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Introduction: Water contamination poses a significant threat to both public
health and ecosystems worldwide, leading to increased emphasis on
developing robust detection and mitigation strategies. Traditional methods for
monitoring water quality, such as manual sampling and basic chemical analysis,
are limited in their ability to provide real-time data and often fail to detect
contaminants in a timely manner. Recent advancements in artificial
intelligence (AI) offer promising solutions to enhance water contamination
detection, particularly by leveraging machine learning algorithms and sensor
networks for continuous monitoring.

Methods: This paper presents a novel AI-powered approach for improving water
contamination detection, which incorporates real-time data processing and
predictive modeling to identify contamination events and optimize response
strategies. We combine sensor data with advanced machine learning techniques
to accurately predict contaminant concentrations and assess the effectiveness of
various mitigation strategies in different water bodies.

Results: Experimental results across four benchmark datasets show that our
model, AquaDynNet, achieves outstanding performance. Specifically, it achieves
an accuracy of 90.75%, F1-score of 88.79, and AUC of 92.02 on the Terra Satellite
dataset. On the Aquatic Toxicity dataset, themodel obtains an accuracy of 92.58%
and AUC of 94.13, and on the Water Quality dataset, it reaches an F1-score of
85.54 and AUC of 89.72. On the infrastructure-focused WaterNet dataset, it
achieves 91.98% accuracy and AUC of 92.47.

Discussion: These results consistently demonstrate our model’s superior
detection accuracy and robustness compared to baseline approaches.
Furthermore, our approach is capable of providing actionable insights for
policymakers and environmental agencies to mitigate the impacts of
contamination on human health and aquatic ecosystems. This research
addresses critical challenges in water quality management, offering a scalable
and adaptable solution for addressing global water contamination issues.
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1 Introduction

Water contamination detection is a critical aspect of ensuring
ecological balance and public health. Industrialization, urbanization,
and agricultural practices continue to expand, the risk of water
pollution has intensified (Yang et al., 2022b) Contaminants in water
bodies can cause irreversible damage to aquatic ecosystems, human
populations, and biodiversity (Topp et al., 2020) Therefore,
improving the detection of water contamination is not only
essential for protecting the environment but also for safeguarding
public health and promoting sustainable water management (Wen
et al., 2011) Early detection of pollutants, particularly hazardous
ones like heavy metals, pesticides, and microbial pathogens, plays a
pivotal role in timely interventions. AI-powered approaches, due to
their ability to handle vast amounts of data, recognize patterns, and
adapt to diverse environmental conditions, have emerged as
promising solutions in enhancing water contamination detection
(Yang et al., 2022b). Moreover, the integration of AI with sensor
technologies, remote sensing, and predictive analytics holds the
potential to revolutionize the monitoring and management of
water quality.

The early stage of water contamination detection was dominated
by traditional methods based on symbolic AI and knowledge
representation (Mohseni et al., 2022) These methods relied on
expert systems and rule-based models interpret water quality
data. Through predefined rules and logical reasoning, systems
could identify potential contamination sources and forecast water
quality degradation (Palmer et al., 2015) Such methods were based
on structured data and explicit knowledge, allowing for accurate and
interpretable results. However, they were highly dependent on
human expertise and struggled to adapt to new, uncharted
contamination scenarios Glasgow et al. (2004). They also failed
to scale efficiently when the complexity of data increased, and their
ability to detect novel patterns or unseen contamination types was
limited (Ramadas and Samantaray., 2018) Despite these limitations,
symbolic AI approaches laid the groundwork for later developments
by emphasizing structured data representation and expert-driven
knowledge (Glasgow et al., 2004).

With the increasing availability of large datasets and advances in
computational power, data-driven approaches began to gain
traction (Frincu, 2025) These methods leveraged machine
learning (ML) techniques to analyze large volumes of
environmental data, such as water quality parameters,
meteorological data, and sensor readings. Machine learning
algorithms, such as support vector machines (SVMs) and
decision trees, were used to classify water samples based on
contamination levels (Ahmed et al., 2019) These methods could
automatically adapt to new data, providing more flexible and
scalable solutions than traditional symbolic AI approaches
(Zulkifli et al., 2018) However, challenges remained, particularly
in dealing with noisy or incomplete data (Lambrou et al., 2014)
While ML-based approaches improved detection accuracy, they
often required extensive labeled datasets for training, which were
not always available. Moreover, the interpretability of ML models
was often limited, making it difficult to understand the reasoning
behind a model’s decision (Gautam et al., 2012).

In recent years, the emergence of deep learning and the
utilization of pre-trained models have markedly propelled

advancements in the detection of water pollution (Hu et al.,
2018) Algorithms based on deep learning, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs),
have demonstrated exceptional capabilities in managing complex
and high-dimensional datasets, including satellite images and
continuous sensor readings (Hou et al., 2013) These models are
able to autonomously extract relevant features and learn intricate
data representations from extensive datasets, effectively eliminating
the need for manual feature selection (Priya et al., 2018). This makes
them particularly suitable for identifying contamination across
various environmental settings. Furthermore, the application of
pre-trained networks and transfer learning strategies has greatly
improved both the adaptability and performance of deep learning
methods, especially under data-scarce conditions (Yang et al., 2009).
Nevertheless, such models are often computationally demanding
and typically require substantial training data to reach their full
potential (Arnon et al., 2019). The inherent opacity of deep learning
systems poses interpretability challenges, which is a critical issue in
environmentally sensitive scenarios where transparent decision-
making is essential (Che et al., 2015).

Despite the progress made in symbolic AI, machine learning,
and deep learning, each of these methods faces inherent
challenges in the detection of water contamination. Symbolic
AI approaches struggle with scalability and adaptability, while
machine learning models depend on the availability of labeled
data and can suffer from interpretability issues. Deep learning
techniques, though powerful, are computationally demanding and
face difficulties in providing transparent insights. Given these
limitations, it is necessary to propose new methodologies that can
overcome the shortcomings of existing approaches. Our proposed
method combines the strengths of data-driven models with novel
optimization techniques to enhance the accuracy and
interpretability of contamination detection. By integrating
sensor fusion and multi-modal data analysis, we aim to
provide a more efficient, adaptive, and transparent solution for
water contamination detection.

To address the limitations of traditional water contamination
detection methods, we propose a novel AI-powered framework that
combines deep learning with real-time environmental sensing. At
the core of this framework is AquaDynNet, a multi-branch
convolutional neural network designed to simulate the transport
dynamics of waterborne contaminants. AquaDynNet captures both
spatial and temporal pollution patterns by integrating
hydrodynamic parameters, pollutant decay rates, and exogenous
source variability. It leverages domain-specific physical processes to
enhance predictive accuracy and environmental interpretability.
Complementing AquaDynNet is the FlowSentinel system, which
embeds the model within a broader management framework.
FlowSentinel incorporates real-time sensor data streams, Bayesian
assimilation, and adaptive intervention strategies to support timely
and data-driven responses to contamination events. It also includes
a participatory decision module that integrates stakeholder
preferences into scenario planning and risk evaluation.
AquaDynNet and FlowSentinel form an end-to-end solution that
enhances water quality monitoring, forecasting, and policy support.
This integrated approach allows for proactive, fine-grained detection
and decision-making in complex ecological environments.
The proposed approach offers several significant benefits:
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• Our method introduces a new optimization module that
integrates multiple data sources to improve detection
accuracy and robustness.

• The method is designed to be highly versatile and can be
applied across different contamination scenarios, ensuring its
utility in various ecological environments.

• Preliminary experiments demonstrate the effectiveness of our
method in real-time contamination monitoring, showing
superior performance in comparison to traditional
approaches.

2 Related work

Water contamination detection has long been a
multidisciplinary challenge, with early efforts grounded in
symbolic AI and rule-based systems (Rathi and Gupta., 2015).
These traditional approaches relied on expert-defined rules to
interpret sensor readings or laboratory data. While interpretable
and structured, such methods lacked scalability and adaptability
when applied to large-scale, dynamic aquatic systems with
heterogeneous contamination sources (Zheng et al., 2018). Their
dependence on human expertise limited their real-time
responsiveness in evolving environmental scenarios. The
emergence of machine learning introduced data-driven
techniques capable of pattern recognition in complex, nonlinear
systems. Supervised algorithms such as support vector machines
(SVMs), decision trees (Liu et al., 2014), and random forests have
been extensively applied to classify water quality states based on
physicochemical indicators like pH, turbidity, dissolved oxygen, and
nutrient concentrations (Liu et al., 2015) These methods
demonstrated improved predictive performance compared to
rule-based logic and could generalize across different datasets
when sufficient labeled data was available (Tinelli and Juran.,
2019). However, the need for manual feature engineering and the
limited ability to model temporal dynamics posed ongoing
challenges. Deep learning further advanced this field by enabling
automatic feature extraction and spatiotemporal representation
learning. Convolutional neural networks (CNNs) have been used
to analyze remote sensing imagery for detecting changes in water
color, sediment distribution, and algal bloom signatures (Gunda and
Mitra., 2016). Recurrent neural networks (RNNs) and long short-
term memory networks (LSTMs) have proven useful for modeling
time-series sensor data to track pollutant trends or sudden spikes
(McKenna et al., 2006). When applied to water contamination
problems, these models can learn complex dependencies between
environmental variables and pollution events. Despite their
predictive power, many deep learning models remain black
boxes, hindering their adoption in regulatory or high-risk
ecological applications where interpretability and traceability are
critical (Wilson and Gianchandani., 2003) In parallel, the adoption
of Internet of Things (IoT) technologies has revolutionized
environmental monitoring by enabling real-time, distributed
sensing of water parameters (Girones et al., 2010). Networks of
smart sensors deployed in lakes, rivers, and reservoirs continuously
report data on temperature, turbidity, conductivity, and the presence
of hazardous contaminants (Girones et al., 2010). This real-time
data collection improves both the spatial and temporal resolution of

water quality assessments and facilitates early warning systems.
Several recent studies have proposed integrating IoT with
machine learning models to automate anomaly detection and
forecast contamination events (Naveed et al., 2022). However,
most existing works treat the data pipeline and the predictive
model as decoupled components and rarely incorporate
environmental physics or feedback-driven updates into the
learning process (Wang et al., 2021). Moreover, few existing
approaches actively combine physical contaminant transport
modeling with data-driven AI to support both detection and
decision-making (Nguyen et al., 2019). There is a growing need
for hybrid methods that can bridge the gap between physically
interpretable pollutant dynamics and the flexibility of neural
prediction models (Barraza et al., 2025) The integration of
stakeholder knowledge and real-time control strategies into the
modeling process remains underexplored in water contamination
literature (Wang et al., 2025). Our work addresses these limitations
by proposing an end-to-end framework that combines deep learning
with hydrodynamic principles and sensor feedback mechanisms.
The AquaDynNet model simulates the transport and degradation of
pollutants using a neural architecture grounded in physical laws,
while FlowSentinel incorporates real-time observation updates and
participatory decision-making (deSouza et al., 2025). This holistic
approach supports not only accurate prediction, but also transparent
and adaptive water quality management in complex ecological
environments.

3 Methods

3.1 Overview

We propose an integrated framework for water contamination
detection that combines physics-informed deep learning and
adaptive management. The core of the system is AquaDynNet, a
multi-branch convolutional neural network designed to simulate the
spatiotemporal transport and degradation of pollutants. It ingests
multi-source inputs—including environmental sensor streams and
remote sensing data—to predict contaminant concentration fields in
real time. To support practical decision-making, AquaDynNet is
embedded into FlowSentinel, a management framework that enables
real-time feedback, adaptive pollution control, and stakeholder-
guided intervention planning. FlowSentinel integrates sensor
updates through Bayesian correction and guides environmental
policy via a participatory decision module. Figure 1 provides a
high-level illustration of the proposed approach, showing how data
flows through each component of the system, from collection to
prediction and response. This modular design allows for accurate
detection, dynamic adjustment, and transparent water quality
governance.

3.2 Preliminaries

This section outlines the mathematical formulation of water
contamination as a dynamic system involving the transport and
transformation of pollutants in a water body over time. The water
body is represented as a spatial domain in three dimensions, where
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pollutants may enter through various sources such as agricultural
runoff, wastewater discharge, or industrial effluents. The
concentration of pollutants is treated as a function that depends
on both space and time.

The rate at which pollutants enter the system is modeled using a
source term that captures the input from different types of sources.
These sources can be spatially distributed (agricultural runoff) or
localized (industrial point discharge). The movement and spread of
pollutants in water are governed by advection (transport by water
flow) and diffusion (spreading due to mixing and turbulence).

To fully define the system, boundary conditions must be applied.
These describe how contaminants behave at the boundaries of the
water body. For example, Dirichlet conditions might specify a
known concentration at a surface or riverbank, while Neumann
conditions could represent scenarios where there is no pollutant flux
across the boundary.

An important quantity to track is the total mass of contaminants
in the system, which is obtained by integrating the concentration
over the entire domain. Additionally, regulatory thresholds or
environmental standards are defined for different contaminants.
If the pollutant concentration exceeds these limits, the water quality
is considered hazardous to human health and aquatic ecosystems.

In essence, the problem of monitoring and mitigating water
contamination involves understanding the interplay between

pollutant sources, water flow dynamics, diffusion processes, and
spatial-temporal distribution of pollutants. By solving the
underlying transport model, we can identify areas of high
contamination and assess the long-term environmental impacts.

3.3 AquaDynNet

We introduce AquaDynNet, a novel model developed to
simulate and predict water contamination dynamics with
improved accuracy and environmental fidelity. This model
integrates pollutant interactions, spatial heterogeneity, and
adaptive flow dynamics to capture the complex behavior of
contaminants in natural and engineered aquatic systems (As
shown in Figure 2).

This section presents an advanced formulation of contaminant
transport in aquatic environments by extending the classical
advection-diffusion model. It incorporates key processes such as
pollutant degradation, spatial heterogeneity in hydrodynamic and
physicochemical parameters, and time-varying flow dynamics.
These enhancements enable the model to better reflect real-world
conditions such as biological and chemical decay, temperature
effects, and turbulent dispersion. The transport dynamics also
consider directionally variable mixing by using a tensor-based

FIGURE 1
Overview of the proposed AquaDynNet + FlowSentinel framework. The system processes multi-source inputs, predicts contamination levels via
neural modeling, and uses FlowSentinel to close the loop through adaptive control and participatory governance.
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diffusion formulation, which is especially important in stratified or
complex flow systems. The pollutant source term is modeled with
stochastic elements to account for unpredictable events and spatial
variability, including both continuous pollution and sudden releases.
Additionally, the degradation rate of pollutants is modeled as a
function of environmental conditions such as temperature,
dissolved oxygen, and solar irradiance. This makes the model
responsive to seasonal and diurnal fluctuations in the aquatic
environment. To numerically solve the resulting equations,
advanced computational techniques like finite-volume or spectral
element methods are suggested, with mesh refinement in regions of
steep gradients or variable pollution sources.

To capture the nuanced behavior of pollutant emissions, a
spatiotemporal encoding of sources is introduced. This
framework represents emission sources as spatially discrete and
temporally dynamic, ideal for modeling scenarios like industrial
discharges or stormwater outflows. Spatial singularities are first
described using delta functions and then smoothed using
Gaussian kernels for better numerical stability and accuracy.
Emission intensity is modeled with both deterministic and
stochastic elements, driven by environmental factors such as
rainfall, temperature, and human activity schedules. This flexible

design allows simulation of various pollution patterns including
urban runoff, agricultural discharge, and industrial accidents. The
framework also includes a method for calculating total pollutant
load over a region and time window, which supports environmental
compliance assessments and helps quantify the impact of
pollution events.

To measure the changing impact of pollution on water quality, a
time-dependent Water Quality Index (WQI) framework is
introduced. This index integrates pollutant concentration,
ecosystem sensitivity, and spatial regulatory thresholds to provide
a comprehensive metric for ecological stress. It accounts for time-
varying ecological sensitivity—such as seasonal events or vulnerable
periods—and normalizes pollutant exposure against regulatory
standards (As shown in Figure 3). For broader spatial evaluation,
the WQI can be aggregated over a region using weights that reflect
ecological or societal importance. The model also describes how the
WQI evolves over time, allowing for analysis of both pollution
events and mitigation efforts. The rate of change of WQI offers
insights into whether water quality is improving or deteriorating in
real time. By linking the WQI to predictive outputs from models
such as AquaDynNet, the framework supports scenario-based
forecasting and impact analysis. This enables integration into

FIGURE 2
Schematic diagram of the AquaDynNet architecture. This diagram depicts the multi-branch neural architecture of AquaDynNet, designed to
simulate contaminant transport and dynamic water quality assessment. Themodel processes multi-channel spatiotemporal inputs through three parallel
pathways: a spatial CNN branch, a temporal CNN branch, and a spatio-temporal CNN branch. Each branch applies convolution and pooling operations
tailored to extract localized, sequential, or joint features. Outputs are fused and passed into a multi-layer encoder block incorporating generalized
transport dynamics and spatiotemporal source encoding. The encoded representations are subsequently used to evaluate ecological impact via a
dynamic water quality index estimation module, allowing softmax-based probabilistic prediction of region-wise contamination status.
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decision-support systems for both planning and response, offering a
robust, adaptive, and predictive approach to water quality
management. The WQI’s temporal and spatial responsiveness
makes it a valuable tool for evaluating degradation and

formulating mitigation strategies under dynamic environmental
conditions.

3.4 FlowSentinel

In this section, we propose FlowSentinel, a comprehensive
strategy for managing water contamination. Built upon the
AquaDynNet model, FlowSentinel synergizes predictive
simulation, real-time feedback, and participatory decision-making
to create an intelligent, adaptive management framework for water
quality control. The following three components form the strategic
backbone of FlowSentinel (As shown in Figure 4).

FlowSentinel initiates its predictive feedback loop by
integrating dense real-time sensor networks across aquatic
systems. These sensors collect high-frequency data on various
environmental variables such as pollutant concentration, water
velocity, temperature, turbidity, dissolved oxygen, and
precipitation. The data is continuously sent to a central
processing unit, where the AquaDynNet model uses it to refine
short-term forecasts. This predictive process functions as a
recursive update system, where future pollutant concentrations
are estimated based on current states and sensor inputs. The model
not only updates the contaminant concentration but also adjusts
parameters like flow velocity and source intensity. A Bayesian
correction mechanism is incorporated to manage observational
uncertainties, allowing the model to weigh possible outcomes
based on how well they align with observed data. Furthermore,
a discrepancy index is introduced to compare model predictions
with real-time sensor observations, serving as a trigger for
anomaly detection and alerts. This allows for the rapid
identification of contamination events and enables prompt
corrective actions. As a result, AquaDynNet transitions from a
static model into an adaptive forecasting tool that evolves in
response to real-world environmental changes and unexpected
pollution episodes.

FlowSentinel utilizes an adaptive control architecture to
optimize mitigation strategies under evolving environmental
conditions. Real-time observations are mapped to control actions

FIGURE 3
Schematic diagram of the Dynamic Impact Evaluation. This
diagram illustrates the multi-head attention mechanism applied to
temporal pollutant concentration features X, generating impact-
aware representations Zi that are dynamically aggregated to
compute the Water Quality Impact Metric M. The mechanism
evaluates ecological stress by integrating spatial-temporal pollutant
exposure with ecosystem sensitivity functions and learned weights
WQ ,WK ,WV , enabling adaptive forecasting and scenario-based water
quality analysis.

FIGURE 4
Schematic diagram of the FlowSentinel framework. This schematic represents the core architecture of FlowSentinel, a data-driven water
contamination management strategy. The process begins with the integration of real-time sensing to capture aquatic conditions, followed by a
preparation phase where data is assimilated via AquaDynNet for model training. Adaptive pollution management is then conducted through feedback
control loops, leading to model deployment in a testing phase. A participatory decision framework enables stakeholder-driven optimization and
consensus building for intervention policies.
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such as discharge limitations, flow regulations, land use adjustments,
and ecological buffers. The model evaluates the effectiveness of
intervention strategies by comparing predicted pollutant
concentrations with regulatory or ecological targets. An
optimization framework seeks to minimize deviation from these
targets while accounting for implementation feasibility and cost. The
system anticipates future pollutant dynamics using a rolling-horizon
strategy, continuously updating as new sensor data becomes
available. It also incorporates uncertainty through ensemble
simulations, which explore various scenarios by perturbing input
factors like flow rates, emission levels, and weather conditions.
Ultimately, the optimized control strategies are translated into
localized operational directives, ensuring that each subregion
receives tailored guidance. This results in a spatially and
temporally adaptive plan to maintain pollutant levels within
acceptable limits, even in complex and variable aquatic
environments.

To enable collaborative governance, FlowSentinel includes a
participatory decision framework that integrates model-driven
outputs with stakeholder-specific values and preferences. This
system features a dynamic decision support interface for
visualizing data, evaluating scenarios, and encoding stakeholder
priorities. Stakeholders are modeled with distinct sensitivities to
pollution impacts over space and time, allowing for personalized
assessments of environmental exposure. The framework quantifies
cumulative impacts and uses these metrics to compare different
intervention scenarios. Preferences are expressed through multi-
criteria evaluations balancing environmental benefits, economic
costs, and equity considerations (As shown in Figure 5). The
system supports trade-off analysis using Pareto frontiers and
calculates impact disparities among stakeholders to identify
strategies that reduce inequity. Stakeholder influence is spatially
encoded, and collective decisions are made by maximizing a global

utility function that balances stakeholder priorities across the region.
Through this structure, FlowSentinel supports transparent,
inclusive, and data-driven environmental management,
integrating scientific modeling with stakeholder engagement for
effective real-time governance.

4 Experimental setup

4.1 Dataset

This study leverages four complementary datasets that together
offer a multi-dimensional view of freshwater pollution dynamics
across space, time, and ecological impact. The first is the Terra
Satellite Dataset (Venkata Sudhakar and Reddy., 2023), which
provides high-resolution remote sensing imagery and surface
reflectance data collected by NASA’s Terra spacecraft through its
MODIS (Moderate Resolution Imaging Spectroradiometer)
instrument. This dataset captures a range of geophysical variables
relevant to water pollution modeling, including land surface
temperature, vegetation indices, soil moisture anomalies, and
surface runoff patterns. These variables are essential for
contextualizing watershed-scale pollutant mobility and identifying
anthropogenic influence zones, particularly in rural and peri-urban
regions where ground-based monitoring is sparse. Supplementing
this macro-scale view is the Aquatic Toxicity Dataset (Gajewicz-
Skretna et al., 2021,), a curated collection of laboratory-tested
toxicological responses of aquatic organisms to various chemical
substances. It contains dose-response profiles for fish, invertebrates,
and algae exposed to contaminants such as heavy metals, pesticides,
and industrial solvents. The dataset is derived from standardized
bioassays and peer-reviewed ecotoxicology studies, offering a
quantitative foundation for linking contaminant concentrations

FIGURE 5
Schematic diagram of the Participatory Decision Framework. The left subfigure illustrates the fusion process where heterogeneous decision
attributes are integrated through transformation functions and combined into a fused vector for reasoning. The right subfigure depicts the participatory
decision workflow within FlowSentinel: multiple stakeholder feature embeddings (zv , zs, zt) are aggregated via a weighted mechanism under a
participatory framework to generate a scenario-aware representation (ztr), which is passed through a discriminator D for decision evaluation. This
architecture embeds stakeholder preferences and spatial influence into a cooperative governance process.
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to biological impact thresholds. This allows the model to not only
track contaminant presence but also infer potential ecological
damage through risk-weighted scoring. In addition to these
remote and biological sources, we incorporate the Water Quality
Dataset (Huang et al., 2021), a heterogeneous compilation of in situ
water quality measurements collected from monitoring stations
maintained by environmental agencies, hydrological networks,
and public health institutions. Parameters measured include
concentrations of nitrate, phosphate, lead, mercury, biological
oxygen demand (BOD), chemical oxygen demand (COD), pH,
turbidity, and dissolved oxygen (DO), all of which are
instrumental in capturing the chemical state of the water body
under observation. Temporal granularity varies from hourly to
monthly depending on the station and region, enabling both
short-term anomaly detection and long-term trend analysis.
Geographical coverage spans multiple continents and climates,
allowing for cross-regional model generalization and climate-
resilience evaluation. Lastly, the WaterNet Dataset (Ajayi et al.,
2022) provides a graph-structured representation of water
distribution networks, drainage systems, and hydraulic
connectivity within catchments and urban environments. Each
node in the WaterNet graph corresponds to a hydrologic
junction, such as a monitoring station, discharge outlet, or
confluence point, while edges denote flow pathways, enabling the
construction of a topologically consistent flow map. Attributes
assigned to each node include flow rate, inflow composition, and
contamination history, while edge weights represent hydraulic
resistance, transport delay, or dispersion coefficients. WaterNet
serves as the computational backbone for simulating contaminant
propagation through infrastructure-dense systems, particularly
under conditions of rapid flow changes such as stormwater
events or infrastructure failures. When integrated, these four
datasets support a comprehensive and hierarchical modeling
strategy, from global land-surface predictors and ecological
hazard characterization to localized chemical readings and
network-structured flow dynamics. This multi-source integration
enhances the robustness of pollutant forecasts and supports scalable
application across geographies with differing data infrastructure
maturity. Furthermore, the diverse data modalities foster
opportunities for multimodal learning, enabling the model to
cross-validate predictions from independent data views and to fill
in missing information through representational transfer. Together,
these datasets form the empirical foundation of our system, guiding
not only the calibration and validation of simulation modules but
also the evaluation of mitigation strategies within the
FlowSentinel framework.

In order to enhance transparency and reproducibility, we now
provide detailed characteristics of the four datasets used. The Terra
Satellite Dataset consists of high-resolution remote sensing imagery
collected via NASA’s MODIS instrument onboard the Terra
spacecraft. It features a spatial resolution of 500 m and a
temporal frequency ranging from 1 to 8 days, depending on the
variable. The dataset includes over 20,000 image tiles across diverse
geographic regions, with global coverage spanning all continents,
which supports generalized training for pollution pattern
recognition. The Aquatic Toxicity Dataset comprises
approximately 5,100 curated entries detailing toxicological
responses of aquatic organisms—fish, invertebrates, and

algae—under controlled laboratory conditions. Each entry
includes dosage-response relationships for one contaminant-
organism pair, and the dataset spans chemical exposures from
over 30 countries across Asia, Europe, and the Americas.
Temporal metadata indicates experimental collection primarily
between 2005 and 2021. The Water Quality Dataset contains
over 12,000 field-recorded entries from environmental
monitoring stations. Measurements include nitrate, phosphate,
pH, turbidity, and dissolved oxygen, with sampling frequencies
ranging from hourly to monthly. The spatial scope encompasses
rivers and lakes across 18 countries, including extensive coverage in
China, Germany, the United States, and India. The dataset supports
both real-time anomaly detection and long-term trend analysis. The
WaterNet Dataset models hydraulic infrastructure via a graph
representation. It contains over 2,000 nodes and 3,500 edges
representing hydrological junctions and flow pathways in urban,
peri-urban, and rural environments. It covers networks in
15 countries with a mix of topologies and includes flow rate,
inflow composition, and historical contamination data. Temporal
dynamics are encoded through hourly simulations and logged
events, enabling time-aware modeling of pollutant propagation
through infrastructure systems.

4.2 Experimental details

To assess the effectiveness of the proposed framework, we
conduct extensive experiments using four representative
benchmark datasets: Terra Satellite, Aquatic Toxicity, Water
Quality, and WaterNet. Each dataset is divided into stratified
training and testing subsets to maintain balanced distributions
across spatial, temporal, and ecological dimensions. Performance
outcomes are benchmarked against leading existing methods under
identical conditions to guarantee experimental fairness and
replicability. Our unified model architecture features a
convolutional neural network (CNN) backbone enriched with
spatial attention layers, followed by multiple fully connected
modules. The CNN component is responsible for capturing
multi-resolution features from multimodal inputs, while the
attention mechanism directs the model’s focus toward spatial-
temporal regions most indicative of pollution signals. Prior to
training, all input data are carefully preprocessed. For spatial data
such as satellite imagery, operations include normalization, per-
channel standardization, and image patch extraction. For graph-
based datasets like WaterNet, we apply graph-level normalization
along with spectral embedding techniques to preserve relational
structures. We further augment the data through a variety of
techniques, including geometric transformations (e.g., rotations,
scalings, flips), elastic deformations, brightness modulation, and
temporal jittering to enhance model robustness and reduce
overfitting. Training is carried out using the Adam optimizer
with an initial learning rate of 0.001 and a batch size set to 32.
The training process spans 100 epochs, with an early stopping
criterion triggered if no improvement is observed in the
validation loss over 10 successive epochs. All experiments are
executed on an NVIDIA GPU (Model X) equipped with 16 GB
of memory to support high-throughput processing of large-scale
multimodal data. Regularization methods include L2 penalty (with a
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decay factor of 0.0001) and dropout (set at 0.5) applied to the dense
layers to mitigate overfitting. We evaluate model performance using
standard classification metrics such as accuracy, precision, recall,
and F1-score. For segmentation-related tasks, we report the mean
Intersection-over-Union (mIoU). For datasets exhibiting class
imbalance, especially in toxicity prediction tasks, the area under
the receiver operating characteristic curve (AUC) is also included.
Each experiment is conducted independently three times with
varying random seeds, and the final performance is reported as
the mean along with standard deviation to capture variability.
Additionally, we perform ablation experiments to isolate the
contribution of each component (e.g., graph integration,
multimodal inputs), and apply statistical significance testing to
determine the reliability of observed improvements over
competitive baselines.

4.3 Comparison with SOTA methods

On the Terra Satellite dataset, our method outperforms all
other methods, achieving a notable accuracy of 90.75 ± 0.02,
recall of 86.41 ± 0.02, F1 score of 88.79 ± 0.01, and AUC of
92.02 ± 0.03. Compared to the best-performing method (BLIP),
our method shows a significant improvement, especially in recall
and F1 score, which indicates better generalization and
robustness. Similarly, on the Aquatic Toxicity dataset,
AquaDynNet achieves an accuracy of 92.58 ± 0.02, recall of
89.73 ± 0.02, F1 score of 91.12 ± 0.02, and AUC of
94.13 ± 0.03, which again surpasses all other methods,
including BLIP, ViT, and I3D. On the Water Quality dataset,
AquaDynNet achieves an accuracy of 88.34 ± 0.02, recall of
83.68 ± 0.03, F1 score of 85.54 ± 0.02, and AUC of
89.72 ± 0.03, outperforming the best alternative method
(BLIP). On WaterNet, AquaDynNet achieves an accuracy of
91.98 ± 0.03, recall of 87.61 ± 0.02, F1 score of 89.22 ± 0.03,
and AUC of 92.47 ± 0.02, further demonstrating its superior
performance across all datasets. The significant improvements in
performance achieved by AquaDynNet can be attributed to its
novel architecture and the effective integration of different
features from various data sources. Our method effectively
captures the complex relationships within the datasets, leading

to higher accuracy, recall, F1 score, and AUC, especially in
comparison to existing methods.

The results highlight the effectiveness and superiority of
AquaDynNet over current SOTA methods, making it a
promising approach for 3D object recognition and related tasks.

The experimental results in Table 1; Table 2 consistently
demonstrate that AquaDynNet outperforms competing models
across all benchmark datasets. Notably, the model achieves a
significant AUC improvement over ViT and BLIP, two strong
baselines in vision-language and spatiotemporal modeling. This
improvement is attributed to the incorporation of physically-
informed components such as the Generalized Transport
Dynamics and Spatiotemporal Source Encoding modules, which
enable the model to simulate real-world pollutant behavior more
effectively. The model’s superior recall and F1-scores suggest it is
particularly adept at detecting contamination events without
missing rare or spatially dispersed pollution signals—a critical
requirement for environmental monitoring. The high AUC on
the WaterNet dataset underscores its robustness in complex
hydraulic infrastructures, where pollutant dispersion is affected
by dynamic network topology. Furthermore, the low variance in
performance across three independent runs highlights the model’s
stability and generalization. These observations collectively affirm
that our approach is not only accurate but also interpretable and
resilient across varying water quality challenges.

The models used for comparison—CLIP, ViT, I3D, BLIP,
Wav2Vec 2.0, and T5—are not originally designed for
environmental modeling. However, they represent cutting-edge
architectures that are widely adopted for tasks involving
multimodal learning, satellite imagery analysis, and temporal
sequence modeling. These characteristics align with the core
demands of our problem setting, where input data consists of
remote sensing images, spatially distributed sensor streams, and
time-series measurements of water quality parameters. ViT and I3D
are capable of processing temporal sequences and learning from
spatiotemporal data, making them suitable for modeling
contamination trends over time. CLIP and BLIP, although from
the vision-language domain, offer robust image representation
capabilities that can generalize to remote sensing contexts due to
their pretraining on large and diverse datasets. Their adaptability to
various data modalities makes them strong benchmarks for

TABLE 1 Performance benchmarking of our approach against leading techniques on terra satellite and aquatic toxicity datasets.

Model Terra satellite dataset Aquatic toxicity dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Zhang et al. (2024) 81.45±0.03 73.12±0.02 76.87±0.01 80.15±0.02 88.50±0.03 85.20±0.02 87.16±0.02 90.12±0.03

ViT Touvron et al. (2022) 87.63±0.02 80.40±0.03 83.17±0.02 85.98±0.02 85.78±0.02 82.53±0.01 84.92±0.01 89.62±0.03

I3D Peng et al. (2023) 82.49±0.01 75.08±0.02 79.11±0.02 78.45±0.03 81.20±0.03 78.36±0.01 80.43±0.02 84.01±0.02

BLIP Li et al. (2022) 88.34±0.01 84.12±0.01 85.98±0.01 83.72±0.02 89.47±0.02 86.09±0.03 88.73±0.01 90.25±0.03

Wav2Vec 2.0 Chen and Rudnicky. (2023) 85.61±0.03 77.43±0.02 80.64±0.02 82.49±.02 86.80±0.01 80.91±0.02 82.30±0.01 85.88±0.03

T5 Zhuang et al. (2023) 79.11±0.02 71.68±0.01 74.94±0.01 76.59±0.01 81.90±0.02 77.25±0.03 79.60±0.02 83.55±0.03

Ours (AquaDynNet) 90.75±0.02 86.41±0.02 88.79±0.01 92.02±0.03 92.58±0.02 89.73±0.02 91.12±0.02 94.13±0.03

The values in bold are the best values.
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evaluating the generalizability of AquaDynNet. Wav2Vec 2.0 and
T5 were included for their sequence modeling strength and ability to
process structured inputs such as environmental logs or time-tagged
pollutant records. Conventional domain-specific baselines—such as
hydrodynamic simulation tools (SWAT, HEC-RAS) or rule-based
environmental models—were not included due to fundamental
architectural differences. These models are not designed for end-
to-end learning with multimodal inputs and typically lack the
capability for real-time prediction or integration with sensor
feedback. Many rely heavily on manual parameter tuning and
domain-specific calibration, which limits their scalability and
reproducibility in AI-driven pipelines. We have thus focused on
models that align better with the data modalities and operational
goals of our framework.

4.4 Ablation study

To evaluate the individual impact of each fundamental
component within our AquaDynNet framework, we perform a
comprehensive ablation analysis by sequentially excluding three
essential modules. Generalized Transport Dynamics,
Spatiotemporal Source Encoding, and Real-Time Sensing
Integration. The results on the Terra Satellite and Aquatic
Toxicity datasets are reported in Tables 3, 4. We observe that
removing the Generalized Transport Dynamics module results in
the most significant degradation, especially in accuracy and AUC,
underscoring the importance of physically grounded contaminant
propagation modeling. On the Terra dataset, for instance, accuracy
drops from 90.75% to 85.34%, and AUC from 92.02 to 85.90,

TABLE 2 Performance benchmarking of our approach against leading techniques on water quality and WaterNet datasets.

Model Water quality dataset WaterNet dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP Zhang et al. (2024) 84.92±0.03 75.81±0.02 79.16±0.02 81.04±0.02 87.33±0.02 83.19±0.03 85.46±0.02 89.92±0.03

ViT Touvron et al. (2022) 82.75±0.02 76.59±0.02 79.61±0.01 80.35±0.03 86.14±0.02 80.48±0.03 83.57±0.02 88.13±0.02

I3D Peng et al. (2023) 81.03±0.01 74.22±0.03 78.00±0.02 79.88±0.01 82.47±0.02 77.11±0.02 79.30±0.02 84.25±0.02

BLIP Li et al. (2022) 85.11±0.03 79.98±0.02 82.17±0.01 83.20±0.03 89.45±0.03 83.22±0.01 86.73±0.02 91.02±0.03

Wav2Vec 2.0 Chen and Rudnicky. (2023) 83.68±0.02 75.03±0.03 77.96±0.02 80.72±0.02 85.28±0.03 81.79±0.02 83.99±0.01 88.66±0.03

T5 Zhuang et al. (2023) 80.42±0.01 72.96±0.02 75.38±0.02 77.21±0.02 84.12±0.02 79.34±0.03 81.77±0.02 86.98±0.03

Ours (AquaDynNet) 88.34±0.02 83.68±0.03 85.54±0.02 89.72±0.03 91.98±0.03 87.61±0.02 89.22±0.03 92.47±0.02

The values in bold are the best values.

TABLE 3 Performance benchmarking of our approach against leading techniques on recommendation systems across terra satellite and aquatic toxicity
datasets.

Model variant Terra satellite dataset Aquatic toxicity dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

AquaDynNet (Full) 90.75±0.02 86.41±0.02 88.79±0.01 92.02±0.03 92.58±0.02 89.73±0.02 91.12±0.02 94.13±0.03

w.o Gen. Transport Dynamics 85.34±0.02 79.21±0.02 81.76±0.01 85.90±0.02 88.11±0.03 83.47±0.02 85.28±0.02 89.45±0.02

w.o Spatiotemporal Encoding 86.72±0.03 80.12±0.02 83.09±0.02 86.77±0.02 89.35±0.02 85.03±0.03 86.81±0.02 90.27±0.03

w.o Real-Time Sensing 87.15±0.02 81.09±0.03 83.84±0.02 87.93±0.02 90.16±0.02 86.47±0.02 87.83±0.02 91.32±0.03

The values in bold are the best values.

TABLE 4 Performance benchmarking of our approach against leading techniques on recommendation systems across water quality andWaterNet datasets.

Model variant Water quality dataset WaterNet dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

AquaDynNet (Full) 88.34±0.02 83.68±0.03 85.54±0.02 89.72±0.03 91.98±0.03 87.61±0.02 89.22±0.03 92.47±0.02

w.o Gen. Transport Dynamics 83.17±0.02 78.01±0.03 79.86±0.02 83.68±0.02 85.23±0.03 80.17±0.02 82.34±0.03 86.01±0.03

w.o Spatiotemporal Encoding 84.10±0.02 78.65±0.02 80.93±0.02 85.02±0.02 86.71±0.02 81.28±0.02 83.42±0.02 87.89±0.03

w.o Real-Time Sensing 85.23±0.02 80.04±0.02 82.18±0.02 86.47±0.03 87.08±0.03 82.61±0.03 84.05±0.03 88.41±0.02

The values in bold are the best values.
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illustrating that spatial-temporal diffusion effects are essential to
model contaminant flow patterns driven by hydrological transport.
When the Spatiotemporal Source Encoding module is removed,
recall and F1 score decline across both datasets, demonstrating the
importance of capturing dynamic, localized pollutant inputs, such as
episodic discharges or spatially clustered contamination events. The
removal of Real-Time Sensing Integration also leads to noticeable
performance reduction, albeit to a lesser extent, suggesting that
online observation correction provides added robustness but is
particularly beneficial in settings with dynamic
environmental inputs.

The ablation results are presented on the Water Quality and
WaterNet datasets. The performance trends observed here are
consistent with those from the previous datasets, but the
importance of Real-Time Sensing Integration becomes more
pronounced, especially on the WaterNet dataset. Removing this
component leads to a substantial drop in all metrics, with F1 score
decreasing from 89.22 to 84.05 and AUC from 92.47 to 88.41,
indicating the critical role of real-time environmental updates in
infrastructure-dense and highly dynamic water systems. In contrast,
the removal of Generalized Transport Dynamics yields large
accuracy and AUC penalties on Water Quality data, confirming
the necessity of modeling pollutant advection and degradation
under varying hydrological and chemical conditions. The
ablation of Spatiotemporal Source Encoding consistently results
in lower recall and F1 scores, reflecting a reduced ability to
detect distributed or time-variant contamination sources. These
findings demonstrate that each component within AquaDynNet
plays a distinct and irreplaceable role across different data modalities
and environmental settings, and validate the model’s composite
architecture as essential for generalizable performance in real-world
water quality modeling tasks.

The ablation study presented in Table 3; Table 4 provides critical
insights into the contribution of each core module in AquaDynNet.
Removing the Generalized Transport Dynamics (GTD) module
leads to the largest degradation in both accuracy and AUC across
all datasets, confirming that embedding hydrodynamic priors into
the model is essential for capturing realistic pollutant behavior.
Specifically, AUC dropped by 6.12 points on the Water Quality
dataset and 6.46 points on WaterNet when GTD was removed,
underscoring its role in preserving physical consistency. Excluding
the Spatiotemporal Source Encoding (STE) led to decreased recall
and F1-score, suggesting a reduced ability to handle temporally
variable or spatially concentrated emissions. This module is
particularly valuable in scenarios involving episodic discharges or
spatial anomalies, such as industrial runoff or urban stormwater
events. The Real-Time Sensing Integration (RTSI) module, when
removed, caused notable performance drops in WaterNet, where
sensor updates are most critical due to the rapidly changing
environmental conditions of infrastructure-heavy systems. The
AUC drop from 92.47 to 88.41 further highlights its role in
dynamic adaptation. Overall, these experiments validate the
complementary strengths of each architectural component and
justify the integrated design of AquaDynNet for generalizable
and interpretable water contamination detection.

To provide a clearer understanding of how each architectural
component contributes to the overall performance of AquaDynNet,
we present a comparative visualization in Figure 6. This line plot
captures the metric changes—Accuracy, F1-Score, and
AUC—across four datasets (Terra, Aquatic Toxicity, Water
Quality, and WaterNet) under different ablation settings. The
Full configuration represents the complete model, while the
subsequent points indicate performance when one core
component is removed: Generalized Transport Dynamics

FIGURE 6
Component-wise performance degradation across datasets. This line plot visualizes how removing key modules—Generalized Transport Dynamics
(G.T.D.), Spatiotemporal Encoding (S.T.E.), and Real-Time Sensing Integration (R.T.S.I.)—affects Accuracy, F1-Score, and AUC on all four datasets. The
G.T.D. module proves essential for maintaining high accuracy and generalization, while R.T.S.I. is particularly impactful in dynamic infrastructure settings.
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(G.T.D.), Spatiotemporal Encoding (S.T.E.), or Real-Time Sensing
Integration (R.T.S.I.). The visualization reveals that the absence of
G.T.D. leads to the sharpest performance declines across all metrics,
particularly on the Terra and Water Quality datasets, underscoring
its central role in modeling physical transport and pollutant
dynamics. Similarly, excluding R.T.S.I. results in significant
performance drops, most notably in WaterNet, where real-time
feedback is essential for handling rapidly changing conditions.
Although removing S.T.E. also impacts performance, the decline
is comparatively moderate. By providing a consolidated view across
all datasets andmetrics, this figure confirms that eachmodule within
AquaDynNet plays a unique and essential role. The composite
design ensures the model’s high accuracy, robustness, and
applicability in diverse ecological settings. This visual summary
strengthens our earlier quantitative findings and offers an
intuitive complement to the ablation tables.

To clarify the modeling objectives and comparative structure of
our experiments, we organize this section into three specific layers:
task definition, baseline comparison, and performance analysis. For
each dataset, the modeling goal is clearly defined. These
comparisons are summarized in Table 5, highlighting how
AquaDynNet outperforms state-of-the-art baselines and
demonstrating the critical role of each architectural module. For
instance, in the Water Quality dataset, the objective is to classify
water samples into safe or contaminated categories based on sensor
measurements. In contrast, the WaterNet dataset emphasizes
contaminant propagation modeling across hydraulic networks,
requiring both node-level prediction and temporal trend
forecasting. We compared our model (AquaDynNet) against six
representative baseline methods: CLIP, ViT, I3D, BLIP, Wav2Vec
2.0, and T5. Eachmethod was chosen to reflect either a strong visual-
language foundation or a temporal sequence modeling capability.
All models were trained and tested under identical conditions using
stratified dataset splits to ensure fairness. Evaluation metrics include
accuracy, recall, F1-score, and AUC. These metrics were calculated
across three independent trials, with mean and standard
deviation reported. To make the comparison more interpretable,
we added specific examples to the text. For instance, on the
Water Quality dataset, AquaDynNet achieved an F1-score of
85.54 ± 0.02, compared to 82.17± 0.01 by the best-performing
baseline BLIP, reflecting a 3.37% absolute improvement. On
the Terra Satellite dataset, AquaDynNet’s AUC score reached
92.02 ± 0.03, substantially higher than ViT’s 85.98 ± 0.02. These
differences demonstrate the robustness and generalizability of

AquaDynNet across modalities and tasks. In the ablation study,
we tested the effect of removing each core module in isolation.When
the Generalized Transport Dynamics module was excluded, the
accuracy on the Aquatic Toxicity dataset dropped from 92.58% to
88.11%, with the AUC decreasing from 94.13 to 89.45. This confirms
the value of physically grounded pollutant dynamics modeling.
Similarly, the absence of Real-Time Sensing Integration caused a
significant drop in performance, particularly in dynamic datasets
like WaterNet, suggesting that our real-time feedback mechanism is
crucial for accuracy and responsiveness. This restructuring and the
added examples aim to make the modeling pipeline and
performance implications more transparent and verifiable
for readers.

While the above experiments focus on evaluating model
performance across diverse datasets, our proposed framework is
explicitly designed for real-world deployment in water quality
monitoring systems. The modular architecture of AquaDynNet
and FlowSentinel supports seamless integration with real-time
environmental sensing platforms. For example, AquaDynNet
accepts input from distributed water quality sensors deployed in
rivers, lakes, or reservoirs, which can continuously stream
measurements such as pH, turbidity, temperature, and dissolved
oxygen. These data are directly assimilated into the model pipeline
through the FlowSentinel component. FlowSentinel functions as a
dynamic control loop that receives real-time observational data and
adjusts AquaDynNet’s predictions using Bayesian correction and
Kalman filtering. This allows the system to account for unexpected
pollution events, missing sensor values, or external environmental
shocks. The system can be embedded within existing hydrological
infrastructure through edge computing units that collect,
preprocess, and relay sensor signals to the central prediction
engine. Our framework also supports participatory decision-
making by allowing stakeholders—including policymakers,
environmental agencies, and utility operators—to interact with
model outputs through a web-based interface. They can simulate
hypothetical pollution scenarios, evaluate mitigation strategies, and
prioritize intervention locations based on the predicted water quality
index and ecological risk estimates. Since the model is grounded in
physical transport dynamics, it provides not only accurate forecasts
but also interpretable spatial patterns that align with how
contamination disperses in real water bodies. This operational
setup transforms AquaDynNet from a static prediction model
into an adaptive, closed-loop monitoring system suitable for
continuous deployment. It enables predictive surveillance and

TABLE 5 Illustrative comparison of AquaDynNet against baseline models across datasets.

Dataset Model F1-score AUC Accuracy

Water Quality AquaDynNet (Ours) 85.54 ± 0.02 89.72 ± 0.03 88.34 ± 0.02

BLIP 82.17 ± 0.01 83.20 ± 0.03 85.11 ± 0.03

Terra Satellite AquaDynNet (Ours) 88.79 ± 0.01 92.02 ± 0.03 90.75 ± 0.02

ViT 83.17 ± 0.02 85.98 ± 0.02 87.63 ± 0.02

Aquatic Toxicity (Ablation) Full Model 91.12 ± 0.02 94.13 ± 0.03 92.58 ± 0.02

w/o Transport Dynamics 85.28 ± 0.02 89.45 ± 0.02 88.11 ± 0.03

The values in bold are the best values.

Frontiers in Environmental Science frontiersin.org12

Yang et al. 10.3389/fenvs.2025.1612658

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1612658


proactive intervention, making it well-suited for managing water
quality in complex ecological regions and under resource-
constrained monitoring conditions.

5 Conclusions and future work

The study addresses the increasing threat of water
contamination and proposes an AI-powered approach for
improving water quality monitoring. Traditional water quality
monitoring techniques, such as manual sampling and basic
chemical analysis, are inadequate in detecting contamination in
real-time. To overcome these limitations, the authors introduce a
novel method that leverages AI, machine learning algorithms and
sensor networks, for continuous monitoring of water bodies. The
model integrates real-time sensor data with predictive analytics to
detect contamination events more accurately and efficiently than
traditional methods. The experimental results demonstrate the
model’s superiority, showing it can predict contaminant
concentrations and evaluate mitigation strategies with enhanced
accuracy and speed. This AI-based approach provides actionable
insights that can guide policymakers and environmental agencies in
mitigating water contamination’s effects on public health and
ecosystems, offering a scalable solution for global water
management challenges.

While our current evaluation demonstrates strong performance
across curated datasets, we recognize the importance of assessing the
proposed framework under varying environmental settings.
Different types of water pollution—such as heavy metal
discharge, agricultural runoff, microbial contamination, or
thermal effluents—may exhibit distinct spatiotemporal behaviors
that could influence prediction dynamics. Likewise, weather-
induced events like rainfall, droughts, and temperature
fluctuations introduce additional variability in pollutant
dispersion and measurement noise. Our model’s design,
grounded in physical transport mechanisms, provides a degree of
inherent adaptability to such conditions. However, further
validation is needed to quantify its robustness in the presence of
multi-source pollution and underrepresented climatic regimes. In
future work, we plan to extend the training process using synthetic
or augmented datasets that simulate extreme scenarios, incorporate
uncertainty-aware prediction layers, and evaluate model
generalizability across diverse geographic regions. These efforts
will support the deployment of AquaDynNet in operational
environments with varying hydrological, ecological, and
meteorological characteristics (Frincu, 2025).

Our interpretation of the experimental results is supported by a
growing body of literature emphasizing the advantages of physically
grounded, sensor-integrated, and data-driven methods in
environmental monitoring (Lambrou et al., 2014). Prior research
has shown that sensor network integration and real-time data
feedback significantly enhance contamination detection
capabilities in drinking water systems (Che et al., 2015).
Moreover, machine learning-based approaches, when combined
with domain-specific modeling, have demonstrated improved
prediction accuracy and adaptability under various hydrological
conditions (Ahmed et al., 2019). The role of sensor placement in
optimizing contamination detection coverage is also well recognized

(Hu et al., 2018), particularly in infrastructure-dense regions.
Finally, reviews on remote sensing applications further affirm the
importance of multimodal data fusion in water quality monitoring
(Mohseni et al., 2022).

Despite its promising outcomes, there are two limitations in the
current approach that need further consideration. The model’s
reliance on sensor networks may pose challenges related to the
density distribution of sensors in diverse geographical areas,
potentially affecting data quality and coverage in remote or less
accessible locations. While the AI-powered system offers improved
detection capabilities, it requires continuous updates and refinement
to account for the ever-changing nature of water contaminants,
environmental conditions, and emerging pollutants. Future
research should focus on enhancing sensor network accessibility
and developing adaptable AI models that can accommodate new
contaminants and dynamic environmental variables. In addition to
the discussed issues surrounding sensor density and dynamic
pollutant variability, we identify three further limitations that may
affect the robustness and scalability of our framework. First, the
adaptability of AquaDynNet to emerging contaminants such as
per- and polyfluoroalkyl substances (PFAS) presents a critical
challenge. These compounds possess unique physicochemical
properties, often exhibiting low degradability and high
environmental persistence. As PFAS may not be well-represented
in existing datasets or training regimes, their detection would require
model retraining on new labeled data and potentially revising feature
extraction modules to incorporate relevant molecular descriptors or
spectroscopic signatures. Second, the real-time deployment of
AquaDynNet and FlowSentinel introduces considerable
computational overhead. The system currently depends on high-
performance computing infrastructure, including GPUs with
significant memory capacity, to process multimodal data streams
and update predictions in near real time. This may limit its practical
adoption in low-resource regions or decentralized monitoring setups.
Potential solutions include model pruning, quantization, or the
development of lightweight surrogate models that maintain
performance while reducing inference latency. Third, the
generalizability of our ecological impact modeling—especially the
dynamic Water Quality Index (WQI)—may vary across geographic
regions. Factors such as regulatory thresholds, ecosystem sensitivity,
and pollutant interaction dynamics differ significantly between
freshwater systems in, for instance, arid versus temperate climates.
While our model provides a flexible architecture, local calibration of
ecological baselines and stakeholder preferences remains essential to
maintain interpretability and decision relevance. Future work should
explore transfer learning strategies and modular WQI definitions to
support broader applicability without sacrificing domain specificity.
These additional limitations underscore the need for adaptive
modeling, computational efficiency, and regional customization in
developing scalable, actionable AI solutions for water quality
management.
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