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Prior studies on whether and how digital rural construction (DRC) contributes to
enhancing agricultural green total factor productivity (AGTFP) remain limited. This
study uses Difference-in-Differences method and panel data comprising
18,543 observations from 2,128 counties (districts) between 2012 and 2022 to
examine the impact of DRC on AGTFP and its underlying mechanisms. The
findings indicate that DRC significantly boosts AGTFP, a result that holds after
conducting several robustness checks and endogeneity test, including replacing
the dependent variable, excluding other policy impacts, adjusting the sample
period, and propensity score matching method. The mechanisms through which
DRC enhances AGTFP include improving land finance, alleviating land resource
misallocation, and fostering agricultural technology innovation. The effects of
DRC on AGTFP are notably more pronounced in the central and western regions
of China, non-major grain-producing areas, and regions with lower land transfer
efficiency. Our insights clarify the influence pathways through which DRC
facilitates the enhancement of AGTFP, offering fresh theoretical insights and
practical implications for further guiding DRC and leveraging the efficiency of
AGTFP.
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1 Introduction

Agricultural green total factor productivity (AGTFP) is defined as the production
efficiency in agriculture under resource and environmental constraints, aiming to enhance
economic efficiency while reducing environmental impacts (Wang X. et al., 2024). Such a
focus underscores the essential principles of sustainable agricultural progress (Chu et al.,
2024; Jiang et al., 2024; Xu et al., 2025). Historically, constrained by various factors, the
development of agriculture in China has faced bottlenecks such as low production
efficiency, economic benefits, and significant ecological and environmental pressures
(Hu et al., 2024). It is imperative to pinpoint new focal points that leverage digital
elements and technological innovation to empower agriculture, promoting a
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transformation towards intensive, efficient, and greener high-quality
development. Recently, the swift proliferation of the internet and
smartphones, along with the expansion of e-commerce channels, has
laid a solid foundation for digital rural construction (DRC) (Wu and
Liu, 2025). DRC is defined as the acceleration of information
infrastructure construction in rural areas, the integration of
information technology into rural production and life, the
promotion of applications such as remote education and
telemedicine, and the establishment of a digital governance
system for rural areas.1 As a confluence point of a network
powerhouse, digital China, and the rural revitalization strategy,
DRC has garnered substantial attention from the Chinese
government. The 2018 Central No. 1 Document proposed the
implementation of a digital rural strategy, marking a new stage
of comprehensive enhancement in the informatization construction
of China’s agriculture and rural areas. In 2019, the General Office of
the Communist Party of China Central Committee and the State
Council issued the “Digital Rural Development Strategy Outline,”2

which clearly outlined a comprehensive plan for DRC, providing
more robust support for rural digital development. In 2020, the
Central Cyberspace Affairs Commission, in collaboration with seven
other agencies, released the “Notice on Conducting National Digital
Rural Pilot Work,” followed by the announcement of the “National
Digital Rural Pilot Regions List,” which designated 117 counties
(cities, districts) as the inaugural group of national digital rural pilot
areas.3 Despite these policy documents closely following the new
changes faced by the informatization development of China’s
agriculture and rural areas and playing a guiding role, whether
DRC can act as a catalyst for enhancing AGTFP remains an issue to
be explored.

The academic consensus currently underscores multiple critical
viewpoints: First, the digital economy enhances agricultural
production efficiency and transforms agricultural growth modes
by providing platform technologies, thereby influencing agricultural
development patterns (Fabregas et al., 2019; Hu et al., 2024; Ye,
2025). Second, digital rural initiatives utilize digital technologies as
the most significant variable to improve agricultural economic
benefits and as a new form of productive power in agricultural
industry development (Li et al., 2025; Wang and Tang, 2023). These
technologies optimize resource allocation and integration, leading to
creative destruction and disruptive innovation in traditional
agriculture (Zhao Li et al., 2024), thus constructing an intensive,
efficient, and green modern agricultural industry. Third, digital
technologies exert strong spillover effects and empowering
functions on resources, industries, and agricultural entities (Du
et al., 2023; Subramanian, 2021). This influence optimizes the
rural labor structure, enhances the technological content within
agriculture, transforms agricultural production modes (Li et al.,

2023; Musajan et al., 2024), and stimulates the endogenous
development momentum of agriculture, which significantly
enhances agricultural modernization. Fourth, digital technologies
reduce the costs for farmers to access goods and market information
(De la Peña and Granados, 2024), thereby improving farmers’
abilities to connect with markets (Sarku and Ayamga, 2025).
Additionally, these technologies enhance the level of rural human
capital and drive the upgrading of the agricultural industry (Liu B.
et al., 2023; Zhao Liyang et al., 2024).

However, limited research has directly explored the impact of
DRC on AGTFP (Cai and Han, 2024; Lu et al., 2024; Xu et al., 2025),
leaving open the question of whether DRC can significantly enhance
AGTFP. Moreover, given the relatively recent introduction of DRC,
the transmission mechanisms through which it influences AGTFP
remain unclear. Additionally, the potential heterogeneous effects of
DRC on AGTFP have been underexamined. Addressing the
identified research gaps, this study recommends these RQs:

RQ1: Does DRC enhance AGTFP?
RQ2: What is the impact mechanism of DRC on AGTFP?
RQ3: Does the impact of DRC on AGTFP exhibit potential
heterogeneity?

The answers to these questions could provide decision-making
insights for effectively unleashing the potential of DRC, fostering the
economic upgrading of agriculture, and creating a new engine for
high-quality agricultural development. In our study, we treat the
DRC pilot policy as a quasi-natural experiment and empirically
evaluate the impact of the implementation of DRC on AGTFP using
a panel data set of 2,128 counties (districts) from 2012 to 2022. We
employ a Difference-in-Differences (DID)model to assess the effects
and their underlying mechanisms. Our findings confirm that DRC
significantly enhances AGTFP. Robustness checks further validate
the reliability of our results. Additionally, we identify three
mediating mechanisms through which DRC impacts AGTFP:
land finance, land resource misallocation, and agricultural
technology innovation. Our analysis reveals that DRC improves
levels of land finance and agricultural technology innovation, and
reduces land resource misallocation, all of which contribute to the
enhancement of AGTFP. Finally, we observe significant
heterogeneity in the impact of DRC on enhancing AGTFP in
agriculture across different geographic locations, grain functional
areas, and land transfer efficiency. This impact is stronger in central
and western China, non-grain-producing areas, and regions with
lower land transfer efficiency.

This study extends the marginal contributions in three
significant areas: First, it empirically investigates the influence of
DRC on AGTFP at the level of Chinese county and district,
enriching the quantitative research on how DRC influences high-
quality agricultural development. Second, the study delineates the
transmission mechanisms through which DRC enhances AGTFP,
focusing on land finance, land resource misallocation, and
agricultural technology innovation. This analysis provides
empirical support and policy guidance for optimizing DRC
policies and advancing high-quality agricultural growth. Third,
we discuss the DRC’s diverse impacts on AGTFP by geographical
location and grain functional areas, this research offers experiential
evidence for coordinated regional agricultural development.

1 Available online at: https://www.cac.gov.cn/rootimages/uploadimg/

1632875491344223/1632875491344223.pdf

2 Available online at: https://www.gov.cn/xinwen/2019-05/16/content_

5392269.htm

3 Available online at: https://www.cac.gov.cn/2020-10/23/c_

1605022250461079.htm
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This study is organized as follows: Section 2 delves into the
theoretical analysis and constructs the hypotheses. Section 3
describes the dataset, variables, and empirical method. Section 4
offers an in-depth examination and discussion of the empirical
results. Section 5 concludes the study.

2 Theoretical analysis and hypotheses
development

2.1 DRC and AGTFP

With the accelerated advancement of DRC, agricultural
operators are progressively enhancing their ability to collect,
transmit, and process data. This progress enables them to
optimize resource allocation, improve production efficiency,
reduce costs, and lower agricultural pollution and carbon
emissions. As a result, it facilitates a shift away from extensive
farming practices and addresses challenges arising from fragmented
management (Lu et al., 2024; Xu et al., 2025), making DRC a catalyst
for AGTFP. Specifically, advancing green technology and improving
its efficiency achieves this promotion effect (Chen et al., 2020; Zhao
Li et al., 2024).

First, regarding green technology advancement: (i) The
accelerated adoption of digital technologies such as 5G, artificial
intelligence, and the agricultural Internet of Things has significantly
driven innovation in agricultural production technologies. This
innovation contributes to reduced agricultural pollution and
carbon emissions, leading to green technological progress (Hao
et al., 2022; Li et al., 2024). (ii) DRC facilitates data sharing
between agricultural research institutions and enterprises, greatly
enhancing the precision of agricultural R&D. Such data sharing not
only expedites the development of new pesticides and fertilizers but
also improves their effectiveness and environmental safety, further
advancing green technologies (Guo, 2024; Zhao S. et al., 2024; Zhu
and Li, 2021). (iii) DRC supports the establishment of an
interconnected agricultural technology extension system, reducing
the costs of learning new technologies. This system boosts farmers’
adoption of green technologies, accelerating their diffusion and
implementation (De la Peña and Granados, 2024; Sarku and
Ayamga, 2025; Zhao Liyang et al., 2024).

Second, focusing on green technology efficiency: (i) DRC
accelerates agricultural information flows and eliminates
informational barriers. For instance, digital technologies allow
farmers to access real-time information on advanced production
techniques, market demand shifts, and updated government
policies. Such timely and comprehensive access promotes efficient
resource allocation and enables producers to adjust strategies in
response to market and environmental changes. This process
particularly encourages farmers to focus on reducing the
environmental impacts of agricultural activities, thereby
enhancing green technology efficiency (Xu et al., 2025). (ii) By
fully digitizing the agricultural value chain—including production,
management, and sales—DRC significantly optimizes production
processes. This transformation spans not only production and
processing stages but also extends to distribution, achieving
supply chain digitalization. Such extensive digitization reduces
information costs, enhances transparency across markets and

management, and boosts transaction efficiency. More
importantly, this process minimizes resource waste and optimizes
input utilization, directly improving green technology efficiency
(Cai and Han, 2024). Drawing on the above discussion, an
assumption is as follows:

H1: DRC enhances AGTFP.

2.2 DRC, land finance, and AGTFP

Studies have demonstrated that regions with better DRC and
integrated land finance systems exhibit higher levels of productivity
and sustainability in agriculture. These regions benefit from
streamlined land management processes that facilitate the
optimal use of agricultural land, leading to improvements in
AGTFP (Wang Y. et al., 2024; Jiang et al., 2022).

First, digital technologies such as Geographic Information
Systems (GIS), blockchain, and big data analytics are
transforming land records and transaction management. For
example, GIS offers important location-based information for
accurate land-use planning, improving farming efficiency, and
protecting the environment, which greatly helps AGTFP. Also,
blockchain technology ensures the transparency and security of
land transactions, minimizing fraud and disputes over ownership
(Hou R. et al., 2021). This clarity in ownership encourages
investments in sustainable agricultural practices and technologies.
Moreover, the use of big data analytics in rural areas enables more
informed decisions on land use. By analyzing extensive data on soil
quality, climate patterns, and crop yields, farmers and local
governments can align land-use decisions with sustainable
agricultural practices (Bennett et al., 2019). These technologies
further enhance land finance by ensuring accurate assessment
and efficient collection of land taxes and revenues (Ma et al.,
2020). This fiscal enhancement provides rural communities with
the resources necessary to invest in infrastructure and services that
promote sustainable agriculture (Deng et al., 2023). Second,
improved land finance supports the implementation of targeted
agricultural policies (Zhou et al., 2018). With strengthened fiscal
capacity, governments can subsidize green technologies and
sustainable farming practices (Hou S. et al., 2021), such as
precision agriculture, which reduces waste and maximizes
AGTFP. Thus, DRC integrates advanced digital technologies into
rural management and development, unlocking substantial
potential to improve AGTFP through enhanced land finance
mechanisms. Based on the above discussion, we proposed:

H2: DRC enhances AGTFP by improving land finance.

2.3 DRC, land resource misallocation,
and AGTFP

DRC holds transformative potential for enhancing AGTFP by
reducing the land resource misallocation (Cai and Han, 2024; Xie
et al., 2022). Digital technologies such as artificial intelligence (AI),
big data analytics, and remote sensing can dramatically improve the
accuracy of land assessment and ensure that agricultural practices
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are optimally aligned with land capabilities (Liu C. et al., 2023). For
instance, remote sensing technology offers the advantage of
monitoring land use changes in real time, providing data that
can help prevent overuse of land and facilitate sustainable
farming practices (Rogan and Chen, 2004; Mashala et al., 2023).
Big data analytics can process vast amounts of information from
these technologies to predict trends, optimize crop rotation, and
enhance land use planning (Yin et al., 2021). The application of these
technologies in the DRC leads to a more precise understanding of
land characteristics, which is essential for correcting misallocations
(Wang et al., 2025). By ensuring that each piece of land is used
according to its optimal agricultural potential, not only are yields
improved, but resources such as water and fertilizers are used more
efficiently, reducing waste and environmental impact. Moreover,
empirical evidence supports the notion that reducing resource
misallocation through digital means enhances rural land use
efficiency (Fan et al., 2025). Thus, these findings show that
regions implementing DRC in land resource misallocation
management observe marked improvements in AGTFP.
Accordingly, the subsequent hypothesis is advanced:

H3: DRC enhances AGTFP by mitigating land resource
misallocation.

2.4 DRC, agricultural technology innovation,
and AGTFP

As digital rural development progresses, local governments are
enhancing the infrastructure for digital technologies such as 5G
networks, data centers, and platform systems (Tim et al., 2021). This
enhancement provides better public infrastructure support for
various entities to engage in innovative activities, reducing the
costs and risks associated with these activities, thereby aiding
regional agricultural technology innovation. Agricultural
technology innovation introduces new concepts and knowledge
into traditional agriculture, improving agricultural production
efficiency and the utilization of input factors, reducing waste
emissions and environmental pollution, and facilitating a shift
towards agricultural growth with lower resource consumption
(Zhang et al., 2023). This shift significantly contributes to the
AGTFP improvement.

On the other hand, the DRC also promotes a digital
transformation in local rural governance models and public
service methods in transactions and finance (Malik et al., 2022).
This transformation encourages agricultural entities to enhance
their innovation awareness and capabilities, fosters learning and
technical spillovers among innovators, and creates a “demonstration
and incentive effect” for agricultural technology innovation (Zhang
and Zhang, 2024). Moreover, agricultural technology innovation
facilitates more rational allocation and tighter integration of factors
among various rural industries, promoting the penetration and
extension of rural industrial chains. This extension expands
traditional agriculture from a single production stage to
encompassing production, sales, and services within the entire
industrial chain (Limpamont et al., 2024). Consequently, this
leads to an optimized upgrade of the agricultural industry and
the emergence of new sectors such as leisure agriculture and

biotechnology (Zhang et al., 2022), further enhancing AGTFP.
Based on the analysis above, the following hypothesis is proposed:

H4: DRC enhances AGTFP by fostering agricultural technology
innovation.

Figure 1 presents our theoretical framework.

3 Methodology

3.1 Empirical strategy

As a convergence point of strategies focused on building a network
powerhouse, digital China, and rural revitalization, the development of
digital rural areas has received significant attention at the national level
in China. In 2018, China introduced the digital rural strategy in its “No.
1 Document,” followed by the publication of the “Digital Rural
Development Strategy Outline” in 2019, and the announcement of
the “National List of Digital Rural Pilot Areas” in 2020, designating
117 counties (cities, districts) as the initial batch of national digital rural
pilot areas. The construction goals of these pilot areas encompass seven
main aspects: (i) Undertake comprehensive planning and design for
digital rural development, tailoring construction plans to local
conditions. (ii) Enhance rural information infrastructure, actively
exploring new applications for digital infrastructure. (iii) Explore
new business models in the digital rural economy, vigorously
fostering high-information-intensity production and business
organizations with strong demonstration effects and tapping into
the potential applications of emerging digital technologies in
agricultural production. (iv) Promote the deep integration of
informatization and rural governance, fully leveraging grassroots
governance roles. (v) Improve the information service system,
precisely addressing the real needs of agriculture and rural areas.
(vi) Establish mechanisms for the integration and sharing of facility
resources, promoting information integration. (vii) Stimulate market
enthusiasm, nurturing a digital rural ecosystem.

The selection of these pilot areas and the structured rollout of the
policy allow us to treat the introduction of the digital rural pilot policy
as an exogenous policy shock. This setup is ideal for employing a DID
model to robustly determine the causal effects of DRC on the AGTFP
across varied regions. Because the use of the DID methodology is
underpinned by the exogeneity of the policy implementation, which is
assumed not to be influenced by prior trends in AGTFP within the
selected counties. We selected the intervention (digital rural policy)
because it is externally imposed and not a result of internal factors
within the pilot areas. This aligns with the characteristics of a quasi-
natural experiment. Consequently, we are consistent with established
methodologies (Wang Z. et al., 2024) and treat the introduction of the
digital rural pilot policy as an exogenous policy shock and employ a
DID model, as delineated in Equation 1, to ascertain the causal
impacts of DRC on AGTFP.

AGTFPct � α + βDIDct + δControlsct +∑Year +∑County + εct

(1)
Where t represents a given year and c denotes a specific county.
AGTFP refers to agricultural green total factor productivity. DIDct

indicates if county cwas influenced by the DRC pilot policy in year t.
The coefficient β is the primary coefficient of interest, with a
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significantly positive β indicating that the DRC positively impacts
AGTFP. The model includes control variables at the county level,
detailed in Table 2. Fixed effects for year and county are
incorporated as ‘Year’ and ‘County’ to adjust for time-specific
and county-specific variations. The stochastic error term is
represented by εct and α is a constant term in the model.

3.2 Variables declaration

3.2.1 Dependent variable: agricultural green total
factor productivity (AGTFP)

Drawing from the study by Wu and Zhang (2024), we employ
the non-desired output Slack-Based Measure (SBM) model and the
Global Malmquist Luenberger (GML) model to measure AGTFP.
The specifical steps are outlined as follows:

Step 1: Calculate the current year’s AGTFP for each county using
the non-desired output SBM model. The calculations are
detailed in Equations 2–6:

AGTFPSBM � min
1 − 1

m × ∑m
i�1

s−i
Xi

1 + 1
S1+S2 × ∑S1

r�1
Sgr
Yg
r
+ ∑S2

k�1
Sb
k

Yb
k

( )
i � 1, 2, . . . , m; r � 1, 2, . . . , S1; k � 1, 2, . . . , S2( ) (2)

Subject to X0 � X × λ + S- (3)
Yg

0 � Yg × λ − Sg (4)
Yb

0 � Yb × λ + Sb (5)
S− ≥ 0, Sg ≥ 0, Sb ≥ 0 (6)

Where AGTFPSBM denotes the AGTFP for each county. m
represents the number of input indicators. S1 and S2 denote the
number of desired and non-desired outputs, respectively. S− and Xi

represent the input slacks and input variables, while Sgr and Yg
r refer

to the shortfalls in desired outputs and the variables for desired
outputs, respectively. Sbk and Yb

k are the excesses in non-desired
outputs and the variables for non-desired outputs, respectively. λ is
the vector of weights. X0, Y

g
0 , and Yb

0 are the actual values of input
variables, desired output variables, and non-desired output variables
associated with the decision-making unit (DMU). Additionally, X,
Yg, and Sg represent the estimated input quantities, estimated
desired output variables, and estimated non-desired output
variables required by the DMU. S−, Sg, and Sb correspond to the
input slacks, shortfalls in desired outputs, and excesses in non-
desired outputs, as observed in the DMU.

Step 2: Utilize the GML index to measure changes in AGTFP,
which serves as our dependent variable in this study. The
specific model is as follows in Equation 7.

AGTFPt,t+1 � xt, yt, bt, xt+1, yt+1, bt+1( )
� 1 +Dt xt, yt, bt( )
1 +Dt+1 xt+1, yt+1, bt+1( ) ×

1+DG xt,yt,bt( )
1+Dt xt,yt,bt( )

1+DG xt+1 ,yt+1 ,bt+1( )
1+Dt+1 xt+1 ,yt+1 ,bt+1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� TEt+1

TEt
×
BPGt,t+1

t+1
BPGt,t+1

t

� GECt,t+1 × GTCt,t+1 (7)

Where AGTFP denotes the index of agricultural green total factor
productivity. An index value greater than 1 indicates an
improvement in productivity. GEC and GTC represent
technology efficiency and technology progress, respectively. t
denotes the year, x, y, and b represent the inputs, desired
outputs, and undesired outputs, respectively. TE stands for
overall technology efficiency. BPG denotes the distance between
the global technology reference set and the effective production
frontier, where DG(xt, yt, bt) is the reference set directional vector.
This vector indicates that the input x and the production structure
can adjust the output in the direction of the output vector,
potentially increasing production up to a maximum factor of λ.

Table 1 below illustrates the components that constitute the
AGTFP index. The calculation of agricultural carbon sequestration
is shown in Equation 8.

Carbon Sequestrationi � ∑n
k�0

Ck ·Dk( ) � ∑n
k

Ck · Yk/Hk( ) (8)

Where Carbon Sequestrationj represents the total carbon
sequestration of major crops in a i county (city, district); k
denotes the k-th crop; Ck is the carbon absorption rate, referring
to the amount of carbon absorbed per unit of dry organic matter
synthesized by k-th crop;Dk is the biological carbon content of k-th
crop; Yk is the economic yield of k-th crop; Hk is the economic
coefficient of k-th crop. Following Tian and Zhang (2013), Appendix
B provides the economic coefficients and carbon absorption rates for
major crops.4

FIGURE 1
Theoretical framework.

4 This study calculates carbon sequestration based on grain yield converted

to carbon absorption, without accounting for the effects of changes in

planting area or farming practices (e.g., planting density) on agricultural

carbon absorption.
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The specific calculation of agricultural carbon emissions is
shown in Equation 9.

E � ∑Ei � ∑Ti · δi (9)

Where E represents the total carbon emissions from agriculture; Ei

denotes the carbon emissions from each type of agricultural input
(also referred to as carbon sources, hereafter); Ti is the quantity of
the i-th carbon source; δi is the carbon emission coefficient of the
i-th carbon source. Appendix C summarizes the carbon emission
coefficients from agriculture.

The calculation of agricultural non-point source pollution is
shown in Equation 10.

Enon−point source � ∑
i

PEi 1 − ηi( )Ci EUi, S( ) (10)

Where Enon−point source represents the amount of non-point source
pollution emissions from agriculture. i denotes a county (city,
district). PE represents the agricultural and rural pollution
generated, which refers to the maximum potential pollution
caused by agricultural production and rural life without
considering resource utilization or management factors. η is the
coefficient of resource utilization efficiency. C is the pollutant
emission coefficient, determined by unit and spatial
characteristics (S), reflecting the combined effects of regional
environment, rainfall, hydrology, and various management
practices on agricultural and rural pollution. EU represents the
statistical value of the indicator.

3.2.2 Independent variable: digital rural
construction (DID)

Digital rural construction is defined asDID, is the interaction
term between the treatment group (Treat) and the treatment
period (Post), denoted as Treat × Post. Here, ‘Treat’ is a dummy
variable for pilot counties or districts. If a county or district c is in
a DRC pilot area (treatment group), it is assigned a value of 1; if it
is outside the DRC pilot area (control group), it is assigned a

value of 0. ‘Post’ is a binary variable that delineates the timeframe
relative to the implementation of the pilot policy, with a value of
1 assigned to the years 2020 and beyond, and a value of 0 to
earlier years.

3.2.3 Mechanism variables
(1) Land finance (LF). Following the study of Cheng et al. (2022),

we employ the ratio of land sale transaction price to local
GDP, multiplied by 100, as a measure of land finance. Land
sale revenue accurately reflects the scale of fiscal revenue local
governments garner from land concessions. This metric
differs from net land revenue in that it does not deduct
the cost compensation for land concession. Additionally,
from a fiscal management perspective, cost compensation
projects represent a form of government expenditure.
Excluding these cost items would undeniably result in an
underestimation of land concession revenues.

(2) Land resource misallocation (LRM). In China, local
governments often supply industrial land below the
minimum price standard or even at zero cost on a large
scale, while restrictively leasing commercial and residential
land at high prices. Although this strategy has accelerated
industrialization and urbanization, it has also led to vicious
competition and redundant construction. As a result, the
proportion of industrial land in the supply structure of state-
owned construction land is excessively high, leading to a
distortion in the allocation of land resources. The issue of land
resource misallocation can be investigated through several
dimensions: the allocation among different purposes of state-
owned construction land, between agricultural and
construction land, across regional construction land
quotas, and the ratios of land lease prices for different land
types. To accurately reflect the distribution of land resources
among different industries and uses in various cities, this
paper utilizes the method of Du and Li (2021), measuring land
resource misallocation by the ratio of industrial land to total

TABLE 1 Components of the AGTFP index.

Primary indicator Secondary indicator Description

Inputs Labor input Number of people employed in farming

Land input Total area of crop sowing

Agricultural machinery input Total power of agricultural machinery

Fertiliser input Amount of agricultural fertilisers used

Pesticide input Amount of pesticides used

Agricultural film input Usage of agricultural plastic film

Irrigation input Effective irrigated area in agriculture

Desired Outputs Total agricultural output Gross value of farming output with 2011 as the base year

Agricultural carbon sequestration Total carbon sequestration of main crops

Undesired Outputs Agricultural carbon emissions Total carbon emissions from agriculture

Agricultural non-point source pollution Amount of non-point source pollution emissions from agriculture

Data source: China Statistical Yearbook (2013–2023).
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construction land, multiplied by 100. A higher value indicates
greater misallocation of land resources, signifying severe
misallocation; conversely, a lower value indicates lesser
misallocation.

(3) Agricultural technology innovation (ATI). Drawing on the
methodology of Liu et al. (2014), we calculated agricultural
technology innovation using the natural logarithm of
agricultural patent applications. This metric reflects the
level of technological advancement and innovation within
the agricultural sector.

3.2.4 Control variables
According to the study by Cheng et al. (2022), we used several

urban-level control variables that were designed to statistically
control for the potential confounding factors that impact the
underlying relationships we examined in this study. The control
variables include: (i) City size, measured as the natural logarithm of
the permanent population of the city (in 10,000). (iii) Industrial
structure: It is calculated as value added by the primary industry as a
share of GDP * 1 + secondary industry as a share of GDP * 2 +
tertiary industry as a share of GDP * 3. (iii) Per capita GDP: The log
of GDP over total population. (iv) Per capita government
expenditure: A measure of fiscal expenditure per unit of the total
permanent population and logged. (v) Per capita FDI—the ratio of
the aggregate foreign direct investment in actual to GDP. Table 2
summarizes the measurements of all variables.

3.3 Samples and data sources

Based on a panel dataset of Chinese counties and districts from
2012 to 2022, this study examines the link between DRC pilot policy
and AGTFP. The reasons for selecting this sample period are as
follows: (i) Although DRC was first proposed in the 2018 “No.
1 Document,” rural internet development in China has grown
rapidly since 2012. (ii) Considering data availability and

consistency, 2022 is the latest year with updated data for the
indicators used in this study. The final dataset included
18,543 observations on the individual events in 2,128 counties
and districts from 32 provinces (this includes autonomous
regions and direct-controlled municipalities under the Central
Government, excluding Hong Kong, Macau, and Taiwan) after
excluding counties with extensive data gaps. The data of AGTFP,
DRC, land finance, and land resource misallocation and other
control variables were collected from the “China City Statistical
Yearbook,” “China Rural Statistical Yearbook,” and “China
Agricultural Yearbook.” The data source regarding agricultural
technology innovation was obtained from the “China National
Intellectual Property Administration” by patent
classification number A01.

Table 3 shows the descriptive statistics for the main variables.
The standard deviation (SD) of AGTFP is 0.227, diverging from
the mean value of 0.646. Also, the minimum value of AGTFP
stands at 0.245, while the maximum value is 1.039. This
demonstrates that the significant disparity in AGTFP is among
different counties (cities/districts). Meanwhile, the SD of treat is
0.172, while the SD of Post is 0.440, verifying that DRC has a
marked variation across counties. The distribution patterns of
other control variables largely match those documented in the
literature.

4 Results

4.1 Baseline regression

We adopt a sequential regression approach to analyze the
effects of DRC on AGTFP, with the results illustrated in Table 4.
Column (1) presents initial findings without incorporating
control variables or fixed effects for counties and years and
demonstrates the coefficient for DRC (DID) is considerably
positive at the 1% level, indicating a beneficial impact on

TABLE 2 Variable description.

Variables Name Symbol Description

Dependent Agricultural green total factor productivity AGTFP Refer to Equation 7

Independent Digital rural construction DID Treat × Post, where Treat � 1 if the county is within the digital rural construction pilot
region, 0 otherwise; Post � 1 if the time is the year 2020 or later, 0 otherwise

Mechanisms Land finance LF Land sale transaction price
Local GDP p 100

Land resource misallocation LRM Industrial land
Total construction land p 100

Agricultural technology innovation ATI Ln(Agricultural invention patent applications)

Controls City size Size Ln(City’s permanent population)

Industrial structure Instructure Value added by the primary industry as a share of GDP * 1 + secondary industry as a share of
GDP * 2 + tertiary industry as a share of GDP * 3

Per capita GDP GDP Ln( GDP
City’s total population)

Per capita government expenditure Expenditure Ln( Fiscal expenditure
City’s permanent population)

Per capita FDI FDI Actual foreign direct investment used
GDP
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AGTFP. Column (2) extends the model to include control
variables, albeit still omitting county- and year-specific fixed
effects. Here, the coefficients for DID remain positively
significant at the 1% level. Column (3) further refines the
analysis by integrating both control variables and fixed effects
for each county and year, where DID consistently shows a
positive effect on AGTFP, significant at the 1% level.
Specifically, a 1% increase in DID correlates with a 2.7%
enhancement in AGTFP (coefficient = −0.027, p < 0.01).
These findings substantiate the significant contribution of

DRC to the improvement of AGTFP, thereby supporting the
study’s hypothesis (H1).

4.2 Robustness tests

We perform multiple robustness tests to validate the findings
concerning the impact of the DRC on AGTFP.

(1) Parallel trend test. Since the validity of the DID methodology
depends on the assumption of parallel trends, it is essential to
check this assumption. This assumption implies that AGTFP
trends in both treatment and control groups were parallel
prior to the introduction of the DRC pilot policy. We carefully
test the parallel trends with dynamic heterogeneity methods,
following the strategy of Beck et al. (2010), we use the
econometric model in Equation 11.

AGTFPct � α + β1DID−8
ct + . . . + β9DID2

ct + δControlsct +∑Year

+∑County + εct

(11)
where the superscript onDIDct denotes the lead or lag term relative
to the DRC pilot policy shock. For example, DID−8

ct implies a value
of 1 if it is 8 years before policy implementation for county c, and
0 otherwise; DID2

it signifies a value of 1 if 2 years post-policy for
county c, and 0 otherwise. To avoid multicollinearity, the variable
D−1

ct representing 1 year before the DRC pilot policy shock, is
excluded from Equation 11. The responses from DID−8

ct to DID2
ct

are compared against the baseline at DID−1
ct . Definitions for other

variables are consistent with those in the baseline model.
Figure 2 illustrates the outcomes of the parallel trend assessment.

Before the execution of the DRC pilot policy, the β coefficients
approximate zero, and their confidence intervals include zero,
suggesting that the pre-policy trends were similar in both the
treatment and control groups, with no significant deviations.
From the effective date of the policy, the β coefficients
increasingly show significance, and their confidence intervals
exclude zero, indicating a notable increase in AGTFP within the
treatment group after the policy’s implementation. These findings
confirm that the DRC pilot policy effectively enhances AGTFP,
satisfying the criteria of the parallel trend test.

TABLE 3 Descriptive statistics.

Variable Obs Mean SD Min p25 p50 p75 Max

AGTFP 18,543 0.646 0.227 0.245 0.462 0.581 0.840 1.039

Treat 18,543 0.0306 0.172 0 0 0 0 1

Post 18,543 0.262 0.440 0 0 0 1 1

Size 18,543 6.070 0.578 4.657 5.659 6.096 6.509 7.475

Instructure 18,543 2.317 0.126 2.041 2.232 2.308 2.393 2.635

GDP 18,543 10.76 0.532 9.529 10.38 10.74 11.10 12.03

Expenditure 18,543 9.090 0.371 8.234 8.839 9.099 9.341 10.09

FDI 18,543 0.0139 0.0145 −0.00100 0.00240 0.00920 0.0200 0.0601

TABLE 4 Bassline regression.

Variables (1) (2) (3)

AGTFP AGTFP AGTFP

DID 0.2859*** 0.2262*** 0.0772***

(9.9420) (8.3335) (2.7555)

Size 0.0784*** 0.0742***

(10.5222) (2.8389)

Instructure −0.3340*** 0.0026

(−9.4111) (0.1062)

GDP 0.1143*** −0.0050

(12.9522) (−0.5950)

Expenditure 0.1869*** 0.0501***

(16.6099) (4.4819)

FDI −2.3195*** 0.1228

(−11.7910) (0.8772)

_cons 0.6462*** −1.9516*** −0.2137

(190.4778) (−20.3728) (−0.9318)

County No No Yes

Year No No Yes

Obs 18,543 18,543 18,543

Adjusted R2 0.0011 0.1903 0.8397

Notes: *p < 0.1, **p < 0.05, ***p < 0.01. T-statistics presents in parentheses.
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(2) Placebo test. To reinforce the reliability of our results, we use
Chetty et al. (2009)’s placebo test. This involves randomly
picking the treatment group 500 times and replicating the
analysis multiple times to generate placebo outcome
coefficients, which are then depicted using a kernel density
plot in Figure 3. If the actual policy effects are markedly
different from those observed in the placebo tests, it suggests
that the effects are not due to random variation. The kernel
density plot reveals that the distribution of placebo estimates
is roughly bell-shaped and centers around zero. This indicates
that most estimates from these “pseudo” policy
implementations are negligible. Furthermore, the p-values
are predominantly clustered around these zero-centered
estimates, reinforcing that the impacts from the “pseudo”
policy implementations are statistically insignificant.
Therefore, the significant impacts of the DRC on AGTFP
observed in our study are likely not attributable to random
factors or other unaccounted variables, affirming the
robustness and validity of the actual policy effects.

(3) Replacing the dependent variable. As stated by Wang X. et al.
(2024) and Long et al. (2023), we adopt the scale-invariant
SBM-GML model that accounts for undesirable outputs as an
alternative measure for AGTFP, denoted as AGTFPGML.
The data are sourced from the annual editions of the China
Statistical Yearbook, China Rural Statistical Yearbook, and
various local statistical yearbooks. Equation 12 calculates and
decomposes this variable for unexpected output:

AGTFPGMLt,t+1 xt, yt, at, xt+1, yt+1, at+1( ) � 1 + EG xt, yt, at( )
1 + EG xt+1, yt+1, at+1( )

(12)

Where the factor vectors x, y, and a show the inputs, the desired
outputs, and the not-desired outputs, respectively. AGTFP
indicators include agricultural labor, land, water, machinery,
fertilisers, diesel, plastic film, and pesticide; desired output, such
as agriculture, forestry, animal husbandry, and fishery gross output
value; and non-desired output, such as agricultural carbon
emissions. Appendix A lists input–output indicators.

The findings presented in Column (1) of Table 5 reveal a
statistically significant positive correlation between DID and
AGTFPGML at the 5% significance level. This suggests that the
DRC has a positive effect on AGTFP, thereby reinforcing the main
conclusion’s robustness and consistency.

(4) Excluding COVID-19 impacts. Given the significant
disruptions caused by the COVID-19 pandemic in
2020 and 2021, we followed the approach advised by Qing
et al. (2024) to exclude these years from our dataset to avoid
potential biases in our regression analysis. Column (2) of
Table 5 shows the re-estimated findings, still indicate a robust
benefit impact ofDID onAGTFP, with a coefficient of 0.1102
(p < 0.01). This consistency underscores the robustness and
reliability of our findings.

(5) Controlling city fixed effects. To control for the possibility of
biases owing to city-level heterogeneity, we included city-
fixed effects in our regression model. This approach takes into
consideration the differences across cities, generating a more
accurate estimate of the actual effect of DRC over AGTFP.
Column (2) of Table 5 presents our updated results, which
show that the link remains statistically significant at the 1%
level, implying that DRC’s exerted influence was effectively
applicable across cities despite their diverse characteristics.

FIGURE 2
Parallel trend test.

Frontiers in Environmental Science frontiersin.org09

Zhang et al. 10.3389/fenvs.2025.1611339

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1611339


(6) Excluding other policies in the same period. To avoid that
other concurrent policies may confuse our potential effect, we
accounted for the Chinese smart city pilot policy, which was
implemented from 2012 (details can be found in “Ministry of
Housing and Urban-Rural Development”).5 By 2024, the
policy had designated 289 cities as smart city pilots.
Previous studies, such as Wang et al. (2022) and Song
et al. (2023), reported its beneficial impacts on urban green
total-factor productivity and carbon productivity in China. In
our model, we introduce the smart city policy variable (Smart-
city) so that the impacts can be disentangled. As shown in
Column (4) of Table 5, the smart city variable is negatively
significant, but the coefficient continues to be negatively
significant as well, and at the 1% level. This result
reinforces the robustness of our results, showing that DRC
has a separate impact on AGTFP from those of other
simultaneously instituted policies.

4.3 Endogeneity tests

Even though the digital rural pilot policy is considered an
outside influence, the choice of pilot areas might still be linked to
hidden factors (e.g., political influence, regional development goals,
or local government capacity) that also affect AGTFP. If not
properly controlled, these unobservable factors could bias the
estimated treatment effects. Moreover, pilot and non-pilot areas
may systematically differ in observable characteristics

(e.g., infrastructure quality, technological readiness, or
economic development level) before the policy is implemented.
If these differences are not adequately addressed, they could
confound the causal relationship between DRC and AGTFP. To
address potential issues from hidden factors and existing
differences, we use the propensity score matching (PSM)
method, following Li et al. (2023) and Ma et al. (2020). Using
nearest-neighbor matching, counties (cities/districts) in the
treatment group are paired with similar counties (cities/
districts) in the control group. The matching process
incorporates all control variables and county- and year-fixed
effects, ensuring a 1:4 match based on the DID treatment
variable. After PSM, we re-estimate the regression model using
the matched dataset. The primary independent variable (DID)
remains significantly and positively correlated with AGTFP, as
shown in Table 6. These results, consistent with the benchmark
regression, further confirm the robustness and reliability of the
conclusions.

4.4 Mechanism analysis

To further understand the impacts of DRC on AGTFP, it is
essential to investigate the potential mechanisms involved. This
study examines three possible channels: land finance, land resource
misallocation, and agricultural technology innovation. We adopt the
two-step mechanism analysis method proposed by Qing et al. (2024)
to empirically assess these impacts.

First, our research delved into how land finance mediates the
effect of DRC on AGTFP. Column (1) of Table 7 reveals that
DID has a positive effect on land finance, as indicated by a
coefficient of 1.7702 with a significance level of 5% (p < 0.05).
This finding reinforces that DRC enhances land finance,

FIGURE 3
Placebo test.

5 Available online at: https://www.gov.cn/gzdt/2013-01/31/content_

2323562.htm
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subsequently promoting an improving AGTFP, thus
supporting H2.

Second, DRC and AGTFP should have a significant and positive
relationship, and land resource misallocation plays a mediating role
in this association. As shown in Column (2) of Table 7, the data
suggest that has a vastly negative impact on land resource
misallocation (coefficient = −2.7688, p < 0.01) These data suggest
that DRC is important for land resource misallocation, which leads
to improvement in AGTFP, thus providing evidence for
supporting H3.

Third, we investigated how DRC and AGTFP are connected
through agricultural technology innovation. Column (3) of Table 7
shows that it has a substantial favorable impact on agricultural
technology innovation, with a coefficient of 0.2368 at the 5%
significance level (p < 0.05). This implies the mechanism by
which DRC contributes to the improvement of AGTFP through
promoting agricultural technology innovation, which is an adequate
way to corroborate H4.

4.5 Heterogeneity analysis

To deepen our understanding of how the DRC influences
AGTFP, we conducted three heterogeneity analyses. These
analyses focus on the differences across geographical locations,
grain production functionality, and the context of land
transfer efficiency.

First, regional heterogeneity analysis of the impact of DRC on
AGTFP in different regions of China (eastern, central and western).
The results, which we outline in Table 8, reflect nuanced regional
effects. Column (1) displays the results for the eastern region, where
the influence of DRC on AGTFPG is insignificant, indicating that
the region’s higher economic status and relatively greater
agricultural productivity may reduce the observable benefits from
DRC. Conversely, Columns (2) and (3) of Table 8 highlight a benefit
influence of DRC on AGTFP in central and western China,
respectively. These findings indicate that DRC markedly boosts
AGTFP in these less economically developed regions.

TABLE 5 More robustness checks.

Variables Replacing the
dependent variable

Excluding COVID-19
impacts

Controlling city fixed
effects

Excluding other policies in the
same period

(1) (2) (3) (4)

AGTFPGML AGTFP AGTFP AGTFP

DID 0.0519** 0.1102*** 0.0651*** 0.0780***

(2.3181) (2.8652) (2.7975) (2.7925)

Smart-city −0.0156***

(-2.8297)

Size −0.0397*** 0.0943*** 0.0851*** 0.0734***

(−2.7674) (3.7941) (3.4720) (2.8087)

Instructure 0.0014 0.0212 0.0142 0.0008

(0.1188) (0.9887) (0.6030) (0.0335)

GDP −0.0326*** −0.0111 −0.0055 −0.0035

(−6.2969) (−1.3693) (−0.6733) (−0.4141)

Expenditure 0.0692*** 0.0748*** 0.0558*** 0.0486***

(10.5185) (6.8074) (5.0596) (4.3535)

FDI −0.2130*** −0.3526** 0.1504 0.1412

(−3.4222) (−2.5114) (1.1061) (1.0069)

_cons 0.9879*** −0.5392*** −0.3530 −0.2026

(8.3373) (−2.6706) (−1.6089) (−0.8819)

County Yes Yes No Yes

City No No Yes No

Year Yes Yes Yes Yes

Obs 18,543 16,836 18,543 18,543

Adjusted R2 0.2506 0.8668 0.8504 0.8398

Note: same as a footnote under Table 4.
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Second, move from DRC to AGTFP heterogeneity across
functional perspectives of grain production. We identify counties
as part of major grain-producing regions and non-major grain-
producing regions.6 The outcomes are given in Table 9, which shows
significant differences in the effect of DRC on AGTFP for the two
groups. Specifically, Column (1) shows that DRC does not
significantly improve AGTFP in major grain-producing regions,
suggesting that its implementation in major grain-producing
regions may face limitations in driving substantial AGTFP
improvements. Conversely, Column (2) demonstrates a
statistically significant positive effect of DID on AGTFP at the
1% significance level, indicating that the benefits of DRC on AGTFP
are more pronounced in non-major grain-producing regions.

Third, we further examine the heterogeneous impact of land
transfer efficiency. We divided the sample into high and low groups
based on the median of land transfer efficiency. The results are

presented in Table 10. Column (1) shows that DRC has a positive
impact on AGTFP at the 1% significance level. This evidence
indicates that in counties (or cities/districts) with lower land
transfer efficiency, DRC effectively improves AGTFP. In contrast,
Column (2) shows that DRC has no statistically significant effect
on AGTFP.

5 Discussions

5.1 Main findings

In light of the twin challenges posed by global environmental
pollution and resource constraints, enhancing AGTFP is critical.
Our research investigates the impacts of China’s DRC pilot policy,
treated as a quasi-natural experiment. Utilizing a DID technique, we
analyze how the DRC affects AGTFP across 2,128 counties and
districts from 2012 to 2022. Below, we outline the principal findings
of our study:

i) Our results confirm that the DRC significantly enhances
AGTFP. Robustness checks consistently support this
finding. Notably, a 1% increase in DRC implementation is
associated with an approximate 7.72% rise in AGTFP. Our
results are consistent with Hu et al. (2024), who used balanced

TABLE 6 Endogenous test: PSM-DID approach.

Variables (3)

AGTFP

DID 0.0820***

(3.6834)

Size 0.1803***

(7.0578)

Instructure 0.0883***

(3.1845)

GDP 0.0015

(0.1576)

Expenditure 0.0195

(1.4894)

FDI 1.0311***

(5.8672)

_cons −0.9211***

(−4.0355)

County Yes

Year Yes

Obs 7,382

Adjusted R2 0.8676

Note: same as a footnote under Table 4.

TABLE 7 Mechanisms analysis.

Variables (1) (2) (3)

LF LRM ATI

DID 1.7702** −2.7688*** 0.2368**

(2.1132) (-3.1461) (2.1922)

Size 3.7854*** −3.9601*** −0.5019***

(6.4350) (-3.5030) (-4.4717)

Instructure 0.8571 0.2601 −0.0731

(1.4181) (0.1669) (−0.4320)

GDP −0.1573 −2.4036*** 0.1102***

(−0.8290) (−5.5410) (2.6642)

Expenditure 3.6033*** 2.0663*** 0.3649***

(10.3424) (4.5547) (5.5973)

FDI 9.1936*** 21.0422*** 5.2400***

(2.8296) (3.2212) (7.0916)

_cons −51.4179*** 113.7868*** 3.6270***

(−10.0068) (10.7962) (2.9810)

County Yes Yes Yes

Year Yes Yes Yes

Obs 18,543 18,543 18,399

Adjusted R2 0.6009 0.7976 0.8927

Note: same as a footnote under Table 4.

6 The major grain-producing areas include 13 provinces: Hebei, Shandong,

Jiangsu, Anhui, Liaoning, Jilin, Heilongjiang, Inner Mongolia, Jiangxi,

Henan, Hubei, Hunan, and Sichuan. The non-major grain-producing

areas include 18 provinces: Beijing, Tianjin, Shanghai, Zhejiang, Fujian,

Guangdong, Hainan, Shanxi, Guangxi, Chongqing, Guizhou, Yunnan,

Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.
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panel data from 1,503 counties in China and similarly found
that digital rural development significantly enhances AGTFP.
However, our findings differ from Zhou et al. (2023), who
analyzed panel data from 30 Chinese provinces between
2011 and 2019 and found an inverted U-shaped
relationship between digital agriculture growth and
AGTFP growth.

ii) The results elucidate several mechanisms through which DRC
indirectly aids in the improvement of AGTFP. These include
increasing land finance, alleviating land resource
misallocation, and fostering greater agricultural technology
innovation. Our findings align with those of Fan et al. (2025),
who discovered that digital rural development alleviates land
resource misallocation, thereby indirectly improving rural
land use efficiency. Also, our result confirms the findings
of Zhang et al. (2023), whose empirical analysis shows that the
digital economy primarily promotes agricultural
technological innovation, thereby enhancing AGTFP.

iii) The influence of the DRC on AGTFP exhibits regional
disparities. Our findings show that the impact of DRC on
AGTFP is more significant in China’s central and western
regions, non-major grain-producing areas, and regions with
lower land transfer efficiency. Several factors may explain

these findings: (i) The central and western areas, characterized
by their relatively lower economic development and
agricultural productivity, are likely to benefit more
distinctly from the integration of digital technologies,
underscoring a regional disparity in the effectiveness of
DRC. (ii) Major grain-producing regions often have well-
established agricultural practices and infrastructure. This
maturity might limit the incremental benefits that digital
interventions can provide, as these regions may already
operate at or near optimal efficiency levels. The
introduction of digital tools in these areas might not lead
to significant improvements in productivity due to
diminishing returns on already advanced techniques and
technologies. In contrast, non-major grain-producing
regions may have more to gain from DRC due to less
optimized agricultural processes and a greater need for
technological innovation. These regions might represent
areas where current productivity levels are lower, thus the
introduction of digital technology could lead to substantial
improvements. The significant impact observed in these
regions suggests that digital tools are effectively addressing
specific inefficiencies or gaps in agricultural practices. (iii) In
regions with lower land transfer efficiency, DRC likely
addresses structural inefficiencies, such as fragmented land
use, enabling better resource integration and productivity
gains, which enhances AGTFP. However, in areas with
higher land transfer efficiency, existing systems may
already operate near optimal levels, leaving limited room
for DRC to further enhance AGTFP.

5.2 Theoretical contributions

This study makes three key theoretical contributions. First, it
advances the literature on integrating digitalization with sustainable
agriculture by providing empirical evidence of how DRC policies
enhance AGTFP. Second, it enriches the understanding of policy-
driven mechanisms by revealing how DRC promotes AGTFP
through land finance, resource allocation efficiency, and
agricultural technology innovation, offering insights into the
indirect pathways of impact. Third, it highlights the
heterogeneity of DRC’s impact on AGTFP, particularly based on
the distinct characteristics of major and non-major grain-producing
areas. It explores the regional disparities in how digital rural
construction empowers AGTFP improvement from a new
perspective. This deepens the theoretical discussion on spatial
differences in policy implementation and their effects on
sustainable agricultural development.

5.3 Practical implications

Based on the insights derived from our assessment of China’s
DRC pilot policy and its impact on AGTFP, the following
recommendations are proposed to guide policymakers in
enhancing the efficacy and reach of similar initiatives: (i)
Policymakers should consider allocating more resources towards

TABLE 8 Geographic heterogeneity.

Variables Eastern Central Western

(1) (2) (3)

AGTFP AGTFP AGTFP

DID −0.0341 0.2351*** 0.0402**

(−0.9429) (5.6368) (2.4570)

Size −0.0226 −0.1359** 0.0853***

(−0.9610) (−2.4938) (2.9584)

Instructure 0.1967*** −0.3279*** 0.2173***

(8.4683) (−5.3683) (7.4388)

GDP 0.0096 −0.0534*** 0.0935***

(1.2076) (−3.3035) (7.8616)

Expenditure −0.0600*** −0.1251*** 0.0748***

(−5.0051) (−6.2070) (4.8473)

FDI 0.4220** 2.2086*** −0.3564**

(2.0520) (5.6616) (-2.1291)

_cons 0.7521*** 3.8876*** −2.0402***

(3.5753) (7.8368) (-7.7928)

County Yes Yes Yes

Year Yes Yes Yes

Obs 5,781 6,477 6,285

Adjusted R2 0.8910 0.8301 0.8893

Note: same as a footnote under Table 4.
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enhancing digital infrastructure in less developed regions,
particularly in central and western China, non-major grain-
producing areas and lower land transfer efficiency. Our study
indicates that these regions benefit significantly from digital
interventions, suggesting that targeted investments could yield
substantial improvements in AGTFP. (ii) Local governments
should have the flexibility to design and implement digital
agriculture strategies that address their unique environmental
conditions and agricultural challenges. For example, in more
developed areas, particularly in eastern regions and major grain-
producing zones, the incremental benefits of digital initiatives are
less pronounced. Here, policymakers should focus on optimizing
current digital practices and technologies, pushing for
advancements in high-precision agriculture and data analytics to
squeeze additional productivity gains. (iii) Given the positive
correlation between DRC and agricultural technology innovation,
it is paramount to create a setting that encourages innovation. This
can be achieved through subsidies for research and development,
partnerships between tech companies and agricultural sectors, and
facilitating access to new technologies for small to medium-sized
farms. Meanwhile, it serves to guarantee that the rural laborers have
the requisite skills. Implementing comprehensive training programs
that focus on digital literacy and modern agricultural techniques will
help farmers effectively utilize new technologies.

5.4 Limitations and future research

Our study identifies several limitations that pave the way for
further exploration in this field. First, while the investigation provides
initial insights into the effects of DRC on AGTFP within China,
broadening this study to include comparisons with developed nations
and other emerging markets could improve the applicability of these
results. Second, while the mechanisms of land finance, land resource
misallocation, and agricultural technology innovation are crucial in
understanding the effects of DRC on AGTFP, there are additional
potential mechanisms that merit exploration, such as financial
services and environmental monitoring or management. Third, it
is crucial for future research to explore the non-linear dynamics
between DRC and AGTFP. Investigating these relationships could
reveal critical thresholds and potential saturation points of DRC’s
effectiveness. This insight is essential for optimizing the distribution of
green resources in rural areas, ensuring that DRC initiatives are both
effective and sustainable.

6 Conclusion

This study investigates the impact of digital rural construction
(DRC) on agricultural green total factor productivity (AGTFP) by using

TABLE 9 Heterogeneity from the perspective of grain-producing function.

Variables Major grain-producing region Non-major grain-producing region

(1) (2)

AGTFP AGTFP

DID 0.0020 0.1679***

(0.0733) (4.7210)

Size 0.0716*** 0.3676***

(3.4870) (8.7083)

Instructure 0.0550* −0.5023***

(1.7829) (-8.8207)

GDP 0.0161* 0.0278*

(1.8715) (1.8769)

Expenditure 0.0289** 0.1451***

(2.4830) (8.4849)

FDI −0.0813 0.2510

(−0.5381) (0.8509)

_cons −0.3279* −2.0311***

(−1.6979) (−4.5243)

County Yes Yes

Year Yes Yes

Obs 10,603 7,940

Adjusted R2 0.8632 0.8631

Note: same as a footnote under Table 4.
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China’s DRC pilot policy as a quasi-natural experiment and employing
a difference-in-differences (DID) approach with data from
2,128 counties and districts between 2012 and 2022. The results
demonstrate that DRC significantly improves AGTFP, with a 1%
increase in DRC leading to a 7.72% rise in AGTFP. This
improvement occurs through three main channels: enhanced land
finance, reduced land resource misallocation, and the promotion of
agricultural technology innovation. The analysis further shows that the
effects of DRC on AGTFP vary across geographical regions, grain
production function, and land transfer efficiency. Stronger impacts are
observed in regions with China’s central and western, non-major grain-
producing, and lower land transfer efficiency. These findings
underscore the pivotal role of digital governance in advancing green
agricultural development and provide actionable insights for
policymakers and practitioners aiming to establish rural digital
governance systems and achieve sustainable agricultural outcomes.
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