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Introduction: Accurate multi-pollutant forecasting is vital for urban governance
and public health. Existing deep models struggle to capture multi-scale temporal
dynamics and synergistic cross-pollutant relations.
Methods:We propose an Enhanced Bidirectional Attention Multi-scale Temporal
Network (EBAMTN) that combines a multi-scale TCNwith linear attention, a two-
layer BiLSTM augmented by multi-head self-attention, and a gated fusion layer.
Under a multi-task paradigm, the backbone jointly learns shared temporal
representations and outputs PM2.5 and PM10 via task-specific heads.
Results: Using hourly data from Guangzhou, Beijing, and Chengdu, EBAMTN
achieved R2 > 0.94 for both pollutants while maintaining low errors (e.g., PM2.5
MAE≈2.03, RMSE≈2.94; PM10 MAE≈3.44, RMSE≈4.99). Confidence-interval
analyses and scatter plots indicate strong trend tracking and robustness, with
remaining challenges mainly at sharp peaks.
Discussion: The integration of multi-scale convolutions, bidirectional memory,
attention, and gated fusion improves accuracy, interpretability, and
generalization. The lightweight design (≈2.1M parameters; ~ 13.2 ms/sample)
supports real-time and edge deployment. Overall, EBAMTN offers a scalable,
interpretable solution for multi-pollutant forecasting in complex urban settings.
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1 Introduction

In recent years, with the rapid advancement of urbanization and industrialization, air
pollution has emerged as an increasingly severe public health concern on a global scale. Fine
particulate matter (PM), specifically PM2.5 (particles with a diameter less than 2.5 μm) and
PM10 (particles with a diameter less than 10 μm), has been identified by the World Health
Organization (WHO) as among the most hazardous air pollutants due to their small size
and ability to penetrate deep into the human respiratory system (Organization, 2021).
Numerous studies have demonstrated that prolonged exposure to high concentrations of
PM2.5 significantly increases the risk of asthma, chronic obstructive pulmonary disease
(COPD), cardiovascular and cerebrovascular diseases, as well as the incidence andmortality
rates of lung cancer (Ansari and Ehrampoush, 2019; Lelieveld et al., 2019). Consequently,
developing efficient and accurate air quality forecasting models is of substantial importance
for safeguarding public health and informing environmental policymaking.
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Early air quality forecasting approaches primarily include
numerical models, statistical techniques, and traditional machine
learning methods. Numerical models, akin to weather forecasting
systems, divide temporal and spatial domains into grids based on
atmospheric physical and chemical principles, using computer
simulations to predict meteorological and pollutant data.
Common models include CMAQ, CAMx, and NAQPMS (Appel
et al., 2021; Pouyaei et al., 2021; Liu H. et al., 2021; Qi et al., 2022;
Cheng et al., 2022). Statistical models generally assume linearity and
stationarity, using curve fitting and parameter estimation to model
air quality. Typical examples include ARMA, ARIMA, MLR, and
time series regression (Zhou et al., 2020; Liu B. et al., 2021; Lai and
Dzombak, 2020; Kumari and Singh, 2023; Gong et al., 2022). For
instance, ARIMA achieves good performance in low volatility PM2.5

scenarios in Beijing (Zhao et al., 2022), but its linear structure limits
its capacity to capture nonlinear patterns, seasonality, and external
influences (Box et al., 2015). To address these issues, machine
learning models such as support vector machines (SVM) and
random forests (RF) have been applied to improve nonlinear
feature learning (Karimian et al., 2019). However, they often
require extensive feature engineering and struggle with
generalization.

With the rapid advancement of deep learning, an increasing
number of studies have applied these techniques to air quality time
series forecasting. Depending on architecture, models are
commonly classified into CNN-based, RNN-based, and
attention-based approaches. Convolutional neural networks
(CNNs) are widely used due to their strength in extracting local
spatial features (Wang et al., 2024). As standard CNNs operate on
regular grids, hybrid models are often adopted. For instance,
Zhang and Li (2022) implemented a CNN-LSTM model for air
quality prediction in Beijing. To enhance accuracy, Duan et al.
(2023) proposed an ARIMA-BiLSTM model, which improved
performance by approximately 10%. Among RNN variants, long
short-term memory (LSTM) networks are the most prominent.
Compared with CNNs, LSTMs are better at modeling long-term
temporal dependencies and integrating with other modules. Seng
et al. (2021) predicted PM2.5 concentrations in Beijing 1–3 h ahead
using an LSTM-based approach, while Chen et al. (Tran et al.,
2023) developed an optimized LSTM for hourly PM2.5 forecasting
in highly polluted regions of Taiwan, outperforming traditional
statistical methods. Jin et al. (2021) proposed MTMC-NLSTM, a
nested LSTM-based framework that achieved superior
multivariate air quality forecasting with low training time,
enabling near real-time AQI monitoring. Luo and Gong (2023)
introduced an ARIMA-WOA-LSTM hybrid model for pollutant
prediction. Additionally, GRU-based models have also been
explored; for example, Tao et al. (2019) developed a CBGRU
model combining 1D CNN with bidirectional GRU for PM2.5

forecasting.
In recent years, recurrent neural network models such as RNNs

and LSTMs have achieved strong performance across a wide range
of tasks. However, due to their inherently sequential structure, they
encounter difficulties in parallelizing the training process.
Consequently, batch processing of long-term sequences often
leads to memory limitations. Inspired by the human visual
attention mechanism, attention-based models have been
proposed to address these issues (Niu et al., 2021). Compared

with recurrent models, attention mechanisms offer greater
flexibility in handling inputs of varying shapes and help mitigate
the problem of unbalanced computational resource allocation. As a
result, attention-based architectures have gained widespread
adoption and become one of the most prominent deep learning
paradigms. Zhang et al. proposed a lightweight deep learning
approach based on sparse attention mechanisms within
Transformer Networks (Zhang et al., 2023), aimed at capturing
long-term dependencies and complex feature relationships from
input data. Iskandaryan et al. employed graph neural networks
(GNNs) to predict air quality in Madrid (Iskandaryan et al.,
2023). Their model integrates attention mechanisms, gated
recurrent units (GRUs), and graph convolutional networks
(GCNs). Experimental results show that the proposed method
outperforms other approaches, including Time Graph
Convolutional Networks (TGCNs), LSTM, and GRU models.
Based on these research advances, incorporating attention
mechanisms into other air quality forecasting models emerges as
a promising direction for improving prediction accuracy and
enhancing model interpretability (Ma et al., 2024).

Although deep learning-based models have achieved
considerable progress in air quality forecasting, several key
challenges remain. First, many existing models focus solely on
single-scale temporal features, overlooking the multi-scale nature
of pollutant concentration variations. This limitation hinders the
model’s ability to jointly capture short-term fluctuations and long-
term trends. Second, most models adopt a single task learning
architecture, which fails to exploit the inherent correlations and
synergistic relationships between multiple pollutants (e.g., PM2.5

and PM10), thereby limiting predictive performance. Furthermore,
some models suffer from overly complex structures, high
computational costs, and poor interpretability, which restrict
their scalability and real-world applicability. Despite significant
progress in deep learning-based air quality forecasting, a critical
gap remains in integrating both multi-scale temporal dynamics and
multi-task pollutant prediction. Most existing approaches either
focus on fine-grained temporal modeling without considering
inter-pollutant relationships, or treat each pollutant as an
independent task, failing to leverage the inherent synergy
between them. Additionally, there is limited exploration of
architectures that combine multi-resolution convolutional
modules with bidirectional sequence modeling and task-shared
attention mechanisms. This lack of unified multi-scale, multi-task
frameworks limits the adaptability and accuracy of models in
complex, real-world urban environments. To address these issues,
this paper proposes a novel multi-task air quality forecasting model
with the following key contributions:

1. A novel deep learning model named Enhanced Bidirectional
Attention Multi-scale Temporal Network (EBAMTN) which is
introduced to capture dynamic patterns across multiple
temporal scales, which integrates a multi-scale attention
Temporal Convolutional Network with an enhanced
bidirectional attention LSTM. By employing parallel multi-
scale convolutional branches, the model effectively captures
temporal features across different receptive fields, thereby
improving its capability to model multi-scale dynamic
patterns in air quality data.
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2. A cross-branch attention mechanism and a temporal attention
mechanism are introduced to dynamically fuse multi-scale
features and enhance feature responses at critical time steps,
respectively. These mechanisms improve both the expressive
capacity and interpretability of the model.

3. A multi-task prediction framework is designed to enable the
joint modeling of PM2.5 and PM10, effectively leveraging the
synergistic relationship between pollutants and significantly
enhancing overall prediction performance.

The remainder of this paper is organized as follows. Section 2
(Materials andMethods) provides a comprehensive review of related
work and introduces the structure of the proposed EBAMTNmodel,
including detailed algorithmic components. Section 3 (Results and
Analysis) presents experimental settings, performance comparisons,
and visualized results across three cities. Section 4 (Conclusion)
summarizes key contributions and outlines potential directions for
future enhancement.

2 Materials and methods

2.1 Related work

2.1.1 Temporal Convolutional Network
The Temporal Convolutional Network (TCN) is a convolutional

neural network architecture specifically designed for sequence
modeling tasks (Bednarski et al., 2022). Unlike traditional
recurrent neural networks (RNNs) and their variants such as
LSTM and GRU, TCNs utilize causal and dilated convolutions to
capture temporal dependencies while enabling high degrees of
parallelism and ensuring stable gradient propagation. TCNs have
demonstrated strong performance across various sequential tasks,
including time series forecasting, speech synthesis, and natural
language understanding (Chen et al., 2020). A complete TCN
architecture consists of three main components: causal
convolution, dilated convolution, and residual connections
between inputs and outputs (denoted as X and Y). These
components are described in detail below:

X � x1, x2, . . . , xT[ ] ∈ RC×T (1)
Y � y1, y2, . . . , yT[ ] ∈ RD×T (2)

Key formulations for the TCN components are summarized in
Equations 1–7.

2.1.1.1 Causal convolution
To ensure temporal consistency and prevent information

leakage from future time steps, the TCN employs causal
convolution. In this design, the output at time step t, denoted as
yt, depends strictly on the inputs up to time t, i.e., x1, x2, . . . , xt,
without accessing any future values. This property is essential for
predictive modeling in real-world time series scenarios.

In a causal one-dimensional convolution, the output y at time
step t is computed as:

yt � ∑k−1
i�0

wi · xt−i (3)

where k is the kernel size, wiis the ithconvolutional weight, and
x represents the corresponding input at an earlier time step. This
formulation ensures that the model adheres to the causal constraint,
making it suitable for time-dependent forecasting tasks.

2.1.1.2 Dilated convolution
The second component is dilated convolution, which is

employed in TCNs to expand the receptive field without
significantly increasing model depth or computational cost.
Dilated convolution introduces a fixed interval, known as the
dilation factor, between input elements, allowing the model to
efficiently capture long-range temporal dependencies. When used
across multiple layers with exponentially increasing dilation factors,
the model can simultaneously learn both short-term fluctuations
and long-term trends. To expand the receptive field in causal
convolution, the dilation factor d is introduced, and the dilated
convolution is defined as:

yt � ∑k−1
i�0

wi · xt−d·i (4)

where k is the convolution kernel size, d is the dilation factor, wi is
the ith convolution weight, and xt−di is the input at a dilated position.
This formulation allows TCNs tomodel temporal dependencies over
a broader range with fewer layers. When d � 1, the dilated
convolution becomes equivalent to a standard causal convolution.
An exponentially expanding receptive field can be achieved by
increasing the dilation factor exponentially across layers, for
example: 1, 2, 4, 8. Under this configuration, the total receptive
field of a multi-layer TCN can be calculated as:

Receptive Field � k − 1( ) ·∑L−1
l�0

dl + 1 (5)

where k is the kernel size, L is the number of layers, and dl is the
dilation factor at the lth layer. This formulation enables efficient
modeling of both local and long-range temporal dependencies while
maintaining computational efficiency.

2.1.1.3 Residual connections
TCN incorporates residual connections, where each residual

block consists of two dilated convolutional layers, each followed by
weight normalization, ReLU activation, and dropout for
regularization. These residual links are crucial for facilitating
gradient flow and mitigating degradation in deep networks.
When the input and output dimensions differ, a 1×
1 convolution is applied to align them. Each residual block,
denoted as F (l)(x), is defined as:

F l( ) x( ) � σ Dropout σ Conv1D 2( ) Dropout Conv1D 1( ) x( )( )( )( )( )( )
(6)

where σ denotes the ReLU activation function. The final output of
the residual block is obtained by adding the input x to the
block output:

y l( ) � F l( ) x( ) + x (7)

This residual structure helps stabilize training and enables the
construction of deeper TCN models.
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2.1.2 Long short-term memory
Long Short-Term Memory (LSTM) networks have been widely

used for sequence modeling due to their ability to capture long-
range temporal dependencies. In this study, we adopt LSTM as one
of the baseline models. Its structure and mathematical formulation
can be found in prior works (Hochreiter and Schmidhuber, 1997).
The detailed description is omitted here for brevity, as our focus lies
in the proposed architectures.

2.2 Method

2.2.1 Problem formulation
The air quality forecasting task is formalized as a multi-task

series prediction problem. Let the historical input sequence be
X � {x1, x2, . . . , xT} ∈ RT×d, where T denotes the number of time
steps and d represents the feature dimension. The objective of
modeling is to simultaneously predict the concentration levels of
PM2.5 and PM10 at each time step t, represented as
y � [y2·, y1] ∈ R2. The proposed multi-task learning
framework not only captures the potential interdependence
between different pollutants but also improves the generalization
ability of the model by leveraging shared representations. Prior
studies have demonstrated a strong physicochemical correlation
between PM2.5 and PM10, and this correlation can be effectively
exploited through the feature-sharing mechanism to enhance
prediction accuracy. To formally represent the multi-task
prediction process, we denote the predictive function as follows:

ŷt � f xt−w+1:t; θ( ), ŷt ∈ R2 (8)
where f f(; θ) is the forecasting model with learnable parameters θ, and
xt−w+1:t is a window of past w time steps. The model outputs the
predicted values for PM2.5 and PM10 simultaneously at each time step t.

2.2.2 Enhanced bidirectional attention multi-scale
temporal network (EBAMTN)

To effectively model the complex temporal evolution of air
pollutant concentrations, this paper proposes a multi-module

synergistic deep hybrid architecture. The overall architecture is
illustrated in Figure 1 and comprises four key sub-modules: 1) a
Multi-Scale Temporal Convolution Module with Linear Attention,
2) an Enhanced Bidirectional LSTM with Muti-Head Attention, 3) a
Feature Fusion Module with Gating, 4) Multi-Task Output Heads.
This integrated design enables the model to capture both short-term
fluctuations and long-term trends in air quality data. Moreover, it
demonstrates strong generalization capability and supports
simultaneous multi-target forecasting.

2.2.2.1 Multi-scale TCN with attention
Air quality data are inherently nonlinear and non-stationary,

often exhibiting multi-frequency and multi-periodic temporal
patterns. These patterns arise from a variety of real-world factors,
such as morning and evening traffic congestion, diurnal temperature
fluctuations, seasonal monsoon cycles, and changes in human
mobility during holidays (Zhang and Zhang, 2023). Such multi-
scale temporal variations are reflected not only in short-term abrupt
changes but also in long-term evolving trends. Therefore, developing
a temporal modeling structure that can simultaneously perceive
short-term fluctuations and long-term dependencies is essential for
achieving high-accuracy air quality forecasting. To this end, we
propose a Multi-Scale Temporal Convolutional Network (Multi-
Scale TCN) module that integrates three key components: (1)
parallel dilated convolution branches, (2) a lightweight channel-
wise attention-based fusion mechanism, and (3) a stacked dilated
convolutional structure with skip connections. This design enables
the model to effectively capture air quality dynamics at multiple
temporal resolutions.

First, the preprocessed input features are fed into three parallel
Dilated Causal Convolutional branches, each using a different kernel
size (3, 5, and 7) with fixed dilation. These branches are designed to
capture temporal dependencies at local, intermediate, and broader
scales, respectively. Through parallel multi-scale modeling, the
network can simultaneously detect fine-grained variations and
overarching temporal trends. Next, to enhance the flexibility and
adaptiveness of multi-scale feature integration, a channel-wise
attention fusion module is introduced. This mechanism applies
global average pooling to the output of each convolutional

FIGURE 1
Architecture of the EBAMTN model.
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branch to generate scale-specific descriptor vectors, followed by a
linear attention mechanism to compute the importance weights for
each scale. This dynamic weighting allows the model to emphasize
informative branches and achieve adaptive scale-aware feature
fusion. The resulting fused representation exhibits both strong
temporal perception and scale discrimination capabilities. Finally,
to extract deeper hierarchical temporal features, the fused output is
passed through a stack of causal convolution layers with
exponentially increasing dilation factors (e.g., d = 1, 2, 4, 8, . . .).
Each layer incorporates skip connections to enhance feature
propagation and stabilize gradient flow. The outputs from all
skip connections are aggregated to produce the final
representation of the multi-scale convolution module.

In summary, the proposed module demonstrates strong
capabilities in temporal feature extraction and dynamic fusion.
By leveraging the dilation mechanism to effectively expand the
receptive field, the model significantly improves its performance
and generalization in multi-scale air quality modeling tasks. Let the
input tensor beX ∈ R, where B is the batch size,C_in is the number
of input features, and T is the temporal length. The input is
processed by three parallel 1D dilated causal convolutions with
different kernel sizes (3, 5, 7), producing outputs:

Fi � Conv1Di X( ), i ∈ 1, 2, 3{ } (9)
To fuse multi-scale features, we first apply global average

pooling over the temporal dimension to obtain descriptor vectors:

zi � 1
T
∑T
t�1

Fi : , : , t( ) (10)

An attention mechanism then computes scale-aware weights:

αi � exp w⊤zi( )
∑3

j�1 exp w⊤zj( ) (11)

where we are learnable weight vectors. The final fused output is the
weighted sum of branch outputs:

Fmulti � ∑3
i�1

αi · Fi (12)

To capture deeper temporal dependencies, the fused
representation is passed through a stack of dilated convolution
layers with exponentially increasing dilation factors (d � 21).
Each layer performs:

F l( ) � ReLU BN Conv1D F l−1( ); d � 2l−1( )( )( ) (13)
followed by a skip connection:

skipl � Conv1Dk�1 F l( )( ) (14)

The final output of the module aggregates all skip outputs:

FTCN � ∑
l

skipl (15)

The multi-scale attention TCN is formally defined in
Equations 9–15.

1: for each kernel_size in [3,5,7]: do

2: branch_output[k] = Conv1d(input, kernel_size = k)

3: attention_weight =

Softmax(Linear(GlobalAvg(branch_output)))

4: multi_scale_output = Σ attention_weight[i] *

branch_output[i]

5: end for

6: for each layer i in TCN_layers: do

7: output_i = Conv1d + BN + ReLU + Dropout

8: skip_i = Conv1d(output_i, kernel = 1)

9: skip_list.append(skip_i)

10: end for

11: TCN_output = Σ skip_list

Algorithm 1. Multi-scale TCN with Attention.

The overall procedure is summarized in Algorithm 1.

2.2.2.2 Bi-LSTM with attention
The concentration sequences of air pollutants exhibit

pronounced temporal dependencies, particularly under complex
meteorological conditions such as cross-day lag and persistent
high-pressure accumulation (Ziernicka-Wojtaszek et al., 2024).
Traditional unidirectional recurrent models often fail to
comprehensively capture the bidirectional flow of information in
time series. To address this limitation, we incorporate a two-layer
bidirectional Long Short-TermMemory (BiLSTM) network into the
model, with 64 hidden units per direction. This structure is capable
of modeling both forward and backward temporal dependencies,
thereby facilitating the learning of pollutant accumulation,
propagation, and feedback mechanisms over time. As a result, it
significantly enhances the model’s ability to capture the evolving
trends in air pollution dynamics. To further strengthen the model’s
capacity to identify critical temporal segments, especially in cases of
sudden pollution bursts, non-stationary fluctuations, or structural
regime shifts (Dong et al., 2024). We introduce a multi-head self-
attention mechanism following the BiLSTM outputs. This
mechanism computes relevance scores between time steps using a
Query–Key–Value structure and learns multiple types of
dependencies in parallel subspaces. Conceptually, it constructs a
soft “global memory” over the sequence, allowing the model to
dynamically focus on salient moments and better capture non-local
interactions within the temporal context.

However, LSTM and attention modules produce feature
representations of different nature (Khan and Hossni, 2025).
Simply concatenating or summing their outputs may result in
redundancy, representational conflict, or even degradation in
generalization. To alleviate such issues, we further introduce a
gating mechanism to adaptively fuse the outputs from the LSTM
and attention layers. This mechanism employs a learnable gate to
generate dynamic weights based on the joint input, thereby
regulating the flow and contribution of each representation and
ensuring a more coherent integration. Formally, let the input
sequence to the module be:

X ∈ RB×T×D (16)
where B is the batch size, T is the number of time steps, and D is the
input feature dimension. The sequence is first passed through a two-
layer BiLSTM, producing forward and backward hidden states
concatenated as:
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H � h→; h←[ ] ∈ R2d (17)

This output is then used as Query, Key, and Value in the multi-
head self-attention mechanism, defined as:

Attention Q,K,V( ) � softmax
QK⊤


dk

√( )V (18)

The resulting attention-enhanced representation is A ∈ R2. To
integrate both representations, a gating mechanism is applied:

G � σ Wg H;A[ ] + bg( ) (19)
Hgated � G ⊙ H + 1 − G( ) ⊙ A (20)

where σ denotes the sigmoid activation function, Wgand bg are
learnable parameters, and ⊙ represents element-wise multiplication.
This gating strategy enables the model to dynamically select the
most reliable information source at each time step, thereby
improving the stability and discriminative power of the learned
temporal features.

The BiLSTM-attention module and gating are given in
Equations 16–20.

Finally, the fused representation Hgated is passed through a fully
connected projection layer to produce a unified hidden
representation, which is subsequently fed into the downstream
fusion and multi-task prediction modules. The specific pseudo-
code is as follows:

1: # Input: X_lstm ∈ R ∧ {B × T × D}

2: # B: Batch size, T: Time steps, D: Feature dimension

3: # Step 1: Bidirectional LSTM

4: H_fwd, H_bwd = LSTM_forward(X_lstm)

5: H = concat(H_fwd, H_bwd) # H ∈ R ∧ {B × T × 2H}

6: # Step 2: Multi-head self-attention

7: Q = K = V = H

8: A = MultiHeadAttention(Q, K, V) # A ∈ R ∧ {B × T × 2H}

9: # Step 3: Gating mechanism

10: G = sigmoid(Linear(concat(H, A))) # G ∈ R ∧ {B ×

T × 2H}

11: H_gated = G ⊙ H + (1 - G) ⊙ A # Element-wise fusion

12: # Step 4: Output projection

13: Output = Linear(H_gated) # Project to desired

hidden dimension

Algorithm 2. Bi-LSTM with Attention.

The steps of the BiLSTM-attention module are provided in
Algorithm 2.

2.2.2.3 Fusion and prediction
Following the TCN and BiLSTM modules, the model

concatenates the two output representations along the last
dimension and applies a gated fusion network dynamically
integrate temporal and contextual information. This fusion
module adopts a fully connected layer followed by ReLU
activation and dropout, enabling nonlinear feature
transformation while suppressing redundant information. The
fused representation from the TCN and BiLSTM modules is
computed as:

Hfusion � ReLU Wf Ftcn; H′[ ] + bf( ) (21)

where Ftcn is the output from the TCN module, andH′ denotes the
gated BiLSTM-attention output. The attention weights over the
temporal dimension are computed as:

wt � σ WtHfusion,t + bt( ), ∀t ∈ 1, . . . , T{ } (22)

The time-aware representation is obtained by element-wise
multiplication:

Hweighted � Hfusion ⊙ w (23)

At the final stage, two parallel output heads are employed
to predict PM2.5 and PM10 concentrations, respectively.
Each head is implemented as a two-layer MLP, where the
hidden dimension is reduced before generating one-step
predictions (which can be extended to multi-step
forecasting). This dual-head structure facilitates shared
temporal representation learning while maintaining task-
specific output variability. For each task k ∈ PM2.5, PM10{ },
the prediction is computed as:

ŷk � Wk2 · ReLU Wk1Hweighted,T + bk1( ) + bk2 (24)

where Hweighted,T is the fused feature at the final time step. The
overall training objective is defined as a weighted sum of mean
squared errors for both prediction tasks:

Ltotal � α · LPM2.5 + 1 − α( ) · LPM10 (25)
The fusion, temporal weighting, task heads and loss follow
Equations 21–25.
where α ∈ [0, 1] is a hyperparameter that balances the learning
priorities of the two tasks. The specific pseudo-code is
as follows:

1: # Inputs:

2: # F_tcn ∈ R ∧ {B × T × C1} ← from TCN module

3: # H_lstm ∈ R ∧ {B × T × C2} ← from BiLSTM +

Attention module

4: # B: Batch size, T: time steps, C1/C2: channel

dimensions

5: # Step 1: Feature concatenation and nonlinear

gated fusion

6: H_concat = concat(F_tcn, H_lstm, dim = −1) # [B, T,

C1 + C2]

7: H_fusion = ReLU(Linear(H_concat)) # [B, T, C_fused]

8: H_fusion = Dropout(H_fusion)

9: # Step 2: Temporal Attention Mechanism (TAM)

10: w_t = Sigmoid(Linear(H_fusion)) # [B, T, 1]

11: H_weighted = H_fusion * w_t # Element-wise weight

across time

12: # Step 3: Extract final time step representation

13: H_final = H_weighted[:, −1, :] # [B, C_fused]

14: # Step 4: Task-specific MLP heads for PM2.5 and PM10

15: y_pm25 = Linear2(ReLU(Linear1(H_final))) # [B, 1]

Algorithm 3. Fusion and Multi-Task Output Module.
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The rationale behind the architectural design of EBAMTN is
further summarized below, emphasizing its effectiveness and
explainability: The design of the EBAMTN architecture is
motivated by the need to effectively model both fine-grained
temporal dynamics and inter-pollutant interactions in real-world
air quality forecasting scenarios. The use of parallel multi-scale
convolutional branches enables the model to simultaneously
capture short-term fluctuations and long-term periodic trends.
The bidirectional LSTM component models sequential
dependencies from both past and future directions, while the
multi-head attention mechanism selectively focuses on
informative time steps, improving interpretability. Moreover, the
gated fusion mechanism adaptively balances contextual information
from different modules, preventing feature redundancy and
enhancing robustness. By jointly modeling PM2.5 and PM10 in a
multi-task setting, the framework leverages inherent pollutant
correlations, leading to improved generalization. These design
choices collectively contribute to the model’s superior predictive
performance, while maintaining interpretability and scalability for
deployment.

Fusion and multi-task output are detailed in Algorithm 3.

2.3 Experiments

2.3.1 Dataset and preprocessing
In this study, air quality monitoring data from three cities in

China (Guangzhou, Chengdu and Beijing. For each city, data from a
single central monitoring site was used to ensure consistency and
avoid spatial heterogeneity.) are used to validate the effectiveness of
the proposed model. The dataset contains hourly observations of
two key pollutants, PM2.5 and PM10. The preprocessing procedure
includes three main steps: temporal alignment, feature
normalization, and supervised sequence construction. First, the
raw data were sorted by timestamp (year-month-day-hour), and
records with missing values were removed to ensure temporal
continuity and data integrity. Second, the concentration values of
PM2.5 and PM10 were independently normalized to the [0, 1] range
using the MinMaxScaler method, which improves gradient stability
and convergence efficiency during training. Finally, supervised
learning samples were generated using a sliding window strategy,
where the past 168 consecutive hours (i.e., 1 week) of pollutant
concentrations are used to predict the concentration in the next
hour. The dataset used in this study is divided into training,
validation, and test sets in a ratio of 70:15:15, resulting in
approximately 25,000 sample sequences for training and
5,400 sequences each for validation and testing. To enhance the
robustness and generalization ability of the model, Gaussian noise
with a noise factor of 0.05 is added to the input data during training.
Data loading and mini-batch processing are implemented using

PyTorch’s DataLoader, with the batch size set to 128 to strike a
balance between computational efficiency and training stability.
Experimental results demonstrate that this preprocessing strategy
significantly improves the model’s predictive performance, reducing
the average prediction error on the validation set by approximately
10%. To provide a clear view of the input features, Table 1 lists all
predictor variables used in this study. Each variable consists of the
past 168 hourly observations (i.e., 1 week of data).

2.3.2 Implementation details
To ensure the reproducibility of all experiments, a fixed random

seed (seed = 42) was used for data partitioning and model
initialization. All experiments were conducted on a single
workstation equipped with an NVIDIA GeForce RTX
3090 Laptop GPU, an 11th Gen Intel(R) Core (TM) i7-11800H
CPU, 8 GB of dedicated GPU memory, and 16 GB of system RAM.
The model was implemented using the PyTorch 1.9.0 deep learning
framework. Model performance was comprehensively evaluated
using three standard metrics: Mean Squared Error (MSE), Mean
Absolute Error (MAE), and the Coefficient of Determination (R2).
The model was trained using a mini-batch size of 128, and
parameters were updated using the Adam optimizer, with an
initial learning rate of 0.001 and a weight decay coefficient of
0.0001. A cosine annealing learning rate scheduler was adopted
with a cycle length of 100 epochs to improve convergence.
Additionally, gradient clipping with a threshold of 1.0 was
applied to prevent gradient explosion. An early stopping strategy
was used to prevent overfitting, whereby training was terminated if
the validation loss did not improve for 10 consecutive epochs. To
enhance model robustness, Gaussian noise with a noise factor of
0.05 was added to the input data during training.

The proposed model adopts a novel hybrid architecture that
integrates multi-scale Temporal Convolutional Networks (TCN)
and an enhanced Bidirectional LSTM. The multi-scale TCN
module contains three parallel convolutional branches with
kernel sizes of 3, 5, and 7, and corresponding output channel
sizes of 32, 64, and 128, respectively. Each branch is followed by
batch normalization, a ReLU activation function, and a dropout
layer with a dropout rate of 0.1. The outputs of these branches are
dynamically weighted and fused using a lightweight channel-wise
attention mechanism, implemented via a linear transformation
followed by a softmax function. The enhanced LSTM module
employs a two-layer bidirectional LSTM with a hidden size of
64 and integrates a multi-head self-attention mechanism to
strengthen the model’s capacity for capturing long-range
temporal dependencies. To effectively merge the outputs of the

TABLE 1 List of predictor variables used in the model.

Variable Description

PM(t−1:t−168)
2.5

Historical values of fine particulate matter (last 168 h)

PM(t−1:t−168)
10

Historical values of coarse particulate matter (last 168 h)

TABLE 2 Computational efficiency and deployment feasibility of EBAMTN.

Metric Value

Total training time (100 epochs) 2.4 h

Avg. time per epoch 1.45 min

Number of trainable parameters 2.1 million

Inference time per sample 13.2 ms

Edge deployability Supported (e.g., Jetson Nano, ARM SoCs)
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TCN and LSTM modules, a gated fusion mechanism is adopted.
This mechanism uses a sigmoid-activated gating network to
compute the importance of each representation and leverages
residual connections to stabilize gradient propagation and
mitigate vanishing gradients. At the output stage, the model
adopts a multi-task prediction structure, where PM2.5 and PM10

concentrations are predicted through two separate MLP heads.
These heads share the same feature extraction backbone but
operate independently in prediction, and their learning objectives
are balanced using a dynamic task weighting strategy α � 0.5. The
training of the EBAMTNmodel was conducted on a single NVIDIA
RTX 3090 GPU. The detail as shown on the Table 2, total training
time for 100 epochs was approximately 2.4 h, with an average of
1.45 min per epoch on the combined multi-city dataset. The final
model contains approximately 2.1 million trainable parameters.
During inference, the model achieves an average forward pass
time of 13.2 milliseconds per instance (batch size = 1), making it

suitable for real-time deployment. Due to its modular and
lightweight design, the model can be efficiently quantized and
deployed on edge devices such as NVIDIA Jetson or high-
performance ARM-based systems with limited computational
resources. In scenarios where on-device training is not feasible,
the model can be pre-trained centrally and optimized for inference
using techniques such as model pruning, weight quantization, or
TensorRT acceleration. These approaches can significantly reduce
memory and computational requirements, making real-time edge
deployment viable.

Through a combination of multi-scale feature extraction,
attention-enhanced sequence modeling, and adaptive feature
fusion, the proposed model achieves significantly improved
prediction accuracy while maintaining computational efficiency.
Detailed quantitative results and comparisons with baseline
methods are presented in the following section.

3 Results and Analysis

3.1 Results performance

From Table 3, it can be concluded that for PM2.5, the EBAMTN
model achieves an MAE of 2.0303, an RMSE of 2.9470, and an R2 of
0.9461 in GuangZhou dataset, indicating high prediction accuracy

TABLE 3 Prediction performance of the EBAMTNmodel for PM2.5 and PM10.

Model PM2.5 PM10

MAE RMSE R2 MAE RMSE R2

EBAMTN 2.03 2.94 0.94 3.44 4.99 0.94

FIGURE 2
Prediction results for PM2.5 and PM10 using the EBAMTN model.
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and effective control over prediction errors. The R2 value
approaching 0.95 suggests that the model can explain more than
94% of the variance in PM2.5 concentrations, reflecting its strong
fitting capability and stable prediction performance for fine
particulate matter. In the case of PM10 prediction, although the
error metrics are slightly higher (MAE = 3.4484, RMSE = 4.9916),
the R2 remains high at 0.9440, demonstrating that the EBAMTN
model maintains robust temporal modeling capabilities, even in
scenarios characterized by greater volatility and fluctuation in coarse
particulate matter concentrations. The similarity of R2 values for
PM2.5 and PM10 further highlights the model’s cross-pollutant
generalization ability, confirming its suitability for multi-pollutant
synergistic forecasting tasks.

Figure 2 illustrates the effectiveness of the proposed model in
long-term time-series forecasting of PM2.5 and PM10

concentrations, while also providing a quantitative assessment of
prediction uncertainty through the incorporation of confidence
intervals. The upper panel presents the prediction results for
PM2.5, and the lower panel corresponds to PM10. In the PM2.5

prediction, the red dashed line (representing predicted values)
closely follows the blue solid line (true values), demonstrating the
model’s strong capacity to capture both long-term trends and short-
term fluctuations. The shaded regions representing confidence
intervals remain relatively narrow across most of the time
horizon and only expand slightly during periods of abrupt
pollution changes. This indicates that the model not only delivers
accurate point forecasts but also maintains high confidence and
robustness in its probabilistic predictions. Similarly, for PM10, the
predicted trend aligns well with the observed values. Although the
confidence intervals become wider during moments of sudden
pollution variation, the predicted values consistently fall within
reasonable bounds. This highlights the model’s strong
generalization capability and temporal stability in modeling

pollutants with different variability scales. The stable and
consistent performance across both PM2.5 and PM10 predictions
further confirms the effectiveness of the proposed multi-task model
architecture, demonstrating its ability to jointly learn and generalize
across multiple pollutant forecasting tasks.

Figure 3 illustrates the predicted concentrations of PM2.5 and
PM10 over the final 100 h of the test set, compared against the true
observed values. The upper subplot presents the PM2.5 results,
showing that the model effectively captures the overall temporal
trend and maintains a high degree of consistency with actual
fluctuations. Nevertheless, during periods of abrupt changes in
concentration, the predicted values exhibit slight overestimation
or temporal lag, suggesting that the model’s responsiveness to short-
term rapid variations still has room for improvement. In the lower
subplot for PM10, the model similarly captures the general trend;
however, a noticeable and systematic overestimation occurs during
pollution peaks. This bias may arise from the model’s limited
capacity to model dispersion dynamics or sensitivity to input
features under high-pollution regimes. Despite this, during more
stable periods with moderate pollution levels, the predictions align
well with the true observations, demonstrating strong performance
under relatively steady conditions.

Overall, the model shows promising results in modeling the
temporal dynamics and variability of both PM2.5 and PM10.
However, enhancing accuracy at extreme fluctuation points
remains an important area for further improvement.

The scatter plots provided (as shown in Figure 4) illustrate the
regression analysis comparing the observed and predicted values of
PM2.5 and PM10, effectively visualizing the predictive performance
of the proposed model. In the PM2.5 plot (left panel), most data
points are closely clustered around the regression line, indicating a
strong linear correlation and demonstrating that the model
effectively captures the overall trend of pollutant concentrations.

FIGURE 3
Comparison of predicted and actual values for PM2.5 and PM10 over the last 100 h.
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However, a noticeable dispersion is observed in the high
concentration region, suggesting that the model’s prediction
accuracy declines under extreme pollution conditions. In the
PM10 plot (right panel), a similar strong linear trend is observed,
with most data points distributed tightly along the regression line,
confirming the robustness and reliability of the model under typical
conditions. Nonetheless, the spread of data points also increases at
higher concentration values, reflecting a potential limitation of the
model in predicting outliers or peak pollution levels.

Overall, the regression analysis confirms the model’s strong
predictive capability under normal pollution levels, while also
highlighting areas for potential improvement under high-
pollution scenarios. These limitations could be addressed through
targeted model enhancements such as rebalancing the training
data, introducing adaptive loss functions, or applying data
augmentation strategies specifically designed to emphasize
extreme value learning.

3.2 Comparison study

Based on the comparison table provided, the prediction
performance of various models for air quality forecasting is
comprehensively analyzed as shown in Table 4. Traditional
machine learning models such as Random Forest (RF) and
Support Vector Regression (SVR) exhibit relatively poor
performance, with R2 values for both PM2.5 and PM10 falling
below 0.7. This indicates their limited capacity in capturing
complex temporal dependencies, which are essential for accurate
air quality prediction. In contrast, deep learning models such as
LSTM and TCN show significant improvements. Their R2 scores
increase to the range of 0.72–0.77, highlighting the advantages of
neural networks in modeling sequential patterns. However, both
models still exhibit limitations in prediction accuracy and stability
when used individually. The TCN-LSTM hybrid model, which
integrates convolutional and recurrent architectures, achieves

FIGURE 4
Regression plots of true vs. predicted concentrations for PM2.5 and PM10.

TABLE 4 Performance comparison of different models for PM2.5 and PM10 prediction tasks.

Model PM2.5 PM10

MAE RMSE R2 MAE RMSE R2

RF (Kim et al., 2023; Kalantari et al., 2025) 13.13 17.70 0.65 15.21 17.81 0.61

SVR (Kalantari et al., 2025) 18.19 23.50 0.58 21.18 24.61 0.54

LSTM (Kristiani et al., 2022; Xayasouk et al., 2020) 11.28 15.71 0.72 11.77 16.02 0.69

TCN (Tang et al., 2021) 10.49 13.41 0.77 11.23 13.21 0.75

TCN-LSTM (Ren et al., 2023) 9.83 15.43 0.88 15.75 26.59 0.87

Informer (Lin et al., 2024) 7.70 9.46 0.92 10.32 12.99 0.91

EBAMTN (ours) 2.03 2.94 0.94 3.44 4.99 0.94

Bold indicates the best result in each column (lowest MAE/RMSE or highest R2).
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better performance for PM2.5 prediction (R2 = 0.88). Nevertheless,
its performance on PM10 deteriorates significantly, suggesting that
the model lacks robustness and generalization across pollutant types.
The Informer model further enhances prediction performance,
achieving R2 values exceeding 0.9 for both pollutants, along with
improved stability. This confirms the effectiveness of Transformer
based architectures in long-sequence forecasting tasks.

Finally, the proposed EBAMTN model achieves the best overall
performance across all metrics. It reduces theMAE andRMSE forPM2.5

to 2.03 and 2.94, and for PM10 to 3.44 and 4.99, respectively. The R2

values for both pollutants exceed 0.94, fully demonstrating the strength of
multi-task learning and the attentionmechanism in capturing shared and
task-specific temporal dynamics. While the quantitative comparisons in
Table 4 demonstrate the superior performance of EBAMTN over
classical and recent models, it is important to further contextualize
these results with respect to other multi-scale or attention-based
frameworks. For instance, the TCN-LSTM hybrid model (Ren et al.,
2023) partially captures hierarchical temporal patterns through
convolutional and recurrent layers but lacks explicit attention
mechanisms or task-specific optimization. Similarly, the Informer
model (Lin et al., 2024) incorporates a sparse self-attention
mechanism suitable for long-sequence forecasting but operates under
a single-task setting, thus ignoring pollutant interdependencies.
Compared with these models, EBAMTN not only leverages multi-
scale convolutions and bidirectional memory but also integrates
attention-guided feature fusion under a unified multi-task framework.
This combination of architectural enhancements accounts for the
model’s improved generalization and robustness across cities and
pollutants. These results confirm that the proposed model is highly
suitable for high-precision air quality time series prediction tasks.

The subsequent analysis focuses on the performance of the
proposed EBAMTN model across different urban environments.
Table 5 presents the prediction outcomes for PM2.5 and PM10

concentrations in three cities: Guangzhou, Beijing, and Chengdu.
Overall, the model demonstrates strong generalization capability
and robustness across varied geographic and climatic contexts. In
Guangzhou, the model achieves the best overall performance, with
an R2 of 0.94 for both PM2.5 and PM10. The prediction errors are
also notably low, with MAE = 2.03 and RMSE = 2.94 for PM2.5, and
MAE = 3.44, RMSE = 4.99 for PM10. These results confirm the
model’s high accuracy and stability in the southern urban setting,
where pollution patterns are relatively smooth and seasonal
transitions less drastic. In Chengdu, the model maintains
similarly excellent performance, with R2 values of 0.93 and
0.92 for PM2.5 and PM10, respectively. Interestingly, the error
metrics in Chengdu are slightly lower than those in Guangzhou,

suggesting the model’s strong adaptability to the southwestern
climate conditions, which are often characterized by humid
weather and stable pollution dynamics. In contrast, the model’s
performance in Beijing, though still strong shows a relative decline.
The R2 values remain high at 0.91 (PM2.5) and 0.90 (PM10), but the
error metrics increase significantly (MAE = 4.15, RMSE = 4.68 for
PM2.5; MAE = 4.81, RMSE = 5.01 for PM10). This performance
drop indicates that the model is more challenged by the complex and
highly volatile pollution patterns in northern cities, where seasonal
transitions and extreme pollution events are more frequent.

In summary, the proposed EBAMTNmodel exhibits good cross-
regional generalization and maintains stable performance across
diverse urban environments. However, further refinement may be
needed to enhance its responsiveness under northern seasonal
extremes and pollution surge scenarios. To further support the
superiority of the proposed model, we highlight that EBAMTN
achieves better temporal alignment with the actual pollutant
concentration trends across different urban environments. As
illustrated in Figures 3, 4, the predicted values not only capture
the overall fluctuations but also track the turning points more
effectively than baseline methods. This indicates stronger trend
generalization and dynamic adaptation capabilities.

4 Conclusion

This paper presents a multi-task air quality forecasting framework
named Enhanced Bidirectional Attention Multi-Scale Temporal
Network (EBAMTN), which integrates multi-scale Temporal
Convolutional Networks (TCNs), enhanced BiLSTM, and linear/
multi-head attention mechanisms to jointly improve forecasting
accuracy and temporal representation learning. The proposed
model demonstrates significant improvements in capturing both
short-term fluctuations and long-term trends across multiple urban
environments. By combining parallel multi-Scale TCNs with linear
attention, the model effectively captures temporal dependencies at
various resolutions while maintaining computational efficiency. The
incorporation of multi-head attention in the BiLSTM module
enhances the model’s ability to detect salient time intervals and
bidirectional dependencies, improving interpretability and sequence
modeling depth. The multi-task learning architecture further
leverages inter-pollutant correlations to achieve superior accuracy
compared to single-task models, with experiments showing R2 values
exceeding 0.94 for both PM2.5 and PM10 across all test cities. Despite
these advantages, the model has certain limitations. Specifically,
during extreme pollution events or periods of rapid concentration
changes, the prediction results exhibit minor lag or deviation,
particularly for PM10. This may be attributed to insufficient
emphasis on rare events during training and the challenge of
modeling nonlinear dispersion dynamics with limited features.

EBAMTN is well-suited for practical applications in real-time
air quality monitoring and early warning systems. Its lightweight
and modular design allows deployment on resource-constrained
devices, while its strong generalization ability ensures robust
performance across diverse urban regions. The dual benefits of
accuracy and efficiency offer valuable decision support for
environmental authorities.

TABLE 5 Prediction performance of EBAMTN across three Cities for PM2.5
and PM10.

City PM2.5 PM10

MAE RMSE R2 MAE RMSE R2

Guangzhou 2.03 2.94 0.94 3.44 4.99 0.94

Beijing 4.15 4.68 0.91 4.81 5.01 0.90

Chengdu 2.17 2.87 0.93 2.85 3.01 0.92

Bold indicates the best result in each column (lowest MAE/RMSE or highest R2).
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Future work may focus on refining the attention mechanism to
enhance responsiveness to sudden pollution spikes, introducing
adaptive loss functions or importance-weighted sampling to
improve performance on rare events, and extending the model to
include more pollutants such as NO2 and SO2. Furthermore,
integrating probabilistic forecasting techniques and online learning
strategies could enhance the model’s capacity to operate under
uncertainty and evolving environmental conditions, ensuring its
long-term robustness and adaptability in real-world deployments.
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