rating systems to elevate public
participation in unleashing carbon unlocking effects.

Third, differentiated policy implementation is crucial to
avoid the pitfalls of “one-size-fits-all” approaches. For central
and western regions facing dual challenges of ecological fragility
and economic underdevelopment, policy priorities should
initially focus on ecological restoration and low-carbon
industry cultivation, with subsequent gradual strengthening
of green finance capacity building. For small and medium-
sized cities, given their relatively scarce factor resources and
relatively weak carrying capacity, which make it difficult for
policy effects to be fully realized, actions can include
introducing provincial-level green finance platforms to
expand regional market cooperation, while also collaborating

with universities to jointly establish programs for targeted
training of urgently needed professionals. In addition, it is
necessary to focus on formulating “small and refined” green
finance products tailored to local characteristic industries, in
order to overcome the dual constraints of “insufficient supply”
and “weak demand” in green finance. In resource-endowed
regions, policy support should facilitate low-carbon
transformation of traditional industries through transition
incentives and green finance instruments that promote
industrial chain extension and diversification. For cities with
underdeveloped digital infrastructure, integration of green
finance with digital technologies should be prioritized to
address efficiency and coverage gaps in green financial
services. This includes enhancing digital infrastructure,
empowering financial technology applications, and exploring
digital green finance models. In financially underdeveloped
cities, capacity building should be reinforced through
combined external support and internal capability
enhancement to improve green financial service provision.

Fourth, the spatial spillover effects of policy should be fully
leveraged to establish a comprehensive carbon unlocking
development framework. Pilot cities should take the lead in
establishing cross-regional green finance cooperation platforms,
strengthening infrastructure interconnectivity, and constructing
regional low-carbon technology innovation networks. These
initiatives should facilitate the diffusion of low-carbon
technologies, optimize carbon resource allocation, and enhance
regional energy synergy efficiency, thereby exerting radiation
effects on neighboring cities. Non-pilot cities should actively
capitalize on policy spillovers from pilot cities by integrating
into regional green finance networks and establishing
specialized policy docking mechanisms. This approach enables
them to absorb low-carbon technology transfers and successful
experiences from pilot cities, ultimately developing differentiated
green finance systems tailored to local conditions to enhance
carbon unlocking capabilities.

Fifth, regarding policy transferability and scalability,
subsequent promotion requires two-pronged efforts in
optimizing institutional contexts and strengthening institutional
environments. In institutional contexts, strengthen the
construction of public data openness and sharing mechanisms
to promote cross-departmental green data integration and
standardized management, providing data support for green
finance policy implementation; improve carbon emission
trading market systems by enriching trading varieties and
mechanisms to enhance market liquidity and pricing efficiency;
tap into green resource endowment potential by establishing eco-
value transformation mechanisms that convert resource
advantages into low-carbon development advantages. In
institutional environments, elevate government environmental
regulation levels, intensify policy enforcement and assessment
to form forcing mechanisms for policy implementation.
Additionally, advance market integration construction to break
regional barriers and facilitate cross-regional flows of green factors,
creating favorable market conditions for broad applicability of
green finance policies. Through dual optimization of institutional
contexts and environments, enhance policy carbon unlocking
effects and extrapolability.
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7.3 Limitations and future studies

Currently, this study still has some limitations, but these
limitations also offer certain implications for future research.

Firstly, there are limitations in the sample data across multiple
dimensions. On the one hand, constrained by the availability of
county/district-level data, the research scale of this paper is
insufficiently refined, preventing further exploration of the
carbon unlocking effect of green finance policy from a more
granular perspective. On the other hand, the analysis in this
paper focuses solely on China’s green finance policy and does
not extend to an international perspective, while the effectiveness
of policy impacts clearly varies by country, which also affects the
universality of this paper’s conclusions to some extent.
Additionally, policy effects may exhibit lag, and this study ends
in 2022, failing to fully capture the long-term effects of a series of
policy deepening measures, such as newly established pilot zones
implemented after 2023. Secondly, there remain significant
limitations in both theoretical and empirical analysis. On the
one hand, as a macro-level empirical study, this paper does not
employ mathematical derivation methods to explore the proposed
theories. On the other hand, although the mechanism testing
section of this paper explores three pathways—industrial
structure, energy intensity, and public environmental
awareness—it is evident that more pathways await discovery;
simultaneously, this paper also does not investigate the
attenuation mechanism of the spatial spillover effects of green
finance policy, which may lead to overestimation or
underestimation of policy spillovers in distant versus
neighboring regions.

Therefore, future research could refine the scale to the county/
district level, expand the sample to an international scope, and
extend the data to a longer period to improve the accuracy of policy
evaluation and ensure the universality of research conclusions.
Concurrently, future studies could also enrich theoretical
exploration by constructing mathematical models, continue to
delve deeper into the transmission pathways between them, and
introduce more complex models, such as spatial models
incorporating attenuation mechanisms, to conduct more accurate
assessments of the carbon unlocking effect of green finance policies.
We hope the above research directions can offer inspiration for
further studies in this field.
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