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The impact of endocrine disrupting chemicals (EDCs) on humans and wildlife
ranks amongst the most insidious of environmental health concerns. Sadly, the
paucity of scientific data on environmental presence of EDCs in developing
countries, especially those of Africa, has recently been described as a major
setback to understanding their region-specific impact and management focus.
Induction of plasma vitellogenin (Vtg) in male oviparous fish has been employed
across the globe as a biomarker of exposure to estrogenic EDCs. However,
despite initial laboratory validation of the suitability of males of Clarias gariepinus
(which has almost a Pan-African distribution) for understanding exposure to EDCs
using plasma Vtg induction, plasma Vtg has not been detected in wild male C.
gariepinus inhabiting EDC-polluted environment, even with a species-specific
enzyme-linked immunosorbent assay (ELISA), and its suitability for biomonitoring
EDCs in African freshwater environments remains to be demonstrated. In the
present study, adult male C. gariepinus samples were collected from two major
urban catchment-impacted rivers, and analysed for endocrine-related gonadal
histopathology and plasma Vtg (using a sensitive commercially available non-
species-specific fish Vtg ELISA). Plasma Vtg was detected in male C. gariepinus
from all sampling sites, while the gonads had normal (histo)morphology. The
findings, contrasting previous reports, strongly suggest that wild males of this
species are suitable for biomonitoring EDCs in African freshwater environments.
Furthermore, the development of a commercially available Vtg ELISA, specifically
for this species (with detection limit and sensitivity comparable to the one used in
the present study), might be worth considering.
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1 Introduction

The impact of endocrine disrupting chemicals (EDCs), a
heterogeneous class of emerging environmental pollutants, on
human and wildlife health has continued to rank as one of the
most insidious of environmental health concerns (La Merrill et al.,
2020). This is further heightened in developing countries where
environmental pollution has become the fallout of rapidly increasing
urbanisation with extensive industrial and agricultural activities
amid the absence of pertinent environmental management
system (Awoke et al., 2016; Sarkodie, 2018). Specifically, about
92% of all pollution-related burden is seen in low- and middle-
income countries (World Bank, 2018), whereas this is not the case in
developed countries where there are advanced environmental
protection systems to combat pollution (Christodoulou and
Stamatelatou, 2016).

Interestingly, as part of international cooperative efforts to
bolster chemical pollution management, a worldwide initiative
was developed to understand current environmental exposure to
EDCs and evidence of endocrine-related adverse effects of EDCs in
order to identify and address EDC-regulation gaps in different
regions of the world (IPCP, 2017a; 2017b). Regrettably, however,
a huge dearth of information on environmental exposure to EDCs
and evidence of their effects on wildlife was identified as a major
setback in developing countries, including those of Africa.
Furthermore, at the First African Endocrine Disruptors Meeting
convened in South Africa by stakeholders to address the impact of
EDCs on human and wildlife health in Africa using available
scientific data, paucity of comprehensive data on environmental
exposure to EDCs was similarly identified as a major challenge
(Bornman et al., 2017). Therefore, actions related to understanding
environmental exposure to EDCs, especially biomonitoring, were
recommended. This was further described as fundamental to the
development of relevant management strategies for EDCs regulation
in Africa.

EDCs are chemicals that interfere with the endocrine system to
disrupt the functions of endogenously produced hormones, and
consequently, result in adverse effects (Hall and Greco, 2019). The
endocrine system, through hormone actions, regulates and
coordinates complex key molecular, cellular and physiological
processes that culminate in development, reproduction and
homeostasis, making it vulnerable to chemical assaults (La
Merrill et al., 2020; Oliveira et al., 2021). Common EDCs include
certain pharmaceuticals, halogenated-hydrocarbons,
organophosphates, phthalates, alkylphenols, bisphenols and
aromatic hydrocarbons. A large number of these chemicals find
wide applications in plastics, industrial solvents, flame-retardants,
agrochemicals and personal care products (Hall and Greco, 2019;
Hilz and Gore, 2023). Consequently, they have become ubiquitous
in the environment with the aquatic systems becoming their
ultimate repository not only in term of its rising sediment, water
and biota contamination levels, but also in terms of the myriad and
magnitude of biological effects on aquatic organisms, especially in
fish (Lee et al., 2017; Imiuwa, 2020; Adeogun et al., 2015).

Widely reported effects of EDCs in fish, which have been shown
to majorly impact reproductive success, include plasma vitellogenin
(Vtg) induction in juvenile and adult male fish, gonadal intersex, sex
ratio alteration and declines in wild fish populations (Baynes et al.,

2023; Kidd et al., 2007). These reproductive effects, which generally
involve the hypothalamic-pituitary-gonadal axis in fish, have
implicated a wide range of EDCs with estrogenic mode of action
(Qie et al., 2021). Estrogenic EDCs have been shown to act like
endogenously produced estrogen in fish. In adult female fish,
circulating estrogen, following production by the ovaries, binds to
and activates hepatic estrogen receptors to induce the production of
the female-specific egg yolk precursor protein, Vtg (Sumpter and
Jobling, 1995). Therefore, hepatic production of Vtg (and its release
into the circulatory system) may be induced not only in adult female
fish, but also in juvenile and adult male fish that are exposed to
estrogenic EDCs, and plasma Vtg has thus been established as the
biomarker of exposure to estrogenic EDCs in juvenile and adult male
fish of various species across the globe (Baynes et al., 2023).

In Africa, the African sharptooth catfish, C. gariepinus, has almost
a Pan-African distribution (Turan, 2016). The species, which is well-
studied, is also a bottom dweller, which makes it particularly
invaluable for understanding bioavailability and toxicity of
contaminants in aquatic systems (Yahia and Elsharkawy, 2014). In
addition, it is one of the most landed inland water fisheries of Africa
(Eyayu et al., 2023). Surprisingly, although estrogenic EDCs have been
shown to induce plasma Vtg production in males of this species in a
laboratory validation study with a species-specific Vtg ELISA
(Braathen et al., 2009), plasma Vtg has not been successfully
detected in wild males inhabiting EDC-polluted freshwater
environments, making it difficult to establish its suitability for
biomonitoring EDCs in African freshwater environments. To
illustrate, in Tanzania, where wild males of C. gariepinus
inhabiting EDC-polluted aquatic systems were evaluated for
plasma Vtg using a species-specific Vtg ELISA, plasma Vtg was
not detected in any of the males from both polluted and reference
sites. Plasma Vtg induction was therefore thought to be below the Vtg
ELISA detection limit (Mdegela et al., 2010). There is another field
study that focused on Dichlorodiphenyltrichloroethane (DDT)-
contaminated sites in Limpopo Province, South Africa. This time,
plasma calcium, magnesium, zinc and alkali-labile phosphates levels
were specifically assayed as a sensitive indirect measure of Vtg, but
only alkali-labile phosphates levels showed subtle responses in the
sites with the highest contamination levels. Again, C. gariepinus was
consequently thought to be tolerant of the endocrine disruptive effects
of EDCs (Brink, Jansen van Vuren and Bornman, 2012). In a third
and most recent field study, Vtg was measured and detected in liver
samples of wild male C. gariepinus inhabiting urban catchment-
impacted freshwater systems in KwaZulu-Natal, South Africa,
using a sensitive commercially available non-species-specific fish
Vtg ELISA (Mdluli et al., 2023). Interestingly (and probably
expectedly), blood samples were not evaluated for plasma Vtg
levels in the study. Given that previous reports strongly suggest
that plasma Vtg may not be detected in wild male C. gariepinus
even in EDC-polluted environments, and that the rate of hepatic
production of Vtg does not necessarily equal that of its secretion into
the circulatory system in all fish species (Reading and Sullivan, 2011),
the observation does not demonstrate the detection of plasma Vtg in
wild male C. gariepinus. It has, therefore, become imperative to clearly
ascertain the suitability, or otherwise, of wild male C. gariepinus for
biomonitoring EDCs in African freshwater environments using
plasma Vtg. It is noteworthy that the species-specific ELISAs
previously used for evaluating plasma Vtg in male C. gariepinus
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are not commercially available (as no such Vtg kits currently exist for
C. gariepinus unlike some other fish species), and may have been
affected by difference in key assay performance parameters (Jensen
and Ankley, 2006). Therefore, the present study seeks to understand
the detectability of plasma Vtg in wild male C. gariepinus using a
highly sensitive non-species-specific fish Vtg ELISA kit that can be
obtained from a common source (i.e., commercially available),
towards clarifying the suitability of this species for biomonitoring
EDCs in African freshwater environment.

2 Materials and methods

2.1 Study area

Benin City, the state capital of Edo State, Nigeria (West Africa), is a
significant socioeconomic landscape. It is characterized by extensive
urbanization, and rapidly increasing industrial and agricultural
activities, all of which have been heavily implicated in
environmental pollution within the city. Two major rivers, including
Osse River, also known as Ovia River (06°12′N, 05° 20′E; Figure 1A),
and Ikpoba River (6.50° N, 5.89° E; Figure 1B), were selected for this
study. Of the river systems draining Benin City, Ikpoba River has the
largest catchment, rendering it a major urban catchment-impacted
river, in addition to several sources of direct industrial effluent input
(Tawari-Fufeyin and Ekaye, 2007). Osse River, on the other hand, has
an extensive agricultural catchment in addition to crude oil exploitation
activities in the river (Tongo et al., 2017). Interestingly, there have been
reports of select EDCs in both rivers (Tongo et al., 2017; Tongo et al.,
2022). For the present study, samples were taken between the reservoir
and the bridge (Site 1), and downstream of the brewery effluent
discharge point (Site 2) in Ikpoba River; while in Osse River,
samples were taken around Ovia bridge (Site 1), and downstream of
the oil exploitation activities at Gelegele (Site 2).

2.2 Fish sample collection, morphometric
measurements, and condition factor

A total of 91 sexually mature C. gariepinus were collected (June -
September, 2019) by artisanal fishermen between 12: 00–6:00 h with
a combination of cast nets and basket trap. Adult male fish, which
included 34 males from Ikpoba River and 27 males from Osse River,
were used for this study. Fish samples were taken live to the
laboratory, and then anaesthetized on ice for identification and
morphometric measurements. Gonads were excised, and blood
samples (caudal puncture) were collected in lithium heparinized
tubes for plasma Vtg analysis.

2.3 Enzyme-linked immunosorbent assay
(ELISA), gonadosomatic index (GSI) and
gonado-histopathological evaluation

Plasma Vtg levels (male fish) were quantitatively determined
using a commercially available sandwich fish Vtg ELISA kit
(Bioassay Technology Laboratory, Cat No. E0020Fi), with a
sensitivity of 0.55 μg/mL. The procedure was performed

according to the manufacturer’s protocols. Although the assay is
not species-specific and is based on the principle of the utility of
conserved regions of fish Vtg without regard to species (Heppell
et al., 1995), it uses a biotinylated secondary fish Vtg antibody (in
addition to the capture fish Vtg antibody) and streptavidin-labelled
horseradish peroxide. The high affinity biotin-streptavidin
interaction provides a system with superior detection and
sensitivity (Bratthauer, 2010). It is intuitively workable to use this
standardized sensitive fish Vtg ELISA that can be obtained from a
common source (i.e., commercially available) given that (i) a non-
commercially available C. gariepinus-specific Vtg ELISA (i.e., an
assay developed by researchers for use in their laboratories) has
previously been reported without plasma Vtg detection in wild male
C. gariepinus inhabiting an EDC-polluted environment (Mdegela
et al., 2010), and (ii) at the moment, a C. gariepinus-specific Vtg
ELISA is not commercially available.

GSI was calculated (using (WG/WB) x100, where WG is weight
of gonad, andWB is body weight, both in gram) with gonad samples
(Zimmerli et al., 2007). With the cranial region, the gonads were
immediately fixed in bouin’s fluid and processed using standard
protocol. Sections (5 µm) were cut and stained as previously
described for C. gariepinus (Barnhoorn et al., 2004). Tissue slides
were examined and photographed using a LEICA 5650 Microscope
with a colour camera connected directly to a monitor using Leica
Application Suite (Version 3.4.0). All procedures involving fish
handling were carried out according to international standards of
animal care (CCAC, 2005).

2.4 Statistical analysis

The data were tested for homogeneity of variance and normality,
and thereafter subjected to independent sample t-test (SPSS version
15.0). As plasma Vtg levels in male fish are normally below detection
limit, or low (if detected), the mean Vtg value across the period of
sampling was used. Graphical presentation was performed using
GraphPad Prism 9.

3 Results

Total length (TL), body weight (BW), condition factor (CF), and
gonadosomatic index (GSI) are shown in Table 1. CF (Ikpoba River),
and TL and BW (Osse River) were not significantly different, while CF
(Osse River) and TL and BW (Ikpoba River) were significantly higher
at Site 1. GSI, although not statistically significant, was slightly higher
at Site 2 than at Site 1 in both rivers. The gonads showed normal
(histo)morphology across all sampling sites, without endocrine-
related gonadal histopathological conditions (Figure 2), while
plasma Vtg analysis revealed elevated levels at both sites (Figure 3).

4 Discussion

While a number of physiological biomarkers are invaluable for
understanding effects of anthropogenic stressors in wild fish
populations, morphometric parameters and condition factor are
key to understanding general growth and development performance
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relative to environmental conditions (Zimmerli et al., 2007). The
total length and body weight of fish sampled from Ikpoba and Osse
Rivers in the present study are typical of adult C. gariepinus (Pillai
et al., 2016), and the observed significant difference in Ikpoba River

may be explained by difference in age as adult C. gariepinus are
usually of different size categories (Bruton and Allanson, 1980).
Furthermore, condition factor was also generally in the range taken
to be indicative of good health condition (Zimmerli et al., 2007;

FIGURE 1
A map of study area (A) Osse River (B) Ikpoba River.
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Pillai et al., 2016). However, it has recently been reported that
endocrine disruptive effects in fish may not negatively impact
condition factor (Adeogun et al., 2016), and this may explain the

observed seemingly unaffected condition factor considering that
plasma Vtg was detected in wild male C. gariepinus in the
present study.

To our knowledge, this is the first field report on plasma Vtg
detection in wild male C. gariepinus. In male and juvenile fish, plasma
Vtg levels are usually below detection limit, or low, unless exogenously
induced (Beresford et al., 2011), and the levels observed in the present
study are higher than the general baseline (0.1–10 µg/mL) reported to be
normally found in male fishes from unpolluted environments
(Hiramatsu et al., 2006). Importantly, it is noteworthy that our
observation clearly contrasts with those of previous field studies that
reported non-detection of plasma Vtg in wild male C. gariepinus
inhabiting polluted environments with both C. gariepinus-specific
Vtg ELISA and indirect measures of Vtg (Mdegela et al., 2010;
Brink, Jansen van Vuren and Bornman, 2012). This non-detection
with the ELISAmay have been caused by inter-laboratory differences in
key assay performance parameters (Hiramatsu et al., 2006; Jensen and
Ankley, 2006), as there was a previous laboratory validation report for
the assay (Braathen et al., 2009). Similarly, the rather subtle response

TABLE 1 Condition factor (CF), total length (TL), body weight (BW) and
gonadosomatic index (GSI) of male C. gariepinus from Ikpoba River and
Osse River. Different letters (superscript) on the values (Mean ± SEM)
indicate significant difference (P < 0.05) across sampling sites within each
river.

Parameters Ikpoba River Osse River

Site 1 Site 2 Site 1 Site 2

CF 1.2 ± 0.1a 0.9 ± 0.1a 1.4 ± 0.2a 0.8 ± 0.1b

TL 43.2 ± 2.9a 26.6 ± 1.29b 23.8 ± 0.6a 24.8 ± 0.6a

BW 1150.0 ± 209a 193.6 ± 34.1b 186.8 ± 26.9a 138.2±14.1a

GSI 0.19 ± 0.05 0.21 ± 0.04 0.21 ± 0.05 0.33 ± 0.05

FIGURE 2
Histological sections of C. gariepinus testis (A) testicular lobules showing spermatogonia (Sg), spermatocytes (Sp) and spermatids (St) (B) lumen (Lu)
of testicular lobules containing free spermatozoa (Sz).

FIGURE 3
Plasma Vtg (Mean ± SEM) of C. gariepinus from both rivers (A) Ikpoba River (B) Osse River.
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with the indirect assay may be attributable to its detection limit, which is
generally thought to be high (Kramer et al., 1998; Hallgren et al., 2012).
Furthermore, regarding the performance of the Vtg ELISA used in the
present study in C. gariepinus, there are no previous field reports on
plasma Vtg measurement in wild male C. gariepinus for reference.
Interestingly, however, the ELISA kit has recently been used to quantify
plasma Vtg in C. gariepinus in a laboratory exposure study
(Erhunmwunse et al., 2023), and in the silver catfish (Chrysichthys
nigrodigitatus), which is a closely related species, in EDC-polluted
aquatic systems (Akangbe et al., 2024); with plasma Vtg levels in
both studies lending credence to the sensitivity and utility of this Vtg
ELISA in C. gariepinus. Additionally, while the specific EDCs (and their
sources) potentially responsible for the observed plasma Vtg were not
determined, it may not be unconnected with pollutants from the
domestic, agricultural and industrial wastes that are generated in the
extensive urban and agricultural catchments of Ikpoba and Osse Rivers
(Tongo et al., 2022; Tongo et al., 2017). Vtg induction in male fish has
been implicated in a myriad of gonadal effects (Palace et al., 2006; Kidd
et al., 2007).

Quite intriguingly, no endocrine-related histopathological
conditions were observed in male C. gariepinus in the present study,
and this may explain the observed gonadosomatic index as similar
values have been reported in gonado-histologically normal wild maleC.
gariepinus (Barnhoorn et al., 2004). Furthermore, the absence of
endocrine-related gonadal histopathological conditions, especially
testis-ova (OECD, 2010), may be attributable to low concentrations
of the actual estrogenic EDCs to which they were exposed. To illustrate,
testis-ova were found in wild male C. gariepinus exposed to 6,360 µg/kg
p-nonylphenol in a polluted freshwater dam in South Africa
(Barnhoorn et al., 2004), whereas in the same species raised in
wastewater stabilizing pond in which they were exposed to 7.8 ng/L
17β-estradiol, there was no testis-ova, despite the observed serum
estrogen level (Asem-Hiablie et al., 2013). Additionally, it has been
demonstrated in males of the fathead minnow, Pimephales promelas,
that very low concentrations of estrogenic EDCs are capable of inducing
testis-ova if exposure persists for several years (Kidd et al., 2007).
Therefore, our observation portends gonadal effects in populations ofC.
gariepinus in both rivers with continued exposure as there are reports of
intersex in wild C. gariepinus.

5 Conclusion

At the very least, our findings clearly contrast with previous
reports of non-detection of plasma Vtg in wild male C. gariepinus in
polluted environments, and suggest strongly that wild males of this
species are suitable for biomonitoring EDCs in African freshwater
environments. Furthermore, the development of a commercially
available Vtg ELISA, specifically for C. gariepinus (with detection
limit and sensitivity comparable to the one used in the present
study), might be worth considering.
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