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Introduction: Quantifying carbon emissions and identifying their drivers are
essential for formulating effective climate policies in key economic zones.
This study analyzes the decoupling effects and driving factors of carbon
emissions in China's Yangtze River Delta region from 2008 to 2022.

Methods: Using provincial-level energy balance sheets, carbon emissions were
estimated via a top-down approach. The extended Generalized Divisia Index
Method (GDIM) decomposed emission drivers, and a novel decoupling index
model was developed by integrating GDIM with traditional decoupling analysis to
quantify factors’ contributions.

Results: Total carbon emissions exhibited an initial increase followed by a decline,
with an overall reduction exceeding 65%. Economic scale was the primary driver
of emission growth, while output carbon intensity was the dominant mitigating
factor; energy consumption carbon intensity and energy intensity showed
significant emission reduction potential. Most decoupling indices were
positive, indicating measurable decoupling progress, with Shanghai achieving
strong decoupling (index: 1.5603) during 2014-2016. Decoupling effects
transitioned from weak to strong and back to weak across sub-periods,
highlighting robust mid-term efforts that weakened later. Output carbon
intensity promoted decoupling, whereas energy scale inhibited it.

Discussion: Policy recommendations include developing region-specific carbon
reduction  strategies, enhancing low-carbon technology R&D and
implementation, and continuously optimizing energy structure to sustain
decoupling efforts.

carbon emissions, Yangtze River Delta, generalized divisia index method (GDIM),
decoupling effects, driving factors

1 Introduction

Under the increasingly severe global climate change context, carbon emissions have
emerged as a focal issue of international concern. With the signing and implementation of
the Paris Agreement, nations worldwide are committed to exploring practical and effective
carbon reduction pathways to address environmental challenges induced by greenhouse gas
emissions. As the largest developing country experiencing rapid economic growth, China
faces tremendous carbon reduction pressure due to its continuously rising energy
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consumption and total carbon emissions. In response, the Chinese
government has actively answered international calls by solemnly
proposing the “Dual Carbon Goals” in 2020, demonstrating major-
country responsibility and unwavering commitment in combating
climate change. This strategic target not only necessitates achieving a
historic transition from carbon peaking to carbon neutrality within a
compressed timeframe but also requires profound green transitions
and structural adjustments across all dimensions of socio-economic
development. The formulation of this goal aligns with the core
principles of the Paris Agreement’s nationally determined
(NDCs) China’s
determination to promote global climate governance through

contributions framework and reflects
multi-dimensional transformations in energy systems, industrial
patterns, and technological innovation.

The Yangtze River Delta region, serving as a core engine and
frontier of China’s economic development, occupies a pivotal
position in the national economic landscape. Characterized by its
highly advanced manufacturing sector, thriving service industries,
and dense transportation networks, it concentrates substantial
industrial activities and population flows (Cui et al, 2024).
Despite accounting for merely 1/26 of the nation’s land area and
approximately one-sixth of its population, this region contributes
24.2% of China’s GDP (2022). However, it faces significant
challenges due to high carbon dependency, with its total carbon
emissions reaching 1.78 billion tons (representing one-fifth of the
national total) (Cao et al.,, 2024). Although energy consumption per
unit of GDP has declined by 54.3% since 2008, structural
decarbonization remains urgent. Researching carbon emissions in
the Yangtze River Delta is not only an intrinsic demand for regional
green transformation but also a core component of national strategy
implementation, global climate governance participation, and new
development paradigm construction (Tang et al., 2024b; Tang and
Wang, 2025). Its significance lies in dismantling administrative
through synergy,
upgrading via technological innovation, and balancing regional

barriers institutional driving  industrial
development through spatial optimization, ultimately providing a
replicable “Chinese Solution” for achieving carbon neutrality in
high-density global economic zones.

The core role of researching carbon emission decoupling effects
lies in breaking the traditional positive correlation between
economic growth and carbon emissions, achieving economic
expansion while reducing or stabilizing carbon emissions, thereby
2022).

Concurrently, studies on carbon emission decoupling play a

advancing sustainable development (J. Liu et al,
pivotal role in promoting green transition, alleviating climate and
environmental pressures, and enhancing economic resilience. The
Yangtze River Delta region currently faces dual pressures of
economic growth and emission reduction, making research on
practical pathways for regional low-carbon transformation
imminently. Consequently, such studies not only provide a
decision-making basis for green integrated development in the
Yangtze River Delta but also contribute critical empirical insights
to China’s exploration of synergistic pathways for economic growth
and ecological conservation. By investigating the intrinsic linkages
and dynamic equilibrium mechanisms between economic growth
and carbon emissions, this research holds immeasurable strategic

significance for achieving China’s “dual carbon goals”.
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2 Literature review

In recent years, research on carbon emission decoupling effects
has flourished within interdisciplinary domains encompassing
environmental science, economics, and energy studies. Scholars
have employed cutting-edge methodologies and models to dissect
the intricate relationship between economic growth and carbon
emissions while identifying pivotal driving factors influencing this
dynamic (Wang and Wang, 2019). Decomposition analysis
2023),
Analysis (SDA) and particularly Index Decomposition Analysis

techniques (Su and Ang, Structural Decomposition
(IDA), are instrumental in unveiling drivers behind energy
consumption and pollutant emission variations by quantifying
their impacts on energy systems and environmental outcomes
(Wang et al,, 2021; Zha et al,, 2019). Compared to SDA, which
faces constraints from data collection challenges, IDA demonstrates
superior applicability through less stringent data requirements and
flexibility across various aggregation levels (Moreau et al., 2019).
Consequently, IDA has emerged as the prevailing technique for
analyzing pollutant emission drivers in energy-environment studies,
with its logarithmic mean variant gaining prominence for its path
independence and residual-free properties (Tang et al., 2024a).

2.1 Research on carbon emission factor
decomposition

In current research on carbon emission factor decomposition,
the Logarithmic Mean Divisia Index (LMDI) (De Oliveira-De Jesus,
2019; Laporte et al., 2024; Li et al., 2024; Tian et al., 2024; Wang and
Zhen, 2024) method has gained prominence owning to its
operational simplicity and residual-free properties. However, as
academic exploration of decomposition methodologies deepens,
limitations in existing index decomposition approaches including
LMDI have become apparent. These include susceptibility to result
bias caused by interdependencies among factors when decomposing
target variables into multiplicative components, and inability to
concurrently evaluate multiple absolute factors, potentially
overlooking critical influencers. To address these challenges,
Vaninsky proposed the Generalized Divisia Index Method
(GDIM), which overcomes factor interdependencies inherent in
conventional decomposition techniques (Vaninsky, 2014). GDIM
enables simultaneous quantification of multiple absolute and
relative factors’ impacts on carbon emission variations while
distinguishing inter-factor correlations to prevent double-counting.

The Index Model is a
decomposition model that quantifies the driving effects of
multiple factors (Shao et al, 2016; Zhang et al.,, 2022). Its core
aim is to break down changes in a target variable into contribution

Generalized Divisia statistical

values from multiple absolute or relative driving factors. Its
mathematical basis involves constructing a Jacobian matrix to
analyze the partial derivatives of the target function with respect
to each factor, eliminating the residual - term issue of traditional
methods like LMDI (Ma et al., 2025; Zhou et al., 2025). In carbon
emission analysis, GDIM can factor in both absolute indicators and
relative ones. It can calculate each factor’s contribution to carbon
emission changes. Supporting dynamic analysis across periods,
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GDIM can precisely identify key driving factors, offering unbiased
scientific support for policymaking.

Recent applications demonstrate GDIM’s analytical efficacy in
practical scenarios (Chen et al., 2023; Li J. et al., 2023; Li W. et al.,
2023; Shen et al., 2024; Zhu et al., 2024; Zhu et al., 2025). For
instance, scholars have pioneered its use in investigating
socioeconomic drivers of industrial volatile organic compounds
(VOCs) emissions across China and its 30 provinces. This
approach facilitated

contributions

comparative analysis of provincial
VOCs and detailed
examination of region-specific influencing mechanisms (Zhang
et al, 2023). Another study applied GDIM to analyze recent
emission

to national emissions

trends in Fujian Province’s construction sector,
identifying key drivers through entropy weight-TOPSIS
methodology. This integrated framework quantitatively assessed
temporal variations in emission reduction capacities by
evaluating economic, energy, social, and technological factors (Li
et al,, 2025). Nevertheless, current research remains predominantly
industry-focused, with regional-level applications yet to achieve

comprehensive implementation.

2.2 The role of carbon emission factor
decomposition

Factor decomposition of carbon emissions facilitates the
identification of drivers behind emission variations, thereby
providing a scientific basis for formulating carbon mitigation
policies, while decoupling effect analysis enables the evaluation of
current policy efficacy and informs iterative policy refinements to
achieve carbon reduction and decoupling targets. Decoupling
analysis, widely employed to assess asynchronous dynamics
between carbon emissions and economic growth, fundamentally
stems from governmental responses to emission cost pressures
2005).
However, existing studies predominantly focus on determining

under growth-driven economic mechanisms (Tapio,
“whether decoupling occurs” rather than investigating causative
drivers, resulting in limited capacity to identify determinants of
decoupling transitions or quantify factor-specific contributions to
decoupling effects (Magazzino et al., 2023; Wang et al., 2017). This
knowledge gap undermines evidence-based policymaking for
carbon decoupling. Recent advances integrate decomposition
techniques with decoupling frameworks: Scholars have applied
the GDIM to decompose industrial carbon emission drivers in
China, elucidating emission trajectory determinants through

velocity decoupling (temporal dynamics) and quantitative
decoupling (magnitude differentials) (Liu et al, 2024)
Furthermore, innovative extensions incorporate innovation

factors into GDIM and Decoupling Effort Index (DEI) models,
dissecting them into three variables—innovation input efficiency,
innovation input carbon intensity and innovation input scale—to
compare their differential impacts on emissions and decoupling
across high-emission subsectors (Liu et al., 2022). By synergizing
factor decomposition with decoupling models, this integrated
approach clarifies the coevolutionary pathways of economic
growth and emission reduction, evaluates policy effectiveness,
and identifies optimal

strategies for achieving win-win

development and decarbonization (Ye et al., 2025).
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2.3 Research contribution

Based on existing research, this paper first employs an expanded
GDIM decomposition method to analyze the driving factors behind
the evolution of carbon emissions in the Yangtze River Delta region.
Building upon this analysis, it constructs a carbon emission
decoupling index model to identify the key factors contributing
to strong decoupling effects, weak decoupling effects, and non-
decoupling effects in the region. Compared with previous studies,
the marginal contribution of this paper lies in: in terms of
methodological approach, this study innovatively applies the
expanded GDIM decomposition method to dissect the driving
factors behind carbon emission trends in the Yangtze River Delta
region from 2008 to 2022. This approach enables a more precise and
comprehensive understanding of how individual factors influence
regional carbon emissions. It simultaneously extends the practical
application of the GDIM decomposition method to regional-level
analyses, offering new perspectives and methodological guidance for
research on regional carbon emissions. On the other hand, this
research integrates the GDIM decomposition method into the
traditional decoupling model to formulate a novel decoupling
indicator defined as the ratio of carbon reduction effort to
economic growth factors. This approach serves to evaluate the
actual effectiveness of emission reduction policies. Concurrently,
it systematically delineates regional decoupling efforts across
different time periods, providing clearer visualization of the
efficacy of various regions’ decarbonization endeavors. This
of factor

in-depth
exploration of carbon emission decoupling effects and their
underlying drivers while simultaneously offering theoretical

integration achieves an organic combination

decomposition and decoupling analysis, enabling

support for policymakers to formulate scientifically sound carbon
decoupling strategies.

3 Research methods and data sources

3.1 Generalized divisia index decomposition
method (GDIM)

Index decomposition analysis (IDA) treats each decomposed
driver variable of the target variable as a continuously differentiable
function of time t. By differentiating these functions with respect to
time t, the method derives the contribution rates of changes in each
driver variable to the target variable. The mapping relationships
between the target variable and its driving factors are explicitly
expressed in functional form as shown in Equations 1, 2:

Z=f(X)=f(Xi X Xy) (1)

MZ=2;-2,= Y82y = [ dz @)
i=1 1

In the equation: Z represents the target variable (carbon
emissions); X denotes the factor variables influencing Z (energy
consumption, population, regional gross product (GRP)); AZ
signifies the change in carbon emissions in the YRD region from
the reference time T (current time) to the base time; AZ [X;] is the
contribution of the influencing factor X; to AZ; L indicates the time
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span. Considering each factor variable as a continuously
differentiable function of time t, the equation can be expressed as:

Xi=X;(t) (3)
(X, X X,
fﬁ% @)
AZ = j Fidx, + J X, + o +J Fldx, )
L L L

Substitute Formulas 3, 4 into Formula 5 to obtain the following
Formula 6:

AZ[X,] = J FldxX, = J: FXdt ©)

L

In the equation: ty and t; are the reference time and current time,
respectively. If expressed in vector form, it can be written as
Formula 7:

AZ = JVZT -dX (7)

L

In the formula: AZ is the row - decomposition vector; VZ is the
column - gradient vector of the function f(Xi, X, -, X,); T
represents transpose; dX is a diagonal matrix composed of
dX,,dX,, -, dX,.

Vaninsky argues that the above decomposition method fails to
adequately account for the interdependence among factor variables,
potentially causing analysis bias. To address this, he proposes adding
constraint Equation 8 to the GDIM to restrict the correlation
between decomposition factors.

Oy (X1, X,) =0,j=1,2,-k (8)

Its vector form is:

D(X)=0 )

Substitute Equation 9 into GDIM, and the decomposition vector
can be expressed as Equation 10:

AZ[X| D] = J VZ' (I - dx®})dX (10)

L

In the formula, ®x represents the Jacobian matrix of ® (X),

and the elements in the matrix are (®x);; = %;
the generalized inverse matrix of ®x; I is the identity

@Y represents

matrix. If the factor variables in ®x are linearly
independent, that is, there is no correlation between the
variables, then ®% = (OLdy) ' ®L.

In the GDIM, the absolute and relative indicators must be
included simultaneously, and both types of indicators must be
logically associated. The target variable must be expressible as a
multiplicative function of the absolute and relative indicators to
ensure the Jacobian matrix can be constructed. In the GDIM,
GDP, population, and energy consumption are core driving
factors that significantly influence carbon emissions through
GDP is
explaining changes in carbon emissions, manifesting through
effect, effect,

technological compensation effect. The impact of population

different mechanisms. the dominant factor in

economic scale economic structure and
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on carbon emissions is twofold in nature-scale - wise and
structure - wise. Population growth directly increases energy
consumption demand, leading to a rise in carbon emissions.
Meanwhile, the accelerated urbanization process concentrates
more people in high - energy - consuming cities, further
exacerbating carbon - emission pressures. Energy consumption
is the key medium through which GDP and population drive
carbon emissions, with its pathways including the total energy
effect, energy structure effect, and energy intensity effect. In the
GDIM model, GDP, population, and energy consumption jointly
explain changes in carbon emissions via three pathways—scale
expansion, efficiency improvement, and structural optimization
(Wen et al., 2022).

3.1.1 Carbon emission factor decomposition
According to the Kaya identity, carbon emissions are
decomposed into the following equation:

(11)

From Equation 11, the following limitations arise in carbon
emission decomposition: M Exclusive focus on absolute factors:
Only the absolute factor of population size (P) is considered,
while neglecting other absolute drivers such as total output (G)
and energy consumption (E). This oversimplification fails to
capture the multidimensional dynamics of emissions.
@Insufficient sensitivity to energy consumption changes:
When E increases (with other factors constant), the second
term (G/E, reflecting energy intensity) decreases, while the
third term (E/P, per capita energy use) increases. However,
these opposing effects cancel out in the equation, leaving the
overall carbon emissions (C) unchanged—a critical flaw in
isolating energy-related impacts. ®Omission of latent factors:
Key relative metrics like carbon intensity of energy consumption
(E/C) are not incorporated, limiting the model’s ability to assess
efforts.  To these

limitations, this study adopts the Generalized Divisia Index

structural  decarbonization address

Method proposed by Vaninsky. The decomposition steps are
as follows.

@ The expression for driving factors of carbon emissions in the
YRD region is constructed as follows:

C C C
C:—XGZEXEZ—XP

G P (12)
C=GCxG=ECXxE=PCxP
G C/C PC
PG=5=5/6"ac (13)
E C/C GC
E=—=—/2="* 14
G G G/ E EC (14)

In the formula: C represents carbon emissions; G stands for
output scale; GC indicates output carbon intensity; E is energy scale;
EC refers to energy consumption carbon intensity; P represents
population scale; PC is per capita carbon emissions; PG stands for
per capita output scale; GE indicates energy intensity.

Furthermore, by transforming Formulas 12-14, the following
Equation 15 are obtained:
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C=GxGC
GxGC-EXEC=0
GxGC-PxPC=0 (15)
G-PxPG=0
E-GxGE=0

@® Construct the Jacobian matrix for each driving factor. Let
function C(X) represent the contribution of driving factor X
to carbon emission changes, and build a Jacobian matrix ®X
composed of the first - order partial derivatives of each factor
as shown in Equation 16:

GC G-GE-E 0 0 0 0\
GC G 0 0-PG-P 0 0

Ox = 1 0 0 0-PG 0 -P 0 (16)
-GE0O 1 0 0 0 0 -G

® Determine the contribution of each driving factor. Based on
the principle of the GDIM decomposition method, the change
in carbon emissions AC in the YRD region will be
decomposed into the sum of the contributions of each
factor, as shown in Equation 17:

AC[X/®] = J VC' (I - dx®})dX (17)

L

In the formula: VZ = ( GC G 0 0 0 0 0 O)T;each factor in
the row vector AC[X/®] represents the change in carbon emissions
contributed by the 8 decomposed driving factors.

Based on the above-mentioned factor decomposition, the
change in carbon emissions AC in the YRD is decomposed into
the sum of three absolute - quantity factors and five relative -
quantity factors. Among the absolute - quantity factors, ACg,
ACg,and ACp respectively represent the impacts of output scale,
energy consumption scale, and population scale on the evolution of
carbon emissions. Among the relative - quantity factors, ACgc,
ACrgc, ACpc, ACpg,and ACgg respectively represent the impacts of
output carbon intensity (carbon productivity), energy consumption
carbon intensity (energy structure), per capita carbon emissions, per
capita output scale, and energy intensity on the evolution of
carbon emissions.

3.2 Fundamental assumptions and data input
requirements

The Generalized Divisia Index Method (GDIM) operates under
the core assumption that changes in carbon emissions can be
multiplicatively or additively decomposed into contributions from
multiple driving factors, necessitating factor separability and
functional form consistency. It presumes that drivers such as
economic scale, industrial structure, and technological efficiency
exhibit temporal continuity and differentiability, enabling marginal
contribution decomposition via total or partial differential
equations. Critically, GDIM requires path independence, ensuring
decomposition results remain invariant to the sequence of variable
changes, thus guaranteeing uniqueness and comparability of
outcomes. Violations occur if data exhibit significant nonlinear
interactions or abrupt structural breaks, necessitating corrective
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measures  like  segmented decomposition or  dynamic
adjustment terms.

GDIM demands comprehensive, high-precision time-series data
for both absolute and relative indicators: Absolute Indicator, Include
metrics like economic output, total energy consumption, population
size, and sector-specific activity data. These require complete
coverage over the analysis period without gaps. Relative
Indicators: Such as energy intensity (energy use per GDP unit),
carbon intensity (emissions per energy unit), or technological
efficiency metrics. These must be dimensionally consistent with
absolute indicators and scale-

standardized to prevent

induced biases.

3.3 Decoupling index model based on GDIM

Carbon emission decoupling efforts refer to the policy measures
taken to reduce carbon emissions without harming economic
growth. In the study of carbon emission decoupling, eliminating
the carbon emissions caused by economic growth factors can further
evaluate the effectiveness of decoupling efforts. Based on the GDIM
decomposition results, AC; and ACpg are regarded as economic
growth factors, and the other 6 factors (including ACg, ACp, ACgE,
ACkgc, ACpc and ACgp) are regarded as potential efforts to promote
carbon emission decoupling. Therefore, carbon emission reduction
efforts (ACpg) can be expressed as:

ACpg = AC - (ACG + ACpg)
= ACE + ACP + ACGC + ACEC + ACPC + ACGE (18)

As shown in Equation 18, there is a passive correlation between
the economic growth factor and the carbon reduction efforts, and
the economic growth factor has been separated from other factors.
Based on this, this paper constructs a new decoupling indicator,
defined as the ratio of carbon reduction efforts to the economic
growth factor, to explore the actual effectiveness of carbon
reduction policies.

ACpg

___ ACpr 19
? = TACe + ACro (19)

In the Formula 19, ¢, represents the carbon emission decoupling
indicator. When ¢, > 1, it indicates a strong decoupling effect, where
driving factors promote carbon emission decoupling. When
0<¢, <1, it suggests a weak decoupling effect, where driving
factors’ promotion of carbon emission decoupling is less than
that of growth. When ¢, <0, it
decoupling effect, where driving factors hinder carbon emission
decoupling.

Further decomposition yields the decoupling effects of each
carbon - emission reduction effort:

economic means no

(ACE + ACP + ACGC + ACEC + ACPC + ACGE)
(ACg + APG) (20)

= —(¢g + 9p + Poc + Prc + Poc + Par)

¢ =

In the Formula 20: ¢, is the decoupling effect of the energy
consumption scale; ¢, is the decoupling effect of the population
scale; ¢ is the decoupling effect of the output carbon intensity y;
¢pc is the decoupling effect of the carbon intensity of energy
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consumption; ¢, is the decoupling effect of per capita carbon
emissions; ¢ is the decoupling effect of the energy intensity.

3.4 Data source

This paper employs a top - down allocation accounting method
based on the provincial energy balance sheet to estimate the energy
consumption and carbon emissions of each city. The specific
calculation Formulas 21-24 are as follows:

EF =) AD;, x SC; (21)
C* =) AD;; x EF, (22)
AD;; = AD{; x a; (23)
5
aj = I_P (24)
J

Where,j represents the rows in the provincial energy balance
sheet, that is, the energy consumption categories; E° represents
urban energy consumption; C° denotes the city’s carbon emissions;
AD; ; indicates the consumption of fossil energy i in the j-th category
by the city; SC; is the standard coal equivalent coefficient for fossil
fuel i; EF; stands for the emission factor of fossil energy I; ADf j
signifies the consumption of fossil fuel i in category j for the province
where the city is located; A; is the allocation coefficient for category
Jjs I refers to the allocation indicator value for category j in the city;
I‘; represents the allocation indicator value for category j in
the province.

The carbon emission accounting methodology adopted the
“2006 IPCC Guidelines for
Inventories”.

National =~ Greenhouse Gas
Carbon emission coefficients for various energy
sources were derived from data published by the Energy
Research Institute of the National Development and Reform
Commission (NDRC) in 2003. Provincial-level carbon emissions
were estimated based on energy consumption data from provincial
energy balance sheets and their corresponding carbon emission
coefficients. In the research process, provincial energy balance
sheets were sourced from the China Energy Statistical Yearbook
(2008-2023). Gross Regional Product and year-end total population
for individual cities were obtained fromprovincial statistical
yearbooks over the years and the China City Statistical Yearbook.
To eliminate the influence of price fluctuations, the gross output
value was deflated using constant 2008 prices. For a small number of
missing values, linear interpolation was applied based on data from
adjacent years to ensure data integrity and enhance the reliability of
the research.

4 Empirical results and analysis
4.1 Carbon emissions measurement results

As illustrated in Figure 1a, the total carbon emissions in the YRD
Basin showed a gradual climb trajectory from 2008 to 2022. Notably,
Jiangsu Province accounted for the largest share of emissions, with
its annual carbon emissions persistently increasing and reaching
915 million tons by 2022. This represents an average contribution of
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41.93% to the basin’s total emissions during the period,
underscoring Jiangsu’s pivotal role in determining the success of
regional carbon reduction targets. Simultaneously, Zhejiang
Province’s carbon emissions exhibited a gradual upward
trajectory, reaching 497 million tons by 2022, accounting for an
average of 23.92% of the total emissions in the YRD Basin. Anhui
Province mirrored Jiangsu’s growth pattern, with emissions rising to
448 million tons in 2022, representing a 19.84% average regional
contribution. In contrast, Shanghai demonstrated fluctuating
growth trends: emissions increased from 237 million tons in
2008 to a peak of 291 million tons in 2013, followed by a
gradual decline to 287 million tons by 2022, maintaining an
average share of 14.3%.

As shown in Figure 1b, the carbon intensity of the YRD Basin
exhibited a significant downward trajectory during 2008-2022, with
cumulative reductions exceeding 65%, reflecting the substantial
progress achieved through regional economic transition and
structural adjustments. Notably, Anhui Province demonstrated
the most remarkable performance, achieving a 69% reduction in
carbon intensity over the study period. This success primarily stems
from sustained optimization of heavy industrial layouts and sectoral
restructuring, which drove accelerated decoupling between carbon
emissions and economic growth. Zhejiang Province ranked second
in carbon intensity reduction, maintaining an average carbon
intensity of 164 tons/million RMB. Jiangsu Province reduced its
carbon intensity from 215 tons/million RMB in 2008 to 74 tons/
million RMB in 2022—a decrease of 141 tons/million RMB—while
Shanghai achieved a reduction of 125 tons/million RMB, indicating
that exhibited more
decarbonization efforts compared to lower-emission counterparts.
Under the strategic framework of ’coordinated ecological

conservation and governance,” future carbon mitigation in the

high-emission  regions pronounced

Yangtze River Basin should emphasize heterogeneous growth
poles and prioritize differentiated policy pathways to amplify
region-specific decarbonization efficacy.

4.2 Decomposition of driving factors of
carbon emissions

Based on the principles and formulas of the Generalized Disney
Index Method (GDIM), this study employs R language to
decompose the driving factors of carbon emissions in the YRD
region. To dynamically visualize the impacts of each factor on
carbon emission changes, the contribution rates of individual
factors were cumulatively calculated on an annual basis with
2008 as the base period, as illustrated in Figure 2. The eight
factor variables are categorized into three major groups for
systematic analysis, with detailed classifications and average
contribution rates summarized in Table 1. The key findings are
as follows.

4.2.1 Analysis of economic scale factors

Regional Gross Domestic Product serves as a critical metric for
evaluating living standards within a geographic area, reflecting both
economic development levels and the material prosperity of
residents. From 2008 to 2022, the YRD region achieved an
average annual GDP growth rate of 8.9%. Energy, as a
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Carbon emissions and carbon intensity of the Yangtze River Delta Region from 2008 to 2022. (a) Carbon emissions, (b) Carbon intensity.

fundamental production factor, inevitably drives increased
consumption alongside economic expansion, leading to
substantial CO, emissions. Consequently, rapid economic

development has emerged as the dominant contributor to carbon
emission growth in this context.

The cumulative contribution rate of GRP to carbon emission
growth in the YRD region is evident in the incremental analysis. By
2022, GRP accounted for 44.26%, 55.03%, 49.56%, and 65.04% of
cumulative emission increases across the four jurisdictions
respectively. In Shanghai, the GRP contribution rate remained
positive but exhibited an overall downward trajectory during
2008-2022, declining to 1.13% by 2022 (a 3.07% reduction from
2008 levels). Similar declining trends were observed in Jiangsu,
Zhejiang, and Anhui provinces. The peak contribution rates for
Jiangsu and Zhejiang occurred in 2010 at 6.84% and 6.77%,
respectively, while Anhui’s peak reached 7.94% in 2011. These
patterns indicate a diminishing driving effect of GRP on regional
carbon emissions.

The primary driver
advancement and
Shanghai has relocated traditional heavy industries to peripheral
areas while focusing locally on low-emission industries such as
integrated circuits and biomedicine, significantly reducing energy
consumption per unit of GDP. The proportion of tertiary industries
in the Yangtze River Delta rose from 51% in 2008 to 56.5% in 2022,
with Shanghai’s figure reaching 73% (2022). Service sectors such as

stems from industrial structure

service-oriented transition. For instance,
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finance and technology R&D generate only 15%-20% of the carbon
emissions per unit of GDP compared to manufacturing,
consequently enabling a gradual decoupling of GRP growth from
carbon emissions.

Regarding the variable AGRP/Population, the decomposition
results reveal that its contribution rate to carbon emission changes
consistently exhibited marginal negative effects, with cumulative
contribution rates of —1.54%, —-2.87%, -2.01%, and -4.68%,
respectively. This indicates that per capita income growth exerted
a slight yet persistent inhibitory influence on emission trajectories,
albeit with limited overall impact.

Output carbon intensity refers to the CO, emissions per unit of
Gross Regional Product (GRP), where a reduction in output carbon
intensity indicates lower emissions generated while maintaining
equivalent economic value. This metric reflects the efficiency
relationship ~ between carbon emissions and economic
growth.From 2008 to 2022, the output carbon intensity in the
YRD region exhibited a consistent downward trend. The
variation in output carbon intensity (ACO,/GRP) exerted the
strongest inhibitory effect on carbon emission growth among all
contributing factors, with cumulative inhibitory contribution rates
of —34.76%, —34.42%, —37.38%, and —37.66% respectively. These
values surpassed the combined effects of all other inhibitory factors.
In this study, ACO,/GRP captures the impact of low-carbon
transitions in economic development on emissions, primarily

reflecting the influence of production technology advancements
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FIGURE 2
Contribution rate of each factor and change rate of carbon emissions of the Yangtze River Delta Region from 2008 to 2022. (a) Shanghai, (b) Jiangsu,
(c) Zhejing, (d) Anhui.

TABLE 1 Classification and average contribution of carbon emission factors in the Yangtze River Delta region from 2008 to 2022.

Classification Factor Shanghai Jiangsu Zhejiang Anhui
Factors of economic scale AGRP + + + +
AGRP/Population - - - R
ACO2/GRP - - - -
Factors of energy consumption AEnergy + + + +
ACO2/Energy + - - B
AEnergy/GRP - - - R
Factors of population size ACO2/Population - + + +
APopulation + + + +
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on emission dynamics. As technological innovation accelerated, the
deployment of low-carbon technologies significantly enhanced the
decarbonization of production processes. Consequently, ACO,/GRP
demonstrated marked reductions, translating into substantial
emission mitigation effects. This underscores that technological
progress currently serves as the dominant determinant in
addressing carbon emissions, aligning with global strategies for
sustainable development.

In the Yangtze River Delta region, the mechanism through
which technological progress reduces carbon intensity primarily
manifests in three interconnected dimensions: direct innovation in
production technologies, indirect upgrading of industrial structures,
and  synergistic  policy-market  coordination.  Specifically,
advancements in production technology innovation are achieved
through: Optimization of industrial processes; Digital-enabled
with
technologies. For instance, Jiangsu’s steel sector has applied

energy efficiency ~management;  Substitution clean

hydrogen-based  metallurgy technology, reducing carbon
emissions per ton of steel by 30%, while Shanghai Baosteel
utilized AI algorithms to optimize blast furnace combustion
efficiency, lowering coal consumption by 15%. Additionally,
industrial structure upgrading has been facilitated through the
digital economy, which reduces information costs and optimizes
resource allocation, thereby advancing industrial sophistication. In
terms of policy-market synergy, green innovation is incentivized via
mechanisms such as carbon pricing signals to guide investments,
green financial support, and the emission-reduction effects of

fiscal policies.

4.2.2 Analysis of energy consumption factors
Different industries exhibit distinct patterns of emission
characteristics and carbon energy consumption. The industrial
sector, particularly heavy industries like cement and steel
production, serves as a major energy consumer. These energy-
intensive industries rely heavily on coal and other fossil fuels for
production activities, resulting in massive carbon emissions. In
contrast, service-oriented industries—characterized by asset-
light operations and lower energy demands—demonstrate
significantly smaller energy consumption and correspondingly
reduced carbon emission scales. In the YRD region, the
contribution rate of energy consumption to carbon emissions
has consistently remained positive. By 2022, cumulative
contribution rates across the region reached 6.19%, 18.79%,
23.33%, and 24.28% for key jurisdictions. Notably, Shanghai’s
cumulative contribution rate (6.19%) was substantially lower
than those of Jiangsu, Zhejiang, and Anhui provinces. This
disparity underscores Shanghai’s industrial structure, which
features a smaller proportion of energy-intensive sectors,
thereby achieving relatively lower carbon emission levels
despite its energy Furthermore,

consumption  profile.

Shanghai’s  service-oriented development paradigm has
substantially reduced energy dependence while generating a
price premium effect through its low-carbon technologies.

In this study, ACO,/Energy exhibits the impact of low-carbon
transitions in energy consumption on carbon emissions,
primarily examining structural shifts in energy composition.
The reduction of energy consumption intensity-driven by

industrial restructuring, energy efficiency improvements, clean
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energy substitution, technological innovation, and policy-market
synergies—constitutes a pivotal factor in advancing regional low-
carbon development and achieving economic-environmental
that  the
contribution rate of energy carbon intensity to emissions

coordination. Decomposition results reveal
fluctuated between positive and negative values, yet exhibited
an overall increasing trend. By 2022, cumulative contribution
rates reached 0.74%, —1.71%, —13.9%, and —2.15% respectively,
indicating progressively enhanced emission suppression effects.
Notably, Zhejiang Province demonstrated significantly stronger
inhibitory impacts than other regions during its 13th Five-Year
Plan period (2016-2020), attributable to its leadership in
establishing a Clean Energy Demonstration Zone and
deepening market-oriented energy resource allocation reforms.
These  institutional accelerated  structural

decarbonization, aligning with empirical achievements in

innovations
energy transition governance.

4.2.3 Analysis of population scale factors
Population growth exerts a statistically significant influence on
carbon emission increases in the YRD region. Despite a declining
annual population growth rate, the region’s large demographic has
sustained an average net annual increase of 2.02 million people. By
2022, the population totals for key jurisdictions reached
24.75 million, 85.15 million, 65.77 million, and 61.27 million
respectively. This expansion intensifies demand for energy,
transportation, and essential goods, directly driving carbon
emission growth. During 2008-2022, population growth rates
across the region were recorded at 33.2%, 11.75%, 30.0%, and
0.1%, corresponding to cumulative contribution rates of 9.9%,
3.7%, 8.7%, and 0.1% to emission These metrics
highlight the
consumption-driven emission pathways in urbanizing economies.

increases.
dual pressure of demographic inertia and
The significant impact of population growth on carbon emissions in
the Yangtze River Delta region is fundamentally attributed to the co-
effect of the scale effect, disparities in structural transition, and
technological mitigation capacity.

Regarding ACO,/Population, the decomposition results are
similar across the four regions, with an overall negative
contribution rate, indicating a suppressive effect. This outcome
arises from two factors: first, per capita output scale is a relative
metric, and its corresponding carbonization from two absolute
metrics is difficult to synchronize; second, per capita output scale
acts on correlated indicators through the GDIM formula, but when
calculating the impact on carbon emission changes in growth poles,
only a portion of it is accounted for, with the remainder allocated to
correlated indicators. Both scenarios may lead to a suppressive effect
of per capita output scale, while also implying that the welfare
benefits derived from development lag behind the economic growth
of the poles. The contribution rate of per capita carbon emissions to
overall carbon emissions is primarily reflected in factors such as
population urbanization and consumption patterns. The total
carbon emissions in the entire Yangtze River Delta region have
remained stable for many consecutive years, with its low-carbon
transition leading the nation. Additionally, residents predominantly
adopt low-carbon lifestyles, which explains why per capita carbon
emissions exhibit a suppressive effect on the region’s carbon
emissions in the results.
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TABLE 2 Carbon emission decoupling effect in the Yangtze River Delta region.

Area Year ot ¢E P olele ¢EC ¢PC ¢GE
Shanghai 2008-2010 -0.2721 -0.4307 —-0.6933 0.5688 0.0116 0.2569 0.0146
2011-2013 0.0765 -0.0518 -0.1937 0.6654 -0.2604 -0.1138 0.0308
2014-2016 1.5603 0.0318 -0.0072 0.8075 0.3273 03661 0.0348
2017-2019 0.6488 -0.1299 -0.0107 0.8550 0.0147 -0.1103 0.0299
2020-2022 0.0509 -0.0122 -0.1178 0.6819 -0.3088 -0.2151 0.0229
Jiangsu 2008-2010 -0.2370 -0.4871 -0.0673 0.5802 0.0809 -0.3561 0.0124
2011-2013 -0.6172 -0.3447 -0.0238 0.4610 -0.1933 -0.5338 0.0174
2014-2016 0.1966 -0.2561 -0.0288 0.7176 ~0.0090 -0.2431 0.0161
2017-2019 0.9623 -0.1637 -0.0345 0.9598 0.1550 0.0233 0.0225
2020-2022 0.2852 ~0.4675 -0.2512 0.7629 0.2349 -0.0016 0.0077
Zhejiang 2008-2010 -0.0013 -0.3776 ~0.1852 0.6397 0.0503 -0.1469 0.0183
2011-2013 04376 -0.3261 -0.0298 0.7977 0.1440 -0.1639 0.0158
2014-2016 1.0661 -0.3763 -0.0734 1.0027 0.4038 0.0985 0.0107
2017-2019 0.4657 -0.3557 -0.1614 0.8012 0.1829 -0.0145 0.0131
2020-2022 0.3101 -1.2224 -0.5322 0.7969 0.9739 0.2804 0.0135
Anhui 2008-2010 -0.7451 ~0.4482 0.0495 04331 -0.1294 ~0.6649 0.0147
2011-2013 -0.3789 -0.4272 -0.0275 0.5371 -0.0286 -0.4486 0.0159
2014-2016 0.5792 -0.3318 -0.1127 0.8403 0.1963 -0.0262 0.0132
2017-2019 0.4267 -0.2165 ~0.0641 0.7722 0.0310 -0.1279 0.0320
2020-2022 0.2132 -0.7135 0.1900 0.7505 0.4436 -0.4651 0.0077
=@=Shanghai =®=Jiangsu =®=Zhejiang Anhui
5
E
2008-2010 2011-2013 2014-2016 2017-2019 2020-2022
Year
FIGURE 3

Evolution trend of decoupling effects of carbon emissions in the Yangtze

River Delta Region.

4.3 Analysis of the decoupling effect of
carbon emissions

This section reflects the reality of achieving a win-win scenario
between development and emission reduction in the YRD region
through decoupling indicators, as well as the actual effectiveness of
government emission reduction policies. Based on Formula 20, this
paper calculates decoupling indicators for the period 2008-2022 and
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its sub-periods, as shown in Table 2. Figure 3 illustrates the changing
trends of decoupling indicators in the YRD region.

As shown in Table 2 and Figure 3, during the entire study period
from 2008 to 2022, most decoupling indicator values in the YRD region
were positive, indicating the presence of a decoupling effect. This
suggests that the region’s decoupling efforts partially offset the carbon
emission increase driven by economic growth. This signifies that relevant
regions and departments have worked hand in hand, adhering to joint
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efforts in ecological conservation and coordinated governance, achieving
significant results in strengthening environmental protection. By
resolutely pursuing a green and low-carbon development path, they
have driven high-quality development in the YRD region, with marked
and sustained improvements in regional carbon emission reduction.
Specifically, the decoupling indicator values for provinces and
municipalities in the YRD region generally rose first and then
declined. The lowest values occurred during the 2008-2010 period,
all negative, indicating no decoupling effect—meaning drivers acted as
obstacles in the carbon emission decoupling process. In contrast, the
peak values emerged during 2014-2016, with Shanghai’s decoupling
indicator reaching 1.5603 and Zhejiang’s at 1.0661, demonstrating a
strong decoupling effect. The decoupling indicator values in the YRD
region have undergone an evolutionary process from ’negative
decoupling’ to ’strong decoupling’ and then to ’weak decoupling’.
This trajectory is closely linked to China’s 12th Five-Year Plan,
which first incorporated carbon reduction as a binding target and
decomposed national goals into regional carbon intensity annual
assessments. The results demonstrate significant progress in carbon
emission control and industrial green transformation in the YRD region
over the past decade.

As shown in Table 2, Shanghai’s decoupling indicator value
significantly increased to 1.5603 during 2014-2016, demonstrating a
strong decoupling effect. This was primarily driven by the pivotal role of
output carbon intensity in facilitating carbon emission decoupling.
Concurrently, energy scale, per capita carbon emissions, output
carbon intensity, and energy intensity also contributed positively to
this process. However, during 2020-2022, its decoupling indicator value
declined to 0.0509, primarily due to the inhibitory effects of output
carbon intensity, energy scale, and population scale on decoupling. This
indicates that Shanghai implemented stronger carbon emission
decoupling policies in earlier stages, while the intensity of
decoupling efforts relatively weakened in later periods. Specifically,
the energy consumption carbon intensity shifted from acting as a
catalytic driver. During 2014-2016 to a constraining factor in the
carbon emission decoupling process during 2020-2022. This reversal
stemmed from Shanghai’s pandemic-induced energy structure
adjustments, which triggered increased carbon emissions and
impeded decoupling progress. Notably, the catalytic role of energy
intensity in carbon emission decoupling has remained relatively stable
over the past decade, with its contribution rate persisting within the
range of 0.2-0.35 from 2011 to 2013 to 2020-2022. This suggests that
since 2010, Shanghai’s industrial structure optimization and energy
technology innovation have reached a stabilized phase, enabling
consistent improvements in energy utilization efficiency.

In five sub-periods, the decoupling indicator values for Jiangsu
-0.2370, —0.6172, 0.1966, 0.9623, and 0.2852,
respectively, oscillating between weak decoupling and negative

Province were

decoupling states. The overall trend exhibited an initial increase
followed by a decline, indicating a gradual improvement in the
decoupling relationship between economic growth and carbon
emissions in Jiangsu Province. From the perspective of decoupling
indicator values across various factors, output carbon intensity plays a
pivotal role in driving the decoupling process of carbon emissions.
Concurrently, energy intensity has also actively contributed to
Notably, the
2011-2013 period, the contribution rate of energy consumption
intensity increased by 04283 during 2020-2022,

advancing decoupling dynamics. compared to

carbon
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underscoring its untapped potential for
efforts

consumption carbon intensity by accelerating renewable energy

decoupling.  Future
decarbonization should prioritize optimizing energy
adoption, leveraging recent policy innovations, and reducing
structural dependence on traditional fossil fuels.

The decoupling indicator value for Zhejiang Province rose
from —0.0013 in 2008-2010 to 1.0661 in 2014-2016, then gradually
declined to 0.3101 in 2020-2022, reflecting an initial strengthening
followed by a weakening of the decoupling effect. This trajectory was
primarily driven by shifts in energy scale and output carbon intensity.
While the energy scale decoupling indicator remained stable during
2008-2019, it surged from —0.3557 to —1.2224 in 2020-2022, indicating
a significantly intensified inhibitory effect on carbon decoupling during
the pandemic. These dynamics underscore Zhejiang’s evolving progress
in advancing energy conservation and emission reduction policies
alongside structural adjustments in its energy mix. While coal’s
share in energy consumption has gradually declined, it remains
with
substantially. Analysis of decoupling indicators reveals that both

dominant, absolute consumption continuing to grow
output carbon intensity and energy consumption carbon intensity
exhibit positive values, indicating their pivotal roles in driving
carbon emission decoupling. In contrast, per capita carbon
emissions and energy intensity show relatively minor contributions
to decoupling, with their average contribution rates below 4%-a trend
consistent across provinces including Zhejiang. Consequently, future
decarbonization strategies should prioritize unlocking energy intensity’s
latent decoupling potential through structural optimization and
technological innovation to achieve strong decoupling effects.

In Anhui Province, the decoupling relationship between
economic growth and carbon emissions exhibited negative
decoupling during the 2008-2013 period, shifting to weak
decoupling from 2014 to 2022. During the weak decoupling phase,
output carbon intensity, energy intensity, and energy consumption
carbon intensity collectively played pivotal roles in advancing carbon
emission decoupling, with their positive contributions effectively
the

decoupling phase, per capita carbon emissions and energy scale

driving emission reductions. Conversely, in negative
exerted dominant influence, significantly inhibiting decoupling
progress due to their amplified carbon lock-in effects. Notably,
during the negative decoupling phase, energy consumption carbon
intensity was predominantly leveraged to expand production scale for
economic growth, while investments in carbon abatement
technologies remained inadequate. This phenomenon reflects the
persistence of extensive economic growth patterns in Anhui
Province, which have yet to undergo substantial optimization.
Despite supplementary emission reduction policies, these efforts
failed to counteract carbon emission increments driven by
economic expansion, resulting in ineffective decoupling outcomes.
To achieve robust decoupling, Anhui must prioritize three strategic
shifts: scaling up R&D investments in carbon capture, utilization, and
storage technologies; transitioning toward intensive growth models
characterized by smart manufacturing and digital energy
management systems; and capitalizing on the ’collaborative
governance framework’ for ecological conservation and industrial
These should be

sectoral carbon budgets

transformation. measures reinforced by

the
provincial carbon pricing mechanism to align with China’s "Dual

implementing and enhancing

Carbon’ policy imperatives.
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4.4 Comparative discussion

This study, employing GDIM decomposition, reveals that
economic scale factors persistently constitute the primary driver
of carbon emission increases in the Yangtze River Delta region, with
energy consumption factors also contributing significantly. Output
carbon intensity and per capita output scale prove critical in
mitigating carbon emissions, aligning with Conclusion from Zhu
(Zhu et al,, 2025). However, a divergence emerges as Conclusion
Zhu posits that per capita output scale exerts a relatively weaker
influence on volatile organic compounds (VOCs) emission changes.
This discrepancy stems from Conclusion Zhu’s predominant focus
on VOCs emissions, which are distinct from the carbon emissions
central to this analysis.

The decoupling indicators reveal that output carbon intensity is
identified as the key factor facilitating carbon emission decoupling,
whereas energy scale constitutes the primary barrier to achieving
decoupling. The Yangtze River Delta region exhibits a progression
from weak to strong and back to weak decoupling. These findings
broadly align with Study (Shen et al., 2024) Shen’s conclusions. Notably,
Shen emphasizes that investment-driven carbon reduction better
promotes decoupling effects, likely attributable to its exclusive focus
on decomposing driving factors within China’s industrial carbon
emissions—a contextual disparity from this regional analysis.
Additionally, Shen reports an overall decoupling trajectory of “no
decoupling-strong decoupling-no decoupling,” diverging from the
pattern observed here. This discrepancy likely stems from the
Yangtze River Delta’s status as a more developed region, which had
already attained weak decoupling in the early 2000s.

5 Conclusion and suggestions
5.1 Conclusion

There are significant differences in the influence of various driving
factors on carbon emissions in the YRD region. From 2008 to 2022, the
economic scale factor has always been the main factor driving the
increase in carbon emissions in the YRD region, followed by the
contribution of energy consumption factors. At the same time, the
population size has also continuously promoted the increase in carbon
emissions in the YRD region, but its contribution is relatively small.
Energy scale is also a vital factor promoting the increase in carbon
emissions in Jiangsu, Zhejiang, and Anhui. Especially in Zhejiang
Province from 2020 to 2022, the energy scale even surpassed the
economic scale to become the largest factor promoting the increase
in carbon emissions. Among the factors promoting the reduction of
carbon emissions, output carbon intensity and per capita output scale
have always played a key role, and the contribution of per capita output
scale to promoting the reduction is particularly significant from 2008 to
2022; the carbon intensity of energy consumption has a relatively
prominent contribution to promoting the reduction only in
Shanghai and Zhejiang; however, energy intensity has always played
a role in promoting the reduction in the entire Yangtze River Delta
region. In addition, carbon emissions per capita have both promoting
and reducing effects on the YRD region.

Regarding the overall period from 2008 to 2022 and its five sub -
stages, most of the decoupling index values in the YRD region are
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positive, that is, there is a decoupling effect. In the five sub - stages,
the decoupling effect in the YRD region has experienced a process of
“weak decoupling - strong decoupling - weak decoupling”,
indicating that the decoupling intensity is relatively large in the
medium term but weakened in the later stage; the decoupling index
in Zhejiang Province has always been positive and has the smallest
change range, reflecting that Zhejiang is at the leading level in
carbon emission governance; the change range of the decoupling
effect in Shanghai is large and the decoupling degree has gradually
decreased since 2016; the decoupling index values in Jiangsu are all
lower than the minimum value required to achieve a strong
decoupling effect, showing negative decoupling and weak
decoupling effects; in contrast, the decoupling effect in Anhui is
relatively small. It showed a negative decoupling effect in the first
two stages and a weak decoupling effect from 2014 to 2022 and is an
area that requires key attention for future carbon emission reduction
in the YRD region. From the perspective of the decoupling index
values of various factors, output carbon intensity is the key factor
promoting carbon emission decoupling, and energy scale is the main
factor inhibiting the achievement of decoupling. Among other
factors, the carbon intensity of energy consumption, carbon
emissions per capita, and energy intensity have a promoting
effect on carbon emission decoupling, while population size has
an inhibiting effect on carbon emission decoupling.

5.2 Policy recommendations

1. The heterogeneity in carbon emission decoupling effects across
the Yangtze River Delta region presents a critical opportunity
for advancing synergistic macro-level governance. Research
reveals significant disparities in decoupling performance
among key economic hubs. For instance, Zhejiang Province
and Shanghai Municipality consistently demonstrate robust
decoupling outcomes, achieving exhibits weaker decoupling
dynamics, failing to attain decoupling status between 2008 and
2013. Policy formulation must thus adopt differentiated
approaches: Zhejiang and Shanghai require intensified
support to sustain and stabilize their trajectory toward
strong decoupling, while Anhui emerges as a priority zone
for targeted intervention, necessitating region-specific policies
to catalyze effective emission decoupling. Under the
framework of integrated governance in the lower Yangtze
River Basin, policies must account for provincial realities
and developmental needs. By strategically aligning industrial
layouts with regional strengths and shortcomings in

decoupling capabilities, policymakers can ensure the efficacy
and applicability of coordinated carbon reduction strategies.

. Scale up support for low-carbon technology research,

development, and application to facilitate a coordinated
green and low-carbon transition across the Yangtze River
Delta region. Research findings indicate a consistent decline
in the output carbon intensity across the Yangtze River Delta
(YRD) region from 2008 to 2022, reflecting the impact of low-
carbon advancements in economic development on carbon
emissions. This trend underscores technological progress as
the
Consequently, it is imperative to adhere to the principle of

decisive factor in addressing carbon emissions.
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synergistic governance within the YRD, leveraging the
of
capabilities to fully harness the carbon-reduction effects of

comparative  advantages provincial  technological
technological innovation. To achieve this, a dual-path
approach is essential: Establishing an “industry-university-
research-application”  integrated  green  low-carbon
technology innovation consortium. By consolidating cross-
regional innovation resources, this model accelerates the
transition of low-carbon technologies from R&D to scaled
deployment, addressing fragmentation in resource allocation
and inefficiencies in commercialization. Developing regional-
synergistic near-zero carbon demonstration clusters. Through
standardized, cross-administrative low-carbon pilot zones, this
initiative resolves efficiency losses caused by fragmented
governance, enabling  dual-driven  advancement of
technology diffusion and policy coordination.

. Continuous optimization of the energy structure and reduction
of energy carbon intensity constitute pivotal measures for
achieving carbon emission reduction and decoupling in the
Yangtze River Delta Basin. Research findings reveal that
energy scale andoutput scaleremain critical drivers of carbon
emission growth and barriers to decoupling effects, with
particularly pronounced impacts in Zhejiang and Anhui

Nevertheless, the of

industries  across and

provinces. persistent dominance
secondary

Anhui—coupled  with  high

Jiangsu,
energy intensity —during

Zhejiang,

industrialization—inevitably links economic expansion to

rising  energy consumption and carbon  emissions.
Consequently, to advance regional decarbonization and
decoupling, targeted strategies must address core challenges
of energy scale expansionand high-carbon industrial
structures, accounting for provincial resource endowments
and developmental disparities. Provincial-specific clean energy
development must be accelerated: Jiangsu should leverage the
comparative advantage of its photovoltaic industry chain to
expand hydrogen energy application scenarios, while Anhui
can harness the geographical potential of southern Anhui’s
mountainous terrain to advance pumped hydro storage
projects, concurrently establishing the Yangtze River Delta
Green Energy Storage Base. Concurrently, the establishment
of a Yangtze River Delta Green Power Trading Center should be
prioritized to enable inter-provincial renewable energy quota
sharing and mutual assistance, alongside deploying digital
technologies to enhance utilization

resource efficiency

through ~ smart  grid  integration and  Al-driven

management systems.

This article is committed to decomposing the driving factors of
carbon emissions in the YRD region and conducting an in-depth
study on the decoupling effect of carbon emissions in this area.
However, it acknowledges its own limitations and suggests that
further research is necessary to enhance the understanding of this
intricate system. Firstly, it has strong data dependency, requiring
complete and high - precision multidimensional time - series data.
Missing data or outliers can significantly increase result deviation.
Secondly, there are issues of computational complexity and
subjectivity. The construction of the Jacobian matrix relies on
manually defined target functions, and factor selection is easily
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influenced by prior knowledge. Moreover, high - dimensional
lead
burdens, making real - time analysis difficult. Thirdly, the linear

operations to exponentially increasing computational
hypothesis assumption posits a linear additive relationship among
factors, failing to capture nonlinear interactions in actual systems
and thus underestimating the contributions of complex interactions.
Lastly, there is insufficient dynamic adaptability. The model has a lag
in responding to exogenous shocks, such as sudden policy changes
or technological breakthroughs. It needs to be combined with

scenario - simulation models to compensate.
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