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Industrial carbon peaking is a critical pathway toward achieving sustainable
development. Given that industrial sectors account for nearly 70% of China’s
total carbon emissions, conducting simulation studies on industrial carbon
peaking holds significant practical importance. Unlike regional carbon peaking
models, industrial carbon peaking models face distinct challenges due to the
substantial influence of market dynamics. In this study, we focus on three key
objectives: (1) reducing carbon emissions from energy consumption, (2)
minimizing process-related carbon emissions, and (3) optimizing industrial
profitability. We propose an innovative industrial carbon peaking simulation
model, developed by adapting the Markal-Macro framework. Using the iron
and steel industry as a case study, we establish five distinct scenarios to
simulate carbon peaking trajectories. Our analysis incorporates data on energy
consumption, employment, product output, and other key indicators. To
enhance computational efficiency, we integrate genetic algorithms with the
penalty function method. The results indicate that under the baseline
scenario, China’s iron and steel industry could achieve carbon peaking by
2027, with emissions reaching approximately 2.04 billion tonnes of CO2.
Based on these findings, we provide targeted policy recommendations for
carbon peaking in the iron and steel sector. These recommendations address
energy structure optimization, clean energy adoption, and technological
advancements, aligning with China’s 14th Five-Year Plan objectives and long-
term sustainable development goals.
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1 Introduction

In September 2020, China officially declared its carbon peaking and carbon neutrality
timeline at the United Nations General Assembly. In August 2024, the General Office of the
State Council issued the Work Plan for Accelerating the Establishment of a Dual Carbon
Emission Control System, integrating carbon emission targets and associated requirements
into national strategy. This initiative aims to establish comprehensive policies and
management mechanisms for regional carbon assessments and industry-level carbon
control while ensuring effective alignment with the national carbon emissions trading
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market, thereby providing a robust institutional foundation for
achieving the dual carbon goals. At the industry level, key
energy-intensive sectors have been actively implementing various
carbon peaking and trading initiatives. In August 2022, the Ministry
of Industry and Information Technology (MIIT), the National
Development and Reform Commission (NDRC), and the
Ministry of Ecology and Environment (MEE) jointly issued the
Implementation Plan for Industrial Sector Carbon Peaking, followed
by the Implementation Plan for Carbon Peaking in the Non-Ferrous
Metal Industry in November. Similarly, in November 2022, MIIT,
the Ministry of Housing and Urban-Rural Development
(MOHURD), and two other ministries jointly issued the
Implementation Plan for Carbon Peaking in the Building
Materials Industry. While these industry-specific carbon peaking
plans outline concrete targets, key implementation tasks, and
supporting measures, they lack scientific simulations and
calculations of carbon peaking trajectories, as well as scenario
analyses and optimal pathway discussions necessary for an
effective industry-wide transition.

In 2023, the European Council voted to pass the EU Carbon
Border Adjustment Mechanism, which requires exported products
to meet low-carbon standards, forcing Chinese industries to
accelerate carbon reduction and peak carbon research. In 2025,
the National Development and Reform Commission and other
departments will issue a notice on the construction of zero
carbon parks, promoting the low-carbon transformation of high
energy consuming industries, and research on industry carbon peak
will become an important support for policy implementation.
Carbon peaking at the industry level is undoubtedly multifaceted
systemic undertaking, involving not only adjustments in the energy
utilization framework and manufacturing procedures but also
broader concerns related to market dynamics, such as industry
product prices, raw material costs, and energy price fluctuations.
In October 2023, the NDRC issued the National Carbon Peaking
Pilot Construction Plan, which introduced 26 regional and
14 industrial park-level reference indicators for carbon peaking.
While this multi-indicator approach offers simplicity and high
operational efficiency, it lacks a systematic perspective and fails
to account for interactions between core metrics. From a
methodological standpoint, model-based simulation approaches
act as a key mechanism for studying carbon peaking goals and
execution routes. These approaches provide theoretical guidance
and practical applications to assist governments, industries, and
enterprises in developing scientifically informed carbon peaking
action plans.

Obviously, conducting research on industry carbon peaking has
important practical significance. On the one hand, research on
industry carbon peaking can support the implementation of
Chinese national “dual carbon” strategy. Industry carbon peak
research can accurately calculate the peak time and peak path of
industry emissions, providing scientific basis for the country to
formulate phased and industry-specific carbon peak policies. On the
other hand, research on industry carbon peaking can help promote
the green and low-carbon transformation of industries and respond
to international green trade rules. By simulating and calculating the
industry’s peak path, the quantitative indicators for industry peak
are clarified, and corresponding policy measures are formulated,
such as the construction of industry zero carbon parks, direct supply

of industry green electricity, etc., in order to reduce industry carbon
emissions and enhance international “low-carbon” competitiveness.

Existing research on carbon peaking pathways for high-emission
industries in China covers industrial, building, power, logistics, and
mining sectors, as well as sub-sectors such as cement, non-ferrous
metals, and ICT. Given that industrial domains constitute around
70% of China’s total carbon emissions, they have become a focal
point of research. However, significant variations in carbon peaking
timelines exist across energy-intensive sectors, such as heavy
chemicals, manufacturing, and the power and mining industries.
For instance, Zhang et al. (2017) found that China’s Industrial
Carbon Emission Intensity (ICEI) is strongly driven by investment
intensity, while Fang et al. (2022) showed that non-energy-intensive
sectors such as agriculture, construction, and transportation could
peak before 2030, whereas the power and mining sectors may lag
beyond 2030. Regional studies further reveal heterogeneity within
industries. Guo et al. (2023) examined Henan Province and found
that steel and cement could peak before 2025, while the power sector
may not peak until 2033. Similarly, Dai et al. (2024) highlighted
significant provincial differences in carbon peaking timelines for the
construction industry, with economically developed provinces (e.g.,
Shandong, Guangdong) achieving earlier peaks than central and
western provinces.

A consensus in the academic community suggests that most
industries in China can achieve carbon peaking between 2030 and
2040 through policy interventions and technological advancements.
However, the choice of transition pathways and policy intensity
directly influence the peaking timeline and peak emissions level. In
the industrial sector, strong policy scenarios (e.g., energy efficiency
improvements and structural optimization) could enable carbon
peaking as early as 2025 (Zhang et al., 2017), while baseline scenario
might delay the peak beyond 2035. The construction and logistics
sectors, if coupled with breakthroughs in low-carbon technologies,
could peak before 2030 (Guo et al., 2023; Chen and Wang, 2024).
However, energy-intensive industries such as power andmining face
substantial challenges. Gao et al. (2023) suggested that the power
sector must reduce coal-fired power’s share below 50% to peak by
2030, while Zhou et al. (2025) emphasized that the ICT sector must
leverage digital technologies for emissions reduction or risk delaying
its peak until 2033. Research also highlights regional coordination
and technological innovation as key bottlenecks, as western
provinces struggle with heavy industrial reliance (Tan et al.,
2024) and slow technology diffusion (Guo et al., 2023),
necessitating differentiated policy support. Future studies should
further integrate multi-scale data and cross-sector collaboration to
support the systematic achievement of China’s dual carbon targets.

In terms of methodological approaches, most existing studies
follow a “drivers decomposition—scenario simulation—pathway
optimization” framework, with innovation mainly focused on
model integration and uncertainty analysis. In the drivers
decomposition stage, factor decomposition models (e.g., LMDI,
STIRPAT) are widely used to quantify the contributions of
economic, technological, and policy variables. For example, Li
J. et al. (2020) applied Generalized Divisia Index (GDI) analysis
to show that 81% of carbon emissions in the construction sector
were driven by GDP growth. In the scenario simulation stage,
methods such as dynamic Monte Carlo simulations, machine
learning (e.g., RF-WOA-RBF), and system dynamics models have
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gained prominence. Chen and Wang (2024) combined random
forest and whale optimization neural networks to predict carbon
emission trends in logistics and identified technological
breakthrough (TB) scenarios as optimal pathways. Wen and Diao
(2022) built an electricity supply-demand system dynamics model
incorporating CCUS technology to simulate China’s three-stage
carbon neutrality transition.

Currently, carbon peaking modeling approaches are categorized
into three primary types:

Firstly, Top-down macroeconomic models (e.g., CGE models),
which assess policy shocks across sectors but lack detailed pathway
analysis (Zhang and Chen, 2022; Niu and Liu, 2023). Secondly,
Bottom-up technology-rich models (e.g., LEAP models), which
provide high technical resolution but do not account for
economic trade-offs (Du et al., 2022; Sun et al., 2023; Zhou et al.,
2023). Thirdly, hybrid models, such as MARKAL-MACRO, which
integrate both economic and technological perspectives, enabling
detailed simulation of industry- and regional-level carbon peaking
scenarios (Wei Y. et al., 2022; Ma and Chen, 2017; Cai et al., 2022).
However, despite their advantages, hybrid models remain
computationally complex, requiring advanced optimization
techniques.

Existing hybrid modeling studies have made important
contributions. However, they have two major limitations: (1) they
fail to simultaneously model emissions from energy use and
production processes, and (2) they lack the MARKAL-MACRO
model’s ability to optimize both carbon minimization and overall
societal utility maximization. Shen et al. (2025) addressed these gaps
by developing a multi-objective nonlinear programming model for
regional carbon peaking, yet their approach remains unsuitable for
industry-level analysis due to significant differences between
regional and industry-specific carbon peaking objectives.

The main contributions in this paper include: firstly, we
distinguish from the regional utility maximisation objective
function and innovatively construct the industry profit
maximisation objective function, which in turn constructs the
Markal-Macro model of the industry carbon peak. Second, for
the purpose of improving the computational efficiency, we
introduce genetic algorithm on the basis of penalty function
method, which avoids the drawbacks of difficult to find analytical
solution and slow convergence.

2 Materials and methods

2.1 Model design

The MARKAL-MACRO model is a representative of hybrid
models, formed by coupling the MARKAL model with the MACRO
model. It mainly consists of three modules: theMARKALmodel, the
MACRO model, and the coupling equations.

Building upon the industry energy-carbon model proposed by
Wang et al. (2024), this study assesses industry carbon emissions
from two perspectives: energy use and the production process. A
novel multi-objective MARKAL-MACRO model is developed,
incorporating three optimization objectives: the reduction of
carbon emissions from energy consumption, the minimization of

carbon emissions associated with production processes, and the
maximization of industry profits.

In this framework, the MARKAL model is structured as a multi-
objective dynamic linear programming model, encompassing two
objective functions: (1) the minimization of carbon emissions from
energy consumption, and (2) the reduction of carbon emissions
from the production process. In contrast, the MACRO model is
formulated as a linear industry profit model, designed to optimize
industry profits throughout the planning horizon.

2.1.1 MARKAL model specification
The MARKAL model in this study integrates two objective

functions: the minimization of total energy consumption and the
reduction of carbon emissions from the production process.

2.1.1.1 Objective 1: minimization of total industry energy
consumption

In alignment with China’s dual carbon strategy, the carbon
peaking target is simulated by maximizing the minimization
function of total energy consumption over the period from
2022 to 2030. Accordingly, the industry’s objective function is
defined to minimize the total energy consumption, measured in
standard coal equivalent, from coal, oil, gas, and thermal power
generation. The mathematical formulation is given as Equation 1:

max
t

min ∑ 2.46 × μikXitk( ) (1)

In this formulation, Xitk denotes the standard coal conversion
coefficient for energy type i in industry k, where i =
1,2,3,4 correspond to coal, oil, gas, and electricity, respectively.
μik denotes the conversion factor for converting the ith energy
source of the kth industry to standard coal, the exact value of
which is shown in Table 1.

The 2024–2025 Energy Conservation and Carbon Reduction
Action Plan, issued by the State Council of China in 2024, stresses
the strict and rational control of coal consumption, the optimization
of oil and gas consumption structures, and the vigorous promotion
of non-fossil energy consumption. These measures are recognized as
essential tasks to actively and prudently advance the carbon peaking
target and intensify energy conservation and carbon reduction
efforts. Thus, from the perspective of energy consumption types,
two constraints are established to achieve the goal of minimizing
carbon emissions from energy consumption, namely: the share of
coal, oil, gas, primary electricity and other energy sources in total
energy consumption; and the proportion of thermal power in the
structure of overall power generation. The constraints on the
consumption share of each energy product are as Equations 2, 3:

Xi( )min≤Xit ≤ Xi( )max, i � 1, 2, 3 (2)
X4

X5
( )

min

≤
X4

X5
( )

t

≤
X4

X5
( )

max

(3)

Where Xi denotes the ith type of energy consumption, and i = 1,
2, 3, 4, 5 donates the total amount of coal, oil, gas, thermal power,
and electricity consumption, respectively. The upper limit value of
the proportion of thermal power in total electricity consumption
refers to the actual value of the proportion of thermal power in the
overall power generation structure nationwide in 2022, which is

Frontiers in Environmental Science frontiersin.org03

Yuan et al. 10.3389/fenvs.2025.1625240

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1625240


66.55%. Taking into account the relevant indicator requirements
proposed in the official policy documents “Action Plan for Carbon
Peak before20301” and “Special Action Plan for Energy
Conservation and Carbon Reduction in the Steel Industry
(2024–2030)2”, we have set the lower limit of the proportion of
thermal power in the overall electricity consumption of the steel
industry at 50%.

2.1.1.2 Objective 2: minimize carbon emissions from
industry production processes

Similarly, the industry’s production process carbon emissions
mainly come from CO2 and additional greenhouse gas emissions
generated during the processing and manufacturing stages of raw
materials. The production process carbon emission minimization
target is as Equation 4:

max
t

minφkQkt( ) (4)

Where Qkt is the output of the main products of the kth industry
in year t; φk represents the carbon dioxide emission factor of the
main products of the kth industry (here, the main products of the
iron and steel industry are recorded as crude steel).

For the production process carbon emission minimization
target, the constraints are set as product output constraints in the
industry, which are expressed as Equation 5:

Qk( )min≤Qkt ≤ Qk( )max (5)

Where Qkt is the main product output of the kth industry in
year t, and (Qk)min, (Qk)max, respectively, represents the lower and
upper limits of the product output of the kth industry.

2.1.2 Industry MACRO model setting
When constructing the industry carbon peak multi-objective

optimization model, the dual needs of carbon emission reduction
and economic benefits need to be fully considered. Industry profit
maximization reflects the need for enterprises to maintain economic

vitality and market competitiveness while pursuing environmental
protection and carbon emission control. This objective aims to
ensure that the industry is able to maintain or even improve its
profitability in the context of achieving carbon peaking by means of
measures including optimizing production processes, improving
resource utilization efficiency and reducing costs. Using the
industry profit maximization objective as part of the optimization
model helps to balance the correlation between carbon emission
reduction and economic development, and promotes the industry’s
development in a greener, more efficient and sustainable direction.
The specific industry profit maximization objective function is set
as follows:

maxt IPkt( ) � maxt OVkt − ICkt( ) (6)

Where IPkt refers to the industry profit, OVkt refers to the
output value, ICkt refers to the intermediate inputs, k =
1,2 represents the iron and steel and non-ferrous industries
respectively, and t donates to the year. The calculation process of
OVkt and ICkt is as Equations 7–12.

OVkt � Qkt × Pkt (7)
ICkt � RMEkt + EEkt + LCkt +DEkt (8)

RMEkt � αQkt × RMPkt (9)
EEkt � P1X1 + P2X2 + P3X3 + P4X4 (10)

LCkt � NOEkt × ASkt (11)
DEkt � FAIkt × DRkt (12)

Where Qkt refers to the total output of the main products of the
whole steel industry (Considering that crude steel is an upstream
product of the steel industry and its carbon emissions are similar to
steel, crude steel production here is used as the output of the steel
industry), which is an endogenous variable; Pkt refers to the unit
price of the main products of the industry, and the range of price
intervals needs to be given in the process of calculation; RMEkt refers
to the expenditure on raw materials (iron ore, scrap), EEkt refers to
the expenditure on energy costs (metallurgical coal), LCkt refers to
the expenditure on manpower, DEkt refers to depreciation expenses.
α refers to the proportional relationship between the output of major
products and the use of raw materials in an industry, i.e., the output
ratio, and RMPkt refers to the price per unit of raw materials. X1 is
the consumption of coal, X2 is the consumption of oil, X3 is the
consumption of natural gas, and X4 is the consumption of primary
electricity, and Pi is the cost of energy consumption per unit of
energy, with i = 1,2,3,4 representing coal, oil, gas, and electricity,
respectively. NOEkt refers to the number of persons employed by
enterprises of size above the industry, ASkt refers to the average

TABLE 1 Carbon emission parameters for coal, oil, gas, and electricity.

Energy type Standard coal conversion factor Standard coal emission parameter

Raw Coal 0.7143 kg standard coal/kg 2.46 kg/kg

Crude Oil (Used as Fuel) 1.4286 kg standard coal/kg

Natural Gas 1.255 million tons standard coal/100 million cubic meters

Thermal Power 0.366 kg standard coal/kWh (equivalent calorific value)

1 The “Action Plan for Peaking Carbon Emissions before 2030” requires that

the proportion of non-fossil energy consumption in China reach around

25% by 2030.

2 The “Special Action Plan for Energy Conservation and Carbon Reduction in

the Steel Industry (2024–2030)” proposes that by 2030, the energy

efficiency of major energy consuming equipment in the steel industry

should reach the international advanced level, and the proportion of short

process electric furnace steelmaking should be increased to over 15%.
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salary of the industry, and FAIkt refers to the investment in fixed
assets, DRkt refers to the depreciation rate.

For the industry profit maximization objective function, the
constraints are set as follows: First, considering that the steel
industry is the fundamental industry of the Chinese economy
and is dominated by state-owned enterprises, if the entire
industry incurs losses, it may lead to supply chain
disruptions, posing a threat to national economic security and
industrial chain stability. Therefore, we set the industry profit as
non-negative. Second, the production function constraints, with
reference to the C-D production function, for the equation
constraints (Equations 13, 14):

IPkt ≥ 0 (13)
Qkt � A × FAIkt( )α × NOEkt( )β × Ekt( )γ (14)

Where Qkt refers to the industry’s main product output, A refers
to technological progress, FAIkt refers to the industry’s investment in
fixed assets, NOEkt refers to the quantity of people employed in the
industry’s enterprises above the scale, and Ekt refers to the industry’s
total energy consumption, which is the value of the standard coal
(including X1, X2, X3, and X4). α, β, and γ are the elasticity
coefficients of the investment, manpower, and energy
consumption, respectively, for the t th year.

The reason for not setting coupled equations for the MARKAL-
MACRO model of the industry here is mainly because the
expression of the MACRO model of the industry already
contains the relevant variables in the MARKAL model, so there
is no need to set coupled equations for the variables of the two
models, which in turn reduces the complexity of the MARKAL-
MACRO model of the industry. Generally speaking, if a coupled
equation is set, it is usually regarded as a strict equality constraint in
the optimization solution of the model. Therefore, whether it is
solved by penalty function method or genetic algorithm, it will
increase the difficulty of finding the optimal value. In order to clearly

demonstrate the differences between the model constructed in this
article and other models, we compared these models in Table 2.

2.2 Simulation scenario setup and data
description

2.2.1 Data description and preprocessing
This study uses the steel industry as a case example for

simulation calculations. The steel industry encompasses both the
black metal mining and the black metal smelting and rolling sectors.
Therefore, the total energy consumption of the steel industry is the
sum of the energy consumption from these two sub-sectors, with
data derived from the National Bureau of Statistics of China. The
industry’s product output, total fixed asset value of large-scale
industrial enterprises, fixed asset investment, and average
employment figures are all collected from the National Bureau of
Statistics. Product price data are sourced from China Economic Net,
while the ratio between major product output and raw material
consumption is derived from Zhiyan Consulting. Average wage data
are referenced from the China Steel Industry Yearbook and China
Steel Network. Prices of raw materials and fuels are obtained from
the Wind Database, and energy consumption per unit of product is
based on the Industrial Key Areas Energy Efficiency Benchmarking
and Baseline Levels (2023 Edition).

Calculate the usage of raw material iron ore and fuel
metallurgical coal based on the production of crude steel, the
main product of the steel industry, and the ratio of crude steel to
raw material and fuel usage; According to the usage ratio of crude
steel to iron ore, scrap steel, and metallurgical coal released by
Zhiyan Consulting, the output ratio of crude steel to iron ore, scrap
steel, and metallurgical coal can be obtained as follows: “Crude steel:
iron ore: scrap steel: metallurgical coal = 1:1.1795:0.3487:0.5641″,
which means that producing one ton of crude steel requires
1.1795 tons of iron ore, 0.3487 tons of scrap steel, and

TABLE 2 Comparison of differences in major carbon peaking simulation methods.

Property LEAP model CGE model MARKAL-MACRO model MARKAL-MACRO model
(this article)

Core
methodology

Bottom up simulation of energy
systems

Top-down macroeconomic
equilibrium

Bottom-up and top-down mixture
model

Bottom-up and top-down mixture
model

Main
application

areas

Analysis of low carbon development
technologies

Policy evaluation Simulation and prediction analysis of
regional carbon peak

Simulation and prediction analysis of
industry carbon peak

Data
requirements

Difficulty in data collection, requiring
energy technology parametersetc.

Difficulty in data collection,
requiring input-output

tablesetc.

Data collection is relatively easy and
requires macro indicators such as
annual energy balance sheets

Data collection is relatively difficult
and requires industry indicators such
as raw material costs and labor costs

Advantage Contains rich technical information
and has strong flexibility

Can reflect the transmission
effect of policy shocks among

various departments

Simultaneously balancing the goals of
minimizing carbon emissions and
maximizing overall social utility;

Simultaneously consider minimizing
production process emissions and
energy consumption emissions

Simultaneously balancing the goals of
minimizing carbon emissions and

maximizing industry profits;
Simultaneously consider minimizing
both production process emissions and
energy consumption emissions; No
need to consider coupling equations

Disadvantage Without considering the influencing
factors of industry development, the
loss of industry development cannot

be calculated

Insufficient technical details to
explain the specific path to
achieving carbon peak

The model structure is complex, and
the implementation difficulty of the

calculation is relatively high

The model structure is relatively
complex, and the computational

implementation difficulty is relatively
high
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0.5641 tons of metallurgical coal; Based on this proportional
relationship and the crude steel production over the years, the
usage of iron ore, scrap steel, and metallurgical coal over the
years can be calculated.

The expenditure on raw materials in the steel industry is
obtained by multiplying and adding the calculated usage of iron
ore and scrap steel, as well as their respective prices; The energy cost
is obtained by multiplying the calculated metallurgical coal usage
and its price; The labor cost is calculated based on the average
number of employed people and their average wages in the steel
industry; The depreciation cost is calculated based on the total
original value of fixed assets of industrial enterprises above
designated size in the steel industry (in billions of yuan) and the
depreciation rate, which is set at 5.2% according to above relevant
data source.

2.2.2 Simulation scenario setup
In multi-objective optimization, constraints serve to filter

potential solutions, while scenario settings guide the orientation
and extent of the optimization process, directly affecting the
selection of solving tactics and the efficacy of the final solution.
Scenario settings not only determine the parameters and boundaries
concerning the problem but also incorporate the decision-makers’
preferences and priorities, which in turn affect the choice of the final
solution. On the basis of the target indicators outlined in current
policy documents, this study selects the renewable energy share and
energy consumption reduction per ton of steel as key indicators for
the simulation scenario setup. The renewable energy share reflects
the degree of energy structure decarbonization in the steel industry.
As an energy-intensive sector, the steel industry’s carbon emissions
primarily stem from the use of fossil fuels. Increasing the proportion
of renewable energy can significantly reduce carbon emission
intensity during the production process and is a key pathway to
achieving carbon peaking. The decrease in energy consumption per
ton of steel reflects the industry’s potential for energy efficiency
improvements. Through technological advancements, process
optimization, and equipment upgrades, reducing energy
consumption per ton of steel can directly decrease total energy
consumption, thereby lowering carbon emissions. These scenario
indicators not only quantify the technical feasibility of the steel
industry’s low-carbon transition but also provide clear guidelines for
policy formulation.

On the basis of a review of current literature, five scenario
types are established. The baseline carbon peak scenario adopts
the national target for renewable energy share, while the energy
consumption reduction per ton of steel is derived from the

2024–2025 Energy Conservation and Carbon Reduction
Action Plan and the Steel Industry Energy Conservation and
Carbon Reduction Action Plan. Based on relevant policy targets,
the slow carbon peak scenario and slower carbon peak scenario
are set by reducing the baseline scenario data by 30% and 15%,
respectively. Conversely, the fast carbon peak scenario and faster
carbon peak scenario are set by increasing the baseline scenario
data by 30% and 15%, respectively. The specific results are shown
in Table 3.

2.3 Optimization algorithm

Given that the MARKAL-MACRO model developed in this
study is a multi-objective dynamic model, we initially employ the
Sequential Unconstrained Minimization Technique (SUMT) to
convert the multi-objective dynamic optimization problem into a
single-objective dynamic optimization problem. The specific
computational steps for the penalty function can be referenced in
Shen et al. (2025). In order to improve the computational efficiency
of SUMT, we introduce genetic algorithm (GA) in the optimization
process. The advantages of GA over other commonly used
optimization algorithms such as particle swarm optimization
(PSO) and firefly optimization (FA) are: firstly, GA has global
search capability and diversity preservation. PSO relies on
individual and group historical optimal solutions, which can
easily lead to local optima. FA searches through brightness
attraction mechanism, but may lack diversity due to “excessive
clustering”. Secondly, GA has a high tolerance for nonlinearity
and discontinuity in the objective function or constraints. The
optimization effect of PSO and FA on non smooth and
multimodal functions is not as stable as that of GA. Thirdly, GA
is usually less sensitive to parameter changes than PSO/FA. PSO is
susceptible to the influence of “particle stagnation”; FA may cause
search direction deviation when the target space is uneven.

After the penalty function transformation, the resulting
optimization problem involves five endogenous variables and
requires year-by-year computations. This leads to relatively low
computational efficiency and high sensitivity to parameters, which
may cause issues such as gradient explosion, resulting in solutions
that exceed constraint conditions. To address these challenges, we
employ the Genetic Algorithm to optimize the penalty function. The
key steps of the Genetic Algorithm are outlined in Table 4. It should
be noted that due to the analytical nature of the penalty function
method, it takes a long time to solve. Our experience shows that
simulating a scenario using the penalty function alone takes nearly

TABLE 3 Table of five simulated scenarios.

Scenario Renewable energy share Reduction rate of energy consumption per ton of steel

Low-Speed Peak Scenario 15% 1.54%

Moderately Low-Speed Peak Scenario 17% 1.74%

Baseline Peak Scenario 20% 2.00%

Moderately High-Speed Peak Scenario 23% 2.30%

High-Speed Peak Scenario 26% 2.60%
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30 min, while using genetic algorithms only takes 2 min, greatly
improving computational efficiency.

3 Results and validation anlysis

3.1 Results discussion

We simulated the carbon peaking pathway for China’s steel
industry from 2024 to 2035 under different scenario settings. The
carbon peak time and peak value are shown in Table 5. The primary
findings suggest that emission and energy consumption levels align
closely with the respective scenario assumptions, validating the
internal consistency of the model. Particularly, as scenario
constraints tighten, the steel industry’s carbon peaking timeline
accelerates. The peak carbon emission years for the five scenarios
are 2032, 2029, 2027, 2026 and 2025 respectively, as shown in
Figure 1.

For Objective 1 (Energy Consumption), the peak years for
energy consumption under the five scenarios are 2032, 2029,
2027, 2026, and 2025, respectively. These findings indicate that as
constraints on the carbon peaking process become more stringent,
the timeline for peak energy consumption advances. Scenario 3,

serving as the baseline scenario, projects that the steel industry will
reach its peak in 2027, with carbon emissions from energy
consumption reaching 1.88 billion tons in that year.

For Objective 2 (Production Process), the peak years are 2030,
2030, 2027, 2026, and 2025 respectively, as shown in Figure 2.
Meanwhile, industry production levels exhibit slight fluctuations
between 2024 and 2035 but tend to stabilize over time. The
fluctuations in the subsequent simulation years may be attributed
to uncertainties in industry production levels, economic structural
adjustments, and changes in energy consumption patterns across
different sectors.

For Total Emissions, the peak years mirror those of energy
consumption, occurring in 2032, 2029, 2027, 2026 and 2025
respectively, as shown in Figure 3. This consistency can be
attributed to the dominant role of energy consumption emissions
in contributing to the total emissions. Under scenario 3 (baseline),
the peak occurs in 2027, with energy consumption-related emissions
at 1.88 billion tons, production process emissions at 160 million
tons, and total emissions reaching 2.04 billion tons. Additionally, the
peak emission values across the five scenarios are 2.029, 2.036, 2.040,
2.027, and 2.031 billion tons, respectively. These values highlight the
potential and effectiveness of emission control under varying levels
of constraint intensities. Collectively, these results emphasize the

TABLE 4 Genetic algorithm steps.

Step Specific approaches

Input Parameters: NP: 100; Pc (crossover probability): 0.25–1; Pm (mutation probability): 0.001–0.1; G:1,000

Initialization Set evolution iteration counter g = 0, define maximum generations G = 5,000, and randomly generate NP individuals as the initial
population P(0)

Fitness Evaluation Compute the fitness f(xi) of each individual in the population P(t)

Replication Apply the selection operator to the population. Based on individual fitness, select elite individuals for inheritance to the next-generation
using tournament selection

Crossover Apply the crossover operator to selected pairs of individuals. Swap parts of their chromosomes with a crossover probability of 0.5 (Pc � 0.5)
to generate new chromosomes

Mutation Apply the mutation operator to selected individuals. With a mutation probability of 0.1 (Pm � 0.1), randomly alter one or more gene values
to a different allele using Gaussian mutation

Iteration After applying selection, crossover, and mutation, a new population P(t + 1) is generated. Compute its fitness values, sort the population
based on fitness, and proceed to the next genetic operation

Termination Condition If g≤G, increment g � g + 1 and return to the fitness evaluation step. If g>G, the individual with the highest fitness obtained during
evolution is output as the optimal solution, and the computation terminates

Output The optimal value

TABLE 5 Carbon peak time and peak value of China’s steel industry under different scenarios.

Obj_1: Energy consumption
Time (value)

Obj_2: Production process
Time (value)

Total carbon emissions
Time (Value)

Scenario 1 (Low-Speed Peak Scenario) 2032 (1.870) 2030 (0.159) 2032 (2.029)

Scenario 2 (Moderately Low-Speed Peak Scenario) 2029 (1.877) 2030 (0.159) 2029 (2.036)

Scenario 3 (Baseline Peak Scenario) 2027 (1.880) 2027 (0.160) 2027 (2.040)

Scenario 4 (Moderately High-Speed Peak Scenario) 2026 (1.867) 2026 (0.160) 2026 (2.027)

Scenario 5 (High-Speed Peak Scenario) 2025 (1.871) 2025 (0.160) 2025 (2.031)

The unit of value is billion tons.
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significance of a coordinated approach between energy consumption
and the production process in the formulation of carbon peaking
policies, aiming to achieve more effective emission
reduction outcomes.

3.2 Results validation analysis

We verify and analyze the results from the following three
aspects. Firstly, from the perspective of comparing the results
with those of other literature, conduct a validation analysis of the
results. Secondly, analyze the stability of the model results from the
perspective of optimizing the sensitivity of algorithm parameters.
Thirdly, from the perspective of sensitivity of model parameters,
some representative parameters were selected to conduct stability
analysis on the model results.

Our simulation results have a certain level of reliability. Firstly, from
the historical data of carbon emissions of the steel industry, our
simulation calculation results have a certain degree of reliability. The
highest point of historical carbon emissions data in China’s steel
industry occurred in 2014, with emissions of 1.985 billion tons (as
shown in Figure 3). Considering that the production of China’s steel
industry was in a period of rapid growth in 2014 and could not reach its
peak, our simulated peak of 2.04 billion tons has a certain degree of

reliability. Secondly, compared with other relevant literature, our results
have a certain level of reliability. Pan et al. (2023) found that under the
baseline scenario, China’s steel industry is expected to reach its peak in
2025, with carbon emissions of 1.904 billion tons [23]. According to the
research by Wei YM. et al. (2022), the peak of China’s steel industry is
between 1.93 billion tons and 20 billion tons, with a peak time around
2023 [24]. Since China has not yet announced the carbon peak time for
the steel industry, we believe that the peak time will not be earlier than
2025. However, based on historical emission data, the peak should be
higher than 1.985 billion tons. Therefore, compared with the research of
Pan et al. (2023) and Wei YM. et al. (2022), our research results are
relatively more reliable.

In order to evaluate the robustness of the model results, we
conducted sensitivity analysis on the algorithm parameters. Consider
the rate of change in the simulation results of objective 1 and objective
2 when the population size, iteration number, crossover probability, and
mutation probability change by 50%. The sensitivity analysis results are
shown in Table 6. From Table 6, it can be seen that when the four
parameters are individually changed by 50%, the simulation results of
objective 1 and objective 2 show relative robustness, with a change rate
of less than 2%. When all four parameters are changed by 50%
simultaneously, the transformation rate of the simulation results for
objective 1 and objective 2 is greater than that when all four parameters
are changed by 50% individually, but still controlled within 2%,

FIGURE 1
Simulation results of peak carbon emissions from energy consumption in China’s steel industry under 5 scenarios (unit: billion tons).
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indicating the robustness of the genetic algorithm results. It should be
noted that there are two reasons why we only conducted sensitivity
analysis on unilateral directional changes of parameters: firstly, in the
initial selection process of each parameter, we considered both empirical
values from literature and our own test values. Secondly, based on the
results of our testing, we have preliminarily identified some
unreasonable intervals for each parameter. Therefore, when
conducting parameter sensitivity analysis, we only consider the
analysis of changes in reasonable intervals.

Considering the strong volatility of actual energy prices, we have
chosen energy price fluctuations of ±20% and ±70% to conduct
sensitivity analysis on the generation process emissions, energy
consumption emissions, and total emissions of the steel industry.
Considering that technological progress is relatively slow and will be
reflected in the depreciation rate of the industry, we have set
depreciation rates of 8% and 10% based on a depreciation rate of
5.2% to conduct sensitivity analysis on the emissions from the steel
industry’s generation process, energy consumption, and total
emissions. The results are shown in Table 7. From the table, it
can be seen that firstly, the changes in depreciation rates of 8% and
10% have little impact on the model results, and the change rates of
each result are within ±2%. Secondly, when energy prices fluctuate
by ±20%, the impact on the model results is not significant, and the

rate of change for each result is within ±5%; But when the energy
results fluctuate by ±70%, the changes in the model results are very
obvious, with simulation results for each year changing at a rate
between 40% and 70%. When there is a significant change in energy
prices, the peak simulation results of the steel industry will also
undergo increased changes.

4 Conclusion and policy
recommendations

The study yields the following key findings. First, under China’s
″30–60″carbon peaking and neutrality targets, the steel industry can
achieve peak carbon emissions before 2030 in four of the five
scenarios, with the exception of scenario 1. Notably, under the
high-speed peak scenario, the industry can reach peak emissions as
early as 2025. In the low-speed peak scenario, it means that the steel
industry cannot meet the government’s peak requirements. The
reason is that in scenario 1, the proportion of renewable energy
reflecting changes in the industry’s energy structure is relatively low,
and the reduction rate of energy consumption per ton of steel
reflecting the industry’s production technology level is too slow.
In this scenario, the pressure for enterprises to change is relatively

FIGURE 2
Simulation results of peak carbon emissions from production process in China’s steel industry under 5 scenarios (unit: billion tons).
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small, but the cost of energy consumption and carbon emissions
increases. In the scenario of high-speed peak, the steel industry can
achieve rapid peak due to the high proportion of renewable energy
that reflects changes in the industry’s energy structure. At the same
time, rapid technological innovation in the industry leads to a faster
reduction in energy consumption per ton of steel. In this scenario,
companies face greater pressure to change, but reducing energy and
carbon emission costs will be beneficial for enhancing their
competitiveness. Second, in the baseline scenario (scenario 3), the
peak emissions level is approximately 2.04 billion tons, highlighting
the significant impact of policy constraints on emissions control.
Third, simulation results indicate that the speed of carbon peaking is
primarily driven by the growth rate of energy consumption,
emphasizing the crucial role of energy structure transformation
and energy efficiency improvements in achieving carbon peaking. In
contrast, emissions from the production process account for a
relatively smaller proportion of total emissions.

In light of the empirical evidence, the following policy
interventions are recommended.

First, scenario 3 should be adopted as the optimal carbon peaking
pathway for China’s steel industry. Under this scenario, the share of
renewable energy in the steel industry reaches 20%, while the yearly
reduction rate of energy consumption per ton of steel is 2%.

Second, optimizing the energy structure and increasing the
share of renewable energy is crucial. The government should
encourage steel enterprises to intensify research and investment
in clean energy technologies like hydrogen, wind, and solar
power, and promote the demonstration and application of
hydrogen-based steelmaking. Fiscal subsidies, tax incentives,
and other policy measures should be introduced to support
the transition toward renewable energy. Additionally,
renewable energy infrastructure should be improved to ensure
a stable supply of clean energy. By optimizing the energy
structure, carbon emissions from energy consumption can be

FIGURE 3
Simulation results of peak carbon emissions in China’s steel industry under 5 scenarios (unit: billion tons).

TABLE 6 Results of sensitivity analysis of parameters of GA.

Change of parameters Obj_1 change rate Obj_2 change rate

Only population size increases by 50% 1.44% 1.86%

Only number of iterations increases by 50% 1.37% 1.89%

Only cross probability reduces by 50% 1.46% 1.95%

Only mutation probability reduces by 50% 1.55%
1.63%

1.91%
1.97%

Four parameters change by 50% simultaneously 1.44% 1.86%
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effectively reduced, providing critical support for the steel
industry’s carbon peaking efforts.

Third, promote energy efficiency improvement, reduce energy
consumption per ton of steel, and ensure that the annual reduction
rate of energy consumption per ton of steel is 2%. It is recommended
that industry enterprises achieve the goal of reducing energy
consumption per ton of steel by 2% annually through specific
measures such as technological transformation, equipment
upgrading, and process optimization. Compared with the 1.54%
reduction in energy consumption per ton of steel in the Low-speed
peak scenario (Scenario 1), a 2% reduction in energy consumption per
ton of steel in the baseline peak scenario (Scenario 3) can result in an
additional emission reduction of 8.648 million tons; On the contrary,
compared with the High-speed peak scenario (Scenario 5), Scenario
3 loses 11.28 million tons of opportunity emission reduction.

Fourth, strengthen emission reduction in the production process
and promote low-carbon technologies. Specifically, it includes several
aspects. On the one hand, it emphasizes the research and application of
low-carbon technologies, such as carbon capture, utilization, and
storage (CCUS), electric furnace steelmaking, and other technologies.
On the other hand, we attach great importance to the research and
application of digital and intelligent technologies in the industry, and
utilize technologies such as the Internet of Things, big data, and artificial
intelligence to establish an intelligent control system for the steel
production process, optimize the production process, and reduce
carbon emissions in the production process.

Fifth, improve the carbon market mechanism and strengthen
carbon emission constraints. According to the document “Work

Plan for the National Carbon Emission Trading Market to Cover
the Cement, Steel, and Electrolytic Aluminum Industries” released
by the Chinese Ministry of Ecology and Environment, the steel
industry will enter the carbon trading market by 2025. Through
market-oriented means, the total quota of the steel industry can be
controlled, promoting emissions reduction in the steel industry. Specific
measures include the design of carbon quota allocation in the steel
industry and the participation of enterprises in carbon emission trading.

Sixth, based on regional differences, the transfer of the steel
industry and the reduction of labor costs are beneficial to improving
the overall profit level and competitiveness of the steel industry in
the context of carbon peak. The steel industry requires a large
amount of labor force. Due to the significant difference in economic
development between developed areas along the southeast coast of
China and underdeveloped areas in the west, in the context of the
steel industry’s upcoming participation in carbon market trading,
achieving regional transfer of the steel industry can reduce labor
costs, offset the additional costs brought by carbon trading for
enterprises, and thereby improve the overall profit level of
enterprises, which is conducive to enhancing their competitiveness.

There are two limitations of our work. Firstly, the lack and
interpolation of industry raw data will to some extent affect the
accuracy of model simulation results. In China, there is a certain
degree of error in the official historical statistics of energy data
related to carbon emissions. For example, there are significant
differences in the historical statistics of energy consumption between
the national and provincial levels in China. Although the system was
adjusted in 2015, the differences still exist (Li B. et al., 2020). For the data

TABLE 7 Results of sensitivity analysis of main parameters of Markal-Macro model.

Main parameters Emission 2025 2026 2027 2028 2029 2030 2031

Annual Depreciation Rate 10% Energy Consumption 0.77% 0.86% 0.98% 1.12% 1.35% 1.36% 1.36%

Production Process 0.73% 0.82% 0.93% 1.06% 1.29% 1.30% 1.30%

Total Emission 0.76% 0.85% 0.96% 1.10% 1.34% 1.35% 1.35%

Annual Depreciation Rate 8% Energy Consumption −0.76% −0.84% −0.96% −1.09% −1.33% −1.34% −1.34%

Production Process −0.72% −0.80% −0.92% −1.04% −1.26% −1.27% −1.27%

Total Emission −0.75% −0.83% −0.96% −1.08% −1.31% −1.32% −1.32%

Energy Price +20% Energy Consumption −0.46% −0.46% −0.46% −0.53% −0.68% −0.71% −0.78%

Production Process −2.10% −2.07% −2.06% −2.04% −2.24% −2.96% −3.16%

Total Emission −0.83% −0.83% −0.84% −0.87% −1.04% −1.23% −1.32%

Energy Price −20% Energy Consumption 0.06% 0.06% 0.06% 0.93% 1.08% 1.11% 1.18%

Production Process 2.49% 2.47% 2.45% 2.44% 2.63% 3.35% 3.56%

Total Emission 0.61% 0.61% 0.59% 1.27% 1.43% 1.62% 1.72%

Energy Price +70% Energy Consumption −49.77% −49.76% −49.76% −50.16% −50.08% −49.96% −49.84%

Production Process −51.12% −51.00% −50.92% −50.85% −50.91% −50.98% −50.89%

Total Emission −50.07% −50.04% −50.03% −50.32% −50.25% −50.19% −50.08%

Energy Price −70% Energy Consumption 61.67% 61.66% 61.65% 62.62% 62.82% 62.87% 62.97%

Production Process 65.94% 65.66% 65.48% 65.31% 65.46% 66.33% 66.61%

Total Emission 62.62% 62.56% 62.49% 63.23% 63.42% 63.66% 63.80%
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related to carbon peak in the industry, due to the fact that data statistics
at the industry level are more difficult than at the macro level, there are
certain deficiencies in data such as raw material statistics and energy
cost statistics. Adopting interpolation methods will affect the final
results to a certain extent. Secondly, in terms of optimization
algorithms, other algorithms such as FA and PSOA can be
introduced for more comparisons in the future.
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