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Urban Green Hearts (GHs) represent a unique ecological protection measure or
policy. Evaluating the spatiotemporal dynamics of the ecological environmental
quality (EEQ) of urban GHs and revealing their conservation effectiveness is
crucial for promoting the coordination between regional development and
environmental preservation. This study examines the Changsha-Zhuzhou-
Xiangtan urban agglomeration Green Heart (CZT-GH) and its 3 km buffer
zone, evaluating the effectiveness of ecological environment protection
following GH policy implementation, and analyzing the spatiotemporal
dynamics of EEQ. The Remote Sensing Ecological Index (RSEI) was calculated
using the Google Earth Engine (GEE) platform, and conservation effectiveness
was evaluated through Propensity Score Matching (PSM) and Wilcoxon tests. The
findings reveal that: (1) The RSEI demonstrated an average annual growth rate of
0.0038 years-1 over 31 years, with significant increases during 1990–2013
(0.0045 years-1) and 2013–2020 (0.0089 years-1). (2) Comparing pre- and
post-GH policy implementation periods (1990–2013 vs. 2013–2020), areas
showing EEQ improvement increased from 77.15% to 89.69%, while areas with
stable and decreased EEQ declined from 22.36% to 10.17%. (3) GH policy
demonstrates substantial positive conservation effects, with both GH and the
3 km buffer zone exhibiting EEQ improvements. This research provides valuable
insights for GH management strategies and enhancing the balance between
regional development and environmental preservation.

KEYWORDS

ecological environment quality, google earth engine, remote sening ecological index,
propensity score matching, urban green heart

OPEN ACCESS

EDITED BY

Sawaid Abbas,
University of the Punjab, Pakistan

REVIEWED BY

Jie Wang,
Anhui University, China
Yaohui Liu,
Shandong Jianzhu University, China
Eskinder Gidey,
University of the Witwatersrand, South Africa
Mei Zan,
Xinjiang Normal University, China

*CORRESPONDENCE

Huanyao Liu,
hyliu@hunau.edu.cn

RECEIVED 10 May 2025
ACCEPTED 08 August 2025
PUBLISHED 28 August 2025

CITATION

Wu C, Liu H, Meng C, Li X and Gan D (2025)
Assessing ecological environmental quality and
conservation effectiveness in the World’s
largest urban green heart using the remote
sensing ecological index (RSEI) and propensity
score matching (PSM).
Front. Environ. Sci. 13:1626195.
doi: 10.3389/fenvs.2025.1626195

COPYRIGHT

© 2025 Wu, Liu, Meng, Li and Gan. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 28 August 2025
DOI 10.3389/fenvs.2025.1626195

https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://www.frontiersin.org/articles/10.3389/fenvs.2025.1626195/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2025.1626195&domain=pdf&date_stamp=2025-08-28
mailto:hyliu@hunau.edu.cn
mailto:hyliu@hunau.edu.cn
https://doi.org/10.3389/fenvs.2025.1626195
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2025.1626195


1 Introduction

Urban ecological green hearts (GHs) are defined as the green
spaces at the geometric centers of multiple regions or cities within
urban agglomerations (Ghahramani et al., 2021; Kühn, 2003),
serving a vital ecological and landscape function by delivering
essential ecosystem services, maintaining regional ecological
security, preserving biodiversity, and increasing landscape
heterogeneity. These functions contribute to urban structure
optimization, human health enhancement, and the establishment
of equilibrium between regional economic development and nature
(Giannico et al., 2021; Xu and Zhao, 2023). Consequently, the
Chinese government has actively promoted ecological civilization
and encouraged GH development in urban agglomerations (Xue
et al., 2023; Zhang L. et al., 2023). The Changsha-Zhuzhou-Xiangtan
urban agglomeration Green Heart (CZT-GH, 528.32 km2) has
emerged as the world’s largest GH. Since the implementation of
the CZT-GH policy in 2013 (Tang et al., 2023), local governments
have focused on developing GH into a high-quality urban green
space to maximize its ecological hub and ecosystem service
functions, including urban microclimate regulation and air
quality improvement (Islam et al., 2024; Sharifi et al., 2021; Xu
W. et al., 2024). However, rapid economic development and
urbanization continuously subject GHs to ecological pressure.
Construction land expansion diminishes landscape integrity and
connectivity in GHs, affecting ecosystem stability and ecological
services (Tang et al., 2023). Therefore, understanding the
spatiotemporal distribution and patterns of ecological
environmental quality (EEQ) in GHs before and after policy
implementation is essential for providing scientific support for
future management, restoration, and sustainable development of
these areas.

Previous studies have primarily employed metrics such as the
Normalized Difference Vegetation Index (NDVI) (Zhang et al.,
2024b), vegetation cover types (Li X. et al., 2024), and plant
communities (Chen et al., 2020) to examine EEQ spatiotemporal
changes. However, NDVI is influenced by factors including climate,
seasonality, and soil moisture, limiting its ability to capture the GH
ecological environment complexity (Dronova, 2017). Additionally,
studies on vegetation cover types and plant communities often
neglect the spatial heterogeneity and dynamic evolution of EEQ
(Chen S. et al., 2023). In recent years, some weighting methods used
for quantitatively assessing EEQ have limitations due to their
underlying principles, leading to varying application scopes. For
example, the Entropy Weighting Method (EWM) tends to overlook
the intrinsic importance of indicators, causing the weights to deviate
from expectations, and it cannot perform dimensionality reduction
on the indicators (Wu et al., 2022). The Analytic Hierarchy Process
(AHP) is highly influenced by subjective human factors in
determining indicator weights (Liu et al., 2024a). The Remote
Sensing Ecological Index (RSEI), incorporating four remote-
sensing-derived indicators (greenness, dryness, humidity, and
heat), applies Principal Component Analysis (PCA) based on
covariance to assign weights to these indicators. This approach
helps RSEI avoid errors and biases that could arise from subjective
influence in defining the weights of the indicators (Chen N. et al.,
2023; Liu et al., 2024b; Liu et al., 2023; Zheng et al., 2022) and
objectively reflects the impact of ecological elements, such as

vegetation coverage and climate variations on EEQ (Lv et al.,
2025). The objectivity and integration of RSEI enhance its
suitability for analyzing EEQ spatiotemporal dynamics (Li Y.
et al., 2023; Yuan et al., 2021). For example, RSEI has been
utilized to assess EEQ in the Yellow River delta (Cai et al., 2023)
and to evaluate EEQ in the Greater Khingan Range (Chen et al.,
2022). Furthermore, Yang et al. (2023) employed RSEI and the CA-
Markov model to assess EEQ in three Chinese megacities:
Guangzhou, Nanjing, and Kunming. However, RSEI faces
challenges in managing large-scale data, complex spatial
heterogeneity, and temporal data comparability (Shi et al., 2024;
Yang et al., 2022). The GEE platform addresses these challenges by
providing direct database access and efficient processing of long-
term geospatial data (Campos et al., 2023; Liu et al., 2023). These
capabilities enable GEE to enhance the efficiency and accuracy of the
RSEI application in complex ecological environments. RSEI has
made notable progress in improving the accuracy and efficiency of
EEQ assessments in large-scale urban complex environments in
recent years. For example, the Difference Index (DI) captures PM2.5

variations and can be integrated into the RSEI system to enhance
EEQ monitoring accuracy in the Yangtze River Delta Urban
Agglomeration environments (Lu et al., 2025). Combining
the EWM with RSEI enhances the reflection of urban
environmental conditions and simplifies the process in Jining
(Chen N. et al., 2023).

The Propensity Score Matching (PSM) method effectively
reduces differences in covariates between treatment and control
groups, enhancing evaluation accuracy (Randolph et al., 2014). It
has been extensively applied to assess the effectiveness of the EEQ of
protected areas (PAs) and policy implementation. For example,
combining PSM with paired t-tests has revealed positive spillover
effects of PAs on forest coverage and buffer zone benefits (Chen
et al., 2017). Furthermore, PSM was employed to evaluate how
680 protected reserves in China mitigated human activity pressure
by selecting similar sample data from buffer zones and protected
areas (Zhang et al., 2021). Regarding policy evaluation, the PSM-
DID (Difference-in-Differences) method distinguishes policy
implementation effects from natural temporal changes based on
data differences between protected areas and buffer zones (Ye et al.,
2024). However, existing PSM studies often emphasize short-term
policy effects and single indicators (e.g., forest coverage or wetland
area), overlooking long-term trends and ecosystem
multidimensional characteristics (Jin et al., 2024; Li K. et al.,
2024; Wang C. et al., 2023). Studies on GH policies have
established important foundations for evaluating policy
implementation efficacy (He et al., 2024; Tang et al., 2023).
Given increasing ecological challenges, a comprehensive and
structured assessment of GH policy efficacy is essential.
Therefore, utilizing the PSM method to evaluate GH policy
effectiveness based on long-term RSEI trends within GH and its
buffer zones presents a feasible and reliable approach.

As the world’s largest urban agglomeration GH, the CZT-GH
serves a vital role in ecological protection and urban planning (Tang
et al., 2023). Based on remote sensing imagery from 1990 to 2020,
this study constructs the RSEI and applies the PSM method to (1)
examine the spatial-temporal dynamics of EEQ (RSEI) in the CZT-
GH; (2) evaluate the long-term trend of RSEI in the study region
from 1990 to 2020; (3) compare the conservation effectiveness of
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EEQ in GH subareas and the 3 km buffer zone pre- and post-GH
policy implementation.

2 Materials and methodology

2.1 Study area

The CZT-GH (112.89°E–113.30°E, 27.72°N–28.09°N) is situated
at the geographic intersection of Changsha, Xiangtan, and Zhuzhou,
functioning as a vital connection between these three cities
(Figure 1a). The region experiences a subtropical monsoon
climate, with annual temperatures ranging from 3.2 °C to 31.7 °C
and average yearly precipitation of 1,450 mm. The topography
comprises low hills, mountains, and plains. The dominant land
use categories consist of farmland, forest, and construction areas.
The non-crop vegetation includes evergreen broadleaf, evergreen
needleleaf, and deciduous broadleaf forests, alongside wetlands. The
CZT-GH contains abundant natural resources, establishing it as a
significant biodiversity conservation area and wildlife habitat. As of
2018, the CZT-GH had a population of 3.32 million, distributed as
42.3% rural and 57.7% urban. The GDP attained 35.11 billion RMB,
with the tertiary sector comprising the largest portion at 53%. The
government in Hunan Province revised the GH policy in 2013,
which legally safeguards the GH with a focus on establishing
ecological barriers, maximizing ecosystem services, promoting
high-end primary and tertiary industries, and optimizing land
use structures for sustainable regional development (Cao
et al., 2023).

2.2 Satellite data and preprocessing

In this research, we utilized Landsat Collection two imagery
from GEE, a cloud-based platform providing access to global surface
reflectance and LST products with enhanced geolocation accuracy
(Table 1). Remote sensing data, including annual Landsat 5 TM
images from 1990 to 2011, Landsat 7 ETM+ image in 2012, and
annual Landsat 8 OLI/TIRS images from 2013 to 2020, were selected

during the vegetation growth period between April and September
in the study area (Zhang Y. et al., 2022). These images were
mosaicked to minimize cloud cover and atmospheric interference
and processed with GEE at a 30-m spatial resolution. The
preprocessing steps comprised data filtering, radiometric
calibration, cloud and water masking, atmospheric adjustment to
surface reflectance, and geometric alignment of the images. These
steps ensure spatial consistency and high-quality data for accurate
analysis of EEQ trends throughout the study period (Fu et al., 2024).
A median synthesis was applied to cloud-masked scenes to merge
them into a final image, reducing residual cloud shadows and noise
while preserving natural surface reflectance and avoiding extreme
value bias. Additionally, the water body mask was derived from the
JRC/GSW1_3/Yearly History, which provides surface water location
and time data from 1990 to 2020. This dataset effectively minimizes
water body impact on the RSEI calculation.We applied image fusion
and normalization methods to eliminate biases caused by temporal
differences in sensor data from Landsat 5 TM, Landsat 7 ETM+, and
Landsat 8 OLI, mapping the data from different sensors to a unified
scale, ensuring temporal consistency and accuracy across the data
(Mancino et al., 2020; Wachmann et al., 2024). Due to the failure of
the Landsat seven sensor’s Scan Line Corrector, the images exhibit
striping gaps. Missing pixels were filled using the focal statistics
function, with focalMean and blend functions applied (Yan et al.,
2024). The parameters of the focalMean function are detailed in
Supplementary Table S1. This function calculates the average of
input pixels within a defined neighborhood and assigns it to fill the
missing pixels, effectively completing the imagery gaps (Huang et al.,
2025). Due to the 16-day revisit period and limited coverage, annual
composite imagery was used.

2.3 Data sources and determination of zones
and buffer width for GH

The DEM data were obtained from the Geospatial Data Cloud
(https://www.gscloud.cn) utilizing the GDEMV2 dataset with a 30 m
spatial resolution. Slope and slope aspect data were derived from the
DEM data. Vegetation data were acquired from the Resource and

FIGURE 1
The location of the CZT-GH (a) and its buffer zone (b).
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Environment Science and Data Center (https://www.resdc.cn),
providing spatial distribution data of China’s vegetation types.
Land use data were obtained from the Geographical Information
Monitoring Cloud Platform (1990–2020), including classifications
such as cropland, water areas, forest, grassland, urban zones, and
unutilized land. Both road and village boundary datasets were
extracted from Open Street Map (https://www.openstreetmap.
org), incorporating national road networks and administrative
boundaries at the village level in the Hunan Province. The details
of data types and sources for GH are detailed in Table 2.

According to the spatial planning schematic from the
“Comprehensive Strategy for the GH Zone in the Changsha-
Zhuzhou-Xiangtan Metropolitan Region”, GH is divided into
three regions: prohibited development area, restricted
development area, and controlled construction area (Figure 1b).
The prohibited development area, encompassing 275.89 km2

(52.22% of the total area), comprises areas of extreme and high
ecological sensitivity, ecological reserves, mountains with slopes
exceeding 25°, and contiguous farmlands and wetlands. The
restricted development area encompasses 191.30 km2 (36.21%),
including regions of moderate and low ecological sensitivity,
areas surrounding the Xiangjiang River and its main tributaries,
and elevated terrains with slopes ranging from 15° to 25°. The
controlled construction area spans 61.13 km2 (11.57%),
incorporating contiguous development areas, non-sensitive
ecological zones, and regions with high development potential.
Based on the environmental variable similarities between the
3 km buffer zone and the GH, and considering spillover effects

at PA edges from previous research (Chiu et al., 2016; Shen Y. et al.,
2022), a 3 km buffer zone of GH was established using the Analyst
Toolbox in ArcGIS 10.8 (Figure 1b).

2.4 Construction of RSEI

RSEI is a comprehensive ecological index that analyzes EEQ
spatiotemporal dynamics with remote sensing images (Xu et al.,
2019). The construction of the RSEI requires four indicators:
greenness, wetness, dryness, and heat (Supplementary Table S2).
The formula is presented in Equation 1. This comprehensive
approach enables an objective and impartial evaluation of EEQ.

RSEI � f Greeness,Wetness, Dryness,Heat( ) (1)

Where greenness, wetness, dryness, and heat represent the four
remote sensing metrics-the Normalized Difference Vegetation
Index (NDVI), Wetness (WET), Normalized Difference Bare Soil
Index (NDBSI), and Land Surface Temperature (LST), respectively
(Yang and Li, 2023). Furthermore, to prevent water’s influence on
principal component loadings and account for variance in indicator
scales, the modified normalized difference water index (MNDWI) is
applied for each indicator to mask the water body before PCA
analysis (Du et al., 2016). The formulas for normalization and water
mask are presented in Equations 2,3.

NI � M −Mmin

Mmax −Mmin
(2)

TABLE 1 Remote data sources.

Sources Datasets Name Description

Google Earth
Engine

Landsat 5 TM datasets
Landsat 7 ETM+ datasets
Landsat 8 OLI and TIRS datasets

C02/T1_L2 Surface Reflectance Products

ECRC/Google JRC/GSW1_3/Yearly
History

Maps of the spatiotemporal distribution of surface water provided those changing statistics

TABLE 2 GH data sources.

Sources Data type Description

Geospatial data cloud (https://www.gscloud.cn) DEM (Digital Elevation Model) GDEMV2 datasets (Resolution 30 m)

Resource and Environment Science and Data Center (https://www.
resdc.cn)

Vegetation China’s vegetation type spatial distribution data (1:1,000,000)

Obtained by conversion of DEM data Slope Categorized into five classes: 0°–2°, 2°–6°, 6°–15°, 15°–25°, and
greater than 25°

Slope aspect Divided into eight directions: North, East, South, West, Northeast,
Southeast, Southwest, and Northwest

Geographical Information Monitoring Cloud Platform
(1990–2020)

Land use 1990, 2000, 2010, 2020 (Resolution 30 m)

Open Street Map (https://www.openstreetmap.org) Village boundaries shapefile Hunan Province village-level administrative district boundaries
(GCS_WGS_1984, 2021)

Road data National road data (GCS_WGS_1984, 1990–2020)

The planning of the ecological GH Various zones of the GH shapefile Includes vector graphics of the prohibited development area,
restricted development area. Controlled construction area
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FIGURE 2
Research flow chart.
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Where M is the initial index, NI stands for the Normalized
Index, and Mmin and Mmax denote the lowest and largest values of
the indicator, respectively.

MNDWI � Green − SWIR1
Green + SWIR1

(3)

Where Green and SWIR1 denote the reflectance of Band two
and Band five in Landsat 8, and Band 3 and Band 4 in Landsat 5/7,
respectively.

Then, to calculate the initial Remote Sensing Ecological Index
(RSEI0), we first normalize the four indicators mentioned above to
the range [0, 1] to ensure comparability and avoid unbalanced
weighting due to differing dimensions. These normalized indicators
are then processed using PCA to extract the first principal
component (PC1), which captures the main variance in the data.
To align the higher RSEI values with better ecological quality, we
subtract PC1 from 1, as shown in Equation 4:

RSEI0 � 1 − PC1 f NDVI,Wet, LST,NDBSI( )[ ] (4)

Where the RSEI value lies within the range of [0, 1], with higher
values reflecting superior ecological health (Pariha et al., 2021; Yuan
et al., 2021), and PC1 denotes the first principal component of
indicators, and f represents the normalized form of each indicator.
To demonstrate the protective effectiveness of GH policies, the
timeline was divided into two phases: 1990–2013 and 2013–2020,
using the implementation year of GH policy as the dividing line. By
comparing data from these two periods, a more comprehensive
assessment of the area’s ecological shifts can be obtained.

2.5 Analysis methods

The study’s methodology is depicted Figure 2. Initially, four remote
sensing metrics-NDVI, WET, NDBSI, and LST-were extracted from
the synthesized Landsat imagery on the GEE platform. PCA was
employed to generate annual spatiotemporal maps of RSEI for each
CZT-GH subarea from 1990 to 2020. Subsequently, Theil-Sen-Mann-
Kendall (MK) was applied to analyze the EEQ trends in GH. Lastly,
PSM and Wilcoxon methods were utilized to assess and evaluate the
effectiveness of the GH policy.

2.5.1 Least squares linear regression analysis
The least squares linear regression equation was applied to

quantitatively analyze the interannual variation trend of EEQ in
GH (Zhang et al., 2023a). In this regression model, time (year) serves
as the independent variable, while RSEI represents the dependent
variable. RSEI interannual trend graphs were generated for the
periods 1990–2013, 2013–2020, and 1990–2020, along with a line
graph of RSEI from 1990 to 2020. The interannual variation slope
calculation formula is presented in Supplementary Figure S1.

Linear trend estimation and correlation coefficient statistical
tests enable clearer evaluation and comparison of changes across
different time periods.

2.5.2 Theil-Sen and Mann-Kendall
This study utilized the Theil-Sen (Jiang B. et al., 2024; Li et al.,

2025) and Mann-Kendall (Jiao et al., 2021; Zhou S. et al., 2024)

methods to analyze the temporal variation trends of the RSEI in the
CZT-GH for the periods 1990–2013 and 2013–2020. These robust
non-parametric statistical methods do not require normal
distribution assumptions and are insensitive to outliers (Wan
et al., 2023; Yue et al., 2020), making them ideal for analyzing
trends in extended time series datasets (Li et al., 2020; Shen X. et al.,
2022; Wu et al., 2021). The temporal trends were classified into five
categories based on their magnitude and direction: “Serious
degradation” (βRSEI ≤ −0.005, Z < 1.96), “Slight degradation”
(βRSEI ≤ −0.005, −1.96 < Z < 1.96), “No change” (−0.005 <
βRSEI < 0.005, −1.96 < Z < 1.96), “Slight improvement” (βRSEI ≥
0.005, −1.96 < Z < 1.96), and “Strong improvement” (βRSEI ≥ 0.005,
Z ≥ 1.96) (Tang et al., 2023; Wu et al., 2021). The Theil-Sen-MK
method’s statistical fundamentals are displayed in Supplementary
Table S3, S4. The formula for β is shown in
Supplementary Figure S1.

In the Theil-Sen method, β indicates the trend of change, where
xj and xi represent time series data, with β > 0 indicating an
increasing trend and β < 0 indicating a decreasing trend. The
statistical significance of the trend in Theil-Sen is determined by
the MK Z value, established at three confidence levels: 90%, 95%,
and 99% (Wang G. et al., 2023). The significance level (α) is set at
0.05, with a time series sample size (n) of 30. The standardized test
statistic Z calculation for the RSEI time series is illustrated in
Supplementary Figure S1.

2.5.3 Propensity score matching (PSM)
PSM is a methodology used to balance covariates between

treatment and control groups by matching subjects with similar
propensity scores, thereby simulating randomization (Rosenbaum,
1989). To evaluate whether GH policy implementation significantly
influenced EEQ protection from 1990 to 2020, the data underwent
propensity score matching. Seven factors were selected as covariates
based on their capacity to capture environmental heterogeneity and
their relevance to EEQ, as identified in previous studies: DEM, slope,
slope aspect, land use, vegetation cover type, distance to the nearest
residential area, and distance to the nearest road (Joppa and Pfaff,
2010; Zhang et al., 2023a; Zhang Z. et al., 2022). Topographic
elevation significantly influences precipitation distribution and
hydrological processes, directly affecting the region’s soil and
water conservation potential (Jiang et al., 2021). Slope and aspect
variations influence soil fertility and vegetation growth,
subsequently affecting biodiversity (Zhang et al., 2023b). Land
use types determine regional connectivity and ecological services
(Field and Parrott, 2022). Vegetation cover indicates ecological
conditions and can be modified by different land use practices,
impacting conservation outcomes (Zhou Y. et al., 2024). Proximity
to roads and residential areas reflects external connectivity,
indicating urban expansion and potential human activity pressure
on ecosystems (Tong et al., 2023). Due to spatial and temporal
limitations and the difficulty in obtaining detailed data,
socioeconomic drivers (e.g., GDP growth, population density)
and policy-specific interventions (e.g., zoning enforcement
intensity) were not considered in the PSM analysis.

The study area was divided into 1 km by 1 km grids (Chen et al.,
2017), with grids in GH designated as treatment samples and grids
in the 3 km buffer zone as control samples. PSM was conducted
independently between each GH subarea (controlled, prohibited,
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and restricted development area) and the 3 km buffer zone. The
matching outcomes for the controlled development area and its
buffer zone (Buffer-C), prohibited development area and its buffer
zone (Buffer-P), and restricted development area and its buffer zone
(Buffer-R) are illustrated in Figures 6a–f, respectively. Covariate data
were obtained using grid masks for each GH subarea and the 3 km
buffer zone. The extracted data within the grids were converted to
points. The study employed propensity scores from treatment and
control groups as the distance metric and performedmatching based
on the nearest neighbor method, minimizing potential bias from
confounding variables (Eskelson et al., 2009). This method
eliminates environmental variations between GH and non-GH
grids, enabling one-to-one matching under comparable
environmental conditions (Xu A. et al., 2024). The caliper (δ)
was set to 0.2 to achieve a balance between obtaining sufficient
matched pairs while avoiding poor matches that could skew the
results (Lunt, 2014). Matching was performed using the MatchIt
package in R. 4.3.2 (Jiang M. et al., 2024).

2.5.4 Wilcoxon analysis
TheWilcoxon analysis is a non-parametric approach suitable for

evaluating non-normally distributed data (Bauer, 1972; McKeever
et al., 2024). This study extracted matched grid data in GH and the
3 km buffer zone and transformed it into matrix data. TheWilcoxon
test (α = 0.05) was applied to analyze and compare the differences in
βRSEI between 1990–2013 and 2013–2020 in GH and the 3 km
buffer zone, as well as in the matched buffer zones of each subarea
before and after the implementation of GH policy. A

P-value <0.05 from a Wilcoxon test result indicates a significant
difference in conservation effectiveness. Additionally, a
βRSEI >0 represents an improvement in EEQ, and a higher βRSEI
indicates a greater improvement in conservation effectiveness. This
analysis evaluates the impact of the conservation effectiveness of GH
policy, conducted in R. 4.3.2.

3 Result

3.1 Composition and variation of RSEI in the
CZT-GH

A PCA on the RSEI of CZT-GH (1990–2020) reveals that the
cumulative contribution rate of the main components (PC1) in GH
is 63.7% ± 2.4% (mean ± SD) (Table 3). The majority of
characteristics of the NDVI, WET, LST, and NDBSI can be
represented by these first principal components (mean ± SD).
According to their contribution rates to RSEI, the NDVI and
WET contribute positively to ecology, while NDBSI and LST
demonstrate adverse ecological impacts.

During the three monitoring periods, the overall RSEI levels
predominantly fall into the “Moderate” and “Good” categories, with
areas of low values primarily located in the controlled construction
area and the southeastern part of the buffer zone (Supplementary
Figure S2a–c). Higher RSEI values are predominantly observed in
the prohibited development area and restricted development area,
along with their adjacent buffer zones. The southern part of the

TABLE 3 Results of PCA of four indexes.

Year Index 3 km buffer Prohibited Restricted Controlled GH

1990–2013 NDVI 0.221 ± 0.56 0.381 ± 0.57 −0.038 ± 0.65 −0.172 ± 0.49 0.192 ± 0.42

LST −0.032 ± 0.38 −0.142 ± 0.38 0.226 ± 0.47 0.126 ± 0.54 0.103 ± 0.41

WET −0.181 ± 0.28 −0.184 ± 0.28 −0.032 ± 0.38 −0.046 ± 0.34 −0.178 ± 0.28

NDBSI 0.313 ± 0.34 0.312 ± 0.34 0.234 ± 0.35 0.370 ± 0.41 0.283 ± 0.29

EV (pc1) 0.024 ± 0.008 0.042 ± 0.008 0.053 ± 0.010 0.027 ± 0.007 0.028 ± 0.006

ECRpc1% 51.85 ± 8.81 61.40 ± 7.82 68.93 ± 8.92 55.34 ± 6.83 54.93 ± 5.71

2013–2020 NDVI −0.494 ± 0.08 0.498 ± 0.08 0.462 ± 0.52 0.496 ± 0.13 0.568 ± 0.18

LST 0.274 ± 0.10 −0.303 ± 0.10 −0.299 ± 0.53 −0.197 ± 0.11 −0.114 ± 0.18

WET 0.050 ± 0.15 0.084 ± 0.15 0.047 ± 0.20 −0.035 ± 0.21 0.098 ± 0.20

NDBSI 0.471 ± 0.06 0.478 ± 0.06 −0.383 ± 0.44 0.465 ± 0.05 0.313 ± 0.09

EV (pc1) 0.044 ± 0.009 0.051 ± 0.005 0.046 ± 0.007 0.069 ± 0.012 0.044 ± 0.007

ECRpc1% 68.92 ± 8.45 66.60 ± 7.58 64.15 ± 8.13 73.97 ± 8.94 68.02 ± 8.31

1990–2020 NDVI −0.356 ± 0.56 0.724 ± 0.56 −0.123 ± 0.61 −0.234 ± 0.39 −0.032 ± 0.63

LST 0.022 ± 0.45 −0.310 ± 0.45 0.177 ± 0.51 0.228 ± 0.49 0.219 ± 0.47

WET −0.102 ± 0.25 0.160 ± 0.25 0.076 ± 0.33 −0.179 ± 0.29 0.056 ± 0.27

NDBSI 0.368 ± 0.30 −0.613 ± 0.30 0.087 ± 0.39 0.294 ± 0.36 0.288 ± 0.30

EV (pc1) 0.046 ± 0.012 0.042 ± 0.013 0.045 ± 0.009 0.058 ± 0.010 0.033 ± 0.012

ECRpc1% 58.81 ± 9.62 62.29 ± 8.74 59.68 ± 8.73 58.43 ± 9.82 51.57 ± 8.91
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CZT-GH demonstrated a notable increase in RSEI from 2013 to
2020 (Supplementary Figure S2b). This improvement is attributed to
GH policy, which prioritizes protecting the natural environment and
controlling large-scale economic development.

As illustrated in Supplementary Figure S2c, the “Poor” category
comprises the smallest area at 6.00% of the total, followed by “Fair”
at 11.22%, “Moderate” category at 19.79%, “Good” category at
37.02%, and “Excellent” category at 25.98%. The percentages of
each category demonstrate fluctuations (Figure 3). The “Fair”
“Poor” and “Good” categories exhibit a relative fluctuation trend,
the “Moderate” category shows a significant reduction, and the
“Excellent” categories display clear growth. Before (1990–2013) and
after (2013–2020) policy implementation, the average proportion of
areas with the “Moderate”, “Fair”, and “Poor” categories decreased
from 22.36% to 10.17%, while the share of “Good” and “Excellent”
categories increased from 77.15% to 89.69%.

3.2 Long-term trend of RSEI

The RSEI in the area exhibited a fluctuating upward trend,
indicating an improvement in the overall EEQ in the CZT-GH
(Figure 4). The annual RSEI across the entire region has increased by
0.0038 over the study period. The growth rate from 1990 to 2013 was
slightly lower than that from 2013 to 2020, with rates of 0.0045 years-1

and 0.0089 years-1, respectively.
The βRSEI analysis using the Theil-Sen-MK method revealed

distinct spatial variations in EEQ changes across the study area
from 1990 to 2020 (Figure 5). The “No change” category
decreased substantially from 75.49% to 29.16% between the
periods 1990–2013 and 2013–2020. Simultaneously, areas
showing “Slight improvement” and “Strong improvement”
categories in EEQ increased significantly from 23.86% to
59.38% during these periods. As shown in Figures 5a,b, the
dominant EEQ trend spatially transitioned from “No change” to
“Slight improvement,” becoming widely distributed across
various subareas. Regions exhibiting “Serious degradation”
and “Slight degradation” categories increased from 0.97% to
12.24%, shifting from the northern part of GH to the
southeastern and southern buffer zones between
1990–2013 and 2013–2020.

Throughout 1990–2020, roughly 12% of the total study area
demonstrated “Slight improvement” and “Strong improvement”
categories in EEQ change trends (Figure 5c), mainly concentrated
in the northern GH and southwestern buffer zones. The “Slight
improvement” category constituted 8.7% of this change. The
predominant EEQ change trend remained “No change,”
comprising approximately 83% and primarily distributed across
central GH and the eastern buffer zone. The areas classified
under the “Slight degradation” and “Serious degradation”
categories represented only 2.24% and 0.94% of the total area,
respectively.

FIGURE 3
Area distribution of RSEI level in the CZT-GH from 1990 to 2020.

FIGURE 4
Temporal trends in the RSEI values for the CZT-GH from
1990 to 2020.
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FIGURE 5
RSEI changing trends at the significant 0.05 level from 1990 to 2013 (a), 2013–2020 (b), and 1990–2020 (c), with corresponding sub-region
percentages for each period.
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TABLE 4 PSM results between GH and the 3 km buffer zone. A refers to the 3 km buffer zone. B refers to the prohibited development area. C refers to the
restricted development area. D refers to the controlled construction area. Numbers in the table are the values, which refer to the values of grids.

Survey region Before matching Matched Unmatched

Control Treated Control Treated Control Treated

A_B 610 305 172 172 438 133

A_C 610 294 174 174 436 120

A_D 610 83 76 76 534 7

FIGURE 6
PSM results between the inner and outer zones of the GH. Subplots (a), (c), and (e) represent the buffer zones (Buffer-C, Buffer-P, and Buffer-R)
matched through the controlled construction area, prohibited development area, and restricted development area, respectively. Subplots (b), (d), and (f)
show the corresponding development area within these zones that have been matched through PSM.
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3.3 PSM for assessing conservation effects
on EEQ

In the PSM results, the prohibited development area and
restricted development area yielded 172 and 174 matched data
points, respectively (Table 4). Within the Buffer-P and Buffer-R,
the matched data locations demonstrated a high overlap rate,
predominantly situated in the southern, eastern, and western
regions (Figures 6c,e). The propensity score matching results in
the controlled construction area indicated near-complete fulfillment
of the matching criteria (Figure 6b).

3.4 Conservation outcomes in GH and
surrounding buffer zone

Following policy implementation (2013–2020), the βRSEI of the
GH buffer zone and subareas exhibited distinct variations (Figures
7d–f). The prohibited development area showed an average βRSEI of
0.0079, significantly exceeding the Buffer-P (0.0054, P < 0.001). The
restricted development area displayed an average βRSEI of 0.0082,
notably higher than the Buffer-R (0.0049, P < 0.0001). The
controlled construction area demonstrated an average βRSEI of

0.0084, compared to the Buffer-C’s 0.0055, indicating a
significant difference (P < 0.01). However, before GH policy
implementation (1990–2013), no significant differences were
observed between the matched buffer zones and GH subareas,
including prohibited development, restricted development, and
controlled construction areas (Figures 7a–c).

The average βRSEI values for the matched buffer zones of each
GH subarea after policy implementation were significantly higher
than those of the corresponding areas before policy implementation
(Supplementary Figure S3). The implementation of the GH policy
resulted in notable positive conservation outcomes within the 3 km
buffer zone.

4 Discussion

4.1 Spatiotemporal dynamics and influences
on RSEI growth in the CZT-GH

Before (1990–2013) and after (2013–2020) policy
implementation, the RSEI of the CZT-GH within the “Good”
(0.6–0.8) and “Excellent” (0.8–1.0) categories demonstrate an
upward trend, increasing from 77.15% to 89.69% (Figure 3), and

FIGURE 7
Boxplot of the significance of βRSEI across different time periods within and outside the GH areas. Wilcoxon test for prohibited zones and Buffer-P,
1990–2013 (a); Wilcoxon test for restricted zones and Buffer-R, 1990–2013 (b). Wilcoxon test for controlled zones and Buffer-C, 1990–2013 (c);
Wilcoxon test for prohibited zones and Buffer-P, 2013–2020 (d); Wilcoxon test for restricted zones and Buffer-R, 2013–2020 (e); Wilcoxon test for
controlled zones and Buffer-C, 2013–2020 (f). (Note: Numerical levels are represented by symbols: (1) ns: 0.05, (2) *: <0.05, (3) **: <0.01, (4)
***: <0.001, (5) ****: <0.0001.).
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primarily concentrated in the central and north-east regions of GH
(Supplementary Figure S2). This aligns with previous research that
reported over 60% of the RSEI in the Changsha-Zhu-Xiangtan
urban agglomeration ranged between 0.65 and 1 during
1999–2020, indicating an overall improvement in EEQ (Li G.
et al., 2023).

The RSEI growth rate of CZT-GH from 2013 to 2020 was
0.0089 years-1, which exceeded the rate of 0.0038 years-1 observed
from 1990 to 2013 (Figure 4). This increase can be attributed to the
rapid economic development and land expansion in the Changsha-
Zhuzhou-Xiangtan urban agglomeration from 2000 to 2010 (Deng
et al., 2020). Furthermore, anthropogenic activities such as
deforestation and construction adversely impacted EEQ. Li
J. et al. (2022) observed that decreased vegetation cover directly
correlates with declining regional EEQ in areas experiencing
frequent construction and deforestation within CZT-GH from
2008 to 2013. Since 2001, urban expansion has emerged as a
significant factor in reducing vegetation cover in the CZT-GH
(Shunshi et al., 2019).

The GH and the 3 km buffer zone categorized as “Slight
improvement” and “Strong improvement” in the βRSEI
demonstrated substantial increases with spatial heterogeneity
(Figure 5). The enhancement in GH stems from increased
vegetation cover, stricter regulations on environmentally risky
projects, and the establishment of environmentally conscious
industries (Deng et al., 2020). The improvement in the 3 km
buffer zone results from the development of ecological corridors,
which enhanced connectivity with the GH, strengthening ecological
stability (Qu et al., 2024). This EEQ improvement pattern in CZT-
GH aligns with previous research findings (Dieleman and Musterd,
2013). In comparable climate regions, such as Chengdu and the
Yangtze River Delta, green spaces have enhanced EEQ through
greenway network construction and green development policies,
emphasizing connectivity and balanced conservation with
sustainable land use (Wang J. et al., 2023; Zhong et al., 2020).

4.2 Impact of GH policy on EEQ

GH policy has demonstrated positive outcomes, facilitating a
comprehensive recovery of EEQ in the region from 2013 to 2020
(Figure 5b). The average βRSEI of the GH subareas is significantly
higher than that of buffer zone. The average βRSEI values for the
prohibited, restricted and controlled area are 0.0079, 0.0082 and
0.0084, while the corresponding average value for the buffer zone
are 0.0054 (P < 0.001), 0.0049 (P < 0.0001) and 0.0055 (P < 0.01),
respectively (Figure 7). The EEQ of CZT-GH primarily fell within
the “Moderate”, “Good”, and “Excellent” categories in 2018, with
cropland (26.61%) and forest land (48.03%) as the predominant
land use types (Li J. et al., 2022). GH policy, serving as a
comprehensive framework for ecological protection and urban
management, has implemented measures including increased
ecological construction, reduced human disturbances, and
regular ecological monitoring to maintain ecosystem stability
(Li T. et al., 2023; Liang et al., 2024). In the Netherlands, GH
policy significantly improved air quality by approximately 20%,
diminished urban heat island intensity, and enhanced regional
ecological resilience by 30% from 2000 to 2020 (Dieleman and

Musterd, 2013; Roodbol-Mekkes and Van Den Brink, 2015).
Stockholm’s “Green Wedges” planning has driven spatial
development, increasing the city’s green space by 30% and
enhancing biodiversity through expanded green corridors since
its inception in 1947 (Grădinaru and Hersperger, 2019).
Similarly, the CZT-GH significantly enhances biodiversity by
establishing ecological corridors that protect native species and
key habitats for wildlife (Qu et al., 2024).

During the past decade, GH policy has established a networked
ecological pattern centered on forest green spaces, supported by
wetlands and farmlands, and interconnected by rivers, streams, and
transport corridors. This network has strengthened ecosystem
stability and improved EEQ (Wang et al., 2021). GH policy has
also designated prohibited, restricted, and controlled development
area to ensure sustainable resource utilization, minimize
environmental damage, and increase forest cover (Li C. et al.,
2023). The controlled construction area maintains EEQ through
the protection of ecological patches and corridors, improving
connectivity and enhancing ecosystem service efficiency
(Unnithan Kumar et al., 2022; Zhang et al., 2024a). Both the
controlled construction area and the 3 km buffer zone feature
extensive, uninterrupted development zones, characterized by
high urbanization levels, similar land use and vegetation types,
and dense populations and road networks, which create
comparable covariate conditions across most areas of the
controlled construction area. The prohibited and restricted
development areas boost EEQ through restored forests and
wetlands, establishing multi-level ecological redlines and strictly
controlling land use to create a comprehensive ecological barrier
(Hunan, 2025).

While the EEQ of GH and its buffer zones has exhibited varying
degrees of change following policy implementation (Figure 5b), it
remains vulnerable to urbanization impacts. Moving forward, the
CZT-GH should enhance policies for subareas. Prohibited
development area should prioritize ecological and landscape
protection, with strict enforcement of ecological redlines and
routine satellite monitoring. Restoration efforts should focus on
native vegetation and habitat reconstruction to recover ecosystems,
including wetlands and forests (Valente et al., 2021). Moreover,
restricted development areas should adopt protection-first and
moderate development strategies while promoting advanced
primary sectors and supporting green tertiary sectors such as
eco-agriculture and rural tourism (Wang et al., 2022). These
areas should control land use and integrate ecological restoration
to balance development with conservation (Li Q. et al., 2022).
Additionally, controlled construction areas must strictly define
development boundaries and utilize land efficiently to maintain
ecological corridor connectivity. Green infrastructure requires
reinforcement, urban expansion needs rational planning, and
sprawl-driven ecological degradation should be prevented (Wu
et al., 2020).

Balancing economic growth and ecological integrity in the CZT-
GH relies on monetizing ecosystem services through provincial
horizontal ecological compensation, which has effectively
promoted inclusive green development (Li J. et al., 2022). The
government directs capital toward high-end primary industries
and eco-tourism within restricted and controlled zones,
harmonizing local livelihood strategies with conservation
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objectives (Liu X. et al., 2024). GH requires a remote-sensing and
connectivity-informed ecological security pattern to constrain urban
expansion, maintain landscape linkages, and minimize patch
fragmentation (Tang et al., 2023).

4.3 Positive conservation effectiveness of
GH and 3 km buffer zone on EEQ

Between 2013 and 2020, substantial positive conservation
effects on EEQ were detected between the matched buffer
zones and GH subareas (Figure 7; Supplementary Figure S3).
The establishment of a multi-scale ecological corridor network
enhances landscape connectivity, protects ecological sources,
reduces resistance, and enables species and energy movement.
This consequently improves the EEQ of GH and its buffer zone
(Ouyang et al., 2024). Additionally, the government limits
overdevelopment within GH and implements arable land and
forest protection planning, facilitating vegetation growth and
restoration (Wu and Wang, 2023). These strategies mitigate
urban sprawl’s ecological impact, improving regional EEQ (Li
C. et al., 2023; Shao et al., 2024).

Prior studies have established that buffer zones are essential
for effective ecosystem protection. The buffer zones at 0–2 km,
2–6 km, and 6–10 km in the Wuyishan PA exhibited significant
conservation effects, suggesting a 0–10 km width effectively
balances ecosystem preservation and controlled human activity,
thereby reducing urban development impacts (Zhang et al.,
2023b). Chen et al. (2017) revealed that the 0–10 km buffer
zone for the Cangshan nature reserve demonstrated a significant
positive spillover effect on forest cover. The 2 km buffer along
the Weihe River in Shaanxi effectively minimized ecological
risks and maintained ecosystem service values. The targeted
zoning approach successfully mitigated ecological risks
from land-use changes and protected the ecosystem (Xie
et al., 2024).

The GEE platform enabled historical monitoring and analysis of
EEQ spatiotemporal dynamics in CZT-GH. The PSM approach
assessed EEQ variations before and after GH policy implementation.
This study presents a replicable framework for evaluating the
conservation effectiveness of protection policies in similar urban
areas, using RSEI and PSM. It contributes to assessing policy
effectiveness and facilitating further improvements.

4.4 Limitations and future directions

This study primarily focuses on the spatiotemporal dynamics
of EEQ in the CZT-GH and its 3 km buffer zone from 1990 to
2020, and evaluates the conservation effectiveness of the GH
policy. However, this study is unable to assess the long-term
impact of recent urban renewal initiatives (e.g., sponge city
projects), as it concluded in 2020. Future research should
integrate post-2020 data to explore the synergies or trade-offs
between ecological protection and urban development.
Additionally, it should also enhance the policy implementation
mechanism, establish transferable indicators for cross-scenario
comparisons, and combine ecological assessments with economic

cost evaluations. Furthermore, ecosystem services (e.g., carbon
sequestration, pollination, and flood regulation) in the CZT-GH
should be further emphasized in future work to expand the scope
of our analysis, while also highlighting the hydrological
connectivity between upstream and downstream areas and
their impact on EEQ.

5 Conclusion

This study systematically analyzed the spatiotemporal trends of
EEQ in the world’s largest urban GH (CZT-GH) and its 3 km buffer
zone from 1990 to 2020, based on remote sensing data and
employing PSM to minimize bias and evaluate the effectiveness
of GH policy before and after its implementation in each zone. The
results indicate that the RSEI in the CZT-GH showed an upward
trend from 1990 to 2020, with an accelerated growth rate observed
after the implementation of the GH policy (2013–2020). Regions
with the “Good” and “Excellent” categories of RSEI were mainly
located in the central and northeastern areas, while the “Poor” and
“Fair” categories of RSEI were mainly located in the controlled
construction area and the southeastern part of the buffer zone. The
average proportion of areas with improving EEQ increased from
77.15% to 89.69% from 2013 to 2020. The implementation of GH
policy enhanced EEQ in GH subareas and in its 3 km buffer zone,
demonstrating notable conservation effectiveness. The
implementation of GH policy enhanced EEQ in GH subareas
and in its 3 km buffer zone, demonstrating notable conservation
effectiveness. The βRSEI was categorized as the “Strong
improvement” and “Strong improvement” categories which
increased from 75.49% to 29.16% during 2013–2020. This
research provides a scientific foundation for urban GH planning
and promotes sustainable ecological enhancement and optimization
of policy decisions.
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