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This study utilized public transport data from 28 major Chinese cities from
2018 to 2022 and employed methods such as carbon emission measurement,
standard deviation ellipse analysis, the Tapio decoupling model, and the LMDI
decomposition method to ana-lyse the temporal and spatial evolution,
decoupling states, and driving factors of public transport carbon emissions
comprehensively. The results show that (1) total carbon emissions fluctuated
markedly, and emissions dropped sharply in 2020 due to the COVID-19
pandemic, rebounded in 2021, and declined again in 2022 due to
technological upgrades and policies. (2) The spatial distribution of carbon
emissions follows a northeastern–southwestern pattern. The center of gravity
shifted slowly southwards and slightly west-wards and was influenced by
economic development and transportation policies. (3) The 28 cities were
classified into four groups: Type I had high emissions but low intensity; Type II
exhibited a positive decoupling trend; and Types III and IV showed weak
decoupling. (4) Economic activities and line density were the main drivers of
emission growth, whereas carbon emission intensity and transportation intensity
increasingly inhibited emissions in recent years. On the basis of these findings, we
propose differentiated low-carbon transportation policies, regional collaborative
governance, and technology optimization to support urban transportation low-
carbon transformation under the “dual-carbon” goal.

KEYWORDS

public transportation, carbon emissions, spatiotemporal evolution, Tapio decoupling
model, LMDI decomposition

1 Introduction

With China’s carbon peak and carbon neutrality goals (Li L. et al., 2022) how to
effectively control carbon emissions in the context of rapid urbanization and economic
growth has become a key issue to be solved in various fields in China (Yan et al., 2023).
Transportation is a significant source of carbon emissions, contributing more than 10% of
China’s total emissions, with road transport comprising approximately 80% of that share (Li
et al., 2023; Zeng and He, 2023). Despite efforts to implement green and low-carbon
transportation strategies in major cities (Shang and Lv, 2023), the challenge of balancing
increasing transportation demand with carbon emission reduction goals is intensifying.
This has led to rising carbon emissions from urban public transport, particularly in densely
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populated and economically developed cities (Jing et al., 2022).
Therefore, in-depth analysis of urban public transportation carbon
emissions and their relationship with economic growth can reveal
reduction potentials in the transport sector and support the
achievement of the “dual-carbon” goal.

Urban public transportation (including rail transit, buses, and
cabs) is considered a vital means to alleviate traffic congestion and
reduce carbon emissions because of its high energy efficiency and
low emissions (Fan et al., 2017). However, cities differ markedly in
economic development, population density, and public
transportation infrastructure, leading to varied carbon emission
profiles and reduction potentials (Bai et al., 2023). For example,
first-tier cities (Beijing and Shanghai) present lower per-unit
emission intensities despite higher overall emissions driven by
strong transportation demand. In contrast, small and medium-
sized cities often struggle to balance carbon emissions with
economic growth. Therefore, systematically analyzing the spatial-
temporal distribution of public transport carbon emissions and their
driving factors in major Chinese cities is of significant theoretical
and practical value, informing the development of differentiated
low-carbon transport policies and the optimization of urban
transport structures.

Given the background presented above, this study addresses two
core questions:

1) What are the spatial-temporal evolution characteristics of
public transportation carbon emissions in major Chinese
cities, and how do the emission structures and trends differ
among various city types?

2) What is the decoupling status between urban public
transportation carbon emissions and economic growth, and
what are the primary driving factors behind changes in
carbon emissions?

To address these issues, this study uses public transportation
data from 28 major Chinese cities (2018–2022) and employs both
“top-down” and “bottom-up” carbon emission measurement
methods to accurately quantify each city’s emissions.
Simultaneously, standard deviation ellipse analysis characterizes
the spatial distribution of carbon emissions, the Tapio decoupling
model assesses the coordination between emissions and eco-nomic
growth, and the LMDI decomposition model identifies the key
drivers of emission changes. This multimethod analytical
framework comprehensively depicts the spatial-temporal
dynamics and driving mechanisms of public transportation
carbon emissions, offering data support and a theoretical basis
for developing differentiated low-carbon transportation policies.

The innovation of this study is reflected in three aspects. First,
the heterogeneity of public transport carbon emissions in major
Chinese cities is revealed through a spatio-temporal analysis system,
thereby addressing the shortcomings of existing studies in terms of
detailed analysis. Second, the study employs a combination of the
decoupling model and LMDI decomposition method to analyze the
dynamic relationship between carbon emissions and economic
growth, as well as its driving factors. This provides a novel
perspective on understanding the path of the low-carbon
transformation of urban transportation. Finally, as a departure
from the focus of previous studies at the national or provincial

level, this study focuses on public transportation in major cities. This
study fills a gap in the research on spatiotemporal characteristics and
driving mechanisms in this field in China. This study provides data
support and a theoretical basis for formulating scientific and
reasonable low-carbon transportation policies.

2 Literature review

Amid the acceleration of urbanization and the pursuit of the
“dual-carbon” goal in China, urban public transportation is
increasingly recognized as a key strategy for alleviating traffic
congestion and reducing carbon emissions, prompting extensive
research on its emission characteristics and influencing factors. In
recent years, numerous studies have examined the measurement (Li
X. et al., 2022), spatial-temporal distribution (Long et al., 2023),
decoupling analysis (Engo, 2019), and driving factor decomposition
(Chen et al., 2021) of public transportation, thereby providing a solid
theoretical foundation and methodological reference for this study.
This paper systematically reviews the relevant literature, summarizes
the progress and limitations of existing studies, and elucidates the
innovations and theoretical contributions of our work.

The measurement of carbon emissions from public
transportation is a crucial re-search foundation, and two main
methods—“top-down” and “bottom-up”—are currently employed
(Nisbet and Weiss, 2010). The “top-down” approach estimates
emissions using macro-level energy consumption data, making it
suitable for large-scale analyses (Li et al., 2018; Javanmard et al.,
2023), whereas the “bot-tom-up” approach relies on detailed energy
consumption and operational data for specific transportation
modes, making it ideal for city-level studies (Yu et al., 2020).
Recently, hybrid methods have been increasingly adopted to
address the diverse nature of urban public transportation. For
example, China’s rail transit emissions have been assessed by
combining energy consumption and traffic flow data (Pu et al.,
2024), whereas urban bus emissions have been quantified using
smart card data and vehicle operation records (Zheng et al., 2023).
However, most existing studies focus on a single city or a specific
transportation mode and lack systematic measurements and
comparative analysis of public transportation carbon emissions
across major Chinese cities (Sun et al., 2022).

Elucidating the spatial-temporal distribution characteristics of
carbon emissions is essential for understanding their evolutionary
patterns. The standard deviation ellipse (SDE) method is widely
used to analyze the spatial heterogeneity and evolutionary trends of
carbon emissions (Duman et al., 2023; Song and Yuan, 2023; Liu and
Lv, 2024). Existing studies have employed the SDE method to
examine the spatial distribution of provincial carbon emissions in
China—revealing an eastward shift in the center of gravity (Wang
et al., 2020)—and to characterize the spatial concentration of
emissions in urban agglomerations (Luo et al., 2024). However,
limited attention has been paid to the spatial-temporal distribution
of carbon emissions from urban public transportation, with a
notable lack of systematic analysis at the level of major Chinese
cities (Zhao et al., 2024).

Decoupling analysis assesses the relationship between
environmental pressures and economic growth, and the Tapio
decoupling model is widely adopted because of its simplicity and
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applicability (Wang and Wang, 2021; Liu et al., 2022; Zhang and
Sharifi, 2024). In transportation studies, the model is frequently used
to analyze the coordination between carbon emissions and
economic growth. For example, the Tapio decoupling index has
been used to examine the relationship between transportation
development and carbon emissions at the provincial level (Hou
et al., 2024). Additionally, the index is used to evaluate the
decoupling of global economic growth by considering carbon
intensity, per capita carbon emissions, and total carbon emissions
(Shuai et al., 2019). Thus, exploring the decoupling between carbon
emissions and economic growth is highly important. However, most
existing studies focus on the transportation industry as a whole, with
few ad-dressing the urban public transportation subsector or
providing detailed city-level analyses (Song et al., 2019).

LMDI decomposition modelling is a widely used methodology
for identifying the key drivers of carbon emission changes (Ang,
2015). In transportation carbon emission studies, LMDI is
extensively employed to decompose the effects of technical,
economic, and social fac-tors (Fan and Lei, 2016; Liu et al.,
2021). For example, the extended LMDI approach has been used
to study the factors influencing rail transportation carbon emissions
(Wang et al., 2023). Similarly, combining LMDI additive
decomposition with Tapio decoupling modelling has been used
to explore the driving mechanisms behind carbon emission
changes in the European Union (Bianco et al., 2024).
Nonetheless, research on the driving mechanisms of urban public
transportation carbon emissions re-mains limited, particularly with
respect to systematic analyses of major Chinese cities (Luo
et al., 2017).

Despite valuable insights from previous studies on urban public
transport emissions, three critical gaps remain. First, most research
focuses on individual cities or specific modes (e.g., bus or rail), lacking a
comprehensive, multi-city perspective to assess regional disparities and
aggregated trends across China’s urban network. Second, while the
Tapio decoupling model and LMDI decomposition are well established
in transport emissions analysis, their combined application to the public
transport subsector remains rare. As a result, key emission-reduction
drivers—such as changes in ridership, improvements in fleet efficiency,
and shifts in the energy mix—are insufficiently quantified. Third, few
studies address spatiotemporal heterogeneity at the city level, often
overlooking dynamic patterns and local factors that influence emissions
over time. Furthermore, existing theoretical frameworks typically treat
decoupling and driver analyses in isolation, failing to integrate
sustainable mobility perspectives that link operational changes to
system resilience and Sustainable Development Goals.

This study addresses these gaps by analyzing 28 major Chinese
cities, integrating data from multiple authoritative sources, and
developing a comprehensive framework that combines carbon
emission metrics, standard deviation ellipse spatial analysis, the
Tapio decoupling model, and LMDI decomposition. This approach
not only identifies whether and when emissions decouple from
economic and ridership growth, but also quantifies the contributions
of five drivers: carbon emission intensity, line density, transportation
intensity, economic activity, and population scale. The study makes
three key contributions: (1) it provides the first systematic cross-city
comparison of public transport carbon emissions in China, revealing
distinct patterns across city tiers and regions; (2) it establishses a
multi-method framework to capture the spatiotemporal dynamics of

emissions and their coupling with economic development; (3) it
bridges theory and practice by offering empirical evidence to
support tailored, region-specific low-carbon transport policies
based on identified drivers. Overall, this work advances the
theoretical framework for urban transport decarbonization and
offers actionable recommendations for policymakers to accelerate
China’s transition toward sustainable, low-carbon public mobility.

3 Materials and methods

3.1 Study area

The absence of monitoring data for urban public transport in its
early development, combined with the initial operational phase of some
cities, results in missing data. Consequently, this study examines
28 major Chinese cities from 2018–2022. All the selected cities had
established and were operating urban rail transport systems before
2018, contributing to relatively comprehensive public transport
networks. These cities are located in the eastern, central, western,
and northeastern regions, making the sample highly representative.
Significant differences exist among these cities in terms of economic
development, public transport development, energy consumption
structures, and carbon emission characteristics. To analyze these
differences more precisely, the public transport systems are classified
into four types on the basis of transport capacity, following the Standard
for the Classification of Urban Public Transportation (Ministry of
Construction of the People’s Republic of China, 2007) and the
evaluation system for city public transportation development
performance (General Administration of Quality Supervision, 2017),
as detailed in Figure 1.

3.2 Study data

This study utilizes data from public transport, socio-economic, and
spatial sources. Annual electricity consumption and passenger turnover
data for urban rail transit were obtained from the China Urban Rail
Transit Association (China Association of Metros, 2023). Annual
carbon emission fac-tor data for regional power grids were sourced
from theMinistry of Ecology and Environment of the People’s Republic
of China (MEE, 2023). Public transport passenger volume data were
acquired from the Ministry of Transport of the People’s Republic of
China (MOT, 2023). Data on the total length of public transport
operating lines were extracted from the China Transportation
Yearbook China Communications and Transportation of Association
(2024). The per capita per kilometer carbon emission factors for public
buses and taxis were derived from a previous study (Jia et al., 2025).
GDP and population data were sourced from the National Bureau of
Statistics of the People’s Republic of China (NGCC, 2023). Vector map
data from the National Center for Basic Geographic Information
(STATS, 2003).

3.3 Methods

This section details the methodologies applied in this study: an
integrated top-down and bottom-up carbon emission estimation
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method, spatiotemporal analysis of emissions via standard deviation
ellipses, decoupling assessment using the Tapio model, and driver
decomposition with the LMDI method. By combining Tapio
decoupling with LMDI decomposition, we not only detect
whether emissions have decoupled from economic and ridership
growth, but also explain why—attributing changes to emission
intensity, network density, transportation intensity, economic
activity, and population scale. This integration also isolates the
temporary COVID-19 shock within the LMDI framework to
avoid distorting long-term trends (He et al., 2025). Figure 2
presents the study’s workflow.

3.3.1 Integrated top-down and bottom-up
approach for carbon emission estimation

In order to comprehensively and accurately assess the carbon
emissions of urban public transportation, while taking into account
the availability of data, this paper adopts a comprehensive

measurement strategy that combines the “top-down” and
“bottom-up” approaches.

For urban rail transport, a top-down model is utilized to
calculate carbon emissions following the national GHG inventory
guidelines (Change, 2007). This model incorporates total electricity
consumption and the electricity emission factor, as shown in
Equation 1:

Ct
i � ∑

t,i
EFt

i × Et
i (1)

Where: Ct
i represents the carbon emissions from urban rail

transport in city i during year t, EFti is the electricity emission
factor, and Et

i is the electricity consumption of rail transport.
For buses and taxis, a bottom-up approach is employed. This

approach is based on passenger kilometers and carbon emissions per
passenger per kilometer for each transport mode. The Equation 2 is
presented below:

FIGURE 1
Study area (city classification).
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Ct � ∑n
i�1
365 × Nt

i × Dt
i × Mt

i (2)

Where: Ct represents the total emissions from public transport
in year t; Nt

i represents the average daily travel volume; Dt
i represents

the average annual travel distance; and Mt
i represents the per capita

carbon emissions per kilometre.

3.3.2 Spatiotemporal evolution analysis of carbon
emissions via standard deviation ellipse

The standard deviation ellipse (SDE) is a statistical method
that effectively reveals the spatial distribution characteristics of
geographic elements. It quantitatively describes the overall
spatial pattern of the research object using parameters such as
the center, major axis, minor axis, and azimuth angle. In this
study, we calculate SDE parameters for city-level energy-related
carbon emissions and interpret their spatial dynamics by
comparing results across multiple years (Liu and Lv, 2024).
The formulas for calculating these main parameters are
presented below:

The coordinates of the mean center are given by Equations 3, 4:

X � ∑n
i�1
wixi/∑n

i�1
wi (3)

Y � ∑n
i�1
wiyi/∑n

i�1
wi (4)

The azimuth is given by Equation 5:

tan θ � ∑n
i�1w

2
i ~x

2
i −∑n

i�1w
2
i ~y

2
i( ) + ��������������������������������∑n

i�1w
2
i ~x

2
i −∑n

i�1w
2
i ~y

2
i( )2 + 4∑n

i�1w
2
i ~x

2
i ~y

2
i

√
2∑n

i�1w
2
i x

2
i ~yi

(5)
The standard deviation of the x-axis is given by Equation 6:

σx �
�������������������������������∑n

i�1 wi~xi cos α − wi ~yi sin α( )2/∑n

i�1w
2
i

√
(6)

The standard deviation of the y-axis is given by Equation 7:

σy �
�������������������������������∑n

i�1 wi~xi sin α − wi ~yi cos α( )2/∑n

i�1w
2
i

√
(7)

Where (xi, yi) denotes the spatial location of the study object, wi

denotes the weight, (X,Y) denotes the weighted mean center, θ is the
elliptical azimuth, which denotes the angle formed by the clockwise
rotation of the due north direction to the long axis of the ellipse, and
x̃i, and ỹi denote the coordinate deviations from the location of each
study object to the mean center, respectively, σx, and σy denote the
standard deviations along the x-axis and y-axis, respectively.

FIGURE 2
Research Flow Chart.
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3.3.3 Decoupling state assessment of carbon
emissions using the tapio model

To investigate the relationship between carbon emissions and
economic growth, this study employs the Tapio decoupling model.

Compared with the OECD decoupling index model, the Tapio
model is less sensitive to the choice of base period, yields more stable
results, and is unaffected by changes in the statistical scale. These
advantages enable a more accurate assessment of the decoupling of
carbon emissions from economic growth (Yang et al., 2021). The
decoupling index (DI), as defined by Tapio, is given by Equation 8:

DI � COt
2 − CO0

2/CO0
2

GDPt − GDP0/GDP0
� ΔCO2/CO0

2

ΔGDP/GDP0
(8)

Where: DI denotes the decoupling index, COt
2 denotes carbon

dioxide emissions in the target year, GDPt denotes the gross
domestic product (GDP) of a city in the target year, CO0

2 denotes
carbon dioxide emissions in the base year, GDP0 denotes the gross
domestic product (GDP) of a city in the base year, and ΔCO2 and
ΔGDP denote the changes of carbon dioxide and GDP from the
target year to the base year, respectively.

On the basis of Tapio’s decoupling index study, eight decoupling
types were defined, as shown in Table 1.

Table 1 illustrates the classification of decoupling states between
carbon emissions and economic growth, which is divided into three
categories: Decoupling, Coupling, and Negative Decoupling. The
Decoupling category includes Strong Decoupling, Weak Decoupling,
and Recessive Decoupling, indicating that carbon emissions have
improved relative to economic growth; the Coupling category
comprises Expansive Coupling and Recessive Coupling, indicating
that carbon emissions and economic growth change simultaneously
at comparable rates; and the Negative Decoupling category consists of
Strong Negative Decoupling, Weak Negative Decoupling, and
Expansive Negative Decoupling, indicating that carbon emissions
have worsened relative to economic growth.

3.3.4 Factor decomposition of carbon emission
drivers with LMDI methodology

In this study (Lu et al., 2017; Raza and Lin, 2020), we construct
an extended Kaya identity for carbon emissions from urban public
transportation, expressed as:

C � C

L
×
L

T
×

T

GDP
×
GDP

P
× P (9)

Where C represents the carbon emissions of urban public
transportation, L is the total length of public transportation lines,
T represents the passenger turnover of urban public transportation,
GDP represents the gross domestic product of the city, and P
represents the population of the city.

Let CEI � C
L, LDI � L

T, TRI � T
GDP, ECA � GDP

P , and POP � P.
Equation 9 can be transformed into Equation 10 Explanations of
these five factors are presented in Table 2.

Table 2 lists five decomposition factors used in the LMDI
model: carbon emission intensity (CEI = C/L), line density
(LDI = L/T), transportation intensity (TRI = T/GDP),
economic activity (ECA = GDP/P), and population scale
(POP = P). CEI captures CO2 emissions per kilometer of
transit line, reflecting vehicle efficiency and the energy mix.
LDI measures route length per unit of passenger turnover,
isolating the effects of network expansion. TRI indicates
passenger–kilometers per unit of GDP, showing how travel
demand scales with economic output. ECA represents per
capita GDP, linking economic affluence to emissions. POP
accounts for population-driven changes in emissions.
Together, these factors provide a comprehensive attribution
of annual variations in public transport-related CO2 emissions.

The extended Kaya identity can be further decomposed using
the LMDI as:

ΔC � Ct − Ct−1 � ΔCEI + ΔLDI + ΔTRI + ΔECA + ΔPOP (10)
where Ct and Ct-1 are the carbon emissions in years t and t-
1, respectively (t > o). In Equation 10, the parameters on
the right-hand side can be further expressed by
Equations 11–15:

ΔCEI � Ct − Ct−1( )/ lnCt − lnCt−1( )[ ] ln Ct
CEI/Ct−1

CEI( ) (11)
ΔLDI � Ct − Ct−1( )/ lnCt − lnCt−1( )[ ] ln Ct

LDI/Ct−1
LDI( ) (12)

ΔTRI � Ct − Ct−1( )/ lnCt − lnCt−1( )[ ] ln Ct
TRI/Ct−1

TRI( ) (13)
ΔECA � Ct − Ct−1( )/ lnCt − lnCt−1( )[ ] ln Ct

ECA/Ct−1
ECA( ) (14)

ΔPOP � Ct − Ct−1( )/ lnCt − lnCt−1( )[ ] ln Ct
POP/Ct−1

POP( ) (15)

TABLE 1 Classification of decoupling states based on economic growth and carbon emissions.

ΔC ΔGDP εC,GDP Decoupling state

ΔC<0 ΔGDP<0 [0.8,1.2] Recessive coupling

ΔC>0 ΔGDP>0 [0.8,1.2] Expansive coupling

ΔC<0 ΔGDP<0 (1.2,+ ∞) Recessive decoupling

ΔC<0 ΔGDP>0 (-∞, 0) Strong decoupling

ΔC>0 ΔGDP>0 [0,0.8) Weak decoupling

ΔC<0 ΔGDP<0 [0,0.8) Weak negative decoupling

ΔC>0 ΔGDP<0 (-∞, 0) Strong negative decoupling

ΔC>0 ΔGDP>0 (1.2,+ ∞) Expansive negative decoupling

Note: Carbon emissions (ΔC) represents the difference in carbon emissions over time, economic growth (ΔGDP) indicates the Variation in economic output over the same period, and the

decou-pling elasticity (εC,GDP) is used to measure the relationship between these two variables.
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4 Results

4.1 Carbon emission trends and distribution
of public transportation in major cities
in China

According to Section 3.3.1, the assessment of carbon emissions
from public transportation in major Chinese cities between
2018 and 2022 reveals a clearly fluctuating trend in total
emissions. Specifically, total carbon emissions were
39.848 million tons in 2018 and increased slightly to
41.212 million tons in 2019, a rise of approximately 3.4%.
However, emissions fell to 29.243 million tons in 2020—a
decrease of 29.1%—due to the COVID-19 pandemic, which
severely impacted travel demand. In 2021, emissions rebounded
to 33.238 million tons, an increase of 13.6%, as economic activity
gradually recovered. Nevertheless, emissions drop sharply again to
21.959 million tons in 2022, a decrease of 33.9%. Figure 3 illustrates
the changes in carbon emissions from public transportation and
specific bus services in each city.

Among various segments, carbon emissions from urban rail
transit increased from 7.470 million tons in 2018 to 11.388 million
tons in 2021, with an average annual growth rate of approximately
15.2%. This rise reflects the expanded scale of construction and
operation of urban rail transit and its greater share in the public
transportation system. However, in 2022, emissions from this
segment decreased sharply to 5.857 million tons, a reduction of
48.5% from the previous year. This notable declinemay be attributed
to fac-tors such as reduced passenger flow due to epidemics, adjusted
operating frequency, or increased energy efficiency.

Carbon emissions from buses exhibit significant fluctuations. In
2018, emissions were 17.996 million tons, decreasing slightly to
17.803 million tons in 2019. Owing to the epidemic, emissions
dropped sharply to 10.648 million tons in 2020, and then rebounded
to 11.839 million tons in 2021, before decreasing again to
8.594 million tons in 2022. These fluctuations are likely
influenced by both the epidemic and technological advancements,
such as the increasing adoption of electric buses.

Carbon emissions from cabs increased from 14.383 million tons
in 2018 to 14.692 million tons in 2019, then decreased to
9.333 million tons in 2020, rebounded to 10.012 million tons in
2021, and subsequently declined to 7.573 million tons in 2022. This

trend, mirroring that of buses, underscores the substantial impact of
the epidemic on short-distance travel and subsequent operational
adjustments.

Analysis results based on the standard deviation ellipse (SDE)
method (as shown in Figure 4) show that 2018–2022. The spatial
pattern of public transportation carbon emissions in China’s major
cities consistently exhibited a clear northeast-southwest orientation
during the period 2018–2022. This directional trend reflects the
central role of the eastern coastal and central economic hubs, as well
as the structural backbone of the national transportation network. It
highlights the lasting influence of historical urban layouts and
urbanization patterns on the spatial distribution of emissions.
While the orientation of the primary and secondary axes of the
ellipse has remained relatively stable, its spatial coverage has
expanded year by year. The area of the ellipse increased steadily,
reaching its maximum in 2022 from a minimum in 2018. This trend
aligns closely with the continued expansion of public transportation
networks and the broader process of urbanization. It also provides a
quantitative basis for assessing the impact of transportation
infrastructure development on the spatial diffusion of carbon
emissions across regions.

At the annual level, the major axis of the ellipse lengthened
significantly and the center of mass shifted southward between
2018 and 2019, indicating that the rapid increase in carbon
emissions from southern urban agglomerations may have
resulted from higher public transportation ridership and
commissioning of new rail transit lines. Between 2020 and 2021,
the minor axis of the ellipse extended, rotated slightly, and the center
of mass shifted westward, reflecting the expansion of transportation
infrastructure and rising emissions in western regions, likely driven
by regional development policies aimed at spatial equity. From
2021 to 2022, the growth rate of the ellipse area slowed down
markedly, and the center of mass became more stable, suggesting
that the national public transportation network is approaching
maturity. This trend may also reflect the initial impact of
environmental protection policies, such as the promotion of new
energy vehicles. However, the center of mass continued to exhibit a
slight southwestward shift, implying that the emission increases in
western and southern regions have not yet been fully mitigated.
These findings suggest that future emission-reduction strategies
should be tailored to regional conditions, considering network
saturation, energy structure, and the pace of policy implementation.

TABLE 2 Description of the decomposition factors of the LDMI model.

Variables Calculations Details

CEI C/L The effect of carbon emission intensity
Carbon emissions per unit length of public transportation lines

LDI L/T The effect of line density
Total length of public transportation routes per unit of passenger turnover

TRI T/GDP The effect of transportation intensity
Passenger turnover per unit of GDP

ECA GDP/P The effect of economic activity
GDP per capita of the city

POP P The effect of population scale
Changes in the city population level
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4.2 Carbon emissions from public
transportation in different categories of
cities and regions

This study systematically explores the spatiotemporal
heterogeneity and regional distribution patterns of carbon
emissions from public transportation across different cities. Using
panel data from 2018 to 2022, we analyze carbon emission dynamics
across four city tiers (Types I-IV) and four economic zones: Beijing-
Tianjin-Hebei, Yangtze River Delta, Pearl River Delta, Chengdu-
Chongqing, and others (Figure 5). Through multi-scale analysis of
total emissions, structural shares, and spatial distribution, we assess
how urban development stages and governance effectiveness
influence emission reduction strategies.

4.2.1 City-level carbon emission structure
Type I cities dominate carbon emissions, contributing an

average of 41.1% annually (Figures 5a,b). Megacities such as
Shanghai and Beijing, with peak emissions of 16.388 and
16.218 million tons in 2019, respectively, exhibit a high carbon

lock-in effect due to expanding rail networks and rigid growth in
surface transportation demand. Type II cities maintain a stable
carbon emission share of 19%–21%, yet achieve emission levels
comparable to or higher than those of Type III and IV cities despite
fewer urban centers. Type III and IV cities collectively account for
approximately 40% of total emissions, indicating consistent relative
contributions despite national fluctuations.

4.2.2 Spatial distribution and regional synergy
Boxplots of carbon emissions from 2018 to 2022 (Figure 3c)

reveal significant tier-based differences and dynamic trends across
city classes. Type I cities show the highest emissions with an
anomalous dip, which is likely due to the epidemic. Type II cities
follow with more uniform data distribution, whereas Type III and IV
cities exhibit progressively lower emissions. An anomalous low in
Type III suggests localized emission reduction efforts or data
variability. Regionally (Figure 3d), the Yangtze River Delta leads
in emissions due to its advanced public transportation network. The
Beijing-Tianjin-Hebei region contributes 14%, but its high electricity
emission factor highlights reliance on coal-fired power. The

FIGURE 3
Carbon Emissions from Public Transportation in Major Chinese Cities. (a) Public Transport; (b) Rail Transit; (c) Bus; (d) Taxi.
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Chengdu-Chongqing Economic Circle’s share rose from 13% to
17%, driven by increased cross-city commuting, which exposed gaps
in regional transportation coordination.

4.3 Current status of decoupling carbon
emissions from urban public
transportation systems

The decoupling index quantifies the relationship between public
transportation carbon emissions and economic growth. An analysis
of the decoupling indices and statuses from 2018 to 2022 across
28 cities reveals a complex decoupling pattern, as illustrated
in Figure 6.

From 2018 to 2019, the decoupling patterns of Type I cities show
diversified characteristics: Shanghai and Chongqing achieve SD,
indicating a reduction in environmental pressures along with
economic growth; Beijing and Shenzhen show WD, where
emissions increase but at a slower rate than economic growth;
however, Guangzhou shows END, indicating that emissions
accompany economic growth significantly rising. During
2019–2020, Type I cities generally shifted to RD due to the
decline in passenger traffic caused by the epidemic, although
economic activities remained stable. Subsequently, during
2020–2021, these cities exhibited END, EC, WD, suggesting
that—with the exception of Shenzhen—other cities did not

experience increased environmental loads amid economic growth.
By 2021–2022, all Type I cities return to SD, showing synchronized
economic and environmental progress.

The decoupling trend is more stable for Type II cities.
During 2018–2019, they mainly show SD, WD and END. In
2019–2020, most cities shift to SD, with Wuhan experiencing a
double decline in economic activity and emissions due to the
epidemic, but the environmental improvement is smaller than
that of the recession. Between 2020–2021, Type II cities show
END and EC, reflecting the increased environmental pressures
that come with economic growth. By 2021–2022, all Type II
cities achieve SD.

Type III cities show a complex pattern of decoupling during
2018–2019, with some showing SND, where environmental
pressures rise instead of declining, highlighting the mismatch
between economic performance and environmental improvement;
others show mixed changes in environmental loads in response to
economic growth. In 2019–2020, they mainly exhibit SD and RD,
with significant differences between cities. During 2020–2021, SD,
END and EC are presented. By 2021–2022, all Type III cities
return to SD.

The overall level of decoupling is lower for Type IV cities.
During 2018–2019, they exhibit a variety of states including SD, RD,
EC and END. In 2019–2020, SD and RD dominate. During
2020–2021, the decoupling status is as complex as in 2018–2019.
By 2021–2022, they revert to SD and WD.

FIGURE 4
Carbon Emission Standard Deviation Ellipse Parameters for Public Transportation in Major Chinese Cities: (a) Overall Schematic; (b) Local Ellipse
Variation; (c) Trajectory Variation of the Ellipse Center of Gravity.
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4.4 Decomposition analysis of carbon
emission factors for urban public
transportation

To better understand changes in carbon emissions from
public transportation and their driving factors in major
Chinese cities, this study employs the LMDI method to
decompose these changes into the effects of various factors
from 2018 to 2022. The analysis quantifies the contributions
of these factors to the emission changes and examines their
relative importance. The detailed results are presented in
Figures 7, 8.

4.4.1 Overall decomposition profile of carbon
emission factors for public transportation

Between 2018 and 2022, public transportation carbon emissions
fluctuated overall, and the mechanisms underlying each influencing
factor varied significantly. Overall, the influence of ECA fluctuated:
during 2019–2020, ECA inhibited carbon emission growth due to

the epidemic, whereas in other years, it promoted increases in
carbon emissions. Meanwhile, LDI and POP consistently
contributed positively to carbon emissions across all phases,
whereas TRI consistently exerted a dampening effect. Notably,
during 2020–2021, CEI contributed positively to carbon emission
growth. In the other periods, CEI exerted a dampening effect on
carbon emissions.

Specifically, during 2018–2019, CEI and TRI significantly
inhibited carbon emissions, whereas increases in LDI, ECA, and
POP drove emissions upward, resulting in overall positive growth.
In 2019–2020, ECA contributed negatively—due to the impact of the
COVID-19 pandemic—thereby suppressing carbon emission
growth. Meanwhile, increases in LDI and POP continued to drive
up carbon emissions, albeit to a lesser extent, resulting in an overall
reduction of 11,968,800 tons. In 2020–2021, as the pandemic was
gradually brought under control, the positive contribution of ECA
strengthened considerably and emerged as the primary driver of
carbon emission growth. Meanwhile, although the negative impact
of TRI persisted, the contribution of CEI reversed to a positive

FIGURE 5
Carbon emissions characteristics of public transportation across city tiers and economic zones. (a) Total emissions by city tier; (b) Emission shares by
city tier; (c) Spatial distribution of emissions by city tier; (d) Emission shares by economic zone.
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influence, culminating in an increase of 3,995,300 tons in carbon
emissions. In 2021–2022, although LDI, ECA, and POP continued to
drive carbon emission growth, the negative effects of CEI and TRI
intensified. In particular, the marked negative contribution of CEI
resulted in a significant overall decline in carbon emissions,
amounting to a reduction of 11.2790 million tons.

4.4.2 Decomposition of carbon emission factors
for different categories of urban public
transportation

Below is a paragraph-style decomposition analysis of carbon
emission factors across different city types (Type I, II, III, and IV)
for urban public transportation from 2018 to 2022, based on the
provided data. The analysis is segmented by time period
for clarity.

During the 2018–2019 period, carbon emissions across all
city types—Type I, II, III, and IV—were predominantly driven by
CEI and ECA. In Type I cities, CEI and TRI acted as significant
inhibitors of carbon emissions; however, the stronger positive
influences of ECA and LDI outweighed these effects, leading to an

overall increase in emissions. For Type II cities, ECA emerged as
the primary driver, with emissions rising rapidly as economic
levels improved, though TRI exerted a notable inhibitory effect.
In Type III cities, only CEI demonstrated an inhibitory impact,
with other factors playing a less pronounced role. Meanwhile,
Type IV cities saw TRI and CEI suppressing carbon emissions,
but the substantial upward push from ECA resulted in a net
increase in emissions.

The 2019–2020 period marked a significant shift due to the
COVID-19 pandemic, which caused a notable decline in carbon
emissions across all city types. This reduction was primarily
attributed to the negative effect of ECA, as economic
slowdowns triggered sharp decreases in production and travel
demand. While LDI increased in some cities, this uptick was
insufficient to offset the broader economic downturn’s impact on
emissions. Additionally, reduced usage of public transportation
and lower passenger flows weakened TRI’s inhibitory role,
positioning CEI as the key factor influencing emission changes
during this period.

From 2020 to 2021, emission trends diverged across city
types. In Type I and Type II cities, both CEI and ECA
contributed to rising carbon emissions, though TRI
maintained an overall inhibitory effect; notably, Type II cities
also experienced significant POP. In Type III cities, CEI took on a
negative value—reflecting improvements in energy efficiency or
technological upgrades—while a substantial rise in LDI signaled
continued expansion of public transportation networks. For Type
IV cities, CEI, LDI, and ECA all positively contributed to
emissions, whereas TRI continued to exert a negative, or
inhibitory, influence.

Between 2021 and 2022, all four city types exhibited consistent
patterns in certain factors. Negative values for CEI and TRI across
Types I, II, III, and IV indicated that technological optimization and
enhanced energy efficiency were effectively suppressing emissions.
Conversely, positive LDI values highlighted how ongoing public
transportation infrastructure expansion continued to drive
emissions upward. ECA remained a positive contributor to
emissions in all city types, reflecting its persistent role in
emission growth. On the population front, Type I cities saw a
slight decline in POP, while Types II, III, and IV maintained
positive population growth, influencing their respective
emission profiles.

FIGURE 7
Decomposition of overall urban carbon emission factors
(million tons).

FIGURE 6
Decoupling Analysis of Public Transportation Carbon Emissions in Major Chinese Cities (2018–2022).
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5 Discussion

5.1 Fluctuation characteristics and
spatiotemporal patterns of public
transportation carbon emissions

The total carbon emissions from public transportation
fluctuated significantly between 2018 and 2022, while their spatial
distribution exhibited certain regular patterns. These fluctuations
can be attributed to external shocks and regional disparities in
development. The following section provides a more detailed
analysis of the underlying causes of these fluctuations and the
observed spatial distribution patterns.

Significant fluctuations in carbon emissions from public
transportation between 2018 and 2022 are closely associated with
external events, infrastructure expansion, and policy or
technological interventions. The most notable disruption
occurred in 2020, when the COVID-19 epidemic triggered an
abrupt decline in public transportation usage, which, in turn,
engendered a marked decrease in carbon emissions (Liu et al.,
2020). This phenomenon can be attributed to various
containment measures, including the imposition of blockades and
travel restrictions. This trend aligns with global trends, as evidenced

by the analogous decline in emissions observed during the epidemic
in transit-intensive cities such as New York and London (Restrepo,
2021). In 2021, there was a “V”-shaped recovery in carbon
emissions, as demand for transportation rapidly rebounded in
tandem with the implementation of vaccination programs and
the resumption of economic activities. This pattern of fluctuation
indicates that public transportation emissions are highly sensitive to
external shocks (Lyu et al., 2025). Therefore, policymakers must take
into account the potential impact of unexpected events when
designing future emissions reduction strategies.

At the same time, long-term structural changes have contributed
to more persistent trends in emissions. Rapid urbanization and
rural-urban migration over recent decades have fueled rising travel
demand and driven the rapid expansion of China’s public
transportation network (Zhang et al., 2022). As a result, public
transport-related carbon emissions have also grown substantially.
For instance, a case study of urban rail transit shows that the total
length of operational lines increased from 5,761.4 km in 2015 to
10,287.45 km in 2022—a remarkable 78.56% increase. By the end of
2022, 55 cities across China had 308 lines in operation, with an
additional 6,675.57 km of lines under construction. The rollout of
such an extensive network inevitably contributes to short-term
emissions growth due to the energy requirements of new route

FIGURE 8
Decomposition of carbon emission factors for public transportation across city types: (a) Type I, (b) Type II, (c) Type III, and (d) Type IV.
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operations and rising passenger volumes. Furthermore, it suggests
that as infrastructure continues to improve, total carbon emissions
from public transportation systems are likely to increase in the
future. Therefore, integrating low-carbon technologies and
optimizing operational strategies during both the construction
and planning phases is essential to achieving long-term emission
reduction goals.

Encouragingly, however, the decline in emissions observed in
2022 likely reflects the growing influence of targeted policy
initiatives and technological progress. In particular, the Chinese
government has actively promoted the adoption of new energy
vehicles (NEVs), with the number of NEVs in operation
surpassing 500,000 by the end of 2022. This transition has
significantly reduced the carbon footprint of public
transportation (Tian et al., 2024). Moreover, the implementation
of intelligent transportation systems (ITS) has improved traffic
efficiency and reduced unnecessary emissions by optimizing
route planning and traffic flow (Sarwatt et al., 2024). Behavioral
changes, such as the continued prevalence of telecommuting
following the COVID-19 pandemic, have further contributed to
reduced travel demand. Together, these developments underscore
the synergistic impact of policy, technology, and societal behavior in
driving low-carbon transitions within the public transport sector.

The spatial distribution of carbon emissions exhibits a clear
northeast-southwest orientation, with the emissions centroid
gradually shifting toward the south and west. This spatial
evolution is closely linked to regional economic development
patterns and national policy orientations.

A key driver of this trend is the disparity in regional economic
development. Economic development is the main factor affecting
the growth of carbon emissions from urban public transportation.
Differences in geographic conditions, economic environment and
development strategies across China have led to different regional
economic growth patterns (Minarta and Ko, 2024). Carbon
emissions from public transportation are mainly concentrated in
China’s highly economically developed regions, which are
economically developed, densely populated, and have high
transportation demand, leading to a significant increase in public
transportation traffic-related carbon emissions. Southern and
eastern China have seen accelerated urbanization and rapid
economic growth in recent years, with a concomitant increase in
demand for public transport, leading to a rise in carbon emissions.
For example, GDP growth rates in economic zones such as the
Yangtze River Delta and Pearl River Delta are significantly higher
than the national average, and the expansion of public
transportation networks (the increase in subway and bus lines)
has directly pushed up emissions. This phenomenon is in line with
the Environmental Kuznets Curve (EKC) theory (Wang Q. et al.,
2024), which states that in the early stages of economic development,
environmental pressures increase with economic growth, but after
reaching a certain level, environmental quality is expected to
improve with technological advances and policy interventions
(He et al., 2023).

Policy interventions have also significantly influenced the spatial
distribution of carbon emissions from public transportation. For
example, the Western Development and the Belt and Road Initiative
have promoted the construction of transportation infrastructure in
the central and western regions, and between 2020 and 2022, China

has built several new high-speed railways and urban rail lines in the
central and western regions, expanding the coverage and utilization
of public transportation (Xia et al., 2025). However, this has also
brought about a short-term increase in carbon emissions. In the
future, policy design will need to seek a balance between economic
development and emission reduction targets, for example, by
promoting low-carbon transportation technologies to ease the
pressure on emissions.

5.2 Decoupling effects between economic
growth and public transpotation
carbon emissions

From 2018 to 2022, different city classes exhibited distinct
decoupling patterns between public transportation carbon
emissions and economic growth, reflecting variations in
developmental stages, governance capacity, and external
influences such as policy orientation, technological advances, and
epidemics. Tier-1cities and megacities (Class I) followed a complex
trajectory. In the early years, the rapid expansion of transit networks
led to increases in ridership, service mileage, and associated
emissions. However, the implementation of “Carbon Peak” and
“Green Mobility” policies (Zhan et al., 2024), along with targeted
investments in new energy vehicles, direct current (DC) traction
systems, and intelligent dispatch technologies, gradually
restructured travel patterns. Prioritization of bus systems and the
extension of urban rail contributed to a shift toward more
sustainable mobility modes, resulting in a strong decoupling
effect by 2021–2022. In contrast, economically vibrant provincial
capitals and regional centers (Class II) experienced a more
consistent and smooth decoupling process. Under the guidance
of green transport objectives outlined in the 14th Five-Year Plan,
these cities expanded charging infrastructure, accelerated fleet
electrification, and improved multimodal interchanges.
Consequently, carbon intensity declined steadily, and strong
decoupling was achieved by 2022.

Emerging city clusters and resource-based cities (Class III)
experiences significant fluctuations during the decoupling
process. Before the epidemic, these cities were rapidly
expanding their public transportation networks. The increase
in route mileage and vehicle deployment initially led to negative
decoupling (SND), as carbon emissions grew despite economic
progress. During the epidemic, emissions briefly dropped due to a
sharp decline in passenger traffic. However, once the economy
and travel demand recovered, operational inefficiencies and
reliance on a single energy source resurfaced. By 2021–2022,
the introduction of smart dispatch systems and new energy
demonstration operations helped these cities shift toward
strong decoupling. However, to maintain this progress, cities
must consolidate their operational resilience and accelerate
technological advancements. Cities in the smallest and
slowest-developing Category IV were hindered by a low
passenger base, an underdeveloped public transportation
network, and both financial and demand constraints. This led
to repeated cycles of decoupling and back-coupling.
Nevertheless, by 2022, these cities achieved a more stable
state, primarily at the strong decoupling level. Moving
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forward, cities must tailor their policy implementation and
technology adoption to their specific circumstances in order to
fully decouple the public transportation sector in the future.

Over the past 4 years, decoupling of China’s public
transportation sector has improved significantly. This progress
has been made possible by a series of government policy
initiatives to curb greenhouse gas emissions, particularly the
2030 “peak carbon” and 2060 “carbon neutral” targets. As a
major source of carbon emissions, the low-carbon transformation
of transportation has been raised to an unprecedented level.
Currently, China is in a critical period of green transportation
planning, with the “Outline for the Construction of a Strong
Transportation State,” “Green Travel Action Plan,” and “Public
Transportation Priority Development Plan” all coming out one after
another, emphasizing the significant reduction of carbon emissions
from public transportation through the promotion of electrification
of buses, optimization of the rail network, and the electrification of
cabs and online cab rides. At the international level, Tokyo’s Zero
Emission Tokyo Strategy (Goto, 2024), Los Angeles’ Mobility Plan
2035 (Planning, 2015), Singapore’s Green Plan 2030 (Plan, 2023),
and the UK’s Road to Zero Strategy have demonstrated diverse paths
for low-carbon transportation policies. Domestically, institutional
design has also been continuously strengthened. The Regulations on
the Construction and Management of Public Transportation put
forward stricter entry conditions for the planning and construction
of bus, rail and cab networks, including indicators such as public
budget revenue, gross regional product, urban resident population
and passenger flow size.

5.3 Variations in factors influencing the LMDI
decomposition of public transportation
carbon emissions

Under the extended Kaya framework, decomposition results
based on the LMDI methodology show that the level of carbon
emission intensity (CEI), line density (LDI), transportation intensity
(TRI), economic activity (ECA) and population scale (POP)
collectively drive public transportation carbon emissions, but
their roles vary significantly across years and city types. Overall,
ECA, LDI, and POP have exerted a sustained upward pressure on
emissions over the 2018–2022 period-reflecting accelerating GDP
growth, network expansion, and urbanization. Meanwhile, TRI has
consistently had a dampening effect on emissions, suggesting that
increasing per-unit efficiency has counteracted some of the
emissions growth. The impact of CEI has fluctuated over time: in
most years, it has been dampened by technological advances in
energy efficiency. However, during 2020–2021, its negative
contribution turned positive when passenger traffic rebounded
faster than efficiency gains during the recovery phase.

These dynamics highlight key considerations for policy design.
First, to strengthen the disincentive effect of TRI, multi-modal
transportation integration and demand management reforms,
such as the promotion of smart ticketing systems and peak
diversion incentives, should be further developed to improve
overall passenger capacity without increasing carbon emissions
(Yan et al., 2025). Second, while continued network expansion is
critical for meeting travel demand, planners must strike a balance

route expansion and the adoption of low-carbon traction
technologies and renewable energy to avoid the “carbon lock-in”
effect of infrastructure development (Wang W. et al., 2024). Third,
to sustain a negative CEI contribution, fleet electrification should be
actively pursued, with aggressive pilots of hydrogen fuel and battery
electric vehicle technologies, along with simultaneous
improvements in grid cleanliness—especially critical during
periods of rapid passenger growth (Darmoyono, 2024).

Comparisons across city types further demonstrate the need for
differentiated strategies. In Class I and II cities, where ECAs and
POPs account for the largest share of total carbon emissions, a
combination of economic incentives and higher efficiency standards
can help deliver a “high quality, low carbon” dividend. In contrast, in
smaller or emerging Class III and IV cities—where rapid expansion
of transport networks and vehicle fleets is the primary driver of
emissions—priority should be given to deploying high-efficiency
vehicles and adapting service models flexibly to help these cities
leapfrog the traditional “high-carbon growth” phase. Overall, the
LMDI analysis suggests that long-term emissions control in the
public transport sector will require optimizing network density and
operational efficiency while leveraging economic growth to finance
low-carbon investments, and continuing to improve energy
intensity in all types of cities to achieve synergistic and robust
transitions to low-carbon development in the region.

6 Conclusion and policy implications

6.1 Conclusion

6.1.1 Spatio-temporal pattern and fluctuation
characteristics of public transportation
carbon emissions

From 2018 to 2022, total carbon emissions from public
transportation in major Chinese cities exhibited significant
fluctuations. Total emissions were 39.848 million tons in 2018,
increased to 41.212 million tons in 2019, decreased to
29.242 million tons in 2020 due to the COVID-19 pandemic,
rebounded to 33.238 million tons in 2021, and further decreased
to 21.959 million tons in 2022. Spatially, emissions followed a
northeast-southwest distribution. Standard deviation ellipse
analysis revealed an expanding spatial pattern annually, with the
center of gravity gradually shifting southwards and slightly
westwards. These trends reflect the impact of regional economic
development disparities and transportation policies on public
transportation carbon emissions.

6.1.2 Carbon emission characteristics of different
categories of cities

During the study period, Type I cities (economically developed
cities) presented the highest carbon emissions from public
transportation, accounting for 41.1% of the total. Type II cities
maintained a stable share of 19%–21%, whereas Type III and Type
IV cities collectively contributed approximately 40%. Notably, Type
I cities presented lower carbon emission intensities, indicating
greater energy efficiency. In contrast, Type II cities presented
faster emission growth, whereas emissions from Type III and
Type IV cities remained relatively stable. Among regional
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economic zones, the Yangtze River Delta region contributed the
most to carbon emissions. The Beijing-Tianjin-Hebei region
experienced elevated emissions due to a high electricity emission
factor. Meanwhile, the Chengdu-Chongqing Economic Circle
recorded an increase in carbon emissions, driven by rising
demand for cross-city commuting.

6.1.3 Trends in decoupling carbon emissions from
economic growth

From 2018 to 2022, the decoupling relationship between carbon
emissions from public transportation and economic growth in
Chinese cities varied across city types. The Type I and Type II
cities gradually achieved strong decoupling, especially during
2021–2022. Conversely, Type III and Type IV cities presented
weaker decoupling effects, with some exhibiting strong negative
decoupling, indicating insufficient coordination between economic
growth and carbon emissions. Overall, the decoupling relationship
improved across China from 2021–2022, likely due to effective
policy interventions and technological advancements.

6.1.4 Impact of drivers on carbon emissions
ECA and LDI are the primary drivers of carbon emission growth

from public transportation, particularly in Type I and Type II cities.
The impacts of CEI and TRI vary across time and city type. From
2021–2022, CEI significantly reduced emissions in Type I cities,
while TRI mitigated emissions in Type I cities but drove emissions
growth in Type III and Type IV cities. These findings underscore the
complex relationship between transportation demand and carbon
emissions across diverse urban settings.

6.2 Policy implication

Based on the key findings of this study, policymakers should
formulate integrated policy responses that promote the low-carbon
transformation of urban public transport while addressing the
differentiated characteristics and developmental trajectories of
cities. These responses can be broadly framed around three
interrelated priorities: the development of tailored low-carbon
transport strategies, the enhancement of technological and energy
efficiency in public transportation, and the promotion of
collaborative regional governance to support low-carbon mobility
transitions.

To begin with, differentiated policy design is crucial for
effectively managing the carbon emissions of public
transportation across China’s 28 major cities, which vary widely
in terms of economic structure, population dynamics, and
infrastructure development. For Type I cities, which are
economically developed and have high total carbon emissions but
low intensity, it is recommended to optimize the existing
transportation network, build smart charging networks to
support the popularization of electric vehicles, integrate
renewable energy into the public transportation system, and
improve the efficiency of rail transportation through smart
dispatching and energy-efficient traction systems. For Type II
cities, where carbon emissions are growing rapidly but stabilizing
at between 19% and 21%, there is a need to build low-carbon
transportation networks, such as light rail or Bus Rapid Transit

(BRT) systems, to meet the growth in demand for transportation,
and to ensure that these networks incorporate energy-efficient and
low-carbon technologies. For Type III and Type IV cities, where
emissions are stable but decoupling effects are weak and
infrastructure gaps are evident, policies should prioritize
investment in basic public transport systems, expansion of bus
networks, introduction of electric or hybrid vehicles, and
upgrading of service quality to enhance attractiveness.

Enhancing the energy efficiency of public transportation systems
presents another essential avenue for sustained emissions reduction.
In the short term, all cities should promote energy-efficient
technologies, such as retrofitting bus fleets with fuel-efficient
engines or hybrid systems, and implementing real-time energy
monitoring systems to optimize fuel and electricity use. In the
medium to long term, Type I and Type II cities, with their
greater economic capacity, should take the lead in adopting
cutting-edge technologies such as hydrogen fuel cell vehicles and
next-generation battery systems, while promoting a transition to a
clean energy grid to reduce the carbon intensity of rail
transportation. Type III and Type IV cities, on the other hand,
should phase out older, high-emission vehicles and replace them
with electric or low-emission alternatives, with subsidies and
incentives to accelerate the transition of fleet operators.

Finally, shifting travel behavior toward low-carbon modes of
transport is fundamental to the long-term sustainability of urban
mobility. This requires a combination of short-term behavioral
incentives and long-term planning frameworks. In the short term,
all cities should introduce peak travel incentives, such as out-of-peak
concessionary fares to reduce congestion and emissions, along with
public awareness campaigns to promote public transportation, cycling,
and walking. In the medium to long term, Type I cities should develop
integrated mobility platforms that combine public transportation with
shared mobility services (e.g., bike-sharing and internet ridesharing) to
provide seamless, low-carbon mobility options and implement
congestion pricing or low-emission zone (LEZ) policies to reduce
private vehicle use. For Type II, Type III and Type IV cities, policies
should focus on improving the reliability and accessibility of public
transportation as a strong competitor to the private car, while
supporting pedestrian-friendly urban design and bicycle
infrastructure to further promote low-carbon travel.

6.3 Limitations analysis

This study has several limitations that offer promising directions
for future research. First, by focusing exclusively on the operational
phase of public transportation, the analysis captures only direct
emissions from tailpipes and electricity consumption. A more
comprehensive life cycle assessment (LCA) that includes vehicle
manufacturing, infrastructure construction, maintenance, and end-
of-life disposal would provide a fuller understanding of the sector’s
true carbon footprint. Secondly, the study’s geographic scope is
limited to major Chinese cities, which may constrain the
generalizability of its findings. Although expanding data
collection to a broader set of global cities—such as those in
Europe, Latin America, or Africa—poses logistical challenges in
the short term, such comparative research would yield valuable
insights into the divergent decoupling patterns and emission drivers

Frontiers in Environmental Science frontiersin.org15

Jia et al. 10.3389/fenvs.2025.1611380

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1611380


shaped by varying levels of economic development and policy
regimes. In line with World Bank assessments, there is evidence
that low-carbon transit investments generate similar co-
benefits—including reductions in air pollution and improved
mobility equity—across diverse urban contexts, as observed in
cities like Buenos Aires and Barcelona. Future studies should
apply the integrated Tapio–LMDI approach to international
cases, examining the policy successes and implementation
challenges in cities like Tokyo’s early rail electrification program
or Los Angeles’s Bus Rapid Transit rollout, thereby enhancing the
global relevance and transferability of the framework. In conclusion,
as this analysis is grounded in historical data, it does not project
future emission trajectories. Incorporating scenario-based
forecasting—modeling the impact of varying fleet electrification
rates, land-use changes, or demand-management policies—would
allow policymakers to assess long-term decarbonization pathways
and prioritize interventions with the greatest mitigation potential.
These proposed extensions would not only address current
limitations but contribute to the development of a robust and
globally applicable framework for advancing low-carbon and
resilient public transportation systems.
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