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Introduction:With the rapid development of the economy in recent years, along
with global warming, the chemical industry is an important contributor to global
carbon emissions. The rapid development of the digital economy has in turn
brought new opportunities for chemical companies to reduce emissions. In this
study, chemical industry enterprises are taken as the research object, aiming to
explore how the development of digital economy has a specific impact on the
carbon emission intensity of the chemical industry through the paths of
enhancing the efficiency of resource utilization and optimizing the
industrial structure.

Methods: To analyze the carbon emissions of the chemical industry, we first
applied decoupling, quadratic, and cubic models to measure emission trends.
The impact mechanisms were then examined using externality theory and
enterprise environmental behavior theory, focusing on industrial enterprises in
prefecture-level cities. The influence of the digital economy on carbon emissions
was assessed through baseline regression analysis and robustness tests.

Results: (1) digital economy development can reduce carbon emission intensity;
(2) The higher the level of digital economy development, the greater the degree
of digitization and informatization across society, the more efficient the resource
utilization by chemical enterprises, and the stronger the push towards green and
low-carbon industry, all of which contribute to reducing carbon
emission intensity.

Discussion: The results demonstrate that digital transformation plays a crucial
role in reducing carbon emissions in the chemical industry. Enhanced
digitalization enables enterprises to optimize production processes, increase
energy efficiency, and adopt cleaner technologies. To further promote
emission reductions, chemical enterprises should increase R&D investment in
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digital and green technologies, form innovation alliances to accelerate knowledge
sharing, and pursue strategic transformation toward low-carbon business models.
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digital economy, carbon emission reduction, chemical industry, internal mechanism,
enhancement strategy

1 Introduction

1.1 Formulation of the problem

Since the Industrial Revolution, science and technology have
developed rapidly, and production efficiency has been greatly
improved. Economic development has been fruitful. However,
behind the brilliant economic achievements, it is accompanied by
the wanton exploitation of resources and serious damage to the
environment, and the extent of the damage has far exceeded the
ability of the ecosystem to repair itself, resulting in adverse
consequences such as haze, acid rain, ozone holes, and climate
warming. The international community has gradually realized the
seriousness of environmental problems and has taken active measures
to deal with this global disaster. For example, after the discovery of the
ozone hole in 1984, the Vienna Convention for the Protection of the
Ozone Layer was introduced in 1985, and the Montreal Protocol on
Substances that Deplete the Ozone Layer was enacted in 1987, aiming
to reduce the scale of Freon use through the cooperation of several
countries and regions. According to relevant observations, the ozone
hole has been gradually shrinking since 2017. It can be seen that
international cooperation is an effective means of realizing self-help
for mankind, and the remediation of ozone-depleting substances in
air-conditioning systems also provides a good example for the
solution of other global environmental problems.

Climate warming has become a major problem constraining
economic and social development, causing global issues such as
melting glaciers, rising sea levels, climate anomalies, reduced food
production, and the collapse of the food chain. In addition to cyclical
climate fluctuations, greenhouse gas emissions from the
consumption of fossil fuels in human production and life are
undoubtedly the most significant cause of climate change. Since
the end of the 20th century, the international community has begun
to extensively study how to address this global challenge. In 1992,
the United Nations Framework Convention on Climate Change was
adopted, establishing the principle of “common but differentiated
responsibilities” between developed and developing countries. In
1997, the Kyoto Protocol specifically proposed that major global
industrialized nations reduce their carbon emissions by 5% from
1990 levels by 2008–2012. Despite the difficulties, the Copenhagen
Accord in 2009 was still a significant step forward in the
international community’s joint efforts to address climate change.
In 2015, the Paris Climate Agreement was reached, which is widely
recognized and came into effect in 2020.

As the world’s largest developing nation, China has
demonstrated a proactive approach in fulfilling its global
responsibilities. In 2015, the Chinese government established
binding emission reduction targets: to decrease carbon dioxide
emissions per unit of GDP by 40%–45% by 2020 compared to
2005 levels, while striving to peak total carbon emissions around

2030. These binding quantitative targets were systematically
integrated as key performance indicators within China’s strategic
planning framework for socioeconomic advancement over extended
time horizons. According to statistical data, by 2017, China had
already reduced its carbon intensity by approximately 46% relative
to 2005 levels. This achievement not only met the 2020 target 3 years
ahead of schedule but also exceeded the original emission reduction
goal. Under the Paris Agreement framework, China further refined
its climate commitments, pledging to raise the share of non-fossil
energy in primary energy consumption to around 20% by 2030.
Additionally, the country aims to enhance carbon sequestration by
increasing forest stock volume, targeting a growth of 4.5 billion cubic
meters by 2030 compared to 2005. Currently, China is undergoing
rapid industrialization and urbanization. These well-defined
emission reduction requirements will effectively drive the
transformation of economic development toward green and low-
carbon practices, ensuring the implementation of sustainable
development principles.

Therefore, chemical industry enterprises are taken as the research
object, aiming to explore how the development of digital economy has
a specific impact on the carbon emission intensity of the chemical
industry through the paths of enhancing the efficiency of resource
utilization and optimizing the industrial structure. Firstly, the carbon
emission coefficient method proposed by the IPCCCommittee, which
fits the actual situation of the enterprise, is selected as the
measurement index, and the carbon emission of the enterprise is
accurately measured based on this method. Secondly, the entropy
weight method is utilized and combined with the principal
component analysis method to measure the development of digital
economy. Finally, the OECD decoupling model is used to
preliminarily test the promotion effect of digital economy
development on carbon emission reduction, and the OECD model
is supplemented and improved by the Tapio decoupling model, which
further improves the accuracy of the assessment and evaluates the
policy effect. On the one hand, through the systematic assessment, the
carbon emission performance of enterprises can be reasonably
evaluated, providing scientific basis and targeted opinions for
enterprises to enhance the level of green development; on the
other hand, this study is not only of guiding significance for large-
scale chemical industry enterprises, but also of reference value for
small and medium-sized enterprises (SMEs), and it can play a leading
role in the green development of SMEs, and promote the
transformation of the entire chemical industry into a low-carbon
and sustainable direction.

1.2 Literature review

Research on the nexus between carbon emissions and economic
development has emerged as a prominent focus in environmental
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economics, yielding substantial scholarly achievements. Two
predominant research directions have dominated this field: the
decoupling analysis of economic growth from carbon emissions,
and investigations into the Environmental Kuznets Curve (EKC)
hypothesis concerning their relationship. The decoupling concept
was firstly introduced by the Organization for Economic
Cooperation and Development (OECD) in 2002, referring to a
developmental state where economic expansion becomes
independent of material resource consumption. Historically,
economic development has been fundamentally tied to
substantial energy inputs, maintaining a strong coupling
relationship between growth and energy use throughout
industrialization processes. However, through technological
innovation, industrial upgrading, and transformations in
economic development patterns, advanced economies have
demonstrated significant improvements in resource efficiency.
Notably, certain developed nations have achieved a divergence
between economic growth rates and energy consumption trends -
a phenomenon characterized as decoupling. OECD (2002) analyzed
the decoupling of pollution emissions and economic growth in
30 member countries and found that the average decoupling rate
of member countries was 52%, while Juknys (2003) and Herry et al.
(2003) studied the decoupling situation of transportation and other
related industries in Lithuania and Austria as samples respectively
(Juknys, 2003; Herry et al., 2003). Tapio (2005) supplemented and
improved the decoupling indicator system to address the
shortcomings of the OECD research system and formed a new
decoupling indicator system, which is the Tapio decoupling
indicator system. The system covers eight cases such as strong
decoupling, weak decoupling and growth connection (Tapio,
2005). Foreign literature, such as Wang and Yang (2015)
measured the decoupling of economic growth and carbon
emissions in Beijing, Tianjin and Hebei from 1996 to
2010 through the Tapio method, and the empirical results show
that the “weak decoupling” is the decoupling between the “Ninth
Five-Year Plan (1996–2000)” and the “11th Five-Year Plan
(2006–2010)”, and “weak coupling” is the main feature of the
“10th Five-Year Plan (2001–2005)” (Wang and Yang, 2015).
Dong et al. (2016) investigated the Tapio decoupling status of
energy consumption and economic growth in Liaoning Province
(Dong et al., 2016). Ning et al. (2017) divided China’s interprovincial
regions into seven economic zones and investigated the Tapio
decoupling indices of these seven regions from 1996 to 2013
(Ning et al., 2017). Wu et al. (2018) investigated the trend of
Tapio decoupling in typical industrialized and developing nations
from 1965 to 2015 utilizing decoupling theory as a foundation (Wu
et al., 2018). This research methodology has also been used in
domestic literature to study regional carbon emissions. The
characteristics of energy consumption in China’s industrial sector
and its changes in relation to carbon emissions were examined in
related literature like Wang et al. (2010), which also thoroughly
discussed the relationship between energy consumption, economic
growth, and carbon emissions in the industrial sector (Wang et al.,
2010). Li et al. (2010) constructed a decoupling analysis framework
for the low carbon development of Chinese industries based on the
tracing of decoupling research and the construction of low carbon
decoupling indexes, and modified the Tapio model, and selected the
construction industry in Shanxi for empirical analysis (Li et al.,

2010). The Tapio decoupling model was used by Yue and Li (2011)
to investigate the dynamic link between carbon emissions and
economic growth in Gansu Province, China. Their
methodological approach treated carbon decoupling indices as
key metrics for assessing regional low-carbon development
performance. The research yielded significant findings regarding
Gansu’s industrial structure, revealing that the province’s core
economic sectors demonstrated weak decoupling characteristics
between gross domestic product growth and corresponding
carbon dioxide emissions (Yue and Li, 2011). Zhou (2016) used
Tapio model to examine the evolution and decoupling dynamics of
carbon emissions from China’s transportation sector in connection
to the industry’s economic growth from 1990 to 2013. The report
also suggested methods for reducing emissions, emphasizing the
creation of rules and laws pertaining to transportation, the
optimization of energy structures, and the application of
technical developments for emission reduction (Zhou, 2016).
Qian and Yu (2018) conducted an empirical analysis within the
Tapio decoupling framework, revealing significant spatial
heterogeneity in the decoupling relationship between economic
growth and carbon emissions across China’s eastern coastal
region. Their findings indicate that while the studied areas
collectively demonstrated a decoupling effect, the degree of
decoupling exhibited substantial regional variations. Notably,
Shanghai municipality and Zhejiang province emerged as top
performers, achieving strong decoupling, the most desirable state
where economic growth occurs alongside absolute reductions in
carbon emissions (Qian and Yu, 2018).

The influencing factors of carbon emission include industrial
structure, energy consumption structure, energy intensity,
urbanization level, population structure, environmental regulation
level, etc. Scholars at home and abroad have carried out extensive
researches around the above factors by using the methods of Input-
Output Analysis (IOA), Logarithmic Mean Differential
Decomposition (LMDI) and STIRPAT. Foreign literature, such as
Bhattacharyya and Matsumura (2010), has used the LMDI
methodology to decompose the drivers of carbon emissions from
1990 to 2007, focusing on the influence of energy structure and
energy intensity, taking the 15 countries of the European Union
(EU) as the subject of the study (Bhattacharyya and Matsumura,
2010). Using the LMDI approach, variance decomposition, and
impulse response function, Alves and Moutinho (2013) examined
the carbon emissions of 36 Portuguese economic sectors between
1996 and 2009 and found that energy intensity is the primary factor
affecting carbon emission intensity (Alves and Moutinho, 2013).
Jiang et al. (2018) looked at the factors that affect carbon emissions
in China and the United States and came to the conclusion that the
main cause of China’s carbon emission fluctuations is economic
activity. The study also found that lowering energy intensity was
essential to reducing China’s carbon emissions. Furthermore, it was
shown that China’s proportion of coal and oil consumption had a
higher effect on emissions than that of other countries. The primary
causes of carbon emissions in the US are population increase and
energy intensity (Jiang et al., 2018).

Wang et al. (2005), who is one of the earlier domestic scholars to
conduct relevant research, used the LMDI method to decompose
carbon emissions in China over two sample intervals,
1957–1979 and 1980–2000 (Wang et al., 2005). Other domestic
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studies, like Zhang (2010), examined the effect of China’s economic
development approach on its carbon emission intensity between
1987 and 2007 using the input-output decomposition method. The
empirical findings demonstrated that, during the study period, the
improvement of the development approach decreased the carbon
emission intensity by 66.02% (Zhang, 2010). Tan et al. (2011)
examined the driving forces of China’s carbon emission intensity
using the LMDI decomposition method (Tan et al., 2011). Yu et al.
(2022a) employed the Theil index decomposition technique to
quantify geographical variations in ecological performance
efficiency (Yu et al., 2022a). Lu et al. (2011) calculated the
carbon footprint of energy consumption and its influencing
factors in the three cities of Suzhou, Wuxi and Changzhou from
1991 to 2008 using the STIRPAT model. Economic growth was
found to be the main cause of carbon footprint changes (Lu et al.,
2011). Zhang (2013) similarly concluded that the level of economic
development has the most significant impact on carbon emissions,
while the impact of energy utilization efficiency and energy
consumption structure is relatively small in the study of carbon
emissions in Beijing from 1981 to 2010 (Zhang, 2013). Yu et al.
(2022b) conducted a comprehensive decomposition analysis of
carbon emission drivers employing LMDI method at multiple
scales. Their research examined emission determinants across:
national and provincial administrative levels, and distinct
production process stages. The study revealed significant
differential impacts among key factors - production efficiency
gains, industrial structure optimization, and urbanization
progression exhibited constraining effects on carbon emissions.
Conversely, economic expansion and population growth
demonstrated positive correlations with emission increases (Yu
et al., 2022b). China’s carbon emissions from 1994 to 2008 were
broken down using LMDI’s “two-layer complete decomposition
method” by Lu et al. (2013). They then examined the impact of
energy consumption structure, energy intensity, industrial structure,
and economic scale on carbon emissions, as well as the contribution
of six major industrial sectors. The study’s findings indicate that
while energy intensity and energy structure factors are the most
significant variables preventing the increase in carbon emissions,
economic scale expansion and industrial structure factors are the
most significant causes causing the increase in carbon emissions (Lu
et al., 2013). Yu et al. (2024) applied the spatial Durbin model to
examine key determinants affecting green innovation efficiency in
resource-dependent urban areas. Their empirical analysis confirmed
significant spatial autocorrelation effects, indicating that innovation
patterns in these cities are geographically interdependent. The
results revealed that government policy interventions, industrial
structural upgrades, and regional economic growth positively
contribute to enhancing green innovation performance.
Conversely, stringent environmental regulatory measures and
excessive external openness were found to exert suppressive
effects on innovation capacity (Yu et al., 2024). Zhang et al.
(2014) evaluated the variables influencing the increase in energy
use and carbon emissions linked to urbanization using the STIRPAT
model and principal component analysis. According to the study,
the main causes of the rise in energy consumption and carbon
emissions are the growth of built-up regions in cities and towns as
well as the level of industrialization (Zhang et al., 2014). Huang et al.
(2016) conducted a study on the impact of various factors, including

population, affluence, technological progress, and urbanization
level, on carbon emissions in Jiangsu Province using the
STIRPAT model and ridge regression. The research determined
that population had themost substantial influence, with a 1% change
in population size leading to a 3.467% increase in carbon emissions.
On the other hand, the urbanization level had the least impact, with
a 1% increase in urbanization level causing only a 0.151% increase in
carbon emissions. Then on the basis of empirical research, the future
trend of carbon emissions in Jiangsu Province was studied by setting
up eight different development scenarios (Huang et al., 2016). Chen
et al. (2018) investigated the variables affecting carbon emissions in
Chinese cities at or above the prefecture level using an expanded
STIRPAT model. The study came to the conclusion that factors that
contribute to higher urban carbon emissions include population
size, the share of secondary industrial product value, and heating
demand. But the relationship between the rate of urbanization and
carbon emissions is still erratic (Chen et al., 2018). Chen and Xu
(2018) used inter-provincial panel data to incorporate population,
wealth degree, technology level, openness level, financial
development level and innovation factors into the extended
STIRPAT model, and the results show that GDP per capita,
urbanization level and the share of the secondary industry all
play a positive role in increasing carbon emissions, while foreign
direct investment and innovation factors inhibit the increase in
carbon emissions (Chen and Xu, 2018).

While the Internet has profoundly transformed real-world
socioeconomic activities and the digital economy has increasingly
become a pivotal component of national economic systems, rigorous
empirical research systematically evaluating its impact on high-
quality development remains extremely limited. Existing scholarly
work addressing this phenomenon remains limited to the theoretical
elaboration of realization paths and how the Internet affects total
factor productivity (Guo and Luo , 2016; Huang et al., 2019b),
innovation efficiency (Han et al., 2019; Luo and Li, 2015) and
optimization of the economic geography (An and Yang, 2020), as
well as the digital economy’s impact on inclusive growth (Zhang
et al., 2019) impact of digital economy on inclusive growth (Zhang
et al., 2019), and other high-quality development sub-themes (Guo
and Luo, 2016; Huang H. Q. et al., 2019; Han et al., 2019; Luo and Li,
2015; An and Yang, 2020; Zhang et al., 2019). An empirical study
based on a combination of pertinent theories and the actual Chinese
setting is required to address the aforementioned problems. Thus,
this paper has the opportunity to contribute marginally to this field.

Existing theoretical studies have concluded that the digital
economy influences economic high-quality development through
complex, multi-channel mechanisms. From a microeconomic
perspective, Internet-based technologies create a unique
ecosystem that simultaneously harnesses scale economies, scope
economies, and long-tail effects. This integrated environment
enhances market efficiency by optimizing supply-demand
matching and refining price discovery mechanisms, ultimately
elevating economic equilibrium. At the macroeconomic level, the
digital economy’s transformative effects manifest through three
fundamental pathways: (1) introducing novel production factors,
(2) revolutionizing resource allocation efficiency, and (3)
augmenting total factor productivity. These interconnected
channels collectively drive the transition toward high-quality
economic development (Hong, 2018; Jing and Sun, 2019; Hong,
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2018; Jing and Sun, 2019). However, there exists an important
question in this, through which path the digital economy
mainly promotes high-quality development, and previous
studies have not provided a unified framework to answer the
question. In response to this question, this paper chooses to
study the digital economy from the perspective of its impact on
entrepreneurial activity. Entrepreneurial initiatives serve as an
intrinsic catalyst for economic expansion, significantly
contributing to: facilitating the transition between traditional
and emerging growth drivers, advancing structural economic
upgrading, generating employment opportunities and enhancing
social welfare, and fostering equitable access to opportunities and
upward social mobility. These combined effects establish a robust
foundation for achieving superior-quality economic growth.
Through this perspective, this paper tries to explore how the
digital economy promotes high-quality development based on a
complete framework, assuming that there exists a transmission
mechanism of “digital economy → entrepreneurial activity →
high-quality development of the economy → reduction of
carbon emission intensity”. The higher the level of development
of the digital economy, the higher the level of digitization and
informatization of the whole society, the higher the level of
resource utilization efficiency of enterprises, the higher the level
of development of industries in the direction of green and low-
carbon, and the lower the intensity of carbon emissions. Moreover,
this paper selects the city level as the regional target to explore
whether there is regional heterogeneity in the above transmission
mechanism so that the digital economy, entrepreneurial activity
and high-quality development can be studied at a more detailed
spatial scale.

2 Carbon emission theory and
evaluation models

2.1 Concepts related to carbon emissions

2.1.1 The concept of carbon emissions
Carbon emissions are greenhouse gas emissions represented

by carbon dioxide. According to the Kyoto Protocol and other
relevant information, carbon dioxide, methane, nitrous oxide,
hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride
are the six major greenhouse gases that cause global warming, of
which carbon dioxide accounts for more than 60%, and carbon
dioxide belongs to the inert gases, so it is not only difficult but
also costly to eliminate it directly by using the relevant chemical
methods. Therefore, controlling carbon dioxide emissions at
source is undoubtedly the most important measure to solve
climate warming. Carbon emissions can be divided into two
categories: those originating from non-renewable energy
sources like coal, oil, and natural gas, and those originating
from renewable energy sources like wind, water, biomass, and
tidal energy. Since non-renewable energy now makes up the
majority of energy, its carbon emissions are far higher than
those of renewable energy. Since the industrial sector in
particular uses the most fossil fuels, industrial carbon
emissions have emerged as a key area for carbon control and
emission reduction.

2.1.2 Indicators for evaluating the level of
carbon emissions
2.1.2.1 Total carbon emissions

Total carbon emissions represent the amount of carbon dioxide
emitted from production and life in a certain country or region
within a certain time span, reflecting the absolute scale of carbon
emissions. The total carbon emission is the main evaluation
indicator for the early stage of carbon emission reduction and an
important basis for the division of responsibility for emission
reduction and policy formulation. However, the total carbon
emission index has a significant flaw, which ignores the
development stages of developing and developed countries. After
industrialization, the total carbon emissions of developed countries
have stabilized or even declined, while the majority of developing
countries are still in the accelerated period of industrialization and
urbanization, and their carbon emissions are gradually increasing.
Developed countries have accumulated a large amount of carbon
emissions historically, while developing countries have a
correspondingly small amount. Therefore, by directly restricting
the scale of carbon emissions from developing countries clearly
violates the right to equal development and is not in the interests of
developing countries. In general, it is not possible to require that all
countries and regions be subject to a limit on the total amount of
carbon emissions, and carbon emissionmeasurement indicators that
are more in line with the interests of all parties should be devised.

2.1.2.2 Carbon emissions per capita
The ratio of the total carbon emissions of a nation or region to

the size of its population is known as per capita carbon emissions. At
a certain stage of development, per capita carbon emissions are
closely related to the standard of living. Apportioning the total
amount of carbon emissions to individuals reflects the division of
responsibility for carbon emission reduction from the perspective of
individuals, taking into account the issue of development stages.
Relevant studies show that the per capita carbon emissions of
developed countries are significantly higher than those of
developing countries, and accordingly, developed countries will
take more responsibility for emission reduction. This is in
conflict with the interests of developed countries, and therefore
has not been adopted in the official criteria for the division of
responsibility for carbon emission reduction.

2.1.2.3 Carbon intensity
Carbon intensity indicates the amount of carbon emissions per

unit of GDP. In conclusion, the lower the carbon intensity, the
higher the energy efficiency. Carbon emission intensity will
gradually decrease with the stage of economic development and
technological level. Carbon emission intensity is affected by many
factors, such as technology level, energy structure, energy intensity,
industrial structure, economic fluctuations and so on. Generally
speaking, developed countries have lower carbon emission intensity
due to mature industrial development and higher technological
level, while developing countries have higher carbon emission
intensity due to the high proportion of energy-consuming and
high-emission industries and low technological level. Carbon
emission intensity will make the majority of developing countries
face severe pressure to reduce emissions. Furthermore, it is evident
that the carbon intensity target will not be able to simultaneously
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meet the needs of both developed and emerging nations.
Nevertheless, in contrast to the direct reduction of both per
capita and overall carbon emissions. However, lowering carbon
intensity is a more gradual approach to reducing emissions than
directly lowering total and per capita carbon emissions. It is closely
related to the mode of development and the adjustment of industrial
structure, and it serves as a crucial foundation for gauging the level
of low-carbon development. In summary, it can be found that all
types of carbon emission indicators have certain shortcomings, and
the main point of contention is that developed and developing
countries are at different stages of development, and it is not possible
to use a unified indicator to evaluate their carbon emissions.

2.2 Relevant theoretical foundations and
research hypotheses

2.2.1 Ecological economic theory
As the global climate change situation has become increasingly

severe, the issue of carbon emissions has become an important factor
constraining the sustainable development of the economy and
society, which not only has a far-reaching impact on the global
climate system, but also poses complex and multidimensional
challenges to economic and social development. The digital
economy, with its high efficiency, intelligence and green features,
is profoundly changing the mode of production in all walks of life.
American economist Kenneth Boulding put forward the theory of
ecological economics in 1968, the core of which lies in revealing the
dynamic equilibrium relationship between economic activities and
natural ecosystems. According to the United Nations Environment
Program (1981), ecological economics covers three major theoretical
categories: ecological economic system, ecological economic balance
and ecological economic efficiency. Among them, the ecological-
economic system provides the material and energy basis for
economic activities, the ecological-economic balance maintains
the stability of the system by regulating the flow of resources,
and the ecological-economic benefit is the synergistic result of
economic and ecological benefits.

In the traditional industrialization process, the excessive pursuit
of economic efficiency often leads to an imbalance in the ecological
and economic system, which is manifested in resource depletion and
environmental pollution, such as carbon emissions. For example,
developed countries achieved economic growth in the early stages of
industrialization through the “high energy consumption, high
emissions” model, but ultimately paid high governance costs due
to ecosystem collapse. Ecological economics emphasizes that
sustainable economic development must be achieved through
technological innovation and institutional design to improve
resource efficiency and internalize ecological benefits (Daly,
1996). As a new type of economy, digital economy optimizes
resource allocation and reduces energy and material consumption
in the production process through the Internet of Things (IoT), big
data and other technologies, thus promoting the ecological and
economic system to evolve towards “low entropy” (Zhao et al.,
2020). Specifically, digital technology can monitor the efficiency of
energy use in real time, promote process optimization and circular
economy model, and ultimately reduce the carbon emission
intensity per unit of output.

2.2.2 Theory of externalities
The academic definition of externality has not been unified, but

in general it can be divided into two categories based on the subject
of generation and the subject of acceptance of the externality. The
representative of the former is Samuelson, that externality refers to
the production or consumption of other organizations imposed
non-compensable costs or given without compensation for the
benefits of the situation. The latter is represented by Randall,
who states that an externality is an inefficiency that arises when
the costs or benefits of a business organization’s actions are not
taken into account in the relevant decision-making. Both definitions
are essentially the same, i.e., an economic agent has an external
impact on another economic agent that is not reflected and bought
and sold through market prices. Externalities can be categorized into
positive and negative externalities, either of which affects the
economic efficiency of an equilibrium market. In the chemical
industry, the traditional production model often exists negative
externalities, such as high energy consumption, high pollution,
the enterprise in pursuit of profit maximization, did not fully
consider the carbon emissions and other environmental costs,
resulting in the market equilibrium when the supply of products
is excessive, the carbon emissions intensity remains high.

The development of the digital economy can precisely change
this situation. Through the application of digital technology,
chemical enterprises can realize the intelligent and refined
management of the production process, improve the efficiency of
energy utilization, and reduce energy waste and pollutant emissions.
At the same time, the digital economy can also promote inter-
enterprise cooperation and resource sharing, optimize the industrial
structure, and promote the chemical industry to the direction of
green and low-carbon development. From the theory of externality
of production, the development of digital economy helps to reduce
the negative externality of the chemical industry, reduce the
intensity of carbon emissions, and realize the coordinated
development of the economy and the environment. Therefore,
based on the above two analyses, the hypotheses proposed in this
paper are as follows:

Hypothesis 1: The development of digital economy helps to reduce
the carbon emission intensity of chemical industry.

3 Determination of econometric
models

3.1 Carbon emission measurement models

3.1.1 Decoupling model
The related concept of decoupling was proposed by the

Organization for Economic Cooperation and Development
(OECD) in 2002 to measure the decoupling between economic
growth and environmental pollution pressures, where sustained
economic growth is accompanied by a slowdown or even a
decline in the rate of growth of resource consumption or
environmental pollution, and since then decoupling and its
related theories have been widely used in academia, including the
evaluation of regional sustainable development, economic material
consumption, carbon emission reduction and other fields. There are
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two main methods in specific analysis, OECD decoupling index and
Tapio decoupling index.

3.1.1.1 OECD decoupling index
Calculate the ratio of the rate of economic growth to the rate of

change of environmental pressures. The OECD decoupling index
reflects decoupling at a fixed point in time, and it uses the base
period as a reference to evaluate the relevant situation in the
reporting period. The specific formula is as in Equation 1:

DI �
EPT
DFT

EP0
DF0

(1)

3.1.1.2 Tapio decoupling index
The Tapio decoupling index can effectively address the bias in

the OECD methodology due to the selection of the reference and
reporting periods. It can more accurately characterize short-term
dynamics and is suitable for evaluating policy effects. The specific
calculation formula is given in Equation 2 below:

TCO2,GDP �
ΔCO2
CO2

ΔGDP
GDP

(2)

When both economic growth and carbon emissions rise, but
economic growth increases more than carbon emissions, weak
decoupling takes place. Strong decoupling is characterized by a
negative growth in carbon emissions alongside positive economic
growth. Recessionary decoupling happens when both the economy
and carbon emissions decline, but the reduction in carbon emissions
is more substantial than the economic downturn. Growth linkage is
a scenario where carbon emissions and the economy both increase,
with carbon emissions growing at a rate close to or exceeding that of
the economy. Economic growth and carbon emissions are both
negative and almost equal in a recessionary relationship. When the
economy and carbon emissions both rise, but the economy expands
more slowly than the carbon emissions, this is known as negative
growth decoupling. When the economy shrinks while carbon
emissions rise, this is known as strong negative decoupling. Last
but not least, weak negative decoupling occurs when carbon
emissions and the economy both fall, but the economy’s loss is
more noticeable than the carbon emissions’.

3.1.2 Carbon emission EKC curves
The traditional “inverted U” EKC curve indicates that in the

early stage of industrialization, as per capita GDP rises, per capita
carbon emission also shows an increasing trend, but when per capita
GDP grows to a certain stage, per capita carbon emission no longer
continues to rise, but shows a decreasing characteristic. As can be
seen from the previous literature review section, the EKC curve is
not only limited to the traditional inverted U-shape, because of the
different research objects and research intervals, the U-shape,
inverted N-shape, N-shape and other situations may occur.
Therefore, in order to study the EKC curve of industrial
economic growth and industrial carbon emission more
accurately, this paper sets out the cubic model and the quadratic
model respectively in the model setting. When the coefficients of the
relevant variables in the regression results of the three-dimensional

model pass the significance test, it indicates that the three-
dimensional model setting is more reasonable. If the coefficients
of the relevant variables in the three times model are not significant,
the significance of the relevant regression variables in the secondary
model is tested, and if it is significant, the secondary model is chosen.
If the coefficients of the relevant variables in both the cubic model
and the secondary model show significance, then it is necessary to
make a trade-off at this point based on the Akaike Information
Criterion (AIC) as well as the model’s goodness-of-fit (R2).

3.2 Comprehensive evaluation index for
digital economy development

Only studies conducted at the provincial level are currently
available, and there is a dearth of pertinent literature addressing
particular metrics of the digital economy: There is a gap in the
measurement of the digital economy at the city level. Liu et al. (2020)
developed a system of evaluation indicators for China’s sub-
provincial digital economy from the three dimensions of
informatization development, Internet development, and digital
transaction development. They measured it using data from
30 Chinese provinces between 2015 and 2018 (Liu et al., 2020).
This study constructs an urban digital economy evaluation system
by integrating Liu et al. (2020) Internet-centered framework with
digital financial inclusion indicators. For Internet development
measurement, we adopt Huang H. Q. et al. (2019) four-
dimensional approach: penetration rate, ICT workforce, digital
outputs, and mobile adoption. This synthesized method enables
comprehensive city-level assessment while ensuring data
availability. The four specified metrics are operationalized as
follows: broadband penetration rate per 100 inhabitants,
workforce concentration in ICT service sectors across urban
employment units, per capita telecommunications service volume,
and mobile device adoption rate per 100 population. The reputable
China Urban Statistical Yearbook served as the direct source of these
indicators. We use the China Digital Inclusive Finance Index, a
meticulously built composite indicator created jointly by Ant
Group’s research division and Peking University’s Digital Finance
Research Center, to gauge the progress of digital finance (Guo et al.,
2020). We standardized and dimensionally reduced these five
component indicators using principal component analysis to
create our composite Digital Economy Development Index. The
specific steps of the measurement include:

Step 1: Data standardization. As the outline and numerical range
of different indicators may differ greatly, the original data
need to be standardized to eliminate the influence of the
outline and ensure the uniformity of the subsequent
calculation. The calculation method is shown in
the formula.

Positive indicators are standardized as in Equation 3:

zij �
xij −min xj( )

max xj( ) −min xj( )
(3)

Negative indicators are standardized as in Equation 4:
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zij �
max xj( ) − xij

max xj( ) −min xj( )
(4)

wherein, xij is the first i sample of the j indicator value, and
max(xj) and min(xj) are the maximum and minimum values of
the first indicator, respectively, is the standardized value.

Step 2: Calculate the entropy value of indicators. Based on the
standardized data, the entropy value of each indicator is
calculated. The entropy value is used to measure the
information content of the indicator, and the smaller the
entropy value is, the more informative the indicator is and
the higher the weight is. As shown in Equations 5-7 below:

ej � −k∑
n

i�1
pij ln pij( ) (5)

pij � zij
∑n

i�1 zij
(6)

k � 1
ln n( ) (7)

where, n is the number of samples and ej is the entropy value of the
first j indicator.

Step 3: Calculate the weight coefficient. Calculate the weight
coefficient of the indicator according to its entropy
value, the smaller the entropy value, the higher the
weight. As shown in Equation 8 below:

wj � 1 − ej

∑m
j�1 1 − ej( )

(8)

where, wj is the weight of the first j indicator and m is the total
number of indicators.

Step 4: Weighted standardized data.Multiply the standardized data
with the weight coefficients to get the weighted standardized
data, in order to reduce the interference of low-informative
indicators and enhance the impact of high-informative
indicators. As shown in Equation 9 below:

yij � wj · zij (9)

where yij is the weighted standardized value.

Step 5: Principal component analysis (PCA) dimensionality
reduction. Principal Component Analysis (PCA) is
performed on the weighted standardized data to extract
the principal components to reduce the dimensionality of
the data while retaining the main information. Principal
components are linear combinations of the original variables
that reflect the main changing characteristics of the data.

The covariance matrix is given in Equation 10 as follows:

C � 1
n
YTY (10)

where Y is the weighted normalized matrix. The eigenvectors and
eigenvalues are obtained by eigenvalue decomposition and the

former principal components k are selected. As shown in
Equation 11 below:

P � Y · V (11)
where, V is the eigenvector matrix and P is the principal
component matrix.

Step 6: Calculate the composite score. According to the variance
contribution ratio of the principal components, calculate
the composite score of each sample, which is used to
evaluate the new quality productivity development results.
As shown in Equation 12 below:

Si � ∑
k

j�1
λj · Pij (12)

where, λj is the variance contribution rate of the first j principal
component, Pij is the score of the first i sample on the first j
principal component, and Si is the comprehensive score of the first
i sample.

Through the above steps, the entropy weight method combined
with principal component analysis can evaluate the development
results of digital economy more objectively and accurately.

4 Influence mechanisms and
accounting methods of carbon
emissions of prefecture-level chemical
industrial enterprises

4.1 Factors affecting carbon emissions of
chemical industry enterprises

4.1.1 Industrial scale factors
In different studies on the factors affecting carbon emissions, the

relevant conclusions also vary considerably, but they all generally
agree that the industrial scale factor is an important category of
factors affecting carbon emissions. From a micro perspective, under
a certain level of technology, the impact of industrial scale on
industrial carbon emissions may be two-way. On the one hand,
under the influence of scale gain, along with the expansion of scale,
the utilization rate and potential of related machinery and
equipment can be fully exploited, the division of labor is more
detailed, and the skill proficiency of workers is improved, so that the
level of specialization of enterprise production is continuously
increased, and the performance of carbon emissions is improved.
On the other hand, when the production scale exceeds a certain
threshold, the returns to scale decline, and the scale factor hinders
the improvement of carbon emissions performance. From a macro
perspective, under the promotion stimulus and related unreasonable
assessment system, to obtain certain political achievements in a
short period, local governments tend to ignore the law of industrial
development and resource endowment conditions in the region, and
follow the traditional rough development mode, which generates a
dependence on the traditional high-carbon path, causes duplicated
construction, and creates a large amount of industrial inefficient
production capacity, which is manifested in the expansion of
industrial scale.
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4.1.2 Industrial structure factors
The industrial structure factor indicates the proportion of

the composition of various industrial sectors and the
corresponding technical and economic links, and the
proportion of light and heavy industries is a commonly used
indicator of industrial structure. When the proportion of heavy
industries such as metallurgy, iron and steel, and
petrochemicals increases, it is often accompanied by high
energy consumption and high emissions, industrial heavy is
not conducive to the orderly promotion of industrial carbon
emission reduction. According to the research of Wan (2011),
the decarbonization of industrial structure is a change process of
industrial structure built based on low-carbon technological
innovation and changing with the change of technology,
including the decline of the proportion of high-carbon
industries and the rise of the proportion of low-carbon
industries; the decrease of high-carbon product supply and
the increase of low-carbon product supply; and the
decarbonization of high-carbon industries and the gradual
growth of new industries and other three connotations.
Industrial technological innovation is the main power source
to promote the decarbonization of industrial structures. On the
one hand, technological innovation effectively improves the
efficiency of resource utilization and changes the substitution
relationship between various types of resources. On the other
hand, technological innovation also refines the division of labor,
accelerates the divestment of related industries, and gives rise to
the emergence of new industries. Furthermore, the application
of digital technologies such as blockchain significantly improves
the collaborative efficiency of the chemical industry supply
chain and optimizes the production process. This structural
change has led to a gradual decoupling of economic growth from
carbon emissions. In the context of tightening environmental
regulations and the country’s vigorous development of low-
carbon industries, optimizing industrial structure, continuously
strengthening industrial technological innovation, product
cycle interaction, and technological links between industries,
and realizing industrial integration is an effective way to
implement carbon emission reduction.

4.1.3 Energy intensity factor
The ratio of energy output to energy consumption is known

as energy intensity. The industrial economy’s degree of energy
dependence or efficiency in energy use is reflected in its
industrial energy intensity. While variations in energy
intensity are mostly influenced by shifts in the energy
intensity of the industrial sector, lowering energy intensity is
a crucial component of achieving carbon emission reduction
and a key contributor in slowing the growth of carbon
emissions. According to the International Energy Agency’s
calculations, by the middle of the 21st century, the energy
intensity reduction will contribute nearly one-third to the
realization of the overall emission reduction target. At a
certain level, energy intensity is also a response to the
comprehensive technological level of the region, and energy
intensity should be reduced by continuously strengthening
investment in research and development and improving the
level of technological innovation.

4.1.4 Energy structure factors
The high proportion of traditional fossil energy in energy

consumption and the low proportion of clean and green energy
constrain the process of industrial decarbonization. Restricted by the
resource endowment of “rich coal, poor oil, and less gas” and the
long-term distortion of energy prices, the current industrial sector is
highly dependent on traditional fossil energy, with coal accounting
for nearly 70% of total energy consumption. Insufficient
development of clean energy, the new energy industry makes use
of high cost, which affects the replacement of new energy with
traditional energy. In the short term, this structure of energy
consumption is difficult to substantial change, which also reflects
the promotion of industrial carbon emission reduction will be a
long-term process. As new energy sectors like nuclear and
hydropower are developed and expanded gradually, focus should
be placed on enhancing energy efficiency, encouraging the effective
use of pertinent coal technologies, and reducing the adverse effects
of the energy structure’s high carbonization on emission reduction
and energy conservation.

4.2 Influence mechanism of carbon
emissions of chemical industry enterprises

4.2.1 External environment
Along with the growing severity of environmental problems in

various regions, environmental regulations have been gradually
tightened, mainly in the following areas. First, environmental
laws and regulations: since the promulgation of the
Environmental Protection Law in 1989, nearly thirty
environmental laws, including the Water Pollution Prevention
and Control Law, the Fixed Waste Pollution Prevention and
Control Law, and the Environmental Noise Pollution Prevention
and Control Law have been promulgated one after another, so that
there is a law to follow in environmental management. At the same
time, provinces and municipalities have also formulated
corresponding regional environmental protection laws and
regulations, and the implementation of which has been
significantly strengthened, has gradually formed an orderly
environmental governance system. Second, the development
concept: the 17th Party Congress report put forward the
construction of ecological civilization, the 18th Party Congress
included ecological civilization into the “five-in-one” overall
layout, and the 19th Party Congress proposed relevant measures
on how to implement the ecological civilization. A series of top-level
designs highlights that the development concept and development
mode are changing, and ecological construction is gradually
strengthened. Third, the institutional framework underwent a
significant transformation in 2007 when energy conservation and
emission reduction targets were formally integrated into China’s
socioeconomic development evaluation metrics. These
environmental indicators became critical components in both
governmental leadership assessments and corporate performance
evaluations. The implementation of a strict “one-vote veto” policy,
where failure to meet targets resulted in penalties including potential
dismissal. This regulatory shift fundamentally altered behavioral
patterns, compelling both public and private sector actors to
prioritize investments in low-carbon technologies and
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environmental protection initiatives. Fourth, economic pollution
control: the sewage fee levy standard was raised four times in the
period from 1998 to 2015, to internalize the negative externalities of
enterprise production, thus incorporating environmental issues into
enterprise production constraints and forcing enterprises to
accelerate emission reduction. The carbon trading market was
launched in 2017, and carbon trading is essentially an incentive-
based quantitative environmental regulatory instrument, which
allocates carbon emission rights through market means to
improve the efficiency of resource utilization. Fifth, the public:
with the improvement of living standards, the public’s demand
for an ecological environment is also increasing. With the
promotion of modern technological means such as the Internet,
the public has a stronger ability to express their wishes and demands,
and exerts more environmental pressure on the relevant
governments and enterprises and organizations.

4.2.2 Industrial enterprise level
From the analysis of the external environment, it can be found

that both formal and informal environmental regulations are
gradually strengthening. According to the theory of enterprise
environmental behavior, environmental regulation is an
important factor influencing the environmental behavior of
enterprises. Therefore, the gradually increasing formal and
informal environmental regulation will have a profound impact
on the environmental behavior of industrial enterprises in various
regions. The environmental behavior of enterprises, in turn, changes
various factors such as products, technology, and management of
enterprises. In the context of the general awakening of low-carbon
awareness in society, the digital transformation of enterprises
presents an obvious emission reduction orientation: firstly,
through the industrial Internet to achieve the production of the
whole process of energy consumption visualization and control;
secondly, relying on big data analysis to optimize the cleaner
production process; and finally, the use of artificial intelligence
technology to develop a new type of low-carbon production style.

Specifically, on the product side, firms increase the supply of low-
carbon products when formal environmental regulations are strong,
and reinforce the supply of high-carbon products when formal
environmental regulations are weak. Low-carbon products are
generally more expensive than high-carbon products, and are
“good money” in a market economy, while high-carbon products
belong to “bad money”. Therefore, when informal environmental
regulations are strengthened, public awareness of low-carbon
enhances, and the number of green consumers grows, thus
increasing the consumption of low-carbon products and forcing
enterprises to increase the supply of low-carbon products, good
money drives out bad money. When the informal environment is
weaker, there are more price-sensitive consumers, which will increase
the consumption of high-carbon products, prompting enterprises to
increase the supply of high-carbon products, bad money drives out
good money. In terms of technology, environmental regulation can
have a two-way impact on firms’ technology.

The enterprise budget is fixed in a certain period, when the
environmental regulation is too strong, unreasonable
environmental regulation will crowd out the enterprise research
and development investment, which is not conducive to the
enterprise technology level improvement, that is, the green

paradox phenomenon. However, when environmental regulation is
weak, enterprises have insufficient incentive for low-carbon research
and development, generating a strong dependence on traditional
high-carbon paths, which puts them into a locked-in state that
blocks low-carbon development. In terms of management, in the
context of a strong government and weak market, the local
government holds the initial allocation of resources when the cost
of “rent-seeking” from the environmental protection department is
lower than the cost of purchasing emission reduction targets or the
cost of emission reduction is greater than the cost of rent-seeking, it is
easy to breed corruption in the field of emission reduction so that
emission reduction effect is greatly reduced. On the contrary, if the
carbon market construction has been improved, information
disclosure is timely, and the distribution of carbon allowances is
fair, enterprises will strengthen the emission reduction under the
constraint of carbon emission credits.

4.3 Selection of carbon emission accounting
methods for the chemical industry

Since carbon emissions data are not directly given in various
statistical yearbooks, they need to be accounted for according to
relevant methods. According to different accounting modes, the
mainstream carbon emission accounting methods can be divided
into two types, namely top-down accounting methods and bottom-up
accounting methods. Specifically, the top-down accounting method is
mainly based on the IPCC National Greenhouse Gas Guidelines
proposed by the Intergovernmental Panel on Climate Change
(IPCC), and the final carbon emissions are calculated by analyzing
the carbon emission sources. This method is relatively simple to
operate and is supported by more reliable and authoritative data, so it
is widely used in carbon emission accounting. The bottom-up
accounting method is mainly based on the calculation of carbon
footprints of products, projects, and organizations to obtain the total
carbon emissions. This method is prone to omission defects in the
selection of objects, and the accounting process is more complicated
and less operable. Therefore, when regional carbon emissions are the
object of research, the top-down accountingmethod is a better choice.

In terms of specific accountingmethods, combinedwith the actual
research in this paper, considering that energy consumption is the
most important source of carbon emissions in industrial enterprises
and is easier to obtain, while supply chain data, such as input-output
tables, or full life cycle data are more difficult to cover, the carbon
emission coefficient method is chosen among the many common
calculation methods, such as the input-output method, the life cycle
method, and the carbon emission coefficientmethod (Mo et al., 2025).
Energy combustion is the main source of industrial carbon emissions,
and direct measurement of end-use energy consumption can
accurately reflect the core part of emissions. Therefore, the final
carbon emissions are estimated according to the terminal
consumption of various types of energy, and the following
calculation formula is adopted concerning the calculation method
published in 2006 IPCC National Greenhouse Gas Guidelines and
related research results. The following formula is used:

CE � ∑
14

i

Fi pCVi pCCFi pCOFi p
44
12

(13)
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where CE denotes carbon emissions (tons), i is the type of energy,
and this paper selects 10 types of energy terminal consumption such
as raw coal, washed coal, coke, coke oven gas, natural gas, gasoline,
kerosene, diesel fuel, fuel oil, liquefied petroleum gas. F is the
terminal fossil energy consumption (10,000 tons or hundred
million cubic meters), CV is the average low-level heating value
(kilojoules per kilogram or kilojoules per cubic meter), and CCF is
the types of energy carbon content (kilogram of carbon per billion
joules), COF is the carbon oxidation rate, and 44 and 12 indicate the
molecular weight of carbon dioxide and the atomic weight of carbon
respectively. Using this formula, one can directly calculate the
carbon emissions of industrial firms plus the total.

5 Empirical test of the impact of digital
economy development on carbon
emissions of industrial enterprises

5.1 Baseline regression

To account for macroeconomic fluctuations and time-invariant
individual heterogeneity, a dual fixed-effects specification is

employed in the regression analysis. Table 1 shows the baseline
regression results of the impact of the digital economy on regional
carbon emissions, with no control variables added in Model 1 and
control variables added in Model 2. The results of the benchmark
regression show that the coefficients of the digital economy are
negative at the 5% significance level in both Model 1 without added
control variables and Model 2 with added control variables. This
result shows that there is a significant negative correlation between
the development of digital economy and carbon emission intensity,
and the development of digital economy can reduce carbon emission
intensity, i.e., for every 1% increase in the level of development of
digital economy, the intensity of carbon emission will be reduced by
about 0.5%, that is, Hypothesis 1 is valid. The higher the level of
development of the digital economy, the greater the degree of
societal digital transformation and information technology
integration, the more enhanced becomes corporate resource
allocation efficiency, inevitably propelling industrial sectors
toward environmentally sustainable and carbon-neutral
development trajectories, which can help to reduce the intensity
of carbon emissions and achieve the “30·60” dual-carbon goal.

From the perspective of control variables, only the coefficients of
population size and environmental regulation are statistically

TABLE 1 Baseline regression results.

Variables Model 1 Model 2

DE −0.005** −0.005**

(0.002) (0.002)

PS 0.010*

(0.006)

UR 0.001

(0.007)

FDI −0.002

(0.006)

FT 0.001

(0.001)

ER 0.001*

(0.000)

MAR 0.002

(0.001)

IS 0.001

(0.001)

- cons 0.067*** −0.023

(0.001) (0.046)

Time fixed effect Yes Yes

Provincial fixed effect Yes Yes

N 240 240

R2 0.539 0.566

Note: Corresponding standard errors are in parentheses and *, **, and *** represent significance at the 10%, 5%, and 1% levels respectively.
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significant. Among them, the coefficient of population size is
significantly positive, indicating that population size will
significantly exacerbate the intensity of carbon emissions, mainly
because the expansion of population size will cause an increase in the
demand for energy, and then lead to an growth in the consumption
of fossil energy, and ultimately contribute to the increase of carbon
dioxide; as the environmental regulation index selected in this paper
is a composite index of three major pollutants, the larger the value of
the environmental regulation, which indicates that the higher the
degree of pollution, and the regression results of the environmental
regulation is significantly positive, indicating that the more serious
environmental pollution, the carbon emissions, which is mainly due
to carbon emissions and industrial pollution emissions have the
same root and the same source of nature, such as coal, oil and other
fossil fuels in the combustion process, not only produces carbon
dioxide, but also produces sulfur dioxide and soot and other
pollutants.

5.2 Robustness test

5.2.1 Substitution of explanatory variables
Considering the difference in the level of economic development

of each region, carbon emission intensity is used to measure the level
of regional carbon emissions. At the same time, there are also large
differences in the population size of each region, so this paper uses
per capita carbon emissions to replace carbon emission intensity for
robustness testing. The regression results are shown in Table 2,
Models 1 and 2, the estimated coefficient for the digital economy
remains statistically significant and negative across all model
specifications, irrespective of the inclusion of control variables.

Suggesting that digital economic development reduces per capita
carbon emissions, and that there is a significant negative correlation
between digital economic development and carbon emission
intensity, this is generally consistent with the results of the
baseline regression, and robustness test passed.

5.2.2 Replacement of core explanatory variables
As an authoritative commercial organization with in-depth

research on macroeconomic indices, Caixin Think Tank, in
conjunction with Numerical Union, publishes the digital
economy development index every month, which consists of the
digital economy industry index, digital economy integration index,
digital economy spillover index, and digital economy infrastructure
index (Zhang and Xu, 2024). It can reflect the development of the
digital economy in various regions of China more comprehensively,
and a lot of scholars have already used this data to research the
digital economy. Model 3 and Model 4 in Table 2 report the
regression results with the Caixin Think Tank digital economy
index as the core explanatory variables, and it can be seen that
the coefficient of digital economy is significantly negative, which
confirms the robustness of the baseline regression conclusions.

5.2.3 Endogenous processing
To avoid the endogenous problems caused by two-way causality

and some unobtrusive factors, this paper will adopt the instrumental
variable method for endogenous testing. Referring to Ivus et al.’s
study, this paper chooses the Relief Degree of Land Surface (RDLS)
as an instrumental variable for the digital economy. On the one
hand, RDLS can be used to reflect the complexity of the local terrain,
which affects the installation and commissioning of digital
infrastructure. Generally speaking, the greater the RDLS, the

TABLE 2 Robustness test.

Variables Substitution of
explanatory variables

Replacement of core
explanatory variables

2SLS regressions sys-GMM regressions

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

CEI(-1) 0.914*** 0.959***

(0.017) (0.035)

DE −0.039* −0.050** −0.004** −0.004* −0.010** −0.031** −0.005*** −0.006***

(0.022) (0.022) (0.002) (0.002) (0.005) (0.012) (0.001) (0.002)

Control variable No Yes No Yes No Yes No Yes

- cons 0.085*** −0.940** 0.066*** −0.019 0.067*** 0.052*** 0.006*** −0.003

(0.004) (0.425) (0.000) (0.052) (0.001) (0.011) (0.001) (0.004)

Time fixed effect Yes Yes Yes Yes Yes Yes

Provincial fixed effect Yes Yes Yes Yes Yes Yes

P-value of AR(1) test 0.028 0.030

P-value of AR(2) test 0.875 0.928

P-value of Sargan’s test 0.372 0.441

N 240 240 210 210 240 240 210 210

R2 0.126 0.208 0.565 0.584 0.095 0.512

Note: Corresponding standard errors are in parentheses and *, ** and *** represent significance at the 10%, 5%, and 1% levels respectively.
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greater the cost and difficulty of the construction of digital
infrastructure, and therefore RDLS meets the relevance
conditions as an instrumental variable (Huang Q. H. et al.,
2019). On the other hand, as a natural factor, RDLS is not
directly related to other economic variables, so it meets the
condition of exogenous as an instrumental variable. In addition,
considering that RDLS is a constant that does not change over time,
2SLS regressions were conducted using the product of RDLS and the
dummy variable for each year as an instrumental variable set,
following the practice of Duflo et al. and Eddie Ji et al.

Model 5 and Model 6 in Table 2 report the instrumental
variables regression results in detail, and the impact of the digital
economy on carbon intensity is significantly negative regardless of
whether control variables are added or not, indicating that the basic
conclusions are still robust after considering endogeneity issues.
Meanwhile, the Kleibergen-Paap rk LM statistic is 21.817,
corresponding to a P-value of 0, indicating that there is no
under-identification problem; the value of Cragg-Donald Wald F
is 22.8, which is larger than the empirical value of 10 for the relevant
instrumental variable proposed by Staiger et al. the empirical results
demonstrating the absence of weak instrument concerns, and
confirm the validity of the selected instrumental variables in
our analysis.

5.2.4 Dynamic panel regression
Static panel was used to examine the impact of digital economy

development on regional carbon emissions and to ensure the
robustness of the conclusions, the dynamic panel model was
further used in this paper to check the robustness of the baseline
regression, and the sys-GMMmethod was selected for the regression
considering that sys-GMM introduces level equations and reduces
the estimation error relative to dif-GMM. From the regression
results of Model 7 and Model 8 in Table 2, it can be seen that
the P-value of AR(2) test is greater than 0.1, indicating that there is
no second-order autocorrelation in the difference of the
perturbation term of the regression equations, and at the same
time, the P-value of Sargan’s test is greater than 0.1, indicating that
the instrumental variables are valid, and the regression results of the

sys-GMM once again confirm the robustness of the baseline
regression.

5.2.5 Analysis of regional emissions heterogeneity
According to the baseline regression results, the growth of the

digital economy generally helps to lower the intensity of carbon
emissions in a given region. However, is this effect consistent across
different regions? In order to do this, the following subregional
regression analysis was carried out in this article. Table 3 below
demonstrates that the digital economy only significantly reduces
carbon emissions in the central and western areas. In comparison to
eastern coastal regions, central and western China exhibit noticeably
higher levels of carbon emissions, according to a cross-regional
analysis. Compared to the eastern region, the middle and western
regions usually show worse energy usage efficiency, slower economic
development, and a greater reliance on traditional resources.
Conversely, the ongoing digital transformation, facilitated by
widespread adoption of digital technologies, enables market
participants to more accurately monitor energy market dynamics
and price fluctuations, thereby enhancing the allocative efficiency of
energy resources across regional economies. Furthermore, the
utilization of digital technology aids industrial businesses in
lowering carbon emissions, increasing energy efficiency, and
decreasing energy intensity. According to the empirical findings,
the central and western areas have a stronger latecomer’s advantage
in the process of achieving the “30·60” dual-carbon target, and the
digital economy’s impact on reducing carbon emissions has a greater
marginal utility on these regions.

To further distinguish whether there are differences in the
impact of digital economy development on carbon emissions
when regional carbon emission levels are different, and
considering that quantile regression has the advantage of
eliminating the interference of extreme values and
comprehensively portraying the conditional distributions, five
representative quantile points corresponding to regions with
different levels of carbon emissions are selected, 10%, 25%, 50%,
75% and 90%, to investigate the heterogeneous impact of the digital
economy on the regional carbon emission levels. The results of

TABLE 3 Subregional regression results.

Variables Eastern region Central and western regions

Model 1 Model 2 Model 3 Model 4

DE −0.002 −0.001 −0.021*** −0.018**

(0.002) (0.002) (0.007) (0.007)

Control variable No Yes No Yes

- cons 0.064*** 0.178*** 0.070*** −0.363

(0.001) (0.036) (0.001) (0.066)

Time fixed effect Yes Yes Yes Yes

Provincial fixed effect Yes Yes Yes Yes

N 88 88 152 152

R2 0.766 0.839 0.478 0.657

Note: Corresponding standard errors are in parentheses and *, ** and *** represent significance at the 10%, 5%, and 1% levels respectively.
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quantile regression are shown in Table 4 below, through which it can
be seen that when the quantile point is lower than 50%, the absolute
value of the regression coefficient of the digital economy affecting
carbon emissions gradually increases with the increase of the
quantile point, but it is not significant. When the quantile point
exceeds 50%, the absolute value of the regression coefficient of the
digital economy increases, and it is significant at least at the 5% level.
It can be seen that the development of the digital economy does not
have a significant inhibiting effect on regions with low carbon
emission intensity but has a significant carbon reduction effect
on regions with high carbon emission intensity, which is
consistent with the results of the previous sub-regional regression.

6 Countermeasures for carbon
emission reduction of chemical
industry enterprises

6.1 From the perspective of industrial
enterprise

6.1.1 Developing low-carbon strategies to
accelerate low-carbon transformation of
enterprises

In an environment where the contradiction between economic
development and ecological environment is becoming more and
more prominent, the implementation of the concept of low-carbon
green development can effectively alleviate the intensification of
contradictions. Low-carbon development path is based on the
ecological industry chain as a carrier, with clean production as
the main means. Power, metallurgy, petrochemicals and other
heavy industries account for a high proportion of Zhenjiang’s
industries, and accelerating the carbon emission reduction of these
enterprises is conducive to promoting the early peak of industrial
carbon emissions, to make room for the carbon emissions of other
industries. This requires industrial enterprises to gradually change
the traditional extensive production methods, formulate scientific
and reasonable low-carbon strategies, and accelerate the low-
carbon transformation of enterprises. Specific reference can be
made to the following steps: to begin with, conduct energy
efficiency and emission assessment to identify risks and
opportunities, carbon audits of key industries led by the
government to establish carbon emission inventories of
enterprises. Then, this is followed by the setting of phased
emission reduction targets and the implementation of incentives

such as environmental tax reductions for companies that meet the
targets, making them operational and linking them to business
strategies. Furthermore, carbon emission reduction program
assessment, through which ways and technologies to reduce
emissions, considering the promotion of intelligent energy
management, green hydrogen substitution and other low-carbon
technologies, and provide equipment investment subsidies. Next,
carbon emission reduction financing will be conducted to analyze
what kind of financing means can effectively support the
realization of carbon emission reduction targets. Finally,
internal and external synergies, where actions related to the
carbon reduction strategy are carried out from the periphery to
the core of the business.

6.1.2 Increase investment in research and
development to enrich the supply of low-carbon
technologies

Advanced low-carbon technologies are key to the
development of low-carbon economy. Japan, for example, has
the world’s most advanced greenhouse gas measurement
technologies, new low-carbon material manufacturing
technologies, renewable energy manufacturing technologies,
and green energy storage technologies, so its low-carbon level
is already at the forefront of the world. In 2010, the United
Nations Development Programme (UNDP) released the “China
Human Development Report In 2010, Toward a Sustainable
Future with a Low-Carbon Economy and Society,” which
stated that China needs at least 60 types of backbone
technologies to realize the goal of a low-carbon economy in
the future. Of more than 60 technologies, 42 of them are not
core technologies that China currently possesses. This means that
70% of China’s core technologies for emissions reduction need to
be “imported”. The vast majority of these key technologies are
difficult to obtain for free from foreign countries through the
compulsory licensing system, which means that China will have
to pay high licensing fees for “low carbon technologies”. Chen
et al. (2010) also suggest that after the “peak per capita carbon
emissions to total carbon emissions peak stage” and the “stable
decline in total carbon emissions stage” carbon emission
reduction technology will play an important role or even an
absolute role. And with the in-depth implementation of the low-
carbon concept, low-carbon products will also cater to the market
(Chen et al., 2010). Therefore, enterprises can not only realize
energy saving and emission reduction by strengthening the
research and development of low-carbon technologies but also

TABLE 4 Quantile regression results.

Variables q = 10% q = 25% q = 50% q = 75% q = 90%

Model 1 Model 2 Model 3 Model 4 Model 5

DE −0.003 −0.004 −0.007*** −0.009*** −0.010**

(0.005) (0.003) (0.002) (0.003) (0.004)

Control variable Yes Yes Yes Yes Yes

N 240

Note: Corresponding standard errors are in parentheses and *, ** and *** represent significance at the 10%, 5%, and 1% levels respectively.
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seize market opportunities to promote the upgrading and
transformation of enterprises.

6.1.3 Formation of innovation alliances and
implementation of enterprise collaborative
innovation

Scientific and technological innovation is one of the important
factors for industrial low-carbon development, and it can shorten
the research and development cycle by setting up technological
innovation synergy centers to strengthen cooperation on major key
technologies. Although the environment of science and technology
innovation for Zhenjiang’s economic development has been
continuously optimized, due to the mismatch of target structure,
technology route and resource integration, the collaborative
innovation ability among enterprises is weak, and there is no
high-efficiency technological innovation alliance. Low-carbon key
technologies are still mainly developed by a few large enterprises,
which has a weak driving effect on small and medium-sized
enterprises, which is not conducive to further carbon emission
reduction in industry. From the empirical results, it can also be
found that the development degree of carbon emission reduction
among industrial sectors is high, but the coordination level is
generally not high, and a phenomenon of “high development -
low coordination” appears. Enterprises should actively look for key
common technologies and points of convergence of interests,
gradually establish a talent and expert pool, set up technology
research and development cooperation alliances, and implement
collaborative innovation. Take advantage of the annual Zhenjiang
International Low Carbon Conference to build more technical
cooperation platforms. At the same time, strengthen the
industry-university-research cooperation with universities and
scientific research institutes in Nanjing, Zhenjiang and Yangzhou,
and cohesion of innovation resources from all sides through the
establishment of new research and development institutions, joint
laboratories, and other forms.

6.2 From the perspective of government

6.2.1 Phase out backward coal-consuming
production capacity and optimize
industrial structure

A reasonable industrial structure will effectively reduce the
pressure on carbon emission reduction and promote the
transformation of high energy-consuming industries to low
energy-consuming industries within the industry. At present,
Zhenjiang’s industrial sector is characterized by small-scale
enterprises and low-level products. From the type of
enterprise, high pollution, high emission and low-efficiency
enterprises still exist, small and medium-sized industrial
enterprises are relatively lagging in the development of low-
carbon recycling. From the type of industry, traditional
industries need to be upgraded and transformed, and the scale
of strategic emerging industries needs to be expanded. Against
the corresponding industrial planning and combined with the law
of industrial development, the two ways of shutting down and
upgrading are adopted to encourage enterprises to eliminate
backward production capacity and increase the supply of low-

carbon products. Gradually shut down the current heavy
chemical projects that are more polluting, and accelerate the
promotion of traditional high-energy-consuming and high-
emission industries such as chemical, paper, electric power,
metal smelting, and so on to carry out in-depth coal-saving
transformation. At the same time, the government needs to
strictly control the entry threshold of projects, and curb new
backward production capacity and excess capacity projects. For
excess capacity to make full use of market mechanisms to speed
up the dissolution. Combined with the situation of Zhenjiang city
situation and industrial foundation, focus on the development of
advanced equipment manufacturing industry represented by
“shipbuilding offshore support, automobile manufacturing and
support, aerospace three major industries”, and ultimately build
up an industrial structure with high technological content, low
consumption of resources and less environmental pollution,
reduce the pressure of industrial economic development on
the carbon peak target, and realize the decoupling of industrial
development and carbon emissions.

6.2.2 Development of productive services to
improve the quality of the industrial economy

Industrial scale expansion is the only factor that raises
industrial carbon emissions, and it is also a factor that has the
greatest impact on industrial carbon emissions. Against the
background of improving the quality and efficiency of the
economy, the traditional development mode of simple and
rough expansion of the industrial economy should be changed,
the overall scale of the industry should be appropriately controlled,
and the productive service industry should be actively developed.
The level of development of the productive service industry reflects
the supporting service capacity of regional industries, and relevant
studies also show that with the deepening of synergistic
development and integration of industrial chains, the degree of
dependence between the productive service industry and the
industrial industry will also be strengthened. Advanced
production concepts, talents and technologies will be embedded
in industrial production through productive service industry, and
the industrial sector will continue to move towards the high-end
value chain. In terms of energy utilization, it is manifested in the
improvement of energy utilization efficiency and the acceleration
of the substitution of new energy resources for traditional fossil
energy, which is ultimately reflected in the reduction of carbon
emissions. Therefore, the development of the productive service
industry can not only optimize the overall industrial structure, but
also control the rough expansion of the industrial scale, and
achieve industrial quality and efficiency and industrial carbon
emission reduction.

6.2.3 Enactment of incentive legislation to upgrade
industrial technology

The high level of industrial technology is one of the important
factors affecting carbon emissions. By upgrading the level of
industrial technology, the energy consumption and carbon
emission intensity per unit of output can be effectively reduced.
The government, as a third party, and the behavior is mandatory, the
promulgation of regulations is more effective, and government
incentives and regulations to promote the adoption of digital
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technology to achieve sustainable development of the chemical
industry can be proposed. Specifically: first, the establishment of
special funds for chemical digital transformation, 40%
transformation subsidies for enterprises applying industrial
Internet, digital twin, AI optimization control and other
technologies; second, the implementation of the “digital carbon
reduction” tax incentives for enterprises that achieve energy
efficiency improvement of more than 15% through digital means,
VAT will be given a 50% discount; third, the establishment of the
“Digital Carbon Reduction” tax incentives for enterprises that
achieve energy efficiency improvement of more than 15%
through digital means, VAT will be given a 50% discount. The
second is to implement the “digital carbon reduction” tax incentives
to enterprises that achieve energy efficiency improvement of more
than 15% through digital means, and provide them with VAT
rebates of 50%; the third is to establish a digital supervision
platform in chemical parks, and force key enterprises to connect
to real-time emission monitoring systems; the fourth is to
implement the “Digital Carbon Account” system, which links the
effectiveness of enterprises’ digital emission reduction to the
allocation of carbon quotas; and the fifth is to set up the
Chemical Industry Digital Technology Innovation Center, which
focuses on breaking through process simulation and optimization,
intelligent safety and early warning and other key technologies.

6.3 Other countermeasures

6.3.1 Strengthening digital infrastructure
The construction of the digital economy can help reduce the

intensity of carbon emissions, and in addition to bringing about
the economic effects mentioned in previous classic literature, the
digital economy can also bring environmental dividends to China
and enhance social welfare by reducing the intensity of carbon
emissions and mitigating climate change. This provides new
support for accelerating the construction of a strong network
country and a strong digital country in the new period, so
China should further strengthen the construction of digital
infrastructure and accelerate the integration of the real
economy with the digital economy, so as to provide a feasible
path for realizing the “30·60” dual-carbon goal.

6.3.2 Appropriate bias towards digital resources
Fully consider the regional heterogeneity characteristics of the

digital economy affecting carbon emission intensity, and realize the
overall environmental climate improvement. Our empirical findings
demonstrate a pronounced decarbonization effect from digital
transformation in China’s interior provinces, where each unit
increase in digital adoption yields greater marginal emission
reductions compared to eastern coastal areas. It demonstrates
that despite having higher carbon emission intensities, the central
and western regions have a stronger latecomer advantage in the
environmental dividend brought about by the digital economy
because their digital foundations are more archaic. Additionally,
if digital resources are oriented appropriately toward the central and
western regions, they can achieve “corner overtaking” on
environmental issues, which will enable them to achieve the
Pareto and improve the climate overall.

6.3.3 Emphasizing the integration of traditional
industries with the digital economy

The inhibitory effect of “industrial digitization” on carbon
emission intensity is not yet obvious, indicating that the
integration of traditional industries with digital industries still has
a great deal of room for improvement. Alongside the incorporation of
digital technologies into conventional production systems to enhance
operational efficiency, particular emphasis should be placed on
advancing the innovation and deployment of environmentally
sustainable technologies. And give full play to the leading role of
low-carbon industries, so as to promote the transformation of the
industry as a whole to intelligent and low-carbon.

6.3.4 Realizing the deep integration of the energy
and digital revolutions

Additionally, enhance the energy mix through digital
transformation. Within energy consumption systems, leverage
advanced technologies—including big data analytics, cloud
computing, and IoT—to revolutionize consumption patterns and
boost energy efficiency. By adopting data-driven energy
management frameworks, traditional industrial and service-sector
consumers can transition from passive energy users to proactive
producer-consumers. This shift reduces reliance on conventional
energy sources, refines consumption architectures, and accelerates
decarbonization initiatives.

6.4 Research shortcomings and outlook

6.4.1 Inadequate research
There are many types of industrial enterprises, and the reduction

of carbon emissions is complicated, due to the realistic conditions,
the research content of this paper is still insufficient, the following
two aspects need to be improved:

Firstly, at the data level, the number of industrial enterprises is
quite diverse, and it is difficult to select the samples; and it is difficult
to obtain the data at the enterprise level, and there is a long lag
period. Therefore, the study in this paper mainly relies on macro
data at the city level, which may be difficult to capture the
heterogeneous characteristics of enterprises at the micro level,
and it is difficult to accurately quantify the contribution of
specific digital technologies, such as MES systems, smart meters,
etc., to carbon emission reduction. Secondly, this paper may not
have fully considered the impact of the external environment, such
as the strength of inter-regional policy implementation and the
degree of marketization, on the emission reduction of industrial
enterprises. Therefore, the digital economy to promote carbon
emission reduction in industrial enterprises needs to be analyzed
in a comprehensive and systematic way to strip the external
environmental impact as much as possible.

6.4.2 Research outlook
First, at the level of data and methodology, future research

should be committed to obtaining more comprehensive and detailed
enterprise-level data, such as the level of enterprise digital
technology application, energy consumption structure, carbon
emission data, etc., in order to more accurately quantify the
contribution of digital technology to carbon emission reduction,
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and at the same time, case study analysis methods can be introduced
to verify the micro mechanism of the macro conclusions. Second, in
terms of model construction, more variables can be introduced or
more advanced measurement methods, such as spatial measurement
models, can be used to reflect more comprehensively the mechanism
of digital economy’s impact on carbon emission reduction. In
particular, external environmental factors such as the strength of
policy implementation and the degree of marketization can be
considered to be included in the model analysis to more
accurately assess the carbon emission reduction effect of the
digital economy. Finally, future research can also focus on the
differentiated impacts of the digital economy in different
industries and regions, in order to deeply analyze the
heterogeneous mechanism of the carbon emission reduction
effect of the digital economy, for example, comparing the
technological diffusion efficiency, policy response speed and
industrial structure differences between the central and western
regions and the eastern regions, and proposing regional synergistic
emission reduction strategies, as well as exploring the differentiated
impacts of the digital economy on chemical industry segments in
sub-sectors, so as to provide the basis for the precise application of
policies and to formulate more targeted carbon emission reduction
strategies. Different impacts of the digital economy are disscussesed
on chemical industry segments by industry, providing a scientific
basis for the precise application of policies and for the formulation of
more targeted carbon emission reduction policies.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

RG: Writing – review and editing, Methodology,
Writing – original draft, Data curation, Visualization. TN:
Resources, Conceptualization, Writing – review and editing,
Writing – original draft, Supervision. QZ: Funding acquisition,
Writing – original draft, Validation, Writing – review and
editing. YZ: Visualization, Writing – review and editing. BY:

Writing – review and editing, Validation. QM: Writing – review
and editing, Software.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
by the 2024 Ningbo Soft Science Research Program “Domestic and
International Practices of Attracting Social Funds to Invest in Basic
Research and Implications for the City” (2024R017), the Advanced
Humanities and Social Sciences Cultivation Project in Ningbo
University in 2022 (Pro-phase Project of Cultivation) “Research
on Synergistic Effect of Reducing Pollution and Carbon
(XPYQ22001)” and the 2023 “Social Science Empowerment
Action” special project of Zhejiang Province’s social science
planning (“Research Results of Social Science Empowerment of
High Quality Development Action in Mountain (Island)
Counties”) “Research on the Mechanism and Integration Path of
Digital Economy Empowering the High Quality Development of
Zhejiang’s Mountain Economy”.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Alves, M. R., and Moutinho, V. (2013). Decomposition analysis and Innovative
Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over
1996-2009 in Portugal. Energy 57, 775–787. doi:10.1016/j.energy.2013.05.036

An, T. L., and Yang, C. (2020). How the Internet is reshaping China’s economic
geography: micro mechanism and macro effects. Econ. Res. J. 55 (02), 4–19.

Bhattacharyya, S. C., and Matsumura, W. (2010). Changes in the GHG emission
intensity in EU-15: lessons from a decomposition analysis. Energy 35 (8), 3315–3322.
doi:10.1016/j.energy.2010.04.017

Chen, B. L., and Xu, M. P. (2018). Analysis of influence factors of carbon emissions in
China: an empirical study by STIRPAT-alasso model using panel data. Ecol. Econ. 34
(01), 20–24+48.

Chen, S. F., Liu, Y., Zou, X. P., Su, L. Y., and Ru, X. J. (2010). A theoretical and
empirical study on driving forces of carbon dioxide emissions evolution. Sci. Manag.
Res. 28 (01), 43–48. doi:10.19445/j.cnki.15-1103/g3.2010.01.011

Chen, Z. M., Wu, S. M., Ma, W. B., Liu, X. M., Cai, B. F., Liu, J. W., et al. (2018).
Driving forces of carbon dioxide emission for China’s cities: empirical analysis
based on extended STIRPAT Model. China Popul. Resour. Environ. 28 (10),
45–54.

Daly, H. E. (1996). Beyond growth: the economics of sustainable development. Beacon
Press.

Dong, B., Zhang, M., Mu, H., and Su, X. (2016). Study on decoupling analysis between
energy consumption and economic growth in Liaoning Province. Energy Policy 97,
414–420. doi:10.1016/j.enpol.2016.07.054

Guo, J. T., and Luo, P. L. (2016). Does the Internet promote China’s total factor
productivity? J. Manag. World (10), 34–49.

Guo, F., Wang, J. Y., Wang, F., Kong, T., Zhang, X., and Cheng, Z. Y. (2020). Measuring
the development of China’s digital inclusive finance in China: index compilation and
spatial characteristics. Economics 19 (4), 1401–1418. doi:10.13821/j.cnki.ceq.2020.03.12

Frontiers in Environmental Science frontiersin.org17

Gao et al. 10.3389/fenvs.2025.1615002

https://doi.org/10.1016/j.energy.2013.05.036
https://doi.org/10.1016/j.energy.2010.04.017
https://doi.org/10.19445/j.cnki.15-1103/g3.2010.01.011
https://doi.org/10.1016/j.enpol.2016.07.054
https://doi.org/10.13821/j.cnki.ceq.2020.03.12
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1615002


Han, X. F., Song, W. F., and Li, B. X. (2019). Can the Internet become a new
momentum to improve the efficiency of regional innovation in China 2019, (07),
119–136. doi:10.19581/j.cnki.ciejournal.2019.07.007

Herry, C., Mas, H., and Norbert, S. (2003). Decoupling economic growth and transport
demand case study Austria. Paris: OECD.

Hong, Y. X. (2018). Efficiency of resource allocation and high quality of supply
system. Jianghai Acad. J. (05), 84–91.

Huang, H. Q., Yu, Y. Z., and Zhang, S. L. (2019a). Internet development and
productivity growth in manufacturing industry: internal mechanism and China
experiences. China Ind. Econ. (08), 5–23. doi:10.19581/j.cnki.ciejournal.2019.08.001

Huang, Q. H., Yu, Y. Z., and Zhang, S. L. (2019b). Internet development and
manufacturing productivity improvement: internal mechanism and Chinese
experience. China’s ind. Econ. (08), 5–23. doi:10.19581/j.cnki.ciejournal.2019.08.001

Huang, R., Wang, Z., Ding, G. Q., Gong, Y. R., and Liu, C. X. (2016). Trend prediction
and analysis of influencing factors of carbon emissions from energy consumption in
Jiangsu province based on STIRPAT model. Geogr. Res. 35 (04), 781–789.

Jiang, X. T., Wang, Q., and Li, R. (2018). Investigating factors affecting carbon
emission in China and the USA: a perspective of stratified heterogeneity. J. Clean. Prod.
199, 85–92. doi:10.1016/j.jclepro.2018.07.160

Jing, W. J., and Sun, B. W. (2019). Digital economy promotes high-quality economic
development: a theoretical analysis framework. Economist (02), 66–73. doi:10.16158/j.
cnki.51-1312/f.2019.02.008

Juknys, R. (2003). Transition period in Lithuania-do wemove to sustainability. Energy
4 (26), 4–9.

Li, Z. M., Yao, Y., and Qing, D. R. (2010). Study on the decoupling relationship
between industrial development, GDP growth and carbon dioxide emissions. Statistics
and Decis. (11), 108–111.

Liu, J., Yang, Y. J., and Zhang, S. F. (2020). Research on the measurement and driving
factors of China’s digital economy. Shanghai J. Econ. (06), 81–96. doi:10.19626/j.cnki.
cn31-1163/f.2020.06.008

Lu, N., Qu, F. T., Feng, S. Y., and Shao, X. L. (2011). Trends and determining factors of
energy consumption carbon footprint—an analysis for suzhou-wuxi-changzhou region
based on STIRPAT model. J. Nat. Resour. 26 (05), 814–824.

Lu, W. B., Qiu, T. T., and Du, L. (2013). A study on influence factors of carbon
emissions under different economic growth stages in China. Econ. Res. J. 48 (04),
106–118.

Luo, M., and Li, L. Y. (2015). Business model innovation in the Internet Age: a Value
creation perspective. China Ind. Econ. (01), 95–107.

Mo, X. Y., Shi, Y., and Li, B. Q. (2025). Summary of carbon emission calculation
methods. Liaoning Chem. 54 (03), 480–483. doi:10.14029/j.cnki.issn1004-0935.2025.
03.022

Ning, Y., Zhang, B., Ding, T., and Zhang, M. (2017). Analysis of regional decoupling
relationship between energy-related CO2 emission and economic growth in China. Nat.
Hazards 87, 867–883. doi:10.1007/s11069-017-2798-2

Qian, Z. W., and Yu, J. L. (2018). The decoupling effect of economic growth and
CO2 emissions in“Six provinces and one City”of east China. Econ. Manag. 32 (01),
54–59.

Tan, Z., Li, L., Wang, J., and Wang, J. (2011). Examining the driving forces for
improving China’s CO2 emission intensity using the decomposing method. Appl.
Energy 88 (12), 4496–4504. doi:10.1016/j.apenergy.2011.05.042

Tapio, P. (2005). Towards a theory of decoupling: degrees of decoupling in the EU and
the case of road traffic in Finland between 1970 and 2001. Transp. policy 12 (2),
137–151. doi:10.1016/j.tranpol.2005.01.001

Wan, Y. Y. (2011). Preliminary study on low carbonization of industrial structure in
China. Honghua University of Science and Technology.

Wang, C., Chen, J., and Zou, J. (2005). Decomposition of energy-related
CO2 emission in China: 1957–2000. Energy 30 (1), 73–83. doi:10.1016/j.energy.2004.
04.002

Wang, Q., Wu, S. D., and Li, T. T. (2010). Relational analysis between energy
consumption and C emission of industry sector and their Tapio effect during the period
of economic transition in China. J. Fujian Normal Univ. Soc. Sci. Ed. (04), 17–22.

Wang, Z., and Yang, L. (2015). Delinking indicators on regional industry
development and carbon emissions: Beijing–Tianjin–Hebei economic band case.
Ecol. Indic. 48, 41–48. doi:10.1016/j.ecolind.2014.07.035

Wu, Y., Zhu, Q., and Zhu, B. (2018). Decoupling analysis of world economic growth
and CO2 emissions: a study comparing developed and developing countries. J. Clean.
Prod. 190, 94–103. doi:10.1016/j.jclepro.2018.04.139

Yu, Y. G., Li, Q., Bao, Y. Z., Fu, E. S., Chen, Y. T., and Ni, T. H. (2024). Research on the
measurement and influencing factors of carbon emissions in the swine industry from
the perspective of the industry chain. Sustainability 16 (5), 2199. doi:10.3390/
su16052199

Yu, Y. G., Xu, Z. Z., and Li, Y. T. (2022a). Spatial differentiation and dynamic
evolution of environmental efficiency in wheat planting in China. Sustainability 14 (9),
5241. doi:10.3390/su14095241

Yu, Y. G., Xu, Z. Z., Shen, P. Y., Zhang, L. N., and Ni, T. H. (2022b). Efficiency
evaluation and influencing factors of green innovation in Chinese resource-based cities:
based on SBM-undesirable and spatial durbin model. Int. J. Environ. Res. Public Health
19 (21), 13772. doi:10.3390/ijerph192113772

Yue, L., and Li, F. (2011). Empirical analysis of the Tapio decoupling of western
provincial economic growth and carbon dioxide with Gansu province as a case. J. Beijing
Inst. Technol. Sci. Ed. 13 (02), 19–22. doi:10.15918/j.jbitss1009-3370.2011.02.004

Zhang, L. F. (2013). Research of carbon emissions influence factors in Beijing based
on varying parameters model. Resour. Dev. and Mark. 29 (12), 1247–1250.

Zhang, X., Wan, G. H., Zhang, J. J., and He, Z. Y. (2019). Digital economy, financial
inclusion, and inclusive growth. Econ. Res. J. 54 (08), 71–86. doi:10.19602/j.
chinaeconomist.2020.05.07

Zhang, Y., Zhang, L. Q., and Bao, T. T. (2014). Research on the influential factors of
carbon emissions in the process of urbanization in Anhui Province——based on
STIRPAT Model. Resour. Environ. Yangtze Basin 23 (04), 512–517.

Zhang, Y. F., and Xu, X. C. (2024). Research on digital economy related index and
index system. Financial trade Econ. 45 (04), 5–19. doi:10.19795/j.cnki.cn11-1166/f.
20240418.001

Zhang, Y. G. (2010). Economic development pattern change impact on China’s
carbon intensity. Econ. Res. J. 45 (04), 120–133.

Zhao, T., Zhang, Z., and Liang, S. K. (2020). Digital economy, entrepreneurial activity,
and high-quality development: empirical evidence from Chinese cities. Manag. World
36, 65–76. doi:10.19744/j.cnki.11-1235/f.2020.0154

Zhou, Y. X. (2016). Research on the decoupling and coupling relationship between
transportation carbon emissions and industrial economic growth: based on Tapio
decoupling model and co-integration theory. Inq. into Econ. Issues (06), 41–48.

Frontiers in Environmental Science frontiersin.org18

Gao et al. 10.3389/fenvs.2025.1615002

https://doi.org/10.19581/j.cnki.ciejournal.2019.07.007
https://doi.org/10.19581/j.cnki.ciejournal.2019.08.001
https://doi.org/10.19581/j.cnki.ciejournal.2019.08.001
https://doi.org/10.1016/j.jclepro.2018.07.160
https://doi.org/10.16158/j.cnki.51-1312/f.2019.02.008
https://doi.org/10.16158/j.cnki.51-1312/f.2019.02.008
https://doi.org/10.19626/j.cnki.cn31-1163/f.2020.06.008
https://doi.org/10.19626/j.cnki.cn31-1163/f.2020.06.008
https://doi.org/10.14029/j.cnki.issn1004-0935.2025.03.022
https://doi.org/10.14029/j.cnki.issn1004-0935.2025.03.022
https://doi.org/10.1007/s11069-017-2798-2
https://doi.org/10.1016/j.apenergy.2011.05.042
https://doi.org/10.1016/j.tranpol.2005.01.001
https://doi.org/10.1016/j.energy.2004.04.002
https://doi.org/10.1016/j.energy.2004.04.002
https://doi.org/10.1016/j.ecolind.2014.07.035
https://doi.org/10.1016/j.jclepro.2018.04.139
https://doi.org/10.3390/su16052199
https://doi.org/10.3390/su16052199
https://doi.org/10.3390/su14095241
https://doi.org/10.3390/ijerph192113772
https://doi.org/10.15918/j.jbitss1009-3370.2011.02.004
https://doi.org/10.19602/j.chinaeconomist.2020.05.07
https://doi.org/10.19602/j.chinaeconomist.2020.05.07
https://doi.org/10.19795/j.cnki.cn11-1166/f.20240418.001
https://doi.org/10.19795/j.cnki.cn11-1166/f.20240418.001
https://doi.org/10.19744/j.cnki.11-1235/f.2020.0154
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1615002

	Internal mechanism and enhancement strategy of chemical industry carbon emission reduction promoted by the development of d ...
	1 Introduction
	1.1 Formulation of the problem
	1.2 Literature review

	2 Carbon emission theory and evaluation models
	2.1 Concepts related to carbon emissions
	2.1.2.1 Total carbon emissions
	2.1.2.2 Carbon emissions per capita
	2.1.2.3 Carbon intensity

	2.2 Relevant theoretical foundations and research hypotheses
	2.2.1 Ecological economic theory
	2.2.2 Theory of externalities


	3 Determination of econometric models
	3.1 Carbon emission measurement models
	3.1.1 Decoupling model
	3.1.1.1 OECD decoupling index
	3.1.1.2 Tapio decoupling index
	3.1.2 Carbon emission EKC curves

	3.2 Comprehensive evaluation index for digital economy development

	4 Influence mechanisms and accounting methods of carbon emissions of prefecture-level chemical industrial enterprises
	4.1 Factors affecting carbon emissions of chemical industry enterprises
	4.1.1 Industrial scale factors
	4.1.2 Industrial structure factors
	4.1.3 Energy intensity factor
	4.1.4 Energy structure factors

	4.2 Influence mechanism of carbon emissions of chemical industry enterprises
	4.2.1 External environment
	4.2.2 Industrial enterprise level

	4.3 Selection of carbon emission accounting methods for the chemical industry

	5 Empirical test of the impact of digital economy development on carbon emissions of industrial enterprises
	5.1 Baseline regression
	5.2 Robustness test
	5.2.1 Substitution of explanatory variables
	5.2.2 Replacement of core explanatory variables
	5.2.3 Endogenous processing
	5.2.4 Dynamic panel regression
	5.2.5 Analysis of regional emissions heterogeneity


	6 Countermeasures for carbon emission reduction of chemical industry enterprises
	6.1 From the perspective of industrial enterprise
	6.1.1 Developing low-carbon strategies to accelerate low-carbon transformation of enterprises
	6.1.2 Increase investment in research and development to enrich the supply of low-carbon technologies
	6.1.3 Formation of innovation alliances and implementation of enterprise collaborative innovation

	6.2 From the perspective of government
	6.2.1 Phase out backward coal-consuming production capacity and optimize industrial structure
	6.2.2 Development of productive services to improve the quality of the industrial economy
	6.2.3 Enactment of incentive legislation to upgrade industrial technology

	6.3 Other countermeasures
	6.3.1 Strengthening digital infrastructure
	6.3.2 Appropriate bias towards digital resources
	6.3.3 Emphasizing the integration of traditional industries with the digital economy
	6.3.4 Realizing the deep integration of the energy and digital revolutions

	6.4 Research shortcomings and outlook
	6.4.1 Inadequate research
	6.4.2 Research outlook


	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


