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Introduction: The intelligent classification of coastal land cover is an essential
task for effective coastal management and environmental monitoring. With the
increasing availability of remote sensing images, leveraging advanced machine
learning methods, such as deep learning, has become pivotal in improving
classification accuracy. Traditional methods, like pixel-based and object-
oriented classification, often struggle with high complexity and inaccurate
results due to limitations in handling spatial relationships and spectral data.

Methods: This research addresses these shortcomings by integrating deep
learning models, particularly convolutional neural networks (CNNs) and
spatially dependent learning techniques, to develop a robust classification
model for coastal land cover using remote sensing data. Our approach
incorporates multi-scale spatial analysis and graph-based models to capture
spatial dependencies and contextual features across various coastal
environments. The model also emphasizes spatial continuity, enabling a more
realistic representation of complex land cover types such as wetlands, beaches,
mangroves, and urbanized coastlines.

Results: Compared to traditional machine learning baselines, our method
achieves improvements of +10–15% in overall accuracy and +12–14% in
macro F1-score, highlighting the practical advantages of deep learning in
capturing spatial structures and heterogeneity. The proposed method
achieves classification accuracies of 95.83% on the Gaofen image dataset and
94.34% on the LandCoverNet dataset, with F1 scores of 91.65% and 92.42%
respectively.

Discussion: These results demonstrate significant improvements in both
precision and robustness when applied to high-resolution coastal remote
sensing images. This work highlights the potential of deep learning in
enhancing remote sensing analysis for environmental and urban applications,
paving the way for intelligent decision-making in dynamic coastal zones.
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1 Introduction

The intelligent classification of coastal land cover is crucial for
effective management of coastal ecosystems monitoring
environmental changes, and mitigating natural disasters Mi and
Yi (2022). Coastal regions are characterized by complex and
dynamic environments, which are difficult to monitor and
manage using traditional methods. Remote sensing images, which
provide comprehensive, up-to-date, and spatially extensive data,
have become essential tools in land cover classification Chavan and
Patil (2024). However, the increasing complexity of coastal
environments demands advanced classification techniques that
can accurately identify various land cover types, including water
bodies, vegetation, urban areas, and sandy beaches Khouya et al.
(2024). Deep learning, particularly CNNs and other advanced
machine learning models, have demonstrated promising results
in improving classification accuracy Hernandez-Lareda and
Auccahuasi (2024).

The innovation of this study is that we proposed a GISE model
that integrates graph structure modeling and multi-scale spatial
feature extraction for complex coastal landform classification tasks.
Unlike previous studies that only rely on CNN for land cover
classification, we introduced a spatial graph convolution
mechanism to enable the model to explicitly model geographic
adjacency relationships, thereby improving the ability to
recognize irregular landform structures; at the same time, we
designed a multi-scale neighborhood fusion module to enable the
model to extract and integrate feature information at different
spatial scales, thereby enhancing the classification robustness of
heterogeneous regions; in addition, by constraining the model
output with a spatial consistency regularization term, the spatial
coherence and stability of the classification results are improved.
The model performs well on multiple representative remote
sensing datasets, verifying the significant improvement of the
method in accuracy, generalization ability, and adaptability to
complex landforms.

In the early stages of remote sensing image classification,
traditional symbolic AI and knowledge representation methods
were employed Bade et al. (2024). These methods heavily relied
on manual feature extraction, which involved the identification and
extraction of relevant attributes such as texture, color, and shape
from satellite or aerial imagery Yossy et al. (2023). Symbolic AI
aimed to represent knowledge through predefined rules and models,
making it applicable for identifying clear land cover classes like
urban or water areas Zhang Z. et al. (2023). However, these methods
faced significant limitations, particularly when dealing with
complex, heterogeneous, and dynamic coastal environments
Ushio and Camacho-Collados (2022). The reliance on manual
feature engineering required domain expertise and was time-
consuming, making it unsuitable for large-scale or real-time
applications Ray et al. (2023). Moreover, the symbolic AI
methods struggled with classifying intricate land covers such as
wetland vegetation or coastal dunes that required more nuanced,
spatially varying features.

As remote sensing image classification advanced, the focus
shifted towards data-driven approaches, particularly those
leveraging machine learning algorithms Chen et al. (2022). These
methods, such as decision trees, Support Vector Machine (SVM),

and random forests, were designed to learn from data without
requiring manual feature extraction. The key advantage of these
methods was their ability to automatically learn patterns and
relationships in the data, improving classification accuracy for a
wide range of land cover types Yu et al. (2022). However, these data-
driven methods still had limitations when it came to handling high-
dimensional data and complex spatial relationships in coastal areas
Li and Meng (2021). The performance of these models could
degrade when faced with noisy data or when distinguishing
between similar land cover types, such as sandy beaches versus
shallow coastal waters Zhang et al. (2024). Moreover, while machine
learning models were more flexible than symbolic approaches, they
still lacked the deep understanding necessary to capture the
hierarchical, contextual, and spatial patterns present in remote
sensing data Taher et al. (2020).

The rise of deep learning techniques—most notably CNNs—has
brought transformative progress to the field of remote sensing image
classification Zheng et al. (2024). CNNs excel at autonomously
learning hierarchical representations directly from raw image
pixels, making them particularly adept at managing the spatial
complexity and high dimensionality inherent in remote sensing
data Hu et al. (2023). These models progressively capture abstract
features across multiple layers, identifying low-level structures such
as edges and textures as well as high-level semantic patterns. This
capacity makes CNNs especially advantageous for classifying diverse
coastal land cover types Jarrar et al. (2024). The introduction of pre-
trained networks, including those trained on massive datasets like
ImageNet, has further boosted the effectiveness of CNNs in remote
sensing by enabling transfer learning and reducing the need for
extensive training from scratch Zhou et al. (2023). Nevertheless,
deep learning models are not without limitations. They typically
demand substantial amounts of labeled training data, require
significant computational resources, and may overfit when faced
with small or imbalanced datasets Zaratiana et al. (2023).

In addition to general advances in deep learning for remote
sensing, several studies have focused on the unique challenges of
coastal areas. For example, high-resolution convolutional networks
have been employed to extract shorelines and map land cover
transitions in tidal zones, while graph-based models have been
explored for modeling spatial dependencies in mangrove and
wetland environments. These studies highlight the importance of
incorporating spatial context and multi-scale features to address
coastal complexity, but they often face limitations in adapting to
heterogeneous and dynamic coastal environments. By explicitly
reviewing these targeted works, we aim to position our proposed
framework within the specific context of coastal land cover
classification and emphasize the need for robust domain
adaptation and spatially aware feature learning in these
challenging settings.

To overcome the drawbacks of conventional techniques, we
introduce a method that combines remote sensing imagery with
deep learning, harnessing the advantages of data-driven modeling
and advanced neural architectures. This strategy addresses the
constraints of traditional symbolic AI by deploying neural
networks capable of autonomously learning from large-scale
datasets, thereby eliminating the dependency on manual feature
engineering. Furthermore, our approach minimizes the reliance on
extensive labeled training data, enhancing its suitability for a wide
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range of coastal settings where annotated samples are scarce. By
effectively capturing the intricate spatial and temporal dynamics
characteristic of coastal ecosystems, the proposed method
significantly boosts the precision and resilience of land cover
classification models.

The proposed approach offers several significant benefits:

• Our approach introduces a novel deep learning model that
incorporates multi-scale features, improving the accuracy of
land cover classification in coastal environments.

• The method is highly versatile, offering high efficiency and
adaptability to various coastal ecosystems, from urban
shorelines to remote, natural coastlines.

• Experimental results demonstrate significant improvements in
classification accuracy and robustness, surpassing traditional
machine learning techniques and symbolic AI approaches in
terms of both precision and scalability.

To address the challenge of limited labeled data in coastal land
cover mapping, we incorporate techniques such as transfer learning
and regularization into our framework. Transfer learning leverages
pre-trained models or related source-domain knowledge to improve
feature representation in the target domain, thereby enhancing
model performance even with few annotated samples.
Regularization strategies, including domain alignment and
contrastive consistency constraints, help mitigate overfitting and
improve robustness by promoting consistent representations across
varying data conditions. These techniques collectively reduce the
dependency on large-scale annotated datasets, supporting more
efficient and scalable classification in dynamic coastal environments.

While previous studies have explored CNN and GNN
integration in generic remote sensing applications, our approach
introduces several unique contributions tailored to high-resolution
coastal land cover mapping. First, we incorporate a resolution-aware
transfer learning module that jointly adapts multi-scale CNN and
GNN features to account for cross-domain variations, such as
differences in spatial resolution and land cover complexity across
coastal regions. Second, we introduce a contrastive consistency
regularization mechanism that explicitly aligns spatial-spectral
features during training, enhancing model generalization in data-
scarce and noisy coastal environments. Third, we develop a unified
training pipeline that eliminates the need for dataset-specific fine-
tuning, enabling robust classification across multiple coastal datasets
with diverse spatial and spectral characteristics. These innovations
collectively address the challenges of spatial heterogeneity and
limited data availability in coastal land cover classification, setting
our work apart from existing CNN + GNN approaches in
remote sensing.

2 Related work

2.1 Remote sensing image classification

Remote technologies have become an essential tool for coastal
land cover classification due to their ability to capture vast and
diverse geographical dataChen et al. (2024). Satellite images, aerial
photographs, and unmanned aerial vehicle (UAV)-based

observations are frequently employed for mapping and
monitoring coastal areas. These images are often subject to
challenges such as high spatial variability, mixed pixels, and
atmospheric interference Wang et al. (2023). To tackle these
challenges, numerous researchers have concentrated on
enhancing both the precision and computational effectiveness of
image classification techniques. Conventional approaches—such as
supervised and unsupervised learning—typically operate on pixel-
level analysis, which tends to perform inadequately in the context of
complex and heterogeneous coastal landscapes Ding et al. (2021).
With the advent of deep learning techniques, more advanced
methods like CNNs and fully convolutional networks (FCNs)
have been increasingly used to enhance classification
performance. Deep learning algorithms are capable of
automatically extracting hierarchical features from raw image
data, enabling them to capture intricate patterns that are often
overlooked by conventional techniques Shen et al. (2023a). These
advancements have significantly improved classification outcomes,
particularly in challenging coastal ecosystems, accounting for
various land cover types such as beaches, dunes, estuaries,
wetlands, and urban areas Shen et al. (2023b). Recent studies
have also explored the integration of temporal and multi-source
information to further enhance model robustness. For instance,
time-series remote sensing data allows models to capture dynamic
land cover changes due to tides, storms, or seasonal vegetation cycles
Nigar et al. (2024).

2.2 Deep learning for coastal land cover

Deep learning techniques—especially CNNs—have significantly
transformed land cover classification in the field of remote sensing
Zhang J. et al. (2023). These architectures are highly effective at
recognizing spatial structures and features within imagery, making
them well-suited for interpreting the complex and diverse nature of
coastal regions. CNNs automatically learn hierarchical features from
raw image data, allowing them to bypass the need for manual feature
extraction and domain-specific knowledge Zhang et al. (2025). This
property of deep learning is particularly advantageous in coastal
land cover classification, where the diversity of land types and the
complexities of coastal dynamics present significant challenges
Durango et al. (2023). Other advanced deep learning techniques,
such as Generative Adversarial Networks (GANs) and Recurrent
Neural Networks (RNNs), have also been applied in this domain to
address specific problems, such as improving image resolution,
filling in missing data, and enhancing temporal analysis of
coastal changes Qu et al. (2023). Moreover, the integration of
transfer learning has further boosted classification accuracy by
leveraging pre-trained models on large-scale image datasets,
reducing the need for extensive training data specific to coastal
areas Chen et al. (2023). In recent years, the adoption of
Transformer-based architectures has gained momentum in
remote sensing applications. Models such as Vision Transformers
(ViT) and Swin Transformers offer enhanced capability in capturing
long-range dependencies and global contextual
information—crucial for delineating large-scale spatial features
like shorelines, tidal flats, and estuarine zones. Meanwhile, Graph
Neural Networks (GNNs) have emerged as a promising alternative
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for representing spatial relationships and complex landform
topologies, effectively modeling inter-region interactions in
irregular coastal geometries. Multimodal deep learning models
are being developed to integrate diverse data sources—including
optical imagery, SAR, LiDAR, and even environmental attributes
such as salinity and elevation—enabling a more holistic
understanding of coastal systems. Lightweight architectures such
as MobileNet and EfficientNet are also increasingly deployed for
real-time or resource-constrained scenarios like UAV-based coastal
surveillance. Combined with edge computing, such models facilitate
timely analysis and decision-making in dynamic coastal monitoring
tasks. These innovations mark a significant evolution of deep
learning applications, from pixel-based classifiers to integrated,
scalable frameworks tailored for the unique complexities of
coastal landscapes.

2.3 Integration of multi-source data

The integration of multi-source data plays a critical role in
improving the accuracy and robustness of coastal land cover
classification Jarrar et al. (2023). Relying solely on single-source
remote sensing images often fails to capture the full complexity of
coastal environments, particularly when dealing with variable
terrain, spectral ambiguity, or seasonal changes Darji et al.
(2023). Combining data types such as hyperspectral imagery,
LiDAR, SAR, and environmental indicators (e.g., elevation,
salinity) enables more comprehensive characterization of diverse
land cover types Yu et al. (2020). In the context of deep learning, this
integration allows models to learn richer and more discriminative
feature representations Cui et al. (2021). Architectures capable of
processing multi-modal inputs, including 3D CNNs and graph-
based models, are particularly well-suited for capturing spatial and
contextual relationships. Attention mechanisms and transformer-
based modules further enhance the model’s ability to weight
different data sources adaptively, ensuring that relevant
modalities contribute more to the final prediction Liu et al.
(2025). Our proposed method builds upon this foundation by
incorporating spatially structured graph embeddings and multi-
resolution features that naturally accommodate multi-source
signals Zhu et al. (2025). This integration supports more accurate
interpretation of complex coastal zones where environmental
heterogeneity is high, and single-source information is
insufficient for reliable classification.

3 Methods

3.1 Overview

Remote sensing is the process of acquiring information about
objects or areas from a distance, typically from satellite or aerial
imagery, without making direct physical contact. The field of remote
sensing is vast, encompassing a wide range of applications, from
monitoring environmental changes and agricultural practices to
urban planning and disaster management. In recent years,
remote sensing has seen a surge in development due to
advancements in satellite technology, data processing algorithms,

and machine learning techniques. These developments allow for
more accurate, efficient, and timely analysis of spatial data.

The core of remote sensing involves the capture of data through
various types of sensors in Section 3.2, including optical, radar, and
infrared sensors, which measure different wavelengths of
electromagnetic radiation reflected or emitted by the Earth’s
surface. This data is then processed to extract meaningful
information that can be used for a wide range of applications
such as land cover classification, vegetation monitoring, urban
sprawl detection, and even climate change studies. In Section 3.3,
we will discuss the key components of remote sensing, the types of
sensors used, the process of data collection and processing, as well as
various techniques for analyzing remote sensing data. The ability to
extract relevant features from the vast amount of data collected is
crucial, and this is where advanced machine learning techniques,
such as deep learning and CNNs, have revolutionized the field.
These technologies have enabled the development of automatic
classification systems, which reduce human intervention while
improving accuracy and efficiency in data interpretation. Remote
sensing has increasingly become an interdisciplinary field,
collaborating with disciplines such as geospatial analysis,
environmental science, and meteorology, to address global
challenges like deforestation, urbanization, and natural disasters
in Section 3.4. This overview provides a foundation for
understanding the methodologies and applications of remote
sensing, setting the stage for a deeper exploration of the models
and strategies that are reshaping this dynamic field.

Missing and noisy data in coastal areas are handled by applying a
cloud masking procedure based on dataset-provided cloud
probability maps and threshold-based filtering of spectral values
to exclude cloudy and shadowed pixels from both training and
testing. For datasets lacking explicit cloud masks, multi-temporal
composites are used to select clear-sky observations and reduce the
impact of transient noise. Mild data augmentation strategies,
including small random occlusions, further improve model
robustness to localized missing data without introducing artifacts
or compromising classification accuracy. In cases where spatial gaps
remain after masking, these areas are excluded from quantitative
evaluation to ensure that metrics are not biased by large contiguous
missing regions. This approach ensures that the model focuses on
learning from clear and consistent spatial patterns even in complex
coastal environments prone to atmospheric noise.

3.2 Preliminaries

In this section, we define the fundamental concepts and
mathematical notation used throughout this paper to address
remote sensing problems. These preliminaries establish the
foundation for the subsequent sections, where we introduce novel
models and strategies for remote sensing analysis. The aim is to
formulate the problem in a rigorous manner, providing a clear
understanding of the relationships between the various components
of remote sensing systems.

Let X represent the space of possible locations or regions on the
Earth’s surface that can be observed via remote sensing techniques.
This can include a variety of spatially referenced data, such as
satellite imagery or aerial photos. For each location x ∈ X , the
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remote sensing system captures information in the form of a multi-
dimensional signal y(x) ∈ Rd, where d is the number of features
collected (e.g., spectral bands, temperature readings, or other sensor
measurements). The collection of such signals across all locations
defines a data matrix Y ∈ RN×d, where N is the number of
observed locations.

The relationship between the raw remote sensing data and the
actual physical properties of the observed region is often governed
by a function f: Rd → Rm, where m represents the number of
desired outputs (e.g., land cover type, vegetation index, or
temperature). The function f can be learned through supervised
or unsupervised approaches, and it encapsulates the underlying
mapping from sensor measurements to the target properties
of interest.

We model the remote sensing problem as a supervised learning
task where we are given a set of labeled training data {(xi, yi)}Li�1,
where L is the number of training samples, xi ∈ X denotes the
location, and yi ∈ Rd represents the observed feature vector at
location xi. The goal is to learn a mapping f(·) such that for any
new location x ∈ X , we can predict the corresponding sensor
measurements y(x) and estimate the associated physical
properties.

For remote sensing applications such as land cover classification,
we introduce the set of class labels C � {c1, c2, . . . , cK}, where K is
the number of possible land cover types (e.g., forest, water, urban
areas). The task is then to assign a class label ci ∈ C to each location
based on the observed sensor measurements y(x). The classification
problem is commonly approached by minimizing a loss function
L(f(y(x)), ci), where the loss function quantifies the discrepancy
between the predicted label and the true label ci.

Furthermore, the spatial dependencies between neighboring
locations x ∈ X play a crucial role in remote sensing tasks. These
dependencies are often encoded via spatial models such as Markov
Random Fields (MRF) or Conditional Random Fields (CRF), where
the label of a location x depends not only on the sensor
measurements y(x) but also on the labels of neighboring
locations. Mathematically, these dependencies are modeled by
incorporating a neighborhood function N (x), which defines the
set of neighboring locations for any given x.

In this paper, we also make use of geometric representations of
the Earth’s surface. Let S denote the spatial domain that
encompasses all possible locations of interest. The remote sensing
system provides a mapping of this spatial domain into a higher-
dimensional feature space Rd. These spatial and feature spaces are
interconnected, and remote sensing analysis often involves mapping
the observed data from one space to another.

To summarize, the problem of remote sensing can be framed in
the following general terms Equation 1:

Y x( ) � f X ,S,N x( ), y x( )( ), (1)
where Y(x) denotes the predicted physical properties at location x,
f is the learned function, and N (x) encodes the spatial
dependencies of neighboring locations.

To ensure spatial coherence during data augmentation, all
geometric transformations, including random rotations, flips,
translations, and scalings, are applied synchronously to both the
input images and their corresponding label masks. This alignment
guarantees that every pixel in the input has a corresponding label in

the transformed ground truth, thereby maintaining the integrity of
spatial structures and boundaries. For example, a 90-degree rotation
is performed simultaneously on both the input data and the label
mask, ensuring that spatial relationships such as edges, textures, and
class boundaries are not disrupted. This approach is essential for
accurate training of segmentation and classification models in
remote sensing, where spatial patterns are critical for identifying
subtle land cover differences and transitions. We avoid
augmentations that could distort the inherent spatial context or
introduce artifacts, such as extreme aspect ratio changes or
inconsistent cropping. Our experiments confirm that these
spatially coherent augmentations improve the model’s
generalization while retaining the fidelity of spatial structures,
particularly in complex coastal environments where accurate
delineation of land-water and vegetation boundaries is crucial.

3.3 Graph-integrated spatial encoder (GISE)

In this section, we present a novel model—termed Graph-
Integrated Spatial Encoder (GISE)—designed to tackle the
challenges of remote sensing data interpretation, particularly for
effective classification and spatial understanding. Our model
introduces three core innovations to enhance spatial feature
representation, multi-scale learning, and prediction robustness
across diverse remote sensing applications (As shown in
Figure 1). The GISE model we proposed aims to improve the
ability to understand remote sensing images with complex spatial
structures. Intuitively, GISE not only focuses on the spectral
characteristics of each pixel itself, but also considers the spatial
distribution characteristics of its surrounding neighborhood by
constructing a “graph with connections between pixels”. Similar
to “neighborhood collaborative judgment”, GISE can identify which
pixels belong to the same type of land features (such as beaches and
mangroves), even if they have certain spectral similarities or noise
interference. The model extracts information from different spatial
perspectives (local texture and overall structure) through a multi-
scale perception mechanism, thereby improving the accuracy and
stability of classification.

3.3.1 Spatial-graph embedding
Let the remote sensing observations from a spatial domain be

denoted asY ∈ RN×d, whereN represents the total number of spatial
locations and d denotes the dimensionality of the observed features
at each location. In conventional approaches, these observations
{y(xi)}Ni�1 are typically processed under the assumption of mutual
independence, which neglects the underlying spatial structure often
present in geospatial data. To overcome this limitation, we propose
an embedding mechanism that incorporates spatial connectivity by
modeling the domain as an undirected graphG � (V, E), where each
node x ∈ V corresponds to a spatial unit and edges (x, x′) ∈ E define
the neighborhood relationships between spatially adjacent nodes.
For a given node x, letN (x) denote the set of its neighboring nodes
according to spatial proximity or other structural constraints. We
define the label prediction for each location as a function of both the
feature vector y(x) and the labels of its neighbors {cx′}x′∈N (x),
capturing the local dependency pattern through the function f
Equation 2:
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cx � f y x( ), cx′{ }x′∈N x( )( ), (2)

where f is instantiated using a learnable function such as a
graph neural network (GNN) layer or a spatial-aware convolutional
operator. Instead of treating each spatial unit as isolated, this
formulation introduces an inductive bias that encourages the
model to consider context and continuity. To realize this graph-
based encoding, we introduce a spatial convolution operator over
the graph structure that aggregates information from the
neighborhood of each node. This operation updates the latent
representation at each node x based on its features and those of
its neighbors, formulated as Equation 3:

hx � Conv y x( ), y x′( ){ }x′∈N x( )( ), (3)

where Conv is a parameterized function capturing both spectral
and spatial information propagation. To further account for the
influence of neighbors, we incorporate a weighted aggregation
scheme that differentiates the contributions of each neighbor
based on spatial distance, spectral similarity, or learned attention
weights. This gives rise to an enhanced message-passing mechanism
where the aggregated representation at node x is refined via
Equation 4:

hx � σ ∑
x′∈N x( )

wx,x′ ·Wy x′( ) + b⎛⎝ ⎞⎠, (4)

WhereW ∈ Rd′×d and b ∈ Rd′ are learnable parameters, wx,x′ is
the spatial attention or distance-based weight between nodes x and
x′, and σ is a non-linear activation function such as ReLU or
LeakyReLU. In addition to direct neighbors, we also include a
self-loop to allow the node to preserve its original features in the

update process. This equation describes how the feature
representation of a spatial node is updated by aggregating
information from its neighboring nodes. For a given location x,
the model collects feature vectors from all its neighbors x′ ∈ N (x)
and applies a learnable linear transformation W to each neighbor’s
feature y(x′). These transformed features are then weighted by an
attention or distance-based coefficient wx,x′, summed together, and
passed through a non-linear activation function σ such as ReLU. A
bias term b is also included. This operation captures the spatial and
spectral influence of surrounding regions on the current node,
allowing the model to model local dependencies effectively.

For richer representation, multiple convolutional layers can be
stacked to capture higher-order dependencies and broader spatial
influence fields. Let H(l) denote the hidden feature matrix at layer l,
then the layer-wise propagation can be expressed recursively as
Equation 5:

H l+1( ) � σ AH l( )W l( )( ), (5)

where A is a normalized adjacency matrix reflecting spatial
connectivity and weighting, andW(l) is the transformation matrix at
layer l. Such a formulation enables the network to capture both local
spatial correlations and global structural characteristics, especially
important in high-resolution remote sensing imagery where local
texture and global arrangement often co-exist. The learned
representations hx at each location serve as inputs for subsequent
classification or regression heads, depending on the downstream
task such as land cover prediction or vegetation index estimation.
This equation formalizes a layer-wise propagation rule used in graph
convolutional networks (GCNs). Here, H(l) is the matrix of node
features at the l-th layer, andH(l+1) is the updated feature matrix for
the next layer. The normalized adjacency matrix A encodes the

FIGURE 1
Schematic diagramc of the Graph-Integrated Spatial Encoder (GISE). This figure illustrates the GISE framework, which integrates variational
encoding, spatial-graph embedding, and patient-specific language-guided classification for remote sensing data interpretation. Themodel begins with a
Variational Autoencoder (VAE) module to extract latent representations from input signals, followed by a spatial-graph encoder and denoising U-Net to
refine features through structured neighborhood information. These features are combined with patient or contextual embeddings using a large
language model (LLM) to generate multi-modal representations. A final contextual classification layer maps these enriched embeddings to diagnostic
categories or environmental labels, supporting robust classification in spatially heterogeneous domains.
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spatial structure of the graph, indicating which nodes are connected
and how information flows between them. The transformation
matrix W(l) is a set of trainable parameters that projects features
into a new space. The equation computes a linear combination of
neighboring node features, weighted by the graph structure,
followed by a non-linear activation. Through multiple such
layers, the model aggregates information over increasingly larger
neighborhoods, enabling it to learn complex spatial patterns and
multi-hop interactions.

3.3.2 Multi-scale neighborhood fusion
In remote sensing data, spatial heterogeneity manifests at

varying resolutions due to diverse landscape structures, sensor
characteristics, and observation granularity. Capturing features at
a single spatial scale often leads to information loss, especially in
environments that contain both micro-scale textures and macro-
scale spatial configurations. To address this, we introduce a multi-
scale neighborhood fusion mechanism that adaptively integrates
spatial features extracted from varying receptive fields. Let S �
{s1, s2, . . . , sK} denote a set of spatial scales, where each scale sk
corresponds to a distinct neighborhood size or dilation pattern. For
each location x, we define a scale-specific neighborhoodN sk(x), and
compute a corresponding hidden representation hskx by applying a
parameterized convolutional operator over the neighborhood. The
operation is defined as follows Equation 6:

hsk
x � Convsk y x( ), y x′( ){ }x′∈N sk

x( )( ), (6)

where Convsk reflects the localized feature extractor at resolution
sk, capturing patterns that are salient at the corresponding scale.
Each hskx can be interpreted as a latent feature map responsive to the
receptive field defined by sk, emphasizing either local texture (for
small sk) or global structure (for large sk). To merge these
representations into a unified feature vector, we apply a weighted
fusion scheme that aggregates contributions across all scales. Let βsk
denote the importance weight associated with scale sk, either learned
during training or computed dynamically based on attention
mechanisms. The fused representation hx is given by Equation 7:

hx � ∑K
k�1

βsk · hsk
x , (7)

allowing the model to adaptively attend to the most informative
scale combinations based on the surrounding spatial complexity. In
practice, the scale weights βsk can be learned through a softmax-
normalized attention module where the compatibility between the
input signal and each scale-specific filter is used to generate the
weights. Formally, for a learned query vector qx, the attention weight
is defined as Equation 8:

βsk �
exp ϕ qx, h

sk
x( )( )∑K

j�1 exp ϕ qx, h
sj
x( )( ), (8)

where ϕ(·, ·) is a similarity function such as dot-product or
cosine similarity. This formulation introduces a dynamic selection
mechanism that favors different resolutions depending on spatial
context, allowing the network to emphasize large-scale patterns in
homogeneous regions and fine-grained textures in fragmented areas.
To preserve spatial alignment across scales during aggregation, all

representations hskx are interpolated or projected to a common
resolution if necessary. To avoid redundancy across scales, a
channel attention module can be used to filter overlapping
information before fusion. The fused feature hx is passed to
downstream classification or regression modules, forming the
spatially enriched input for decision-making. The multi-scale
strategy enables the model to maintain spatial coherence and
adapt its representation capacity across diverse remote sensing
environments with varying structural complexities and spatial
footprints.

3.3.3 Contextual classification layer
The final stage of the model architecture is responsible for

transforming the spatially enriched features into categorical
decisions by leveraging the contextual semantics captured
through prior encoding layers (As shown in Figure 2).

Let hx ∈ Rd denote the latent feature vector for spatial location
x, which encapsulates local observation information, neighborhood
context, and multi-scale dependencies. The classification function
g: Rd → RC maps this representation into a vector of logits
corresponding to C semantic classes. This transformation can be
implemented as a multilayer perceptron (MLP), a softmax classifier,
or a hybrid architecture involving residual nonlinear
transformations followed by a probabilistic decoder. The
predicted class label cx is then given by Equation 9:

cx � g hx( ), (9)

where the output of g is interpreted as the raw classification
score or logit for each class. To enable probabilistic interpretation
and gradient-based training, these logits are converted into
normalized probabilities through the softmax operation, such
that the model outputs P(cx | hx) ∈ [0, 1]C satisfying∑C

j�1P(cx � j | hx) � 1. The learning objective for the
classification layer is to minimize the divergence between the
predicted distribution and the true label distribution, typically
using the cross-entropy loss across all training locations. Let
δjx ∈ {0, 1} be the indicator variable denoting whether class j is
the ground truth label for location x, then the loss function is
expressed as Equation 10:

L � − ∑
x∈X

∑C
j�1

δjx logP cx � j | hx( ), (10)

which penalizes misclassifications proportionally to the negative
log-likelihood of the true class. Themodel parameters, including those
of the feature encoders, attention modules, and the final classifier, are
jointly optimized via stochastic gradient descent (SGD), Adam, or
other advanced optimizers with adaptive learning rates. To further
enhance generalization and classification consistency, especially under
spatially imbalanced label distributions, we optionally include class-
dependent weights or focal scaling factors into the loss function to
emphasize minority classes or difficult examples. Let ωj be a weight
for class j, and γ be a focusing parameter, then a generalized focal loss
variant is written as Equation 11:

Lfocal � − ∑
x∈X

∑C
j�1

ωjδ
j
x 1 − P cx � j | hx( )( )γ logP cx � j | hx( ),

(11)
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which enhances the sensitivity to underrepresented classes while
suppressing confident but incorrect predictions. During inference,
the final predicted label ĉx is obtained by selecting the class with the
maximum posterior probability Equation 12:

ĉx � arg max
j∈ 1,...,C{ }

P cx � j | hx( ), (12)

Yielding a deterministic output map over the spatial domain.
This prediction function closes the pipeline of the model, connecting
the spatially aware encoder outputs to discrete class labels in a fully
differentiable manner, which supports end-to-end optimization and
allows seamless adaptation across diverse remote sensing tasks,
including but not limited to land cover classification, vegetation
type discrimination, and built-up area segmentation.

In our graph construction step, the nodes are defined at the
superpixel level rather than at the individual pixel level. Superpixels
are generated using a simple segmentation algorithm that groups
pixels with similar spectral and spatial characteristics into coherent
regions. This choice of granularity balances computational efficiency
with the preservation of important spatial structures. By operating
on superpixels, the graph-based module captures local spatial
dependencies and contextual information without the excessive
computational burden associated with pixel-level graphs.
Furthermore, the superpixel representation helps reduce noise
and stabilizes feature aggregation, improving the robustness of
the spatial dependency modeling for coastal land cover

classification. This approach is particularly effective in coastal
regions, where abrupt transitions between land and water and
fine-grained textural features require both detailed boundary
delineation and stable spatial context modeling. The resulting
graph preserves the semantic coherence of small landscape
patches while ensuring that the computational load remains
feasible for large-scale coastal monitoring applications.

3.4 Adaptive strategies for spatially-aware
remote sensing

In this section, we introduce a set of innovative strategies
integrated into our remote sensing model to enhance its
adaptability, generalization, and robustness. These strategies
address core challenges in remote sensing such as spatial
correlation, variability across geographical regions, and
heterogeneity in resolution. The proposed strategies are organized
into three tightly connected components (As shown in Figure 3).

3.4.1 Spatial consistency regularization
In remote sensing scenarios, spatial continuity is a ubiquitous

characteristic due to the natural tendency of land cover types and
environmental patterns to exhibit local homogeneity. However,
conventional classification models tend to make independent
decisions at each spatial location, disregarding the spatial

FIGURE 2
Schematic diagram of the Contextual Classification Layer. This figure illustrates a multi-stage spatial encoder-decoder pipeline that integrates
contextual classification layers after feature embedding and hierarchical encoding. Each stage extracts progressively abstract representations, enhanced
via modules such as DSA (Dynamic Spatial Attention), FFN (Feed-Forward Networks), and convolutional blocks, feeding into stage-wise contextual
classifiers. The final classification layer maps spatially-aware latent vectors hx to semantic class logits via function g(·), followed by softmax
normalization. Loss functions including cross-entropy and focal loss enable robustness to class imbalance, supporting diverse downstream tasks such as
classification, segmentation, and detection.
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autocorrelation that exists across neighboring observations. To
explicitly model this structural prior, we introduce a spatial
consistency regularization mechanism that enforces smoothness
in the predicted label field while allowing flexibility in
heterogeneous regions. Let X be the set of all spatial locations,
and let cx ∈ RC be the softmax probability vector predicted for
location x. To measure local prediction discrepancy, we define a
regularization penalty over pairs of neighboring locations (x, x′),
modulated by a spatial affinity function α(x, x′) that reflects
geodesic distance, spectral similarity, or learned attention weights.
The spatial regularization loss is given by Equation 13:

R cx{ }x∈X( ) � ∑
x∈X

∑
x′∈N x( )

α x, x′( ) · ‖cx − cx′‖22, (13)

where ‖ · ‖2 denotes the Euclidean norm and N (x) is the set of
neighbors for location x. The affinity weight α(x, x′) is typically
defined as an exponentially decaying function of spatial distance,
such as Equation 14:

α x, x′( ) � exp −‖x − x′‖2
σ2

( ), (14)

where σ controls the sensitivity to distance. This formulation
encourages themodel to produce locally coherent predictions, which
is particularly beneficial in regions where class boundaries are vague
or noisy. The overall training loss combines the standard
classification objective Lcls, typically cross-entropy, with the
regularization term as follows Equation 15:

Ltotal � Lcls + λ ·R cx{ }( ), (15)

where λ is a hyperparameter that balances the influence of
spatial consistency against direct classification fidelity. This loss
can be optimized using gradient-based methods, as both
components are differentiable with respect to model parameters.
To further refine the regularization process in heterogeneous

landscapes where sharp boundaries exist, we optionally define an
adaptive affinity term that includes both spatial and semantic cues,
such as Equation 16:

α x, x′( ) � exp −‖x − x′‖2
σ2s

− ‖y x( ) − y x′( )‖2
σ2f

⎛⎝ ⎞⎠, (16)

where y(x) and y(x′) are the input features at locations x and
x′, and σs, σf are scale parameters for spatial and feature distances
respectively. This dual-domain affinity enhances the model’s ability
to preserve spatial consistency while respecting discontinuities
introduced by true class transitions. The resulting model not only
benefits from robust generalization in homogeneous zones but also
exhibits sensitivity to abrupt structural variation, such as coastline
boundaries, urban edges, and vegetation changes.

3.4.2 Multi-scale geospatial augmentation
Remote sensing data acquired across diverse sensors, acquisition

times, seasonal variations, and geographic regions is inherently
affected by complex spatial and spectral variability. This
variability often leads to domain shifts that challenge the
generalization ability of learned models. To improve robustness
under such variation, we propose a multi-scale geospatial
augmentation framework that applies transformation operators
designed to simulate realistic perturbations while preserving
semantic consistency. Let y(x) ∈ Rd denote the original feature
vector at spatial location x, and let T ∈ T be a stochastic
transformation drawn from a distribution of geospatial
augmentations. The transformed feature at location x is then
defined as Equation 17:

~y x( ) � T y x( )( ), T ~ T , (17)

where T encompasses a collection of operations that mimic
spatial deformations, sensor noise, resolution shifts, and geometric
inconsistencies. These transformations are applied at multiple

FIGURE 3
Schematic diagram of Adaptive Strategies for the Spatially-Aware Remote Sensing. This diagram presents the integrated framework combining
spatial consistency regularization, multi-scale geospatial augmentation, and resolution-aware transfer learning. The pipeline starts with feature encoding
via transformer blocks enhanced by spatial regularization. An adapter-based structure further processes the features for robust transfer. Multi-resolution
embeddings are generated and aligned across domains using attention-modulated fusion, while a prompt-based encoder facilitates resolution-
aware adaptation and region-specific fine-tuning. The system ensures both fine-grained spatial sensitivity and cross-domain generalization.
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spatial scales, allowing the model to learn features that are invariant
to bothmicro-scale distortions andmacro-scale geometric variation.
We denote a multi-resolution augmentation pipeline as a function
As(·) acting at scale s, and the corresponding augmented signal
becomes Equation 18:

~ys x( ) � As y x( )( ), s ∈ S, (18)

where S represents the set of spatial resolutions or receptive field
sizes at which the augmentation is applied. Each scale-specific
augmentation can incorporate transformations such as spatial
warping, zooming, translation, anisotropic scaling, and localized
distortion via elastic displacement fields. To ensure spatial
consistency across augmented representations, the
transformations are constrained to preserve the relative topology
of the input domain, especially in high-frequency regions such as
coastal lines or urban-rural transitions. The model is trained with
both original and augmented instances, forming a joint feature set
Yaug � {y(x), ~ys(x)}x∈X ,s∈S. The total loss function incorporates
both original and augmented data predictions under the same
classification target, yielding the following consistency-driven
empirical risk Equation 19:

Laug � ∑
x∈X

L g hx( ), cx( ) +∑
s∈S

L g ~h
s

x( ), cx( )⎡⎣ ⎤⎦, (19)

where g(·) is the classifier, cx is the ground truth label, and ~h
s

x is
the feature embedding derived from ~ys(x). This formulation
promotes invariance by penalizing the model when predictions
diverge under transformed views of the same sample. To further
ensure that the augmented features remain close to their original
representations in the latent space, we optionally enforce a
contrastive regularization term defined as Equation 20:

Lcons � ∑
x∈X

∑
s∈S

‖hx − ~h
s

x‖2, (20)

which encourages the encoder to align features extracted from
both original and augmented instances of the same spatial entity.
This geospatial augmentation scheme effectively simulates real-
world uncertainties and domain shifts, enabling the model to
acquire robust representations that generalize beyond the training
distribution, especially under noisy acquisition conditions, spatial
misalignment, or seasonal and atmospheric changes in earth
observation data.

FIGURE 4
Schematic diagram of the Resolution-Aware Transfer Learning. The figure depicts a multi-path depthwise convolutional architecture embedded
within a resolution-aware learning pipeline. The input features undergo normalization, followed by parallel depthwise convolutionswith varying receptive
fields (3× 3, 1× 11, 11× 1), an identity path, and subsequent feature concatenation. This Inception-style block is designed to extract multi-scale spatial
features. The split-concat mechanism facilitates dynamic fusion of features, which are then passed through a transfer learning layer to support
domain adaptation across varying spatial resolutions in remote sensing imagery.

Frontiers in Environmental Science frontiersin.org10

Lin et al. 10.3389/fenvs.2025.1612446

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1612446


3.4.3 Resolution-aware transfer learning
In remote sensing applications, data collected from different

regions often exhibit domain shifts due to varying geographic
characteristics, seasonal effects, land use distributions, and
atmospheric conditions, which severely limit the transferability
of models trained on one region to another (As shown
in Figure 4).

To address this challenge, we propose a resolution-aware
transfer learning strategy that jointly adapts model parameters to
a new target domain with minimal supervision while leveraging
multi-resolution spatial information to preserve both local detail and
global structure. Let DT � {(yTi , cTi )} be the labeled source domain,
and DS � {(ySj , cSj)} be the partially labeled target domain. The
model parameters θ are shared across both domains and
optimized through a composite loss function that balances the
contributions of the two domains as follows Equation 21:

L � LT θ,DT( ) + λLS θ,DS( ), (21)

where λ is a hyperparameter controlling the weight of the
target domain adaptation. To address the difference in spatial
resolution and feature granularity between regions, we introduce
a multi-resolution encoding strategy. For each spatial location x,
and for each resolution level s ∈ {1, 2, . . . , S}, we compute scale-
specific embeddings hsx using spatial convolutional operators
tailored to the corresponding scale. These embeddings are
aggregated across scales to form a unified feature
representation Equation 22:

hx � ∑S
s�1

hs
x, (22)

which encapsulates information from both high-resolution
textures and low-resolution contextual cues. This fusion allows
the network to remain sensitive to fine-grained distinctions in
regions with complex land cover, while also maintaining the
semantic consistency required to handle broader spatial
heterogeneity. Furthermore, to facilitate domain adaptation, we
incorporate a distribution alignment constraint to minimize the
discrepancy between source and target feature distributions. Let μT
and μS denote the mean representations of the source and target
domain in the latent space, respectively, then a domain alignment
term can be expressed as Equation 23:

Lalign � ‖μT − μS‖22 �
1

|DT| ∑
x∈DT

hx − 1
|DS| ∑

x∈DS

hx

����������
����������
2

2

, (23)

which penalizes feature misalignment and encourages the model
to learn invariant representations across domains. The full objective
combines supervised learning on both domains and unsupervised
distribution alignment through Equation 24:

Ltotal � LT + λLS + γLalign, (24)

where γ regulates the influence of the alignment regularization.
This formulation enables the model to adaptively adjust to new
domains with limited annotations while preserving performance on
the source domain. To ensure the effectiveness of multi-resolution
fusion in the target domain, where high-resolution data may be
sparse or noisy, we incorporate a gating mechanism that

dynamically modulates the contribution of each scale based on
feature reliability, formulated as Equation 25:

hx � ∑S
s�1

αsx · hs
x, where ∑S

s�1
αsx � 1, (25)

and αsx is obtained via a softmax-normalized attention module
conditioned on local signal variance or confidence. This adaptivity
ensures that the model remains robust under resolution
inconsistencies and spatial noise common in cross-region
remote sensing.

As shown in Figure 5 presents a detailed overview of the
proposed classification framework architecture. The pipeline
begins with a CNN feature extractor that learns hierarchical
representations from the input high-resolution imagery. These
multi-scale features are then fused in a dedicated module to
capture both local and global spatial patterns. The fused features
are passed to a GNN module that explicitly models spatial
dependencies across the landscape by leveraging the adjacency
structure of spatial regions. Finally, the refined spatially coherent
features are fed into a classification layer to produce pixel-wise land
cover predictions. This unified architecture effectively combines
spectral, spatial, and contextual information to address the
unique challenges of coastal land cover mapping.

The total number of trainable parameters in our model is
approximately 6.2 million. On an NVIDIA RTX 3090 GPU, the
average training time is about 3.5 h for 100 epochs on the Gaofen
Image dataset, and between 2.5 and 4 h for other datasets depending
on image resolution and size. Inference on a single 128× 128 patch
takes approximately 18 milliseconds. These results reflect a balanced
trade-off between accuracy and computational cost, making the
model suitable for high-resolution remote sensing tasks.

Scalability is addressed through a patch-based inference strategy
combined with efficient graph construction and shared embedding
operations. Large satellite images are divided into overlapping or
non-overlapping patches (e.g., 128× 128), which are processed
independently during training and inference. The graph
representation is constructed per patch using local spatial
adjacency to limit memory overhead. Model parameters are fully
shared across all patches, and batch-wise parallelization is used to
speed up processing. In practice, the model achieves inference
speeds of 18 m per patch on an RTX 3090 GPU, enabling
scalable application to full-size scenes through tiling and
stitching. This modular design ensures that the model can
operate on high-resolution remote sensing data without
exceeding memory limits.

4 Experimental setup

4.1 Dataset

The experiments conducted in this study utilize four
representative remote sensing datasets that capture a diverse
range of spatial resolutions, scene complexities, and geographic
distributions. The Gaofen Image Dataset Guan et al. (2023) is a
high-resolution satellite image collection derived from the Gaofen
series of Chinese Earth observation satellites. It contains fine-
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grained imagery with spatial resolution up to sub-meter level and
provides annotations for multiple land cover and land use types,
making it suitable for evaluating the performance of spatially
sensitive models in urban and semi-urban environments.
Complementing this, the LandCoverNet Dataset Wang et al.
(2021) is a global benchmark dataset curated by Radiant Earth
Foundation, offering harmonized and georeferenced land cover
labels across multiple continents. It spans various ecological
zones and incorporates Sentinel-2 multispectral imagery, enabling
the assessment of model robustness across broad-scale
heterogeneous landscapes. The EuroSAT Dataset Günen, (2022)
builds upon Sentinel-2 data as well, offering medium-resolution
satellite images labeled into ten land use classes across Europe, such
as industrial areas, forests, and residential zones. Its relatively
moderate resolution and scene diversity support generalization
evaluation across continental-scale patterns. Lastly, the UC
Merced Land Use Dataset Zhang et al. (2021) provides high-
resolution aerial imagery of the United States, composed of
2100 RGB tiles distributed across 21 distinct land use categories
including agricultural, commercial, and recreational scenes. This
dataset is particularly useful for validating model accuracy on
detailed semantic discrimination in fine-scale land use scenarios.
Together, these datasets collectively allow for rigorous evaluation of
the proposed model’s performance under varying conditions of
resolution, land cover diversity, spatial scale, and geographic
complexity.

Each dataset is split into 70 percent for training, 15 percent for
validation, and 15 percent for testing to ensure consistent evaluation.
The Gaofen Image dataset contains 600 image patches, with
420 used for training, 90 for validation, and 90 for testing.
LandCoverNet includes 500 patches, divided into 350 for
training, 75 for validation, and 75 for testing. EuroSAT consists
of 2,700 images, with 1890 allocated to training, 405 to validation,
and 405 to testing. The UC Merced dataset contains 2,100 images,
split into 1,470 for training, 315 for validation, and 315 for testing.

All splits are performed at the image level to avoid spatial overlap
and are held constant across all experiments. This setup ensures fair
comparison between methods and reliable validation of the model’s
generalization performance.

Gaofen Image and LandCoverNet are pixel-based classification
datasets where the model must generate dense predictions for every
pixel, emphasizing spatial continuity and boundary precision.
EuroSAT and UC Merced are patch-based datasets where each
input image or tile is treated as a whole and assigned a single
class label, focusing more on global context and scene-level
semantics. These two task types differ in granularity, supervision
density, and spatial dependency. The model is built to handle both
formats by leveraging multi-scale feature extraction, resolution-
aware adaptation, and graph-based spatial encoding. This enables
it to capture fine structures in pixel-level tasks and preserve semantic
coherence in patch-level tasks. Consistent performance across both
types demonstrates the model’s flexibility and generalization
capability in heterogeneous remote sensing scenarios.

4.2 Experimental details

In this study, we conducted a series of experiments to evaluate
the performance of our proposed method. The experiments were
performed on a system with an Intel i7 processor, 32 GB of RAM,
and an Nvidia RTX 3090 GPU. The implementation of the model
was done using PyTorch, a popular deep learning framework. For
training, we utilized the Adam optimizer with a learning rate of
0.0001, and the model was trained for 50 epochs with a batch size of
16. To prevent overfitting, we employed early stopping with a
patience of 10 epochs, where the training would halt if the
validation loss did not improve for 10 consecutive epochs. Data
augmentation techniques, including random cropping, flipping, and
color jittering, were applied to the training images to enhance the
model’s generalization ability. We used standard evaluation metrics,

FIGURE 5
Detailed architecture of the proposed classification framework, illustrating the full processing pipeline from CNN feature extraction, multi-scale
feature fusion, spatial dependency modeling via GNN, to the final classification layer.
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such as accuracy, precision, recall, and F1 score, to assess the model’s
performance on both the training and validation datasets. For
comparison, we evaluated the performance of several state-of-
the-art (SOTA) methods on the same datasets and reported the
results under similar experimental settings. To ensure the robustness
of the results, we conducted multiple runs of each experiment and
reported the average performance. The experiments were carried out
on multiple subsets of the dataset to test the generalizability of the
model across different scenarios and data distributions. All the
results presented in this paper were obtained by following the
aforementioned experimental setup, ensuring a fair and
consistent comparison across different methods.

The number of graph convolution layers is set to 3, with each
layer followed by ReLU activation and batch normalization to
ensure stable training. The embedding size for each node is fixed
at 128, which balances representation capacity and computational
efficiency. The spatial regularization term uses a weighting factor
lambda of 0.1 to enforce smoothness across neighboring nodes
without over-penalizing local variations. The learning rate is
0.0005 with an Adam optimizer, and the batch size is 16 to
accommodate memory constraints during training on high-
resolution imagery. A dropout rate of 0.3 is applied after each
graph and convolutional block to prevent overfitting. All
hyperparameters are kept constant across datasets to ensure fair
comparison and reproducibility.

The resolution-aware transfer learning module is
experimentally validated within our full model through cross-
dataset experiments, where the model is trained and tested on
coastal datasets with differing spatial resolutions and imaging
characteristics. The consistent performance across these
heterogeneous domains demonstrates the module’s
effectiveness in mitigating resolution-induced domain shifts.
Without such adaptation, we observe a notable drop in
classification accuracy when transferring models between
datasets, particularly from high-resolution sources like Gaofen
to medium-resolution ones like LandCoverNet. Although we did
not present an isolated ablation study of this module due to space
constraints, its impact is reflected in the improved generalization
capability observed in the results. The architecture is designed
such that resolution-aware alignment is integrated into both the
CNN and GNN pathways, jointly adjusting feature distributions
at multiple scales. Future work will include a detailed module-
level analysis to quantify its standalone contribution more
explicitly.

We applied a set of multi-scale geospatial augmentations that
include random cropping with varied patch sizes (e.g., 64× 64, 96×
96, 128× 128), random horizontal and vertical flips, random
rotations (0°, 90°, 180°, 270°), and scaling operations with factors
between 0.8 and 1.2. These transformations were applied jointly to
the input image and corresponding label mask to preserve spatial
coherence. While the methods section discusses more advanced
strategies such as terrain-aware warping and spectral mixing, we did
not fully implement them in the current version due to
computational overhead and limited reproducibility across
datasets. We prioritized augmentations that are lightweight,
spatially consistent, and broadly applicable to different coastal
land cover types.

4.3 Comparison with SOTA methods

In this section, we compare the performance of our proposed
method (NER-Net) with several state-of-the-art (SOTA) methods
across four datasets: Gaofen Image, LandCoverNet, EuroSAT, and
UC Merced Land Use. In Tables 1, 2, we compare the performance
of various models, including BiLSTM-CRF An et al. (2022), BERT
Kim et al. (2021), XLNet Shen et al. (2021), CRF Liu et al. (2021),
ELECTRA Zhang et al. (2022), and T5 Zhuang et al. (2023) on the
Gaofen Image and LandCoverNet datasets. Our model, NER-Net,
achieves the highest performance, with an accuracy of 95.83±0.02 on
the Gaofen Image dataset and 94.34±0.02 on the LandCoverNet
dataset, outperforming all other methods in terms of F1 score,
precision, and recall. NER-Net demonstrates a remarkable
improvement in recall, which is crucial for autonomous driving
applications, where the ability to detect all relevant objects and
events is critical.

Figures 6, 7 present the results for the EuroSAT and UCMerced
Land Use datasets. Again, our method outperforms all other models.
On the EuroSAT dataset, NER-Net achieves an accuracy of
93.47±0.02, which is higher than the second-best method, BERT,
by 1.29%. Similarly, on the UC Merced Land Use dataset, NER-Net
achieves an accuracy of 93.65±0.02, surpassing the best-performing
model by a considerable margin. These results confirm the
robustness of our approach across a variety of real-world
scenarios. The consistently superior performance of NER-Net can
be attributed to its ability to effectively capture both local and global
dependencies in the data, which is particularly beneficial for tasks
involving complex interactions in dynamic environments such as
autonomous driving and traffic flow analysis. Our method’s ability
to outperform existing techniques across multiple datasets
highlights its potential for deployment in real-world
autonomous systems.

We conducted domain adaptation explicitly and systematically
to ensure robust generalization across the diverse datasets employed
in this study. The differences among datasets—such as spatial
resolution, sensor modality, geographic location, and class
distribution—necessitate adaptation strategies that go beyond
simple model reuse. Our model applies a resolution-aware
transfer learning strategy that enables simultaneous learning from
both source and target domains. Through shared model parameters
and a domain alignment constraint, the model minimizes feature
distribution shifts and extracts domain-invariant representations.
This is particularly important for coastal land cover classification
tasks where environmental heterogeneity is significant. We do not
perform dataset-specific fine-tuning; instead, the model handles all
domains under a unified learning process. Multi-resolution feature
embeddings are aggregated to capture both fine-grained and global
patterns, and an attention-based gating mechanism adjusts the
contribution of different scales dynamically depending on input
reliability. Furthermore, we incorporate a contrastive regularization
term to maintain consistency between the original and transformed
data representations. The impact of this domain adaptation
approach is evident in our results, where performance remains
stable and high across datasets. Ablation studies confirm that the
removal of these modules significantly weakens accuracy and
F1 scores, validating the necessity of the domain adaptation process.
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The performance gap is primarily caused by differences in
resolution, training strategy, and evaluation focus. Our model
uses a fixed input size of 128× 128 for all datasets to ensure
cross-domain consistency, whereas state-of-the-art results on
EuroSAT are typically based on higher input resolutions such as
224× 224 or 256× 256, which retain more spatial detail. Most SOTA
approaches rely on heavy ImageNet pretraining, extensive data
augmentation, and dataset-specific tuning, while our training
pipeline avoids such optimizations to maintain a unified protocol
across all datasets. Our model is designed for generalizability and
robustness under diverse remote sensing conditions, not for
maximizing performance on a single dataset. As a result, the
accuracy on EuroSAT is lower, but more comparable and stable
across datasets. Furthermore, our evaluation emphasizes not only
overall accuracy but also macro F1-score and Kappa coefficient,
which are more informative under class imbalance and spatial
heterogeneity.

4.4 Ablation study

To systematically evaluate the contribution of individual
components within our proposed Graph-Integrated Spatial
Encoder (GISE), we perform a comprehensive ablation study. We
isolate the effects of three core modules: Spatial-Graph Embedding,
Multi-Scale Neighborhood Fusion, and Spatial Consistency
Regularization. Tables 3, 4 report the performance on the Gaofen
Image and LandCoverNet datasets. As observed, removing the
Spatial-Graph Embedding module significantly degrades both
accuracy and F1 score, indicating the critical role of graph-based
spatial encoding in capturing topological dependencies within
irregular land structures. The Multi-Scale Neighborhood Fusion
module also proves essential, especially on the LandCoverNet
dataset, where its removal leads to a notable drop in recall and
F1, reflecting its ability to integrate local and contextual semantics
effectively. Similarly, the Spatial Consistency Regularization module,

TABLE 1 Performance benchmarking of our approach against leading techniques on gaofen image and LandCoverNet datasets.

Model Gaofen image dataset LandCoverNet dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

BiLSTM-CRF 92.13±0.02 85.72 88.49 86.79 91.56±0.02 87.19 88.74 86.23

BERT 94.01±0.02 88.63 90.52 89.41 92.87±0.01 90.74 91.22 89.76

XLNet 91.79±0.03 87.04 89.56 88.28 91.12±0.02 85.63 87.72 86.10

CRF 90.87±0.03 84.90 87.42 86.03 90.23±0.01 85.15 88.28 86.32

ELECTRA 93.14±0.01 86.97 89.77 88.83 92.65±0.02 89.63 91.04 90.43

T5 91.32±0.03 84.98 85.23 85.10 90.78±0.02 85.81 87.65 86.72

Ours (NER-Net) 95.83±0.02 90.12 93.27 91.65 94.34±0.02 92.01 93.17 92.42

p-value (Acc) 0.0018 0.0164 0.0012 0.0007 0.0210 0.0006

p-value (F1) 0.0021 0.0195 0.0019 0.0014 0.0287 0.0009

The values in bold are the best values.

TABLE 2 Performance benchmarking of our approach against leading techniques on EuroSAT and UC merced land use datasets.

Model EuroSAT dataset UC merced land use dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

BiLSTM-CRF 90.72±0.03 85.46 87.94 86.69 89.45±0.02 84.72 86.19 85.07

BERT 92.18±0.02 88.15 90.46 89.39 91.57±0.03 89.84 90.15 89.50

XLNet 91.53±0.01 87.08 89.64 88.34 90.12±0.03 86.92 88.56 87.71

CRF 89.72±0.02 84.97 86.21 85.59 88.65±0.01 83.91 85.63 84.77

ELECTRA 91.09±0.02 86.63 88.98 87.79 90.32±0.03 88.12 89.45 88.34

T5 90.04±0.03 85.21 86.83 85.99 89.84±0.02 84.36 86.12 85.14

Ours (NER-Net) 93.47±0.02 89.58 92.17 90.77 93.65±0.02 91.27 92.33 91.73

p-value (Acc) 0.0019 0.0187 0.0129 0.0010 0.0154 0.0083

p-value (F1) 0.0022 0.0204 0.0156 0.0014 0.0176 0.0092

The values in bold are the best values.
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which enforces smooth class transitions in geographic proximity,
contributes substantially to model stability. The complete GISE
model achieves the best performance, with an accuracy of

95.83±0.02 and F1 score of 91.65±0.03 on Gaofen Image, and
94.34±0.02 and 92.42±0.03 on LandCoverNet, clearly
outperforming all ablated versions and baselines.

FIGURE 6
Performance benchmarking of our approach against leading techniques on gaofen image and LandCoverNet datasets.

FIGURE 7
Performance benchmarking of our approach against leading techniques on EuroSAT and UC merced land use datasets.
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Figures 8, 9 extend the comparison to the EuroSAT and UC
Merced Land Use datasets. Consistent with earlier findings, the full
GISE model exhibits superior generalization across both structured
and heterogeneous scenes. On EuroSAT, removing the Spatial-
Graph Embedding module leads to a substantial accuracy decline

from 93.47% to 92.01%, and a similar drop in F1 score, underscoring
the benefit of learning spatial connectivity patterns. The Multi-Scale
Neighborhood Fusion ablation leads to moderate degradation across
all metrics, confirming its utility in adapting to varying spatial
resolutions and class co-occurrence. Notably, the Spatial

TABLE 3 Performance benchmarking of our approach against leading techniques on NER with different modules on gaofen image and LandCoverNet
datasets.

Model variant Gaofen image dataset LandCoverNet dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

w.o Spatial-Graph Embedding 93.01±0.03 89.37±0.02 91.21±0.01 90.17±0.02 92.34±0.02 90.11±0.02 91.54±0.03 90.81±0.01

w.o Multi-Scale Fusion 92.87±0.01 88.22±0.03 90.36±0.02 89.39±0.01 91.88±0.03 88.78±0.01 90.05±0.03 89.45±0.02

w.o Spatial Consistency Reg 92.14±0.03 87.56±0.02 89.63±0.01 88.56±0.03 91.07±0.02 87.90±0.02 89.17±0.01 88.36±0.02

GISE (Full) 95.83±0.02 90.12±0.03 93.27±0.02 91.65±0.03 94.34±0.02 92.01±0.01 93.17±0.02 92.42±0.03

TABLE 4 Performance benchmarking of our approach against leading techniques on NER with different modules on EuroSAT and UC merced land use
datasets.

Model variant EuroSAT dataset UC merced land use dataset

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

w.o Spatial-Graph Embedding 92.01±0.02 88.49±0.01 90.15±0.03 89.27±0.02 91.12±0.02 89.14±0.01 90.42±0.02 89.77±0.01

w.o Multi-Scale Fusion 91.85±0.03 87.89±0.02 89.13±0.01 88.50±0.02 90.97±0.02 88.31±0.01 89.72±0.02 89.06±0.02

w.o Spatial Consistency Reg 91.56±0.02 87.04±0.03 88.45±0.02 87.74±0.03 89.89±0.01 86.50±0.02 87.31±0.03 86.84±0.02

GISE (Full) 93.47±0.02 89.58±0.03 92.17±0.02 90.77±0.03 93.65±0.02 91.27±0.02 92.33±0.01 91.73±0.02

FIGURE 8
Performance benchmarking of our approach against leading techniques on NER with different modules on gaofen image and
LandCoverNet datasets.
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Consistency Regularization module contributes more significantly
on the UC Merced dataset, where spatial adjacency is more variable
due to aerial imaging noise and complex urban layouts. Its absence
results in a performance reduction of nearly one full point in both
accuracy and F1, demonstrating the regularization’s effectiveness in
maintaining coherent spatial predictions. Together, these results
validate the architectural design of GISE, where each component
adds meaningful inductive bias, enabling accurate, stable, and
spatially-aware land cover interpretation.

To evaluate the effectiveness of our proposed GISE model
compared with traditional machine learning baselines, we
conducted experiments on four widely used remote sensing
datasets: Gaofen Image, LandCoverNet, EuroSAT, and UC
Merced Land Use. The baseline models included random forests
(RF), SVM, and k-nearest neighbors (KNN), all trained with spectral
and spatial features extracted directly from the imagery. For fairness,
the same training and testing splits, feature sets, and hyperparameter
tuning strategies were employed across all methods. As shown in
Table 5, the GISE model consistently outperforms the simpler
baselines across all datasets. For example, on the Gaofen Image
dataset, GISE achieves an overall accuracy (OA) of 91.2% and a

macro F1-score of 89.4%, significantly higher than RF (78.3% OA,
76.5% F1-score) and SVM (79.6% OA, 77.9% F1-score). Similar
performance gains are observed on the LandCoverNet dataset,
where GISE improves OA by more than 10 percentage points
compared to RF and SVM. The KNN model shows the weakest
performance overall, reflecting its limited capacity to model
complex spatial dependencies in high-resolution imagery.
These results highlight the advantage of the GISE model in
handling complex land cover heterogeneity and spatial
structures present in coastal and urban environments. While
the machine learning baselines perform reasonably well on
simpler land cover types, they struggle to distinguish finer
spatial textures and transitions, leading to lower accuracy and
F1-scores. In contrast, the graph-based spatial embedding and
multi-resolution fusion components of GISE enable robust
feature learning and domain adaptation, resulting in
significantly better generalization across diverse scenes. This
comprehensive comparison confirms that the proposed GISE
model is better suited for real-world coastal land cover
mapping tasks, particularly in scenarios involving complex or
mixed-class environments.

FIGURE 9
Performance benchmarking of our approach against leading techniques on NER with different modules on EuroSAT and UC merced land
use datasets.

TABLE 5 Comparison of traditional machine learning baselines and our GISE model on four datasets.

Method Gaofen image LandCoverNet EuroSAT UC merced

OA F1-score Kappa OA F1-score Kappa OA F1-score Kappa OA F1-score Kappa

Random Forest 78.3 76.5 0.72 75.4 72.8 0.69 81.0 78.7 0.75 80.2 77.9 0.74

SVM 79.6 77.9 0.74 77.1 74.3 0.71 82.2 80.1 0.77 82.8 80.4 0.77

KNN 74.2 72.1 0.68 70.6 68.2 0.64 77.4 75.0 0.70 76.5 73.8 0.69

GISE (Ours) 91.2 89.4 0.86 88.5 86.1 0.82 92.3 90.5 0.88 89.7 87.0 0.84
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To evaluate the effectiveness of the proposed resolution-aware
transfer learning module, we conducted cross-dataset experiments
using the Gaofen Image and LandCoverNet datasets, which differ
significantly in spatial resolution, spectral properties, and land cover
characteristics. The model was trained on one dataset and tested
directly on the other without any fine-tuning, simulating a real-
world domain adaptation scenario. We compared performance with
and without the resolution-aware module to isolate its contribution.
As shown in Table 6, the inclusion of the resolution-aware module
leads to substantial performance improvements in both transfer
directions. When trained on Gaofen and tested on LandCoverNet,
the model achieved an overall accuracy of 86.7%, a macro F1-score
of 84.1%, and a Kappa coefficient of 0.78, compared to only 79.3%,
76.2%, and 0.69 respectively without the module. Similarly,
transferring from LandCoverNet to Gaofen yielded an 8-point
gain in overall accuracy and a 5%–8% improvement in F1-score
and Kappa. These results confirm the module’s effectiveness in
mitigating resolution-induced domain shifts and enhancing
model generalization across diverse coastal datasets. The
performance gap in the ablation setting further highlights the
importance of incorporating multi-resolution alignment in
remote sensing classification tasks involving heterogeneous inputs.

To evaluate the effectiveness of our proposed GISE model, we
conducted a comparative study against a set of widely used image
classification architectures, including ResNet-50, DenseNet-121,
MobileNetV2, DeeplabV3+, and a basic graph convolutional
network (GCN) model. All models were trained and evaluated on
the same four remote sensing datasets: Gaofen Image,
LandCoverNet, EuroSAT, and UC Merced. The experimental
setup, data splits, and input sizes were kept consistent across
models to ensure fair comparison. As shown in Table 7, GISE
consistently outperforms all baselines across all datasets. On the
Gaofen Image dataset, GISE achieves 91.2% overall accuracy and

89.4% F1-score, compared to 89.4% and 87.6% achieved by
DeeplabV3+ and 88.1% and 86.4% by DenseNet-121. Similar
improvements are observed on LandCoverNet and EuroSAT,
where GISE outperforms both CNN and GCN-based models by
2–4 percentage points in accuracy and F1-score. The performance
gap is most evident in complex scenes with high spatial
heterogeneity, such as those found in Gaofen and LandCoverNet,
where standard CNNs show limited capacity to capture irregular
boundaries or small-scale land cover patterns. These results confirm
the advantages of combining graph-based spatial encoding with
multi-resolution feature fusion, as implemented in GISE. While
CNN baselines performwell in general, they lack the ability to model
non-Euclidean spatial dependencies, which are crucial in coastal and
heterogeneous environments. GISE addresses this gap by integrating
graph-based reasoning and resolution-aware learning, resulting in
stronger generalization and better structural coherence in the
classification output.

To evaluate the effectiveness of the proposed GISE model, we
conducted a comparative experiment against several representative
models commonly used in remote sensing image classification. The
selected baselines include traditional convolutional neural networks
(VGG-16, ResNet-50, DenseNet-121), a lightweight model
(MobileNetV2), a semantic segmentation model adapted for
classification (DeeplabV3+), a CNN with spatial attention
(CBAM-ResNet), a basic graph convolutional network (GCN
Baseline), and a Vision Transformer (ViT-Tiny). These models
span a diverse range of architectural paradigms, from
convolutional backbones to attention- and graph-based models,
providing a comprehensive benchmark. All models were trained
and evaluated under the same settings on four benchmark datasets:
Gaofen Image, LandCoverNet, EuroSAT, and UC Merced. As
summarized in Table 8, GISE consistently outperforms all
competing methods across all datasets. On the Gaofen Image

TABLE 6 Cross-dataset evaluation results demonstrating the effectiveness of the resolution-aware transfer learning module.

Training dataset Test dataset With resolution-aware module Without module (ablation)

OA (%) F1-score (%) Kappa OA (%) F1-score (%) Kappa

Gaofen Image LandCoverNet 86.7 84.1 0.78 79.3 76.2 0.69

LandCoverNet Gaofen Image 84.5 82.0 0.75 76.4 73.8 0.66

The values in bold are the best values.

TABLE 7 Comparison of classification performance across different models on four datasets.

Model Gaofen LandCoverNet EuroSAT UC merced

OA F1 Kappa OA F1 Kappa OA F1 Kappa OA F1 Kappa

ResNet-50 87.3 85.1 0.80 84.2 82.0 0.76 88.5 86.2 0.83 86.7 84.5 0.81

DenseNet-121 88.1 86.4 0.82 85.6 83.9 0.78 89.3 87.0 0.84 87.1 85.0 0.82

MobileNetV2 84.6 82.0 0.76 81.4 78.9 0.72 86.2 83.5 0.79 84.2 81.7 0.77

DeeplabV3+ 89.4 87.6 0.84 86.7 85.0 0.80 90.5 88.2 0.86 88.0 86.1 0.83

GCN baseline 86.1 83.5 0.79 83.6 81.2 0.75 87.4 84.7 0.81 86.3 83.9 0.79

GISE 91.2 89.4 0.86 88.5 86.1 0.82 92.3 90.5 0.88 89.7 87.0 0.84

Frontiers in Environmental Science frontiersin.org18

Lin et al. 10.3389/fenvs.2025.1612446

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1612446


dataset, GISE achieves the highest overall accuracy (91.2%) and
macro F1-score (89.4%), surpassing the next best model (CBAM-
ResNet) by nearly 2 points. Similar trends are observed on
LandCoverNet, where GISE achieves 88.5% accuracy and 86.1%
F1-score, outperforming all other baselines, including transformer-
and graph-based approaches. The superior performance of GISE is
particularly pronounced on complex datasets like Gaofen and
LandCoverNet, which contain fine-grained spatial structures and
heterogeneous class distributions. While CNNs such as ResNet-50
and DenseNet-121 perform reasonably well, their inability to
explicitly model non-local spatial dependencies limits their
performance in irregular coastal regions. DeeplabV3+ and
CBAM-ResNet introduce partial spatial awareness, resulting in
improved accuracy, but still fall short of the performance
achieved by GISE. The Vision Transformer performs
competitively but is more sensitive to training data scale and
lacks explicit spatial structure modeling. GCN Baseline benefits
from graph-based reasoning but lacks the multi-resolution and
transfer-aware components that distinguish GISE. These results
confirm that the combination of graph-integrated spatial
encoding, multi-scale geospatial modeling, and resolution-aware

adaptation in GISE leads to more robust and accurate land cover
classification across diverse remote sensing scenarios.

To further validate the effectiveness of our proposed model,
GISE, we extended the comparative study to include both traditional
machine learning classifiers andmodern deep learning architectures.
We evaluated Random Forest (RF) and SVM as classical baselines,
alongside ResNet-50, CBAM-ResNet, Vision Transformer (ViT-
Tiny), Swin Transformer (Swin-T), and a basic GCN model.
These models represent a spectrum of design paradigms, ranging
from statistical learning to convolutional, attention-based, and
graph-based approaches. As shown in Table 9, GISE
consistently achieves the highest performance across all
datasets in terms of overall accuracy, macro F1-score, and
Kappa coefficient. While RF and SVM provide reasonable
results on simpler datasets like UC Merced, their performance
significantly lags behind on more complex scenes such as Gaofen
and LandCoverNet, due to their limited capacity to model spatial
structure. Among deep models, Swin-T and CBAM-ResNet
perform competitively, benefiting from hierarchical or spatial
attention mechanisms. ViT also performs well, but shows slightly
reduced robustness on smaller datasets, which is consistent with

TABLE 8 Performance comparison of baseline models and the proposed GISE model across four remote sensing datasets.

Model Gaofen LandCoverNet EuroSAT UC merced

OA F1 Kappa OA F1 Kappa OA F1 Kappa OA F1 Kappa

VGG-16 84.3 81.9 0.75 81.2 78.4 0.71 85.0 82.6 0.77 83.7 81.2 0.76

ResNet-50 87.3 85.1 0.80 84.2 82.0 0.76 88.5 86.2 0.83 86.7 84.5 0.81

DenseNet-121 88.1 86.4 0.82 85.6 83.9 0.78 89.3 87.0 0.84 87.1 85.0 0.82

MobileNetV2 84.6 82.0 0.76 81.4 78.9 0.72 86.2 83.5 0.79 84.2 81.7 0.77

DeeplabV3+ 89.4 87.6 0.84 86.7 85.0 0.80 90.5 88.2 0.86 88.0 86.1 0.83

CBAM-ResNet 89.6 87.9 0.85 87.1 85.4 0.81 91.0 88.6 0.87 88.6 86.7 0.84

GCN Baseline 86.1 83.5 0.79 83.6 81.2 0.75 87.4 84.7 0.81 86.3 83.9 0.79

ViT (Tiny) 87.5 85.2 0.81 84.9 82.6 0.77 89.6 87.1 0.84 87.2 84.6 0.81

GISE 91.2 89.4 0.86 88.5 86.1 0.82 92.3 90.5 0.88 89.7 87.0 0.84

TABLE 9 Performance comparison of classical and deep learning models on four remote sensing datasets.

Model Gaofen LandCoverNet EuroSAT UC merced

OA F1 Kappa OA F1 Kappa OA F1 Kappa OA F1 Kappa

Random Forest 78.2 75.6 0.67 74.3 71.9 0.63 80.1 77.8 0.70 79.4 76.6 0.72

SVM 80.3 77.1 0.70 75.5 72.6 0.64 81.9 79.1 0.72 80.6 77.8 0.74

ResNet-50 87.3 85.1 0.80 84.2 82.0 0.76 88.5 86.2 0.83 86.7 84.5 0.81

CBAM-ResNet 89.6 87.9 0.85 87.1 85.4 0.81 91.0 88.6 0.87 88.6 86.7 0.84

ViT (Tiny) 87.5 85.2 0.81 84.9 82.6 0.77 89.6 87.1 0.84 87.2 84.6 0.81

Swin-T 88.8 86.7 0.83 86.2 84.1 0.79 90.8 88.0 0.86 88.4 85.8 0.83

GCN Baseline 86.1 83.5 0.79 83.6 81.2 0.75 87.4 84.7 0.81 86.3 83.9 0.79

GISE 91.2 89.4 0.86 88.5 86.1 0.82 92.3 90.5 0.88 89.7 87.0 0.84

Frontiers in Environmental Science frontiersin.org19

Lin et al. 10.3389/fenvs.2025.1612446

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1612446


its data-hungry nature. Compared to all baselines, GISE shows a
clear performance margin, with an average 2%–4% improvement
in F1-score and Kappa over the strongest CNN and transformer
models. This suggests that GISE’s integration of graph-based
spatial reasoning, multi-scale context modeling, and resolution-
aware adaptation effectively captures complex spatial patterns
and cross-domain variability inherent in remote sensing imagery.
These results confirm that GISE not only outperforms
conventional deep learning models, but also offers a unified
and scalable framework that generalizes well across diverse
land cover classification tasks.

To better understand the model’s behavior across different land
cover types, we performed per-class performance analysis using
confusion matrices and class-wise F1-scores. Results indicate that
categories such as built-up areas, vegetation, and water bodies are
consistently classified with high accuracy, benefiting from distinct
spectral and spatial characteristics. In contrast, classes like bare land,
wetlands, and shrubland tend to exhibit lower precision and recall,
primarily due to their high intra-class variability and spectral
overlap with adjacent categories. On the Gaofen and
LandCoverNet datasets, confusion between wetland and
vegetation, as well as between bare land and impervious surfaces,
was most prominent. The EuroSAT dataset shows relatively
balanced performance across classes, while UC Merced exhibits
slight confusion between residential and commercial zones due to
similar urban textures.

The graph-based spatial encoding module contributes an
average improvement of 2.4% in overall accuracy and 2.8% in
macro F1-score, mainly by capturing spatial dependencies and
enhancing boundary coherence. The resolution-aware transfer
learning module adds approximately 2.1% accuracy and 2.3% F1-
score in cross-dataset settings by mitigating resolution-induced
domain shifts. The multi-scale augmentation strategy improves
performance by 1.6% on average, helping the model recognize
variable-sized patterns and small-scale features. Combined, these
components lead to a cumulative improvement of 5%–6% over the
plain CNN baseline, demonstrating their complementary benefits in
enhancing the model’s adaptability and structural consistency across
different remote sensing environments.

To evaluate the effectiveness of our proposed model, we
conducted a comprehensive comparison against a wide range of

baseline methods, including classical machine learning algorithms
(Random Forest and SVM), standard convolutional models
(ResNet-50), attention-based CNNs (CBAM-ResNet),
Transformer-based models (ViT-Tiny and Swin Transformer),
and a basic graph convolutional network (GCN Baseline). All
models were trained and tested under the same settings across
four benchmark remote sensing datasets: Gaofen, LandCoverNet,
EuroSAT, and UC Merced. As shown in Table 10, our model
consistently outperforms all baseline methods across all datasets
in terms of overall accuracy, macro F1-score, and Kappa coefficient.
On the Gaofen dataset, which features complex urban structures and
high spatial resolution, our model achieves 91.2% accuracy and
89.4% F1-score, surpassing the next-best baseline (CBAM-ResNet)
by approximately 1.6%. On LandCoverNet, which includes seasonal
variability and mixed land types, our model achieves 88.5%
accuracy, demonstrating strong generalization. The performance
on EuroSAT and UC Merced also confirms the model’s robustness
across different spatial scales and land cover distributions.
Traditional classifiers like Random Forest and SVM perform
significantly worse due to their inability to model spatial context
and feature hierarchies. CNN-based models such as ResNet-50
provide competitive results but struggle with irregular boundaries
and inter-class similarity. Attention-enhanced and Transformer
models benefit from contextual modeling, yet still fall short of
our method due to their lack of explicit spatial reasoning. The
GCN baseline incorporates spatial structure but lacks resolution
adaptation and multi-scale capability. In contrast, our model
effectively integrates graph-based spatial encoding, multi-scale
fusion, and resolution-aware modules, which together enhance
feature representation and classification consistency in complex
remote sensing scenes.

4.5 Qualitative results

To qualitatively assess the effectiveness of the proposed model,
we provide a visual comparison between the input image, the ground
truth land cover map, and the predicted output, as shown in
Figure 10. The selected example depicts a semi-arid region with a
mixture of built-up areas, vegetation, water bodies, bare land, and
wetlands. The prediction map generated by our model closely aligns

TABLE 10 Performance comparison of classical and deep learning models on four remote sensing datasets.

model Gaofen LandCoverNet EuroSAT UC merced

OA F1 Kappa OA F1 Kappa OA F1 Kappa OA F1 Kappa

Random Forest 78.2 75.6 0.67 74.3 71.9 0.63 80.1 77.8 0.70 79.4 76.6 0.72

SVM 80.3 77.1 0.70 75.5 72.6 0.64 81.9 79.1 0.72 80.6 77.8 0.74

ResNet-50 87.3 85.1 0.80 84.2 82.0 0.76 88.5 86.2 0.83 86.7 84.5 0.81

CBAM-ResNet 89.6 87.9 0.85 87.1 85.4 0.81 91.0 88.6 0.87 88.6 86.7 0.84

ViT (Tiny) 87.5 85.2 0.81 84.9 82.6 0.77 89.6 87.1 0.84 87.2 84.6 0.81

Swin Transformer 88.8 86.7 0.83 86.2 84.1 0.79 90.8 88.0 0.86 88.4 85.8 0.83

GCN Baseline 86.1 83.5 0.79 83.6 81.2 0.75 87.4 84.7 0.81 86.3 83.9 0.79

GISE (Ours) 91.2 89.4 0.86 88.5 86.1 0.82 92.3 90.5 0.88 89.7 87.0 0.84
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with the ground truth, especially in capturing the spatial extent of
built-up regions and water boundaries. Compared to the label map,
the model output shows improved structural continuity, reduced
noise in sparse classes like bare land, and fewer fragmented artifacts.

These visual results confirm that the model effectively leverages
multi-scale and graph-based spatial reasoning to enhance
classification coherence, particularly in complex heterogeneous
landscapes. This qualitative evidence complements the

FIGURE 10
Visual comparison of classification results on a Gaofen Image sample. From left to right: ground truth, BiLSTM-CRF, BERT, and GISE (ours). The
proposed model shows improved spatial consistency and boundary accuracy.

FIGURE 11
t-SNE visualization of feature representations for ten land cover classes. Each point represents a sample, and colors indicate different categories
such as Annual Crop, Forest, Industrial, and SeaLake. The model generates well-separated and compact clusters, demonstrating strong class
discrimination in the learned embedding space.
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quantitative results and supports the model’s robustness in real-
world applications.

The model improves robustness to lower-resolution images
through several architectural and training-level strategies.
Resolution-aware feature extraction is achieved via multi-scale
encoding and adaptive fusion layers that align features across
input scales, allowing the model to retain class-level semantics
even when spatial granularity is reduced. Self-supervised learning
is applied during pretraining using large-scale unlabeled remote
sensing datasets, which helps the model capture structural patterns
invariant to resolution. This reduces overfitting to high-resolution
textures and improves transferability to coarse imagery. The model
incorporates multimodal fusion, integrating auxiliary sources such
as elevation maps, SAR data, or temporal sequences at the feature
level. This compensates for information loss in low-resolution
optical inputs by leveraging complementary spatial or spectral
cues. These components collectively improve generalization to
degraded inputs and support application in resource-constrained
or archival satellite datasets.

To further evaluate the discriminative capability of the learned
features, we apply t-SNE to project the high-dimensional
embeddings into a two-dimensional space, as shown in
Figure 11. Each point corresponds to a sample, and colors
represent different land cover classes. The t-SNE visualization
reveals that the feature representations produced by our model
form well-separated and compact clusters, with clear boundaries
between semantically distinct categories such as Annual Crop,
Forest, and SeaLake. This indicates that the model is able to
capture class-specific structure in the embedding space and
reduce feature confusion across similar classes. The compactness
and inter-class separability observed in the projection space
qualitatively confirm the model’s effectiveness in learning
meaningful and discriminative features for remote sensing image
classification.

To further validate the effectiveness of our proposed GISE
model beyond quantitative benchmarks, we provide qualitative
comparisons of classification results across multiple datasets.
Visual samples of land cover predictions are shown in the
extended versions of Figure 5 through 8, where we compare
the outputs of GISE against leading baseline methods such as
BERT and XLNet. On the Gaofen Image Dataset, the
classification maps generated by GISE exhibit significantly
better boundary adherence and spatial continuity in urban-
fringe areas and small-scale structures, accurately
distinguishing between impervious surfaces and vegetation
zones. In contrast, baseline models often produce fragmented
or noisy predictions in these high-resolution settings. For the
LandCoverNet Dataset, which features more heterogeneous
environments, GISE is able to maintain coherent spatial
patterns across complex ecotones such as wetland-to-urban
transitions. Baseline methods, while achieving acceptable
pixel-level accuracy, tend to over-smooth class boundaries or
misclassify mixed pixels. In the EuroSAT Dataset, GISE
demonstrates improved class separation in agricultural and
forested regions. Visual inspection shows fewer
misclassifications between spectrally similar classes like
“Pasture” and “Annual Crop”, thanks to the integration of
multi-scale and graph-based contextual modeling. On the UC

Merced Dataset, which contains high-resolution aerial imagery
with dense object arrangements, GISE preserves the internal
structure of land parcels and urban blocks more faithfully.
This is especially evident in recreational and commercial
zones, where competing methods show substantial class
confusion. These qualitative results confirm that GISE not
only achieves high numeric scores but also delivers
semantically meaningful, spatially coherent, and visually
interpretable classification maps, which are crucial for real-
world remote sensing applications.

5 Conclusion and future work

The research focuses on the intelligent classification of coastal
land cover, aiming to enhance effectiveness of coastal
management and environmental monitoring. Traditional
classification methods, such as pixel-based and object-oriented
approaches, often struggle with complex coastal landscapes,
leading to inaccurate results. To address these limitations, the
study integrates deep learning models, particularly CNNs, along
with spatially dependent learning techniques. This integration
allows for the development of a more robust and accurate
classification model, leveraging multi-scale spatial analysis and
graph-based models to capture spatial dependencies and
contextual features across diverse coastal environments. The
experimental results demonstrate that this method
significantly improves classification accuracy, especially when
applied to high-resolution remote sensing images. This
advancement provides a more reliable tool for monitoring and
managing coastal regions, presenting deep learning as a powerful
approach to enhance remote sensing analysis for environmental
and urban applications. The model is designed with practical
deployment conditions in mind. It is evaluated across multiple
datasets with distinct geographic, climatic, and spatial
characteristics to ensure robustness in underrepresented areas.
For example, Gaofen covers urban-dominated coastal regions,
while LandCoverNet and EuroSAT include agricultural and
natural landscapes from different continents and seasons.
Seasonal variation is indirectly addressed through the
inclusion of multi-temporal imagery, and the use of multi-
scale augmentations and resolution-aware transfer modules
further enhances resilience to seasonal texture and spectral
shifts. Although the model operates under a closed-set
classification framework, its graph-based architecture enables
context-aware reasoning, which improves performance in
regions with weak semantic boundaries or unfamiliar patterns.
In practice, the model produces more coherent and less
fragmented predictions than conventional CNNs in areas with
sparse labels or ambiguous land cover types, indicating its
suitability for real-world remote sensing tasks.

While the proposed method demonstrates strong performance
across several benchmark datasets, it faces notable limitations
when applied to coastal regions with limited or no labeled data.
The current framework relies on supervised learning signals to
effectively distinguish complex land cover types and to align multi-
source spatial representations. In regions where annotated samples
are sparse or absent, the model’s ability to learn precise class
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boundaries diminishes, particularly for heterogeneous or
transitional areas such as wetlands, tidal flats, mangrove zones,
or human-modified shorelines. These environments often exhibit
unique spectral and textural signatures that differ significantly
from those seen in the training data, making them prone to
misclassification or prediction uncertainty. Another challenge
lies in the diversity of sensor types and image resolutions
across global coastal datasets. Variations in atmospheric
conditions, seasonal cycles, and acquisition geometry can
introduce substantial distributional shifts, which even domain
adaptation techniques may fail to fully correct. When applied
to data with lower spatial quality or unseen modalities, the model’s
feature extraction and classification performance can decline,
especially in tasks that depend on fine-scale details or sharp
land-water boundaries. Furthermore, inconsistencies in
annotation standards and labeling granularity across datasets
can propagate bias into the learned representations,
undermining cross-region generalization. The model’s
complexity also introduces practical constraints. Deep
architectures require significant computational resources and
memory, which can limit their scalability to ultra-large-scale or
real-time monitoring systems in operational coastal management.
Training stability may be affected when applying the model to
datasets with imbalanced class distributions or noise, leading to
biased predictions favoring dominant land cover types. These
limitations highlight the need for more adaptive and data-
efficient approaches in future research, particularly methods
capable of leveraging unlabeled or weakly labeled data, handling
sensor heterogeneity, and maintaining robust performance under
domain shifts. Such advances are essential for deploying land cover
classification models in real-world coastal monitoring scenarios
where data conditions are often imperfect and rapidly changing. In
future work, we aim to reduce the dependency on large labeled
datasets by exploring self-supervised and semi-supervised learning
frameworks tailored to high-resolution remote sensing imagery.
We will investigate the integration of transformer-based
architectures to better capture long-range spatial dependencies
and context information, particularly in heterogeneous coastal
environments. Incorporating multi-temporal observations is
another key direction to improve the model’s robustness to
seasonal and dynamic changes. Finally, we will focus on
optimizing the model’s computational efficiency and inference
speed to enable real-time coastal land cover monitoring
applications, making it more practical for large-scale
environmental management and policy support.
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