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Introduction: While permanent migration has been extensively studied as a
health-protective strategy for residents to avoid air pollution, national-level
evidence regarding the short-term movement as a potentially more cost-
effective measure remains limited.

Methods: This study used the instrumental variable approach to empirically
examine the effect and mechanism of air pollution on short-term population
movements in China by using a cross-city daily panel dataset.

Results: Our results showed that air pollution significantly promotes short-term
population movements. A 100-unit increase in the air quality index at the origin
city relative to the destination city led to an 8% rise in short-term movements.
Residents tended to relocate only after pollution events occurred. Thewillingness
to temporarily escape from air pollution was stronger under lower economic
constraints, with more recreational opportunities and more available time.
Moreover, long-term adaptation to historical air pollution weakened residents’
willingness to leave in response to local pollution events, reducing the potential
health benefits of short-term movements by 44.49%.

Discussion: This study provides valuable insights into the motivations and
mechanisms of residents’ decisions to temporarily relocate to feasibly and
flexibly reduce pollution exposure and related health risks.
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1 Introduction

Air pollution presents a considerable challenge to global sustainable development.
Approximately 99% of the world’s population resides in areas where air pollution exceeds
safe levels, with low- and middle-income countries being the most affected (World Health
Organization, 2022). China, the largest developing nation, has undergone rapid economic
growth since the 1980s, resulting in considerable environmental costs, with air pollution
being a primary concern (Huang H. et al., 2021). The World Health Organization (WHO)
introduced updated global air quality guidelines in 2021 and recommended that the annual
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average PM2.5 concentration should not exceed 5 μg/m31. However,
no city in China currently meets this standard (Sun Y. et al., 2024).
Exposure to air pollution negatively affects residents’ physical and
mental health (Graff Zivin and Neidell, 2013). For instance, the
incidence of respiratory diseases and the risk of diseases such as
diabetes, cancer, cardiovascular diseases, and dementia will be
notably increased (Tan et al., 2018; Sun M. et al., 2024; Xue
et al., 2020; Fan et al., 2023). Moreover, air pollution exerts
profound and enduring effects on residents’ life satisfaction and
emotional well-being, contributing to a higher risk of anxiety and
depression (Buoli et al., 2018; Mei et al., 2024; Wang and Liu, 2024).
The resulting damage to physical and mental health further depletes
human capital and harms social welfare. Therefore, mitigating the
negative impact of air pollution on society has become a major issue.

In addition to public policies on controlling air pollution,
individuals may adopt health-protective behaviors to mitigate the
detrimental effects. Deschênes et al. (2017) argued that individuals
weigh the adverse effects of pollution against the costs of avoiding
exposure. Consequently, when exposed to air pollution, individuals
typically engage in defensive investments to maximize their welfare.
Empirical studies support this theory by identifying various health-
protective measures such as using air purifiers, limiting outdoor
activities, and wearing protective masks. Migration is one of the
most crucial health-protective strategies (Pu et al., 2024; Mendes
et al., 2020; Ma et al., 2023). Liu et al. (2022) highlighted that
population migration can significantly reduce the health challenges
associated with PM2.5, as relocating to regions with improved air
quality can lower the mortality risks linked to pollution. Aunan and
Wang (2014) revealed that from 2000 to 2010, internal migration in
China generated health benefits of approximately $1.86 billion, or
0.24% of the gross domestic product (GDP), by reducing exposure to
air pollution.

Existing studies have largely focused on the effects of air
pollution on permanent migration, with evidence from China
indicating that air pollution frequently prompts people to
relocate their workplaces or places of residence (Chen et al.,
2022; Guo et al., 2022; Feng et al., 2021). Similar trends have
been observed in Germany (Farzanegan et al., 2023), Italy
(Germani et al., 2021), and Iran (Rüttenauer and Best, 2022).
These studies typically rely on multi-year air quality datasets that
aggregate pollution metrics on an annual basis. However, temporal
aggregation presents two critical concerns. First, the use of annual
averages introduces endogeneity issues because long-term air quality
is often highly correlated with local socioeconomic factors, such as
industrial composition and economic development trajectories,
which are also determinants of migration. Second, this approach
overlooks short-term fluctuations in air quality, which may directly
influence migration behavior. Residents can temporarily move to
cleaner areas when air quality worsens and return when conditions
improve. Such short-term movements serve as a kind of effective
strategy to reduce the health risks posed by air pollution.

Short-term movements refer to temporary relocation in which
individuals leave their usual place of residence for a limited period,
with the intention of returning in the near future (Xia, 2024). Short-
term movements differ notably from permanent migration, which
involves a long-term resettlement accompanied by changes in
household registration, employment base, or social integration. A
short-term movement may be triggered by various purposes,
including health protection, tourism, or business. Air pollution
can directly induce health-related relocation and indirectly
prompt individuals to leave polluted areas under the guise of
tourism or business travel (Lam et al., 2021). In particular,
compared to long-term migration, short-term movements
provide a more feasible manner of avoiding pollution while
reducing the associated costs (Chen et al., 2020). However, only
limited studies have examined short-term movements as a form of
health investment aimed at avoiding pollution exposure. Xia (2024)
examined changes in residential travel demand from polluted to less
polluted areas in Chengdu, China. Chen et al. (2020) analyzed the
effect of air pollution on flight passenger numbers at Beijing
International Airport, and Gao et al. (2023) investigated the
effect of seasonal variations in air quality on mapping population
movements. These studies concluded that deteriorating air quality
encourages short-term relocation among local residents. However,
these studies focused on specific transportation modes, seasons, or
geographic areas, which has led to substantial sample selection bias.
Therefore, a more comprehensive national-scale analysis is crucial to
assess the effect of air pollution on short-term movements.

This study used daily data on city-level air quality and cross-city
population movements in China to comprehensively analyze the
impact and mechanism of air pollution on short-term movements.
To make a reliable causal inference, we adopted the instrumental
variable approach to address concerns of endogeneity. Furthermore,
we revealed the role of long-term adaptation to historical pollution
in this causal link by employing a moderation model.

The contributions of this study are threefold. First, although the
impact of air pollution on permanent migration has been discussed
in prior literature, this paper is one of the initial few studies that
evaluated its impact on short-term population movements. We
contribute to this gap by demonstrating that short-term
migration is a more feasible and widespread response to air
pollution, taking place about 11 times as often as permanent
migration. This finding advances our understanding of how
residents adopt low-cost strategies to protect their health against
pollution exposure.

Second, we addressed the sample selection bias present in
existing research through substantial improvements in data.
Previous studies often relied on localized datasets, thereby
focusing on specific regions, seasons, or transportation modes
(Xia, 2024; Chen et al., 2020; Gao et al., 2023). By using Global
Positioning System-based movement data from digital map
applications, our study captured the nationwide effect of daily air
pollution on population movements.

Finally, we accounted for the pivotal role of long-term
adaptation in shaping residents’ health-protective measures.
While previous studies suggested that adaptation can reduce
health risks, we highlighted that long-term adaptation to air
pollution may actually weaken individuals’ willingness to adopt
health-protective measures, thereby increasing their exposure

1 PM2.5 refers to atmospheric particulate matter that have a diameter of less

than 2.5 μm. It is a type of air pollution that has a significant negative impact

on air quality and visibility.
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risks. On this point, our study reveals the long-lasting legacy of air
pollution and underscores the urgency to safeguard clean air and
protect public health.

The structure of this paper is as follows. Section 2 reviews the
literature and puts forward two key hypothesis. Section 3 describes
the data and methodology. Section 4 presents and analyzes the
empirical results. Section 5 examines the moderating role of long-
term adaptation and assesses health benefits. Section 6 summarizes
the key findings and outlines directions for future research.

2 Literature review and hypothesis
development

Two theoretical frameworks explain the impact of air pollution
on population movements: the health capital theory and the push-
pull theory (Sangkaew et al., 2025; Fu et al., 2024; Liu et al., 2024).
According to health capital theory, individuals engage in preventive
investments to avoid health deterioration from forthcoming
pollution. When air quality worsens, residents decide to reduce
outdoor activities and adopt protective measures to safeguard their
health. Under conditions of more severe pollution, relocation
emerges as a rational form of health investment to mitigate risks
(Liu et al., 2024). On the other hand, the push-pull theory
emphasizes the psychological aversion induced by environmental
hazards. Air pollution leads to reduced visibility, worsened traffic
conditions, and unpleasant smells (Peng and Xiao, 2018), all of
which undermine immediate well-being and contribute to negative
emotional responses such as irritability and depression (Kandola
and Hayes, 2023; Xu et al., 2017; Liu et al., 2021). These
psychological stressors push individuals to leave polluted areas.

Both permanent migration and short-term movements can help
individuals avoid exposure to air pollution (Chen et al., 2020), but
they differ significantly in terms of decision-making costs and
underlying motivations. Short-term movements in response to air
pollution provide a more feasible and flexible solution than that of
permanent migration. The Chinese household registration system
(hukou) restricts the feasibility of inter-city permanent relocation, as
residents who migrate across regions probably encounter
considerable obstacles in obtaining a local hukou in their
destination area, which limits their access to public benefits, such
as quality education for children and housing subsidies (Song, 2014;
Chen et al., 2021). In contrast, short-term movements provide more
economic advantages and lower risks than permanent relocation
(Nawrotzki and DeWaard, 2016; McLeman, 2011), as they avoid
major life decisions such as switching jobs and purchasing property.

Emotional impulses and herd behavior further contribute to
residents’ willingness to temporarily relocate in response to air
pollution. Severe pollution episodes can trigger sudden and
intense negative emotions, prompting residents to leave
distressing environments through short-term movements. Many
studies have found that people tend to move to suburban or
rural areas during holidays in search of cleaner air and
psychologically restorative environments (Poudyal et al., 2013;
Bielska et al., 2022). Furthermore, due to the widespread negative
externalities of air pollution on public health, urban residents may
exhibit bandwagon effects in adopting health-protective behaviors.
Utami and Baroto (2025) presented evidence of herd behavior in the

purchase of air purifiers. Similarly, Qin and Zhu (2018) found that
air pollution increases the frequency of online searches for terms like
“run away”, which reflects growing online discussion around
temporary relocation and may further stimulate short-term
movement behavior. Based on these analyses, we proposed
Hypothesis 1.

Hypothesis 1: Air pollution encourages residents to make short-
term moves.

Adaptation refers to the process of making adjustments to existing
systems in response to current and anticipated environmental
impacts, and it plays a key role in residents’ responsive coping
mechanisms to environmental shocks (IPCC, 2022). Within this
framework, active adaptation denotes intentional behavioral
responses to mitigate exposure to air pollution, such as wearing
masks or using air purifiers. In contrast, passive adaptation
involves involuntary or unconscious adjustments to environmental
changes. For instance, prolonged exposure to polluted air may lead
individuals to underestimate associated health risks, resulting in
decreased engagement in protective behaviors and, consequently,
diminished health benefits. This phenomenon, known as risk
perception attenuation in behavioral economics, suggests that the
perceived risks of environmental hazards diminish as pollution
persists (Slovic, 1987). In other words, past experiences with air
pollution continue to influence the current mobility patterns of
residents. Even after air quality improves, residents may still retain
previous perceptions of air pollution (Feng et al., 2021; Wang et al.,
2021). Adapting to historical pollution can reduce residents’
awareness of environmental hazards, thereby affecting the adoption
of health-protective measures. Hackney et al. (1976) found that
residents who experienced unusually high levels of O3 and other
oxidants exhibited fewer clinical or physiological responses to O3 than
newcomers. Thus, prolonged exposure to pollution can reduce
residents’ willingness to relocate in response to short-term
pollution and weaken the potential health benefits of such
movements. Therefore, we proposed Hypothesis 2.

Hypothesis 2: Long-term adaptation to air pollution negatively
moderates the impact of air pollution on residents’ short-
term movements.

3 Research design and methods

3.1 Research framework

This study employed a systematic framework comprising
regression analysis, case studies, scenario analysis, and
environmental benefit assessments to examine how individuals
respond to air pollution through short-term movements as a
strategy for protecting their health, as well as the moderating role
of long-term adaptation (Figure 1).

3.2 Data sources

The dataset used in this study was integrated from various
sources. Daily inter-city population movement data were
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provided by Baidu Maps, one of China’s largest map service
applications, with approximately 540 million active users2. Baidu
Maps leverages Global Positioning System (GPS) technology to
monitor users’ location data and determine whether they have
traveled across cities, thereby enabling the calculation of daily
population movements between any pair of cities. These
movements are generally considered to be short-term and
real-time in nature, and such data have been widely used to
analyze population responses to temporary large-scale events,
such as movements induced by the Spring Festival in China
(Zhang and Gao, 2024). However, This dataset has rarely been
linked with environmental data in previous research. In this
study, we used this dataset to construct an indicator of short-
term population movements, so as to examine relocation
responses to air pollution. Because the data were not directly
available, we obtained them from the Harvard Database (https://
dataverse.harvard.edu) and Macrodatas (https://www.
macrodatas.cn). Air quality data were sourced from the China
Air Quality Monitoring and Analysis Platform (https://www.
aqistudy.cn/?ref=www.940i.cn), which provides city-level daily
concentrations of six major pollutants: PM2.5, PM10, SO2, NO2,
O3, and CO, along with the air quality index (AQI), a composite
measure reflecting overall pollution conditions. The
temperatures of different atmospheric layers were obtained
from the Modern-Era Retrospective Analysis for Research and
Applications version 2 (MERRA-2), a satellite-based
meteorological dataset released by the National Aeronautics
and Space Administration. The city-level economic and social

characteristics were obtained from the China City Statistical
Yearbook, and geographic data were extracted from the
National Platform for Common GeoSpatial Information Services.

After data collection, the following procedures were applied for
data cleaning: (1) Only large-scale movement samples were
retained, specifically those in which the number of citizens
traveling to a destination exceeded 1% of the total daily outflow
from the origin city for at least two consecutive days. This
approach preserves useful information on short-term
movements while reducing computational burden. (2) Only
observations with no missing or abnormal values for key
variables were kept. (3) Movement data during China’s Spring
Festival were excluded, as this period is characterized by an
exceptional surge in population mobility owing to the Chinese
tradition of returning to hometowns for family reunions. For
example, on the last day of China’s Spring Festival holiday in
2022, the total number of travelers reached its highest level in
188 cities, accounting for more than half of China’s cities.
Following these procedures, we obtained a daily panel dataset
of origin-destination pairs across 292 cities from 2021 to 2022,
totaling 891,423 observations.

3.3 Descriptions of variables

3.3.1 Short-term population movements
The dependent variable is the logarithm of daily population

movements from the origin to destination cities. Xia (2024)
identified population flows in Chengdu, China by using
confidential mobile phone data, which essentially rely on GPS
signals to determine whether individuals have made inter-city
moves and to calculate the daily number of movements.
Similarly, we used GPS-based data from Baidu Maps to capture

FIGURE 1
Research framework.

2 The number of active users on Baidu Maps reached 539.79 million in

December 2023. Data source: QuestMobile.
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short-term population movements. This dataset allows us to observe
daily movements between any pair of cities across China, thereby
reducing the risk of sample selection bias. Because Baidu Maps
provides a movement-based index rather than actual values, we used
a linear conversion factor of 3.24 × 10-5 to convert the index into
numbers of actual movements (Wang and Yan, 2021). A logarithmic
transformation was then applied to reduce the skewness.

3.3.2 Air pollution
The AQI is the official indicator to measure and monitor air

pollution in China. The AQI ranges from 0 to 500, with higher
values signifying worse air quality. Following Chen et al. (2020), the
key explanatory variable is the difference in the AQI between the
destination and origin cities.

3.3.3 Instrumental variable
Similar to previous studies (Chen et al., 2022), we used

temperature inversion as the instrumental variable to address
potential endogeneity issues. Temperature inversion is a short-
term natural phenomenon driven solely by meteorological
conditions. It often occurs within a thin atmospheric layer, where
the temperature increases with altitude rather than decreasing
normally (Trinh et al., 2019). Temperature inversion hinders
mass and energy exchange between atmospheric layers,
preventing pollutants from dispersing upward (Li et al., 2012).
This traps pollutants near the ground and worsens air quality.
Because temperature inversion is closely linked to air pollution
while remaining exogenous to other determinants of population
movements, it meets the criteria for a valid instrumental variable in
this context.

Following Chen et al. (2020), we first calculated the average
temperature for the corresponding grid area of each city in each
layer. We then compared the average temperatures in the first
atmospheric layer (110 m height) and the second atmospheric
layer (320 m height). If the temperature at a lower altitude was
lower than that at a higher altitude, the inversion was recorded. As
outlined by Fu et al. (2021), we assigned a value of 1 to the inversion
variable if an inversion occurred on a given day and 0 otherwise. The
difference in inversion values between the destination and origin
cities was used as the instrumental variable.

3.3.4 Moderating variable
Similar with Lai et al. (2022), the moderating variable is long-

term air pollution, which was measured by two indicators: the
average AQI values and the proportion of polluted days. A day
was considered polluted if the AQI exceeded 100, which
corresponded to a “slightly polluted” level. Considering that AQI
has been widely adopted by Chinese authorities since 2014, we
calculated these two indicators based on the average values from
2014 to 2020.

3.3.5 Control variable
In the classical gravity model, population movements are driven

primarily by economic development, geographical distance, and
population size. Consistent with this framework, control variables
include GDP and population of both the origin and destination
cities, along with the geographical distance between them

(Rosselló Nadal and Santana Gallego, 2022). Table 1 presents
summary statistics of main variables.

3.4 Empirical strategy

To assess the impact of air pollution on short-term population
movements, we formulated the following equation based on a
gravity model from the literature (Fracasso, 2014; Xia, 2024):

Movementijt � β0 + β1 AQIit − AQIjt( ) +∑ βkControlsijt + ui + ]j

+ wt + εijt

(1)
In Equation 1, i and j represent the origin and destination

city, respectively. Movementijt represents population outflows
from city i to city j on date t. AQIit and AQIjt are the air
quality indices of cities i and j on date t, respectively.
Controlsijt is the vector of control variables. ui, vj, and wt

represent the origin, destination, and date fixed effects,
respectively. εijt is the error term. The coefficient β1 captures
the impact of AQI differences on population movements.

Baseline estimations encounter endogeneity concerns, such as
bidirectional causality and omitted variable bias. To address
endogeneity issues, we employed temperature inversion as the
instrumental variable and constructed a two-stage least squares
(2SLS) model as follows:

AQIit − AQIjt( ) � α0 + α1 Inversionit − Inversionjt( )
+∑ αkControlsijt + ui + ]j + wt + εijt

(2)

Movementijt � θ0 + θ1 ̂AQIit − AQIjt( ) +∑ θkControlsijt + ui + ]j

+ wt + εijt

(3)
where Inversionit - Inversionjt represents the difference in
temperature inversion between cities i and j. ̂AQIit − AQIjt is the
fitted value of AQI differences in Equations 2, 3. All the other
specifications are consistent with Equation 1.

To verify Hypothesis 2, we examined the role of adaptation to long-
term air pollution by developing the following moderation model:

Movementijt � μ0 + μ1 AQIit − AQIjt( )

+ μ2 AQIit − AQIjt( ) × AQI longi

+∑ μkControlsijt + ui + ]j + wt + εijt (4)
Movementijt � λ0 + λ1 AQIit − AQIjt( )

+ λ2 AQIit − AQIjt( ) × Pollution ratioi

+∑ λkControlsijt + ui + ]j + wt + εijt (5)

where AQI_longi and Pollution_ratioi represent the historical
average AQI values and the proportion of polluted days,
respectively, capturing the long-term air pollution characteristics
in city i. We estimated Equations 4, 5, using the instrumental
variable approach. As adaptation to long-term pollution reduces
residents’ willingness to escape from pollution, we expected negative
values of coefficients μ2 and λ2.
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4 Results and discussions

4.1 Baseline estimations

Before performing regression analysis, we assessed the
multicollinearity among the explanatory variables. The maximum
variance inflation factor was 2.65, well below the conventional
threshold of 10. Table 2 presents the results of Equation 1. All
regressions control for city and date fixed effects, and regression in
column (2) further incorporates control variables. The preferred
estimate in column (2) reveals that the AQI differences between the
origin and destination cities significantly increased daily population

movements at the 1% level, indicating a tendency for people to
relocate from areas with elevated air pollution. This provides
preliminary support for Hypothesis 1.

4.2 Instrumental variable estimations

Baseline estimates may be subject to endogeneity. Large-scale
population movements can lead to a reduction in fuel and electricity
consumption in the origin city, both of which are major sources of
air pollution (Perera, 2017). Moreover, short-term individual
movements are influenced by various hard-to-quantify factors

TABLE 1 Variable descriptions and summary statistics.

Variables Descriptions Obs Mean Sth. Dev. Min Max

Movement Logarithm of the population movements from the origin to the destination city 891,423 10.031 0.960 5.333 14.058

AQI_O Air quality index of the origin city 891,423 68.277 40.863 10 500

AQI_D Air quality index of the destination city 891,423 69.889 41.395 10 500

AQI_Dif Difference in air quality indices between the origin and destination city 891,423 −1.612 31.905 −471 461

Inversion_O Presence of inversion phenomenon in the origin city 891,423 0.527 0.499 0 1

Inversion_D Presence of inversion phenomenon in the destination city 891,423 0.512 0.500 0 1

Inversion_Dif Difference in inversion phenomenon between the origin and destination city 891,423 0.016 0.520 −1 1

AQI_long Average values of the air quality index in the origin city 891,423 80.258 19.257 37.926 129.553

Pollution_ratio Historical proportion of polluted days in the origin city 891,423 0.225 0.148 0 0.571

Distance Logarithm of the distance between the origin and destination city 891,423 5.318 0.640 3.435 8.299

GDP_O Logarithm of the GDP of the origin city 891,423 17.100 0.966 14.548 19.917

GDP_D Logarithm of the GDP of the destination city 891,423 17.559 1.149 14.548 19.917

Pop_O Logarithm of the population of the origin city 891,423 6.017 0.699 3.045 8.136

Pop_D Logarithm of the population of the destination city 891,423 6.214 0.699 3.045 8.136

TABLE 2 Baseline regression results.

Variables (1) (2)

Movement Movement

AQI_Dif 0.0001*** 0.0001***

(0.0000) (0.0000)

Control N Y

Origin FE Y Y

Destination FE Y Y

Date FE Y Y

Number of Origin 292 292

Number of Destination 292 292

R-squared 0.8938 0.8940

Observations 891,423 891,423

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects.
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such as emergencies, vacation activities, and work commitments,
leading to omitted variable bias in city-level analyses.

To address these concerns, we implemented the 2SLS models to
avoid estimation bias. As shown in columns (1) and (2) of Table 3,
the temperature inversion significantly contributed to air pollution
at the 1% level. Temperature inversion suppresses the vertical
atmospheric circulation, thereby preventing pollutants and water
vapor from dispersing upward. Furthermore, gaseous pollutants
may dissolve in water and undergo oxidation, generating
secondary pollutants that aggravate air pollution (Zhong et al.,
2017; Wu et al., 2018; Huang Q. et al., 2021). The
Kleibergen–Paap rk Wald F statistic was 693.18, indicating that
temperature inversion serves as an ideal predictor of air quality, thus
confirming the eligibility of the instrumental variable.

Using the instrumental variable approach, air pollution
positively affected population movements with a larger coefficient
than that of the baseline estimation. As shown in columns (3) and
(4) of Table 3, a 100-unit increase in the AQI in the city of origin
relative to the destination led to an 8% increase in population
movements. This figure is more reliable because the instrumental
variable mitigates endogeneity concerns.

4.3 Lead–lag effects estimations

We further explored the motivations behind residents’ short-
term movement decisions. Rather than responding solely to current
air pollution events, residents may proactively avoid future air
pollution or take measures to recover from previous pollution.
Similar to Chen et al. (2020), we separately replaced AQI_Dif
with lead or lag terms in Equations 2, 3, to analyze its dynamic
effects on population movements.

No leading effect of air pollution was observed on population
movements; however, a short-term lag effect was identified
(Figure 2). The results showed that air pollution had no
significant impact on short-term movements occurring one or
2 days in advance. One possible explanation is that owing to the
uncertainty of weather forecasts and additional economic costs,
initiating measures against air pollution earlier is a less cost-effective
strategy Chen et al. (2020). Furthermore, the AQI differences
between the origin and destination cities significantly influenced
population movements on the current day and up to 2 days
afterward. This short-term lag effect was probably due to
information delays and the persistence of air pollution. After
perceiving the adverse impacts of pollution on health, residents

TABLE 3 Two-stage least squares estimation results.

Variables First-stage estimation Second-stage estimation

(1) (2) (3) (4)

AQI_Dif AQI_Dif Movement Movement

Inversion_Dif 2.5599*** 2.5687***

(0.0975) (0.0976)

AQI_Dif 0.0008** 0.0008**

(0.0004) (0.0004)

Control N Y N Y

Origin FE Y Y Y Y

Destination FE Y Y Y Y

Date FE Y Y Y Y

Number of origin 292 292 292 292

Number of destination 292 292 292 292

KP Wald F statistics 690.0173 693.1803

Observations 891,423 891,423 891,423 891,423

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects; KPWald F statistics, Kleibergen–Paap rkWald F

statistics.

FIGURE 2
Lead–lag effects.
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are eager to relocate to areas with better air quality for recovery
(Hemmati et al., 2020; Bielska et al., 2022). However, owing to the
urgency of recovery, from the third day onward, the effect of air
pollution gradually diminished to zero (Cui et al., 2019; Gao
et al., 2023).

4.4 Robustness checks

4.4.1 Controlling weather conditions
In the baseline regression, we primarily controlled for

economic and social factors to maintain consistency with the
standard form of the gravity model, which may have overlooked
the influence of weather conditions. Weather makes a difference
in two key ways. On one hand, it is closely linked to air quality.
For example, extreme ozone and PM2.5 events are more common
in winter and summer (Zhang et al., 2017; Liu et al., 2023). On the
other hand, weather directly affects mobility decisions. Extreme
weather events prompt individuals to cancel trips or alter their
destinations (Cools and Creemers, 2013; Singhal et al., 2014).
Therefore, we incorporated the daily weather conditions of both
the origin and destination cities as control variables, including
daily temperature, wind gusts, dew point, and visibility, thereby
controlling for the effects of temperature, wind, humidity, and
overall comfort. Columns (1)–(3) of Table 4 present the
regression results of both the baseline and 2SLS estimations
after adding weather control variables. In all models, the
coefficients of AQI_Dif and Inversion_Dif remained
significantly positive. This consistency suggests that omitted
variable bias is unlikely to have a notable effect (Altonji
et al., 2005).

4.4.2 Controlling high-dimensional fixed effects
Although many fixed effects are considered the baseline

regression, cities may experience significant variations across
different periods. Consequently, we introduced high-dimensional
fixed-effects regression models to further control for unobserved
dynamic factors in population movements (Wee et al., 2018; Zhang
et al., 2024). Columns (1) and (2) of Table 5 present the estimation
results of the 2SLS models after incorporating the origin/destination
year and origin/destination month fixed effects. The coefficient of
AQI_Dif remained significantly positive, thereby demonstrating the
robustness of Hypothesis 1.

4.4.3 Replacing measurement of air quality indices
Next, we conducted robustness checks by replacing

measurement of the key explanatory variables. We classified
continuous AQI values into six levels based on the official
classification system (Table 6). Accordingly, we used the
differences in AQI levels between the origin and destination
cities as the key explanatory variable and revised Equations 1–3.

Columns (1) and (2) of Table 7 present the baseline and 2SLS
estimation results, respectively. As shown in the preferred
estimations in column (2), when the air quality of the original
city was one level worse than that of the destination city, population
movements increased by 3.33%. Considering that the AQI is a
composite index comprising six pollutants, we also examined the
effect of each pollutant on population movements under 2SLS
estimations. Increases in air pollutant concentrations led to
significant short-term population movements (Figure 3). Notably,
the effects of atmospheric ozone pollution on movements were the
smallest of the six pollutants. This finding, in line with Liu and Yu
(2020), likely indicates the relatively lower health damage caused by

TABLE 4 Results of adding weather control variables.

Variables (1) (2) (3)

Movement AQI_Dif Movement

AQI_Dif 0.0001*** 0.0007**

(0.0000) (0.0004)

Inversion_Dif 2.5856***

(0.0932)

Control Y Y Y

Weather controls Y Y Y

Origin FE Y Y Y

Destination FE Y Y Y

Date FE Y Y Y

Number of origin 292 292 292

Number of destination 292 292 292

R-squared/KP Wald F statistics 0.8979 769.6984

Observations 878,680 878,680 878,680

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects; KPWald F statistics, Kleibergen–Paap rkWald F

statistics.
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short-term ozone exposure compared with that of other pollutants
(Guan et al., 2022).

4.4.4 Conducting alternative research samples
We transformed the data structure into a city-daily panel,

including the daily AQI and population outflow of each
prefecture-level city to assess whether regional air quality
deterioration exacerbated short-term population outflows. First,
we conducted estimations for each province based on aggregated
city-level data. Twenty-four of the 31 provinces exhibited a positive
relationship between worsening air quality and increasing

TABLE 5 Results of controlling high-dimensional fixed effects.

Variables (1) (2)

Movement Movement

AQI_Dif 0.0009** 0.0009***

(0.0004) (0.0002)

Control Y Y

Origin FE Y Y

Destination FE Y Y

Date FE Y Y

Origin/Destination × Year FE Y Y

Origin/Destination × Month FE N Y

Number of origin 292 292

Number of destination 292 292

KP Wald F statistics 700.8326 1014.1363

Observations 891,422 891,422

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects; KPWald F statistics, Kleibergen–Paap rkWald F

statistics.

TABLE 6 Range of air quality index and corresponding levels.

Range of air quality index Level of air quality index

0–50 Good

51–100 Moderate

101–150 Slightly polluted

151–200 Moderately polluted

201–300 Heavily polluted

>300 Severely polluted

TABLE 7 Results of replacing measurement of air quality indices.

Variables (1) (2)

Movement Movement

AQIlevel_Dif 0.0040*** 0.0333**

(0.0009) (0.0164)

Control Y Y

Origin FE Y Y

Destination FE Y Y

Date FE Y Y

Number of origin 292 292

Number of destination 292 292

R-squared/KP Wald F statistics 0.8938 846.9330

Observations 886,077 886,077

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects; KPWald F statistics, Kleibergen–Paap rkWald F

statistics.
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population outflow, with only a few regions, such as Hainan,
Xinjiang, and Xizang, deviating from this pattern (Figure 4A).
Hainan, an island province, has limited transportation options
available for local residents to relocate. High-cost maritime and
air transport reduces residents’willingness to leave during periods of
air pollution. In Xinjiang and Xizang, the vast areas and sparse
transportation networks impose greater time and economic costs for
moving, reducing the possibility of residents taking leave in response
to air pollution. In addition, we conducted separate estimations for
each city and plotted the distribution of coefficients based on the
regression results (Figure 4B). A similar finding was confirmed, with
air quality deterioration leading to population outflow in most cities.
On average, a 100-unit AQI increase was associated with a 2%–5%
increase in population outflow.

4.5 Heterogeneity analysis

To investigate the heterogeneity in pollution-induced movement
responses, we further stratified our analytical sample based on three
dimensions: costs, purposes, and timing of movements.

First, inter-city movements require economic support, implying
that regional economic development influences the ability of
residents to travel in response to air pollution. We divided our
sample based on the median GDP per capita of the original city and
then performed Equations 2, 3, for each subsample. As shown in
Figure 5 and columns (1) and (2) of Table 8, in origin cities with high
economic development, for every 100-unit increase in AQI
differences, population movements increased by 11%, with the
coefficient statistically significant at the 5% level. However, the
corresponding figure was only 6% in cities with low economic
development and was not significant. Residents in wealthier areas
are more aware of air pollution risks and tend to have greater
financial capacity for traveling, making them more likely to move
away as pollution levels increase. By contrast, people in less affluent
areas have a lower willingness and ability to pay for clean air, leading
to weaker responses (Feng et al., 2021).

Second, because short-termmovements are primarily influenced
by the desire to escape from air pollution and recover from prior

exposure, residents may be more inclined to visit tourist cities to
acquire recreational opportunities. 5A-grade scenic spots represent a
city’s top tourism resource, attracting 1.21 billion visitors annually,
far exceeding lower-tier scenic spots3. Therefore, we used the
number of 5A-grade scenic spots to measure a city’s tourism
resources, divided the samples based on the median number of
such spots in the destination cities, and performed grouped
regressions. As shown in Figure 5 and columns (3) and (4) of
Table 8, a 100-unit increase in AQI differences significantly led to an
11% increase in short-term movements to destinations with
abundant tourism resources but only a 2% increase with poor
tourism resources. Cities with abundant tourism resources are
more likely to fulfill residents’ recreational needs, making them
the top choice for destination selection (Gao et al., 2023).

Finally, the timing of air pollution events is also a notable factor.
According to China’s 2020 Census, approximately 63.35% of the
country’s population was of working age (15–59 years) (National
Bureau of Statistics of China, 2021). Individuals who are physically
more capable of traveling must consider work time-related
constraints when making movement decisions. Therefore, their
willingness to leave during air pollution depends on whether they
are on a weekday or weekend.We reran Equations 2, 3, separately on
weekdays and weekends. Notably, Friday is considered part of the
weekend primarily because it is conceptually linked to post-work
leisure (Da Silva et al., 2024), and traveling on Friday allows for
extended trips. As shown in Figure 5 and columns (5) and (6) of
Table 8, on weekends, a 100-unit increase in AQI differences
significantly led to a 12% increase in population movements at
the 1% level, whereas on weekdays, the increase was only 2% and was
insignificant. Employment creates a “retention effect”, trapping
populations in polluted locations and limiting their mobility, as
evidenced by Chen et al. (2020) and Gao et al. (2023).

5 Further discussion

5.1 Moderating roles of long-term
adaptation

According to Hypothesis 2, the sensitivity of resident
movements to air pollution is moderated by prolonged exposure
to air pollution. To test this hypothesis, we employed a 2SLS model
to estimate Equation 4. Columns (1) and (2) of Table 9 present the
results. The coefficient of AQI_Dif remained significantly positive,
thus supporting H1. The interaction terms betweenAQI_Dif and the
two moderating variables (AQI_long and Pollution_ratio) were both
significantly negative at the 1% level. Specifically, with a 100-unit
increase in the short-term AQI, if residents experienced a 1-unit
increase in the long-term historical AQI, their population
movements decreased by 1%. Similarly, under the same 100-unit
pollution shock, if residents experienced an additional day of
pollution per year (0.27% increase in the pollution ratio), their
population movements decreased by 0.16%.

FIGURE 3
Impact of air pollutant concentrations on short-term
population movements.

3 Data source: Investment Banking Research Center of the Industrial and

Commercial Bank of China.

Frontiers in Environmental Science frontiersin.org10

Luo et al. 10.3389/fenvs.2025.1620499

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1620499


These findings indicate that prolonged exposure to pollution
promotes adaptation, decreasing the willingness of short-term
movements in response to pollution events, thereby favoring
Hypothesis 2. To further ensure robustness, we replaced the key
explanatory variable and moderating variables with the daily PM2.5

concentration differences between the origin and destination cities,
as well as long-term PM2.5. All coefficients remained consistent with
expectations (column 3 of Table 9).

5.2 Estimations of savings by values of a
statistical life

Another rationale for incorporating PM2.5 in analysis is that its
concentrations are strongly associated with human health, enabling
us to assess health impacts. Using severe pollution events in 2024 as
a case study, we conducted a scenario analysis to quantify the effects
of short-term movements and long-term adaptation. The baseline
scenario captured the combined effects of both, whereas the
counterfactual scenario assumed no long-term adaptations. We
evaluated the interaction between short-term movements and
long-term adaptation in response to air pollution by comparing
the values of a statistical life (VSL) savings in these two scenarios.

In China, severe pollution is defined as an AQI above 200, which
is equivalent to a PM2.5 concentration over 150.5 μg/m34. To
simulate the effect of severe pollution, we first defined a
representative city with a PM2.5 concentration close to the
national average of 29.3 μg/m3 in 20245 and daily movements of
27,493 people based on our sample’s average values. We then

imposed a severe pollution shock to this city, increasing the
PM2.5 concentration from 29.3 to 150.5 μg/m3, that is, a
deterioration of 121.2 μg/m3. Column (3) of Table 7 shows that a
1 μg/m3 increase in PM2.5 concentration led to a 0.18% increase in
short-term movements. Consequently, short-term movements were
expected to increase by 21.82% or 5,998 additional movements,
owing to daily severe pollution events. Ma et al. (2024) noted that for
every 10 μg/m3 increase in short-term PM2.5 concentration, the all-
cause daily mortality rate per 100,000 individuals increases by 0.01.
Therefore, relocating to cities with lower concentrations (29.3 μg/
m3) rather than remaining in a highly polluted city (150.5 μg/m3)
can potentially prevent 0.01 deaths per day per city. We then used
the VSL estimate of 4.7 million Chinese Yuan (CNY) per death to
convert the prevented deaths into economic value (Wang et al.,
2024), resulting in VSL savings of 34,166 CNY per day per city.
Considering that approximately 0.9% of the days in 2024 were
expected to be affected by severe pollution5, annual VSL savings
amounted to 38.05 million CNY in China.

In the counterfactual scenario, we attempted to exclude the
effects of long-term adaptation, meaning that the long-term air
quality remained fresh, with the historical average PM2.5

concentration at 29.3 μg/m3. The marginal effect was calculated
as 0.62%–0.01% × 29.3 = 0.33% (column 3 of Table 9), which was
higher than 0.19% in the baseline scenario. Residents with no
previous exposure to pollution were more sensitive to severe
pollution. Severe pollution events resulted in an increase of
10,851 movements. The total VSL savings were 68.55 million
CNY under this scenario.

These results are based on two important assumptions. First,
owing to the limitations of the reduced-form estimation, we did not
account for adaptation measures other than short-term movements.
Although some measures, such as wearing masks, have been proven
to have limited impact (Zhang and Mu, 2018), this remains a risky
assumption. Second, we assumed that only the origin city was

FIGURE 4
Impact of the air quality index on short-term population outflows. (A) Estimation results using provincial panel data; (B) Estimation results using city-
level panel data. If the Kleibergen-Paap rk Wald F statistic exceeds 10, we employed the 2SLS estimations; otherwise, ordinary least squares estimations.

4 Data source: The World Air Quality Index Project.

5 Data source: Ministry of Ecology and Environment.
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polluted while all destination cities remained clean, which is
consistent with existing literature (Gao et al., 2023). We satisfied
this assumption by analyzing only severe pollution, as such events
rarely occur. Although overlooking other adaptation measures may
lead to overestimation, we believe that the above findings primarily
underestimated VSL savings for the following four reasons. (1) A
minimum impact of severe pollution was adopted in calculations. If
more severe pollution events occurred (e.g., PM2.5 reaching 500 μg/
m3), the results would increase by up to 15 times higher than current
estimates. (2) Only all-cause mortality was considered, which

underestimated the effects of PM2.5 on chronic, long-term, and
mental health conditions (Sun et al., 2023; Tsai et al., 2024; Zhang
et al., 2022). (3) Only the immediate health effects of air pollution on
same-day population movements were accounted for; however,
subsequent movements could also help avoid health losses. (4)
Severe pollution events, rather than overall pollution events, were
estimated. Ma et al. (2024) highlighted that health losses become
apparent when PM2.5 exceeds 10 μg/m

3; however, we only estimated
the effects of extreme pollution events, which represent the most
notable part in reality.

These extended scenario analyses were useful in identifying the
effects of both short-term movements and long-term adaptation.
With and without considering long-term adaptation, a severe air
pollution event led to an increase of 5,998 and 10,851 people in
movement, accounting for 22% and 39% of the daily population
outflows, respectively. This underscores that air pollution is a major
driver of short-term movements. To contextualize our findings, we
compared our estimates with results from the literature on
permanent migration. Guo et al. (2022) found that for every
1 μg/m3 increase in long-term (15 years) PM2.5 concentration,
the probability of individual migration increased by 2.51%. This
implies an additional 113,100 long-term migrants in an average-
sized city with a population of 4.5 million. In contrast, the number of
short-term movements totals 1.28 million over a period of 15 years,
which is 11.32 times that of permanent migration. This finding
highlights the fact that short-term movements are more feasible and
cost-effective strategies than permanent migration against air
pollution. In addition, long-term exposure to air pollution
reduces the VSL benefits of short-term movements by 44.49%. In
historically polluted areas, residents have gradually become

FIGURE 5
Heterogeneity analysis on costs, purposes, and timing
of movements.

TABLE 8 Heterogeneity analysis.

Variables Low GDP of
the origin city

High GDP of
the origin city

Poor tourism
resources of

the
destination

city

Rich tourism
resources of

the
destination

city

Weekdays Weekends

(1) (2) (3) (4) (5) (6)

Movement Movement Movement Movement Movement Movement

AQI_Dif 0.0006 0.0011** 0.0002 0.0011** 0.0002 0.0012**

(0.0005) (0.0005) (0.0006) (0.0004) (0.0004) (0.0005)

Control Y Y Y Y Y Y

Origin FE Y Y Y Y Y Y

Destination FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Number of origin 156 151 292 292 292 292

Number of
destination

292 292 229 63 292 292

KPWald F statistics 297.9374 394.2282 425.0804 395.0036 529.9899 417.5754

Observations 446,659 444,764 570,520 320,903 478,947 412,476

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects; KPWald F statistics, Kleibergen–Paap rkWald F

statistics.
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accustomed to air pollution and tend to overlook its associated
health risks. Fan (2024) demonstrated that prolonged exposure to air
pollution results in individuals notably reducing physical exercise
rather than compensating for it afterward or transitioning to indoor
activities. Similarly, our study reveals that long-term adaptation to
air pollution imposes notable health risks, an issue that is
particularly critical in low-income countries where residents may
simultaneously suffer from long-term pollution exposure and lack
access to effective protective measures.

6 Conclusion

The impact of air pollution on permanent migration has been
extensively studied (Guo et al., 2022; Rüttenauer and Best, 2022;
Farzanegan et al., 2023); however, nationwide evidence on its effect
on short-term movements in China remains limited. This research
discussed the impact of air pollution on short-term population
movements using cross-city daily panel dataset and exhibited the
underlying mechanisms. To address potential endogeneity concerns,
we employed temperature inversion as an instrumental variable.
Our findings indicated that a 100-unit increase in AQI in the origin
city relative to the destination leads to an 8% increase in short-term
movements. This suggests that residents consider engaging in short-
term movements a viable coping strategy for air pollution,

positioning it as a crucial form of health investment (Lu et al.,
2022). Moreover, according to our study, short-term movements
occurred 11.32 times more frequently than long-term migration,
likely owing to their feasibility and cost-effectiveness as a health-
protective response to air pollution.

A dynamic analysis revealed that air pollution does not have a
leading effect on short-term movements but exhibits a lag effect.
This indicates that residents do not relocate proactively based on
pollution forecasts. However, considering the persistence of air
pollution and the necessity to recover from historical pollution
events, individuals tend to relocate to cleaner areas within 3 days
of air pollution strikes. Additionally, the impact of air pollution on
short-term movements is more pronounced in origin cities with
higher economic development, in destination cities with more high-
quality scenic resources, and on weekends. These findings highlight
the critical roles of economic constraints, recreational opportunities,
and available leisure time in influencing travel decisions in response
to air pollution.

Furthermore, we incorporated long-term adaptation to air
pollution into the discussion of pollution-induced short-term
movements. Prolonged exposure to high pollution reduces
residents’ sensitivity to short-term fluctuations, thus reducing
their willingness to move. Specifically, long-term adaptation
reduced the benefits of short-term movements in response to air
pollution by 44.49%. Based on these findings, mitigating air

TABLE 9 Moderation model results.

Variables (1) (2) (3)

Movement Movement Movement

AQI_Dif 0.0050*** 0.0019***

(0.0013) (0.0005)

PM2.5_Dif 0.0062***

(0.0023)

AQI_Dif × AQI_long −0.0001***

(0.0000)

AQI_Dif × Pollution_ratio −0.0058***

(0.0020)

PM2.5_Dif × PM2.5_long −0.0001**

(–0.0001)

Control Y Y Y

Origin FE Y Y Y

Destination FE Y Y Y

Date FE Y Y Y

Number of origin 292 292 290

Number of destination 292 292 290

KP Wald F statistics 128.7211 124.2842 42.6720

Observations 891,423 891,423 886,547

Notes: Standard errors are clustered at the origin-destination level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. FE, fixed effects; KPWald F statistics, Kleibergen–Paap rkWald F

statistics.
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pollution should be considered a long-term priority. Effective
measures include sustained investments in clean production
technologies and stricter regulations on high-emission sectors such
as industry, transportation, and energy. Moreover, because adaptation
to pollution exacerbates health risks, governments should strengthen
their healthcare systems by enhancing medical support for
populations chronically exposed to high levels of pollution. In
addition, to alleviate the environmental pressure on high-pollution
urban centers, policymakers can encourage population flows toward
mid-sized cities or suburban areas with better air quality. This strategy
can reduce pollution exposure as well as promote the development of
livable urban clusters, promoting a positive interaction between
environmental sustainability and economic growth.

Despite these findings, this study had certain limitations. First,
owing to the absence of micro-level survey data on population
movements, we relied on GPS-based data from Baidu Maps to
track short-term movements. Although Baidu Maps is one of the
most widely used mapping applications in China, capturing around
36.96% of the market in 20246, our dataset potentially induced bias by
overlooking individuals who use alternativemapping services or those
with limited access to smartphones and mapping applications.
Additionally, owing to data constraints, our analysis was limited to
inter-city movements, potentially omitting intra-regional mobility,
particularly urban-to-rural movements within the same city. Future
research can enhance accuracy by using more granular data, such as
grid-level data, to better capture patterns of population movements.
Finally, this study focused solely on the health impacts of long-term
adaptation to air pollution on movement decisions without
considering other potential consequences. Because prolonged
exposure to air pollution is a crucial issue in many mid- and low-
income countries, future studies should examine wider implications of
pollution adaptation on lifestyle behaviors, health investments, and
physical and mental wellbeing.
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