
Effect of sewage sludge and
digestate from anaerobic
fermentation on the
accumulation of cadmium (Cd),
gallium (Ga), germanium (Ge), and
rare earth elements (REEs) in soil
and uptake by plants with
different nutrition strategies

Nazia Zaffar1*, Viktoriia Lovynska2,3, Alla Samarska4,
Tobias Arnstadt4, Olivier Pourret5, Stéphan Firmin5, Petr Baroš6,
Eliška Lyko Vachková6, Martin Palušák7, Stanisław Wacławek7,
Edgar Peiter8 and Oliver Wiche4,5

1Institute for Biosciences, Biology/Ecology Group, TU Bergakademie Freiberg, Freiberg, Germany,
2Institute of Bio- and Geosciences: Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich,
Germany, 3Laboratory of Forestry, Dnipro State Agrarian and Economic University, Dnipro, Ukraine,
4Applied Geoecology Group, Faculty of Natural and Environmental Sciences, University of Applied
Sciences Zittau/Görlitz, Zittau, Germany, 5Institut Polytechnique UniLaSalle, AGHYLE, Beauvais, France,
6Department of Sustainable Fuels and Green Chemistry, University of Chemistry and Technology Prague,
Prague, Czechia, 7Institute for Nanomaterials, Advanced Technologies and Innovation, Technical
University of Liberec, Liberec, Czechia, 8Plant Nutrition Laboratory, Institute of Agricultural and
Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle,
Germany

This study investigates how sewage sludge and liquid digestate, as biosolid
amendments, affect the mobility of cadmium (Cd), gallium (Ga), germanium
(Ge), and rare earth elements (REEs) in soil, as well as their uptake by plants with
differing nutritional strategies. Four species Alyssum murale, Lupinus albus,
Fagopyrum esculentum, and Carthamus tinctorius were cultivated on
unamended soil or soil amended with either sewage sludge or digestate.
Shoot uptake of the essential elements P, Fe, Mn, Ni and of non-essential
elements was evaluated alongside changes in ammonium-acetate-extractable
(labile) element concentrations. For three species, root carboxylate exudation
and rhizosphere acidification were also measured under variable phosphorus (P)
supply conditions induced by the amendments. Both biosolids improved
micronutrient availability across all species. However, increased shoot P
concentrations were only observed in plants treated with sewage sludge.
Digestate addition elevated total Ge (14.4%), labile Ga (178%), and labile REE
(22%) concentrations in soil, while sewage sludge increased labile Cd (31%) and
decreased labile REEs (18%) concentration. Neither amendment enhanced Ge
uptake by plants. A higher proportion of labile Cd correlated with a higher Cd
uptake in all tested plant species. However, the shoot net uptake of Ga and REE
did not reflect their mobility in soil. More specifically, a higher Ga mobility in soil
only increased Ga uptake in F. esculentum. F. esculentum acidified the
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rhizosphere and released fewer carboxylates under conditions of high P supply.
Despite lower labile REEs concentrations in sewage sludge amended soil, L. albus
and F. esculentum accumulated more REEs when the P supply was increased due
to biosolids addition. The findings highlight that while Cd transfer is predictably
linked to its labile soil pool, the uptake of Ge, Ga, and REEs depends on complex
interactions between soil chemistry and plant-specific physiological traits
responses to biosolid-derived nutrient inputs.
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1 Introduction

The global production of sewage sludge and digestate from
anaerobic fermentation is rising due to increasing urban
populations (Rékási et al., 2019). As the main solid by-products
from urban wastewater treatment and anaerobic digestion, these
biosolids contain high concentrations of essential plant nutrients.
Hence, biosolids represent valuable secondary raw materials for
fertilizer production and are widely applied as organic fertilizers or
soil conditioners (Pecorini et al., 2020; Jama-Rodzeńska et al., 2021;
Kanteraki et al., 2022; Marchuk et al., 2023). However, biosolids also
contain a diverse range of potentially toxic metal (loid)s (Marotrao
et al., 2021; Kowalik et al., 2022; Zaffar et al., 2023) that can
accumulate in soil and crops, often limiting their use in
agriculture (Sinha et al., 2023; Alengebawy et al., 2021; Marchuk
et al., 2023). Among these, cadmium (Cd), lead (Pb), chromium
(Cr), and mercury (Hg) are the most extensively studied (Marotrao
et al., 2021; Kowalik et al., 2022; Marchuk et al., 2023). In contrast,
less attention has been paid to germanium (Ge), gallium (Ga), and
rare earth elements (REEs: La-Lu, Sc,Y) despite their increasing
detection in soils and plant biomass (Wiche et al., 2017; Okoroafor
et al., 2022). Given their widespread occurrence and growing
recognition as emerging environmental pollutants (Turcotte
et al., 2022; Akarsu et al., 2023), as well as the potential role of
REEs as beneficial elements (Qvarforth et al., 2025), it is important
to assess how biosolid applications affect the plant availability not
only of nutrients and commonly monitored metal (loid)s, but also of
Ge, Ga, and REEs.

The plant availability of a given element depends on the complex
interplay between soil-associated factors and plant-associated
factors (Wiche et al., 2018). Soil-associated factors govern the
solubility and chemical speciation of elements in soil, including
soil pH, Eh, organic matter content, cation exchange capacity, and
the distribution of elements in labile mineral and organic soil phases
(Sheoran et al., 2016). In this regard, biosolid application may
increase the concentrations of mobile and labile-bound elements
in the soil when the elements contained are released from the
organic matrix and/or when soil-born elements are mobilized
through changes in pH and the increase in dissolved organic
carbon following biosolid application (Badewa et al., 2023).
Besides morphological root traits, plant-associated factors include
root-derived chemical changes in the rhizosphere and the plant’s
capacity for element uptake, transport and sequestration. The
literature indicates large differences in the ability of plants to
alter rhizosphere chemistry, to utilize a specific element pool
(Lambers et al., 2015; Lu et al., 2020), and to cope with non-

essential elements in the soil (Dillon and Courtney, 2023). With
regard to metalloid accumulation and tolerance, the functional
adaptations of plants include two basic physiological strategies:
accumulators and excluders (Noor et al., 2022). The majority of
plant species tolerate metals in the substrate by excluding the
elements at the sites of uptake through restricting influx,
promoting efflux, or extracellular complexation with organic
ligands (Akram et al., 2024). In contrast, accumulators efficiently
acquire/utilize elements from the soil and avoid element toxicity in
the roots by rapidly transporting the elements to the shoots, where
they are sequestrated in the leaf tissue. Specialized (hyper-)
accumulators that evolved in metalliferous environments, of
which Thlaspi caerulenscens and Alyssum murale are profoundly
studied, accumulate more than 1,000 mg of Cd, Ni, and Zn in their
shoot dry matter (van der Ent et al., 2013) but only when they are
growing on soils with high metal mobility. These species rely on
highly efficient transport and cellular hypertolerance mechanisms
rather than alteration of rhizosphere chemistry (Pollard, 2023). In
accumulator species from non-metalliferous soils, however, metal
accumulation may appear as a side effect of functional traits related
to P, Fe, and Mn acquisition (Monei et al., 2022), especially the
release of carboxylates and acidification of the rhizosphere. Indeed,
rhizosphere acidification has been linked with metal accumulation
in different taxa from the Phytolaccaceae, Polygonaceae,
Brassicaceae and Proteaceae (Kikis et al., 2024). Of these species,
Fagopyrum esculentum unspecifically accumulates metals even when
it is growing on soils with relatively low metal solubility, which has
been attributed to rhizosphere acidification (Kreuzeder et al., 2018).
In Lupinus albus and P-efficient species from the Proteaceae, Mn
hyperaccumulation coincides with enhanced carboxylate release
under conditions of P deficiency (Lambers et al., 2015; Lambers,
2022; Olt et al., 2022). Concomitantly, these species typically show
low concentrations of non-essential elements (Martínez-Alcalá et al.,
2013), likely as a consequence of element exclusion through
extracellular complexation. Recently, relationships between
carboxylate release and metal exclusion have been demonstrated
for Al, Cd, Pb, and REEs (Wiche and Heilmeier, 2016; Wiche et al.,
2023; Wiche and Pourret, 2023). Given that carboxylate release and
rhizosphere acidification are regulated by the plant’s nutrient status
(Lambers, 2022; Wiche et al., 2023), it is reasonable that soil
amendment with digestate or sewage sludge impacts the uptake
of non-essential elements not only through a direct increase in
potentially available element pools in the soil but also indirectly
through the alteration of plant nutrition.

To date, studies on Ga uptake in plants are scarce, and no
research has addressed how sewage sludge or digestate amendments
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influence the availability and plant uptake of Ge, Ga, and REEs
specially when the nutritional status of the plants is altered through
the addition of amendments. Therefore, the objectives of this study
were to: i) determine the impact of digestate and sewage sludge
amendment on ammonium acetate-extractable (labile) essential (P,
Fe, Mn, Ni) and non-essential elements (Cd, Ge, Ga, REEs) in soil, ii)
evaluate the uptake of Cd, Ge, Ga, and REEs in four plants with
contrasting element acquisition strategies using the P-efficient Mn
accumulator L. albus (Pearse et al., 2006), the phosphophile
unspecific metal accumulator F. esculentum, the element excluder
Carthamus tinctorius Ciaramella et al., 2022), and the specialized Ni
hyperaccumulator A. murale (Wiche and Pourret, 2023) and iii)
investigate how changes in essential and non-essential element pools
in the soil following biosolid amendment influence the soil-plant
transfer of Cd, Ge, Ga, and REEs in these species.

2 Materials and methods

2.1 Greenhouse experiment on the effect
of biosolids

Alyssum murale (yellow tuft), Lupinus albus (white lupin),
Carthamus tinctorius (safflower) and Fagopyrum esculentum
(buckwheat) were cultivated on soil (unamended), and soil
mixed with sewage sludge or digestate from anaerobic
fermentation in the greenhouse. Each treatment within each
plant species was fivefold replicated. The soil was collected
from the campus of TU Bergakademie Freiberg and
characterized as luvisol. The vegetation was stripped off, and
200 kg of topsoil (0–20 cm depth) was collected, homogenized
and sieved (2 mm). The sewage sludge was obtained from the
sewage treatment plant in Muldental, Germany. The catchment
area of the sewage plant includes industrial areas. Hence, the
concentrations of toxic elements frequently exceed the thresholds
for sewage sludge and limits the use of the material for thermal
treatment. The digestate was obtained from the biogas lab of the
Institute of Thermodynamics, TU Freiberg and derived from
mesophilic anaerobic fermentation batch experiments with cow
dung and grass biomass. The digestate and sewage sludge were
thoroughly mixed. Of each material, the soil and the biosolids,
ten homogeneous samples were collected and stored in centrifuge
tubes at 4°C before being analyzed. In total, sixty pots (volume
2 L) were filled with either 3 kg of a homogenous mixture of
1800 g soil and 1,200 g sewage sludge (40:60% sewage sludge: soil,
fw), 2,550 g soil and 450 g digestate (15:85% digestate: soil fw), or
unamended soil as a reference. The water contents of soil, sewage
sludge and digestate were 16%, 77% and 94%, respectively. Thus,
the amount of digestate and sewage sludge added corresponded
to 3% and 24% on a dry matter basis. Here, a higher portion of
sewage sludge was added due to the substantially higher labile P
concentrations in digestate compared to the sewage sludge
(Supplementary Material S1). The substrates were allowed to
settle for 4 weeks. Shortly before the transplantation of seedlings,
soil samples (5 g of soil, sampling depth 10 cm) were collected
from five randomly selected pots within each treatment. The
samples were stored in centrifuge tubes at 4°C before
being analyzed.

Seeds of A. murale (origin: Ankara, Kizilcahamam) were
provided by the Botanical Garden and Botanical Museum Berlin,
and seeds of C. tinctorius (cv CT05 Calin) were provided by the
Exsemine Company. Seeds of F. esculentum (cv Bamby) and L. albus
(cv Feodora) were obtained from Bornträger GmbH. Seeds of L.
albus, F. esculentum, A. murale and C. tinctorius were surface-
sterilized (H2O2) and germinated on a wet filter paper in a Petri
dish. One individual of the three-day-old seedlings was placed in the
middle of the pots to obtain each species growing on each substrate
in fivefold replication. The pots were incubated in a growth chamber
with 65% relative humidity, 25°C average temperature and
600 μmol/m2 s Photosynthetically active radiation (PAR) in a
fully randomized design. The plants did not receive additional
fertilizer; all pots were watered weekly with 200 mL of tap water
over 6 weeks. After 6 weeks of plant growth, all plants were cut 1 cm
above the soil surface. The shoot biomass was washed with deionized
water, dried at 60°C, ground to a fine powder using an ultra-
centrifugal mill (type ZM 1000, Retsch, Germany), and stored in
centrifuge tubes at 4°C until being analyzed.

2.2 Collection of root exudates

A separate greenhouse experiment was designed for the
determination of root exudates in cultivars of L. albus (cv.
Feodora), F. esculentum (cv. Bamby), and C. tinctorius (cv.
CT05 Calin) depending on P status. Seeds were surface-sterilized
by washing with 0.5% sodium hypochlorite (NaOCl) for 3 min,
followed by carefully rinsing with deionized water, and then allowed
to germinate in Petri dishes in a growth chamber at 20°C. After
germination, the seedlings of each plant species (one seedling per
pot) were planted in 10 plastic pots (2 L total volume) filled with acid
(HNO3) washed quartz sand. The pots were incubated for 5 weeks
with a 15 h photoperiod, 18°C–30°C, relative humidity of 65%, and
an average photosynthetically active photon flux density of
600 μmol/m2 s. During 5 weeks, all plants received weekly
200 mL of a 1/5 strength Hoaglands solution (Arnon and Stout,
1939) but with differing P concentrations. Specifically, half of the
plants received a solution containing 100 μM KHPO4 together with
the other nutrients (P100), while the other plants received 20 μM P
(P20). After a cultivation period of 4 weeks, the mature plants were
carefully removed from the sand by washing with tap water and
transferred into glass beakers containing 100 mL of a 2.5 μM CaCl2
solution, where they were let to stay for 30 min under the growth
lamp and allowed to release carboxylates into the collection
solutions (Neumann et al., 2009). Immediately after the
collection of root exudates, the pH was measured, and 1 mL L-1

Micropur was added to prevent microbial decomposition of
carboxylates (Oburger et al., 2013). Thereafter, the shoots and
roots were separated, weighed, and dried for 24 h at 60°C.

2.3 Chemical characterization of biosolids
and soils

Each sample of the unamended soil, digestate, sewage sludge, and
soil amended with the biosolids was homogenized and split into two
subsamples. One-half was dried at 105°C to determine total element
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concentrations and water content. The other half was left fresh for the
determination of labile-bound elements, mineral nitrogen (Nmin), soil
pH, and DL-extractable phosphate. The dried samples were powdered
in a boron carbide mortar. The ground samples (100 mg) were fully
digested in a laboratory microwave (Ethos Plus MLS) with a mixture of
HNO3 and HF, according to Krachler et al. (2002). In all sample
processing steps, certified reference soil samples GBW 07406 and GBW
07407 were used for quality control. The resulting solutions were stored
at 4°C before being analyzed. For the determination of mobile/
exchangeable and acid-soluble elements, the samples were extracted
with 1MNH4

+-acetate, pH 5, for 24 h, according toWiche et al. (2017).
The resulting solutions were centrifuged, filtered (200 nm), and stored
at 4°C before being analyzed. For analysis of mineral N (NO3

−, and
NH4

+), the substrate samples were extracted with deionized water and
1 mol/L KCl (1:10 extracts) and photometrically analyzed according to
Bolleter et al., 1961 and Hartley and Asai (1963).

2.4 Determination of element
concentrations and carboxylates

Ground plant samples (100 mg) were digested in a laboratory
microwave (Ethos plus) with 1.9 mL of nitric acid (65% supra) and
0.6 mL of hydrofluoric acid (4.9% supra), according to Krachler et al.
(2002). In all sample processing steps, certified reference plant
samples NCS ZC73032 and NCS ZC73030 were used for quality
control. The concentrations of P, Fe, Mn, Zn, Ni, Cd, Ga, Ge and
REE in soil extracts and digestion solutions were determined by
Inductively Coupled Plasma Mass Spectrometry (ICP-MS, xseries 2,
Thermo Scientific and NexION 300D, Perkin Elmer), using 10 μg/L
rhodium and rhenium as internal standards (Krachler et al. 2002;
Monei et al., 2022). Calibration solutions ranging from 0.01 to
100 μg/L were prepared through suitable dilution of a multi-element
stock standard solution (Merck). Accuracy verification was
conducted by analyzing the certified reference materials GBW
07406, GBW 07407, NCS ZC73032, and NCS ZC73030 (LGC
Standards); the results from soil analysis deviated by less than
16%, and the results from plant analysis by less than 12% from
the certified values. Concentrations of acetate, malonate, fumarate,
glutarate, malate, and citrate in the collection solutions were
determined by ion chromatography equipped with suppressed
conductivity detection (ICS-5000, Thermo Scientific). Organic
anions were separated at 30°C on an IonPac® AS11-HC column
(Thermo Scientific) using gradient elution with sodium hydroxide as
eluent and a flow rate of 1.0 mL/min.

2.5 Data processing and statistics

Concentrations of light rare earth elements (LREEs) and heavy
rare earth elements (HREEs) in the plant and soil samples were
calculated as sums of La, Ce, Pr, Nd, Pm, Sm, Eu (LREEs) and Gd,
Tb, Y, Ho, Er, Yb, Tm, Lu (HREEs) according to Tyler (2004). Based
on LREE and HREE concentration the LREE/HREE-ratio was
calculated to explore changes in REE fractionation depending on
pant species and soil treatment (Wiche et al., 2023; Wiche and
Pourret, 2023). All element concentrations reported were calculated
on a dry-weight basis. Variance homogeneity, a model requirement

of ANOVA, was checked using the Brown-Forsythe test. In the case
of variance inhomogeneity, the data were transformed using log
transformation to achieve variance homogeneity. Differences
between element concentrations and contents in plants and soil
were tested using a one-factor analysis of variance (ANOVA)
followed by a Bonferroni post-hoc test (α = 5%). All statistical
analyses were performed using SAS OnDemand for Academics.

3 Results

3.1 Physicochemical properties of the
sewage sludge, digestate, and biosolids-
amended soil

Sewage sludge and digestate had similar organic matter contents,
whereas digestate had a higher pH and higher Nmin concentrations
(Table 1). The sewage sludge contained 137% higher total P
concentrations than digestate, but most of P (99%) was present
in relatively insoluble forms and could not be dissolved by NH4

+-
acetate (pH 5) (Supplementary Material S1). In comparison, 42% of
P in the digestate was present in the mobile, exchangeable, and acid-
soluble forms. In addition, the digestate contained higher total and
labile concentrations of Mn, Zn, and Ni as well as of total Fe
(Supplementary Material S1).

Concerning the potentially toxic elements, there were no
differences in the total concentrations of Cd, Ge, LREE and
HREE in sewage sludge and digestate (Supplementary Material
S1). However, the concentration of Ga was roughly 5-fold higher
in digestate than in sewage sludge. Concomitantly, the sewage sludge
contained significantly higher concentrations of labile Cd, Ge, LREE,
and HREE and was characterized by a higher LREE/HREE ratio
(Supplementary Material S1). When added to the soil, sewage sludge
increased soil organic matter contents, EC, and Nmin significantly,
whereas there was no effect of the addition of digestate (Table 1). We
emphasize that the digestate had a higher water content than the
sewage sludge (77% sewage sludge and 90% digestate) and was
added at lower application rates, which impairs a direct comparison
between the two treatments.

Nevertheless, compared to the unamended soil, the application
of digestate increased soil pH, but this was not the case when sewage
sludge was added (Table 1). The addition of both biosolids, the
digestate and sewage sludge, respectively, did not alter the total
concentrations of Cd and did not change the LREE/HREE ratio of
the soil (Table 3). Moreover, the addition of digestate did not alter
the total concentrations of the plant nutrients P, Fe, Mn and Zn
(Table 2) or of the non-essential elements Ge, LREE, and HREE
(Table 3). However, compared to the unamended soil, Ni
concentrations were 53%, and Ga concentrations were 17%
significantly higher when digestate was added (Table 2). In
comparison, in the soil amended with sewage sludge, the total
concentrations of P, Zn, and Ni were significantly higher than in
unamended soil. At the same time, total Fe and Mn, Ge, Ga, LREE,
and HREE concentrations were lower, whereas Cd concentrations,
as well as LREE/HREE ratios, remained unchanged (Tables 2, 3).

Although total concentrations of P, Fe, Mn, and Zn remained
unchanged, the addition of digestate led to a higher mobility of these
elements in the soil (by 122, 115, 529, and 44%). The increase in total
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Ni did not correspond with a higher Ni mobility. Similarly, the
addition of digestate did not increase the mobility of Cd and Ge.
However, the digestate significantly increased the mobility of Ga,
LREE, and HREE, and it led to a higher LREE/HREE ratio in the
NH4

+-acetate-extractable element fraction. The sewage sludge
increased the mobility of all considered plant nutrients, above all
P, which showed a 741% higher mobility when sewage sludge was
added. Moreover, the addition of sewage sludge increased the
concentrations of NH4

+-acetate-extractable Cd and Ga while the
concentrations of mobile LREE, HREE, and the LREE/HREE-ratio
decreased, resulting in LREE/HREE-ratios that were the lowest
compared to all treatments (Table 3).

3.2 Carboxylate release in response
to P-supply

Compared to plants growing under conditions of low P supply
(20 µM P), all plants with high P supply (100 µM P) responded with
increased shoot P concentrations (Table 4). Shoot P increased by
99%, 171%, and 195% in L. albus, F. esculentum, and C. tinctorius,

respectively, indicating a more strongly pronounced effect in F.
esculentum and C. tinctorius than in L. albus. All plants responded to
increased shoot P supply with higher shoot biomass, except F.
esculentum, which was characterized by marginal differences in
shoot mass between the P treatments. The root mass of L. albus
was higher when P supply was low, whereas the root mass of C.
tinctorius declined. Neither L. albus nor C. tinctorius altered the
pH of the exudate collection solutions. Irrespective of P supply, the
collection solutions of F. esculentum showed the lowest pH values of
all plant species tested and had significantly lower pH values under
conditions of high P supply (Table 4). Low P supply increased the
release of malonate and citrate in F. esculentum but did not alter the
release of other carboxylates. Thus, there were no significant
differences in the sum of carboxylates in this species. Similarly,
in C. tinctorius, total carboxylate release remained unchanged in
response to P supply. Here, only single components were affected in
divergent ways, showing a lower release of malate, but a higher
release of citrate when P supply was high. In contrast, L. albus
responded to a high P supply with decreased malate release, whereas
release of other compounds remained unchanged, leading to a net
reduction of total carboxylate release by 60% in high P-supplied
plants compared to P-deficient plants (Table 4).

3.3 Plant growth and shoot nutrient
concentrations in plants treated
with biosolids

Plants of F. esculentum developed the highest biomass, and those
ofA. murale the lowest (Table 5). The addition of digestate tended to
decrease plant growth of all species except C. tinctorius; however,
this effect was not statistically significant at α = 5%. In contrast,
sewage sludge-treated plants of F. esculentum, C. tinctorius, and L.
albus developed 88%, 158% and 82% higher biomass, respectively.
The addition of digestate did not alter the shoot P concentrations of
the tested plants. There were apparent effects on the concentrations
of the trace nutrients Fe and Mn, which varied among plant species,
whereas Zn and Ni remained unchanged. In L. albus, trace nutrient
concentrations were unaffected by the addition of digestate. Notably,
L. albus showed the highest shoot Mn concentrations (more than
1,000 mg/kg Mn) in both digestate-treated and unamended soil,
(Table 5). Shoot Fe and Mn of F. esculentum tended to increase;
however, this was not statistically significant due to high data
variability. In the other species, the addition of digestate led to
higher shoot Fe and Mn concentrations (except Fe in C. tinctorius,

TABLE 1 Physicochemical parameters of soil (unamended), sewage sludge, digestate, andmixtures of soil and sewage sludge (soil + SS) or soil and digestate
(soil + DG), respectively. Mean ± standard deviation (n = 4–5). Organic matter content (OM), electrical conductivity (EC), pH in aqueous solution (pH H2O),
and mineral nitrogen (Nmin). Differences between means were identified by a one-way analysis of variance followed by a Bonferroni post-hoc test. Means
with different letters are significantly different at (α = 5%).

Parameter Soil Sewage sludge Digestate Soil + SS Soil + DG

OM (%) 8.0 ± 0.2a 70 ± 1d 66 ± 1c 18 ± 1b 8.1 ± 0.2a

EC (µS cm-1) 42 ± 6a 587 ± 35d 231 ± 64b 323 ± 7c 78 ± 2a

pH H2O 6.5 ± 0.1a 7.2 ± 0.1c 8.2 ± 0.1d 6.6 ± 0.1 ab 6.9 ± 0.2b

Nmin (g kg-1) 0.12 ± 0.01a 1.3 ± 0.2b 2.5 ± 0.1c 0.24 ± 0.04d 0.10 ± 0.01a

TABLE 2 Total and NH4-acetate extractable concentrations (mg/kg dw) of
essential elements in soil (unamended), soil amended with digestate (soil +
DG) and soil amendedwith sewage sludge (soil + SS). Mean ± standard error
(n = 4–5). Concentrations within the same element fraction between
different substrates were compared by a one-way analysis of variance
followed by a Bonferroni post-hoc test. Means with different letters are
significantly different at (α = 5%).

Element Fraction Soil Soil + DG Soil + SS

mg/kg dw

P Total 745 ± 46b 889 ± 92b 4,006 ± 648a

Labile 6.3 ± 0.6c 14 ± 4b 53 ± 6a

Fe Total 31,465 ±
2718a

33,256 ±
4644a

28,870 ±
1647b

Labile 4.7 ± 1.1c 10.1 ± 2.1a 7.2 ± 0.9b

Mn Total 720 ± 44a 847 ± 68a 593 ± 29b

Labile 17 ± 2c 107 ± 12a 60 ± 4b

Zn Total 214 ± 32b 279 ± 62 ab 358 ± 41a

Labile 9.1 ± 0.8c 13 ± 1b 22 ± 1a

Ni Total 7.2 ± 0.8b 11 ± 2a 17 ± 4a

Labile 0.10 ± 0.01b 0.18 ± 0.11b 0.69 ± 0.10a
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which were lower), indicating an improved metal nutrient
supply (Table 5).

Compared to the plants grown in unamended soil, the addition
of sewage sludge strongly increased the concentrations of shoot P in
all species. Shoot Mn concentrations were increased in A. murale, F.
esculentum and C. tinctorius by 863%, 1,480%, and 700%, but not in
L. albus, which exhibited a lower Mn concentration than plants
grown in unamended soil (Table 5). In addition, the sewage sludge

led to a higher Zn concentration in all species. In particular, sewage
sludge-treated A. murale showed the highest shoot Zn
concentrations of all plant species tested (more than 1,000 mg/kg
Zn). Moreover, A. murale and F. esculentum responded to the
sewage sludge treatment with 287% and 263% higher Ni
concentrations compared to the plants grown in unamended soil.
In contrast, shoot Ni remained unchanged in C. tinctorius and L.
albus. Iron concentrations remained relatively unaffected in sewage

TABLE 3 Total and NH4-acetate extractable concentrations (mg/kg dw) of essential elements in soil (unamended), soil amended with digestate (soil + DG),
and soil amended with sewage sludge (soil + SS). Mean ± standard error (n = 4–5). Concentrations within the same element fraction between different
substrates were compared by a one-way analysis of variance followed by a Bonferroni post-hoc test. Means with different letters are significantly different
at (α = 5%).

Element Fraction Soil Soil + DG Soil + SS

mg/kg dw

Cd Total 1.8 ± 0.6ns 1.3 ± 0.4ns 1.9 ± 1.0ns

Labile 0.62 ± 0.04b 0.75 ± 0.16 ab 0.81 ± 0.05a

Ge Total 1.87 ± 0.05a 2.14 ± 0.27a 1.57 ± 0.24b

Labile 0.0049 ± 0.0009 ns 0.0037 ± 0.0015ns 0.0036 ± 0.0002ns

Ga Total 14.1 ± 0.2b 16.5 ± 2.1a 12.5 ± 0.1c

Labile 0.0037 ± 0.0008c 0.0103 ± 0.0012a 0.0067 ± 0.0012b

LREE Total 125 ± 3a 137 ± 16a 109 ± 4c

Labile 0.39 ± 0.02b 0.45 ± 0.03a 0.28 ± 0.01c

HREE Total 44 ± 2 ab 52 ± 6a 34 ± 7b

Labile 0.16 ± 0.01b 0.18 ± 0.02a 0.12 ± 0.01c

LREE/HREE Total 2.86 ± 0.06ns 2.82 ± 0.09ns 3.26 ± 0.70ns

Labile 2.46 ± 0.02b 2.52 ± 0.04a 2.27 ± 0.04c

TABLE 4 Shoot P concentrations shootmass, rootmass, root carboxylate release (µmol/h), and pHof the collection solutions after 30min of exudation time
of plants cultivated in quartz sand treatedwith nutrient solutions containing 100 μMPor 20 μMP. Differences between P treatments within a specific plant
species were compared by t-tests with Bonferroni adjustment. Means with different letters are significantly different at (α = 5%).

Treatment Unit Lupinus albus Fagopyrum esculentum Carthamus tinctorius

P100 P20 P100 P20 P100 P20

Shoot P mg/g 2.74 ± 0.11a 1.38 ± 0.32b 5.39 ± 0.80a 1.99 ± 0.13b 4.33 ± 2.31a 1.47 ± 0.10b

Shoot mass G 5.3 ± 0.4a 4.1 ± 0.8b 6.6 ± 2.1a 6.2 ± 0.2a 3.9 ± 0.5a 2.8 ± 0.4b

Root mass 4.0 ± 0.8b 5.4 ± 0.4a 5.4 ± 1.8a 4.9 ± 1.4a 5.3 ± 2.3a 2.3 ± 1.4b

pH 7.9 ± 0.1a 8.0 ± 0.2a 7.4 ± 0.1b 7.8 ± 0.1a 7.9 ± 0.1a 8.0 ± 0.1a

Acetate µmol/h 0.59 ± 0.34a 0.58 ± 0.48a <0.01a <0.01a <0.01a <0.01a

Fumarate 0.06 ± 0.04a 0.05 ± 0.01a <0.01a <0.01a 0.03 ± 0.02a 0.02 ± 0.01a

Lactate 0.04 ± 0.01b 0.24 ± 0.11a <0.01a <0.01a 0.5 ± 0.1a 0.3 ± 0.2a

Malate 11.2 ± 8.5b 29.5 ± 3.4a 2.9 ± 0.9a 4.2 ± 2.9a 1.5 ± 0.3a 2.0 ± 1.5a

Malonate <0.01a <0.01a 1.0 ± 0.2b 1.8 ± 0.5a <0.01a <0.01a

Citrate 2.3 ± 0.6b 4.5 ± 1.4a 1.2 ± 0.1b 2.1 ± 0.5a 3.9 ± 1.6a 1.7 ± 0.8b

∑Carboxylates 13.9 ± 8.8b 34.8 ± 2.4a 5.2 ± 1.0a 8.1 ± 3.8a 6.1 ± 1.4a 4.9 ± 1.2a
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sludge-treated plants, except in F. esculentum and A. murale, where
Fe increased by 325% and 73%, respectively (Table 5).

3.4 Shoot accumulation of non-
essential elements

Considering all treatments, A. murale showed the highest
concentrations of the studied non-essential elements and L. albus
the lowest (Table 6). The addition of digestate did not
significantly alter Cd concentrations in the investigated species
(Table 6). Germanium concentrations were generally very low
and rarely exceeded 10 μg/kg. In F. esculentum, Ge was not
detectable, irrespective of the treatment. Moreover, the digestate
did not alter the concentrations of Ga, LREE and HREE in F.
esculentum and C. tinctorius. However, in A. murale, Ge, Ga,
LREE, and HREE concentrations were higher when digestate was
added (Table 6). Lupinus albus did not show altered
concentrations of Ge, Ga and HREE but exclusively showed a
higher concentration of LREE.

When sewage sludge was added, all plants except C. tinctorius
responded with substantially higher Cd concentrations. Further, C.
tinctorius showed declining concentrations of all other investigated
elements, while the concentrations remained unchanged in A.
murale. Fagopyrum esculentum showed a higher concentration of
Ga but did not show any changes in LREE and HREE
concentrations. Finally, L. albus did not show changes in Ge, Ga
and LREE concentrations; however, this plant species showed higher

HREE concentrations when sewage sludge was added, indicating
significant changes in LREE/HREE ratios (Figure 1).

Considering the shoot biomass and the herein quantified
element concentrations, amounts of elements in the respective
plant tissues and whole shoot contents were calculated (Figure 1).
Plants grown in unamended soil of F. esculentum and C. tinctorius
showed by far the highest net shoot uptake of Cd. Cadmium
accumulation decreased in the order F. esculentum > C.
tinctorius > L. albus, A. murale. A similar trend was observed
when REE accumulation was compared among the species
(Figure 1). Germanium was not detectable in F. esculentum, and
there were no differences in Ga accumulation between A. murale, C.
tinctorius and L. albus. Instead, the lowest Ga uptake was observed in
F. esculentum.

The addition of digestate did not alter the accumulation of Cd in
the investigated plant species, and A. murale did not show any
changes in net shoot uptake of all investigated elements, including
Cd. Similarly, F. esculentum did not show changes in LREE, HREE,
and Ge uptake; however, a higher Ga uptake was observed
(Figure 1). Conversely, in C. tinctorius, Ge and Ga accumulation
declined following the addition of digestate. Lower Ge contents were
also visible in L. albus, but Ga contents remained unchanged. In
addition, the shoots of L. albus contained lower HREE contents,
leading to significantly higher LREE/HREE ratios (Figure 1).

The addition of sewage sludge substantially increased the Cd
uptake in all plants, regardless of the tested species (Figure 1).
Germanium uptake was only affected in C. tinctorius, showing a
lower content when sewage sludge was added, and Ga uptake was

TABLE 5 Shoot biomass and concentrations of nutrients in plants cultivated on soil (unamended), soil amendedwith digestate (Soil + DG), and soil amended
with sewage sludge (Soil + SS); mean ± sd, n = 4–5. Small letters show concentration differences among different substrates for the same plant species.
Capital letters denote accumulation differences between plant species within same substrate. Significant differences were identified by one-factor analysis
of variance (ANOVA) followed by a Bonferroni post-hoc test. Means with different letters are statistically significantly different at (ɑ = 5%).

Species Treatment Biomass P Mn Fe Zn Ni

g g/kg mg/kg

A. murale Soil 0.41 ± 0.17C 2.4 ± 0.2bA 24 ± 4bB 78 ± 23bAB 107 ± 87b 1.6 ± 0.3b

Soil + DG 0.14 ± 0.09B 2.5 ± 0.6b 224 ± 91 aB 252 ± 117 aA 173 ± 86bA 2.5 ± 1.4b

Soil + SS 0.25 ± 0.16C 4.5 ± 0.9 aA 231 ± 36 aB 135 ± 57abA 1,071 ± 639 aA 6.2 ± 2.6 aA

p-value 0.08 <0.01 <0.01 0.03 <0.01 0.03

F. esculentum Soil 7.4 ± 1.0bA 2.5 ± 0.4bA 40 ± 22bB 31 ± 10bB 54 ± 10bB 1.1 ± 0.2b

Soil + DG 3.6 ± 3.0bA 2.2 ± 0.7b 163 ± 159bB 100 ± 81bB 38 ± 16bB 1.3 ± 0.1b

Soil + SS 13.9 ± 2.1 aA 6.9 ± 1.4 aA 632 ± 262 aA 132 ± 63 aA 482 ± 133 aA 4.0 ± 0.9 aA

p-value <0.001 <0.001 <0.001 0.04 <0.001 <0.001

C. tinctorius Soil 1.2 ± 0.9bB 2.0 ± 0.4bAB 27 ± 5 cB 98 ± 75A 79 ± 13b 2.0 ± 1.3

Soil + DG 1.8 ± 0.6abAB 2.3 ± 0.1b 82 ± 5bB 68 ± 49B 71 ± 10bB 2.7 ± 2.4

Soil + SS 3.1 ± 1.5 aB 3.0 ± 0.5 aB 216 ± 22 aB 55 ± 10B 152 ± 25 aB 1.1 ± 0.3B

p-value 0.05 <0.01 <0.001 0.4 <0.001 0.37

L. albus Soil 2.7 ± 1.0bB 1.5 ± 0.2bB 996 ± 353 aA 79 ± 15abAB 48 ± 5b 2.4 ± 1.1

Soil + DG 1.3 ± 0.5bB 1.9 ± 0.3b 1,412 ± 805 aA 103 ± 38 aB 42 ± 9bB 1.7 ± 0.3

Soil + SS 4.9 ± 1.0 aB 2.5 ± 0.4 aB 404 ± 149bB 46 ± 7bB 94 ± 21 aB 1.8 ± 0.3B

p-value <0.001 <0.01 0.05 0.01 <0.001 0.45
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only affected in F. esculentum following the addition of sewage
sludge. With regard to REEs, sewage sludge did not alter LREE and
HREE accumulation in A. murale and C. tinctorius. However, F.
esculentum responded to the addition of sewage sludge with a higher
accumulation of both LREE andHREE, but there were no changes in
the LREE/HREE ratios. In contrast, in L. albus, HREE
concentrations were higher compared to the plants grown in
unamended soil, leading to a substantially lower LREE/HREE ratio.

4 Discussion

4.1 Differences in shoot element uptake
among the tested plant species

The soil used in our study was characterized by moderate
mobility of phosphorus and micronutrients (Table 2), elevated
concentrations of Cd (Kabata-Pendias, 2004) and average earth
crust levels of Ga, Ge, and REE (Table 3) (Kabata-Pendias, 2004;
Wiche et al., 2017; Wiche et al., 2018). Of these elements, 33% of
total Cd was present in mobile and exchangeable forms that can be
readily absorbed by plant roots (Bali et al., 2020). In contrast, the
proportion of labile Ge, Ga, and REE did not exceed 0.5% of the total
concentrations. Based on results from NH4

+-acetate extracts, the
potential availability decreased in the order Cd > LREE > HREE >
Ge, Ga (Table 3). This is in accordance with the findings of Tyler and

Olsson (2001), who demonstrated that compared to Cd and REE, the
solubility of Ge and Ga in soils is low, and their mobilization requires
substantial changes in physicochemical soil properties.
Consequently, shoot element contents decreased in the order
Cd > REE > Ga, Ge (Table 6; Figure 1). However, there were
significant differences between plant species in handling the mobile
elements, depending on the plant’s ability to take up and translocate
the elements. The low accumulation of Ge (Figure 1) with equal
(barely detectable) concentrations across all species (Table 6) can be
attributed to its low solubility in the soil (Table 6) and/or inefficient
uptake and root-shoot transport. The dicots tested do not have
silicon transporters that are involved in Ge uptake (Nikolić et al.,
2023; Kaiser et al., 2020). After Ge had been passively absorbed, the
element was likely diluted by the biomass accumulation that
decreased in the order F. esculentum > L. albus > C.
tinctorius >> A. murale (Table 5). In contrast to Ge, the uptake
of Cd, REE, and Ga is mediated by Zn, Fe, and Ca transporters (Shi
et al., 2022), so differences in element uptake depend more strongly
on processes related to plant nutrition. The shoot nutrient
concentrations of plants grown in unamended soil (Table 5)
indicated that all plants contained adequate P concentrations,
except L. albus, which exhibited shoot P concentrations below
the critical level of 2 g/kg (Lambers et al., 2013). Surely, the
shoot P status might not sufficiently reflect P availability due to
an altered P mobility within the plants (Zohar et al., 2024).
Nevertheless, high Mn concentrations of L. albus (Table 5)

TABLE 6 Concentrations of non-essential elements in plants cultivated on soil (unamended) soil amended with digestate (Soil + DG) and soil amended with
sewage sludge (Soil + SS); mean ± sd, n = 4–5). Significant differences within the substrate were identified by one-factor analysis of variance (ANOVA)
followed by a Bonferroni post hoc test. Small letters show concentration differences among different substrates for the a same plant species. Capital letters
denote accumulation differences between plant species within a same substrate. Means with different letters are statistically significantly different at
(ɑ = 5%).

Treatment Cd Ge Ga LREE HREE

mg/kg µg/kg µg/kg µg/kg µg/kg

A. murale Soil 0.6 ± 0.1bB 6 ± 3bA 18 ± 14b 198 ± 94bA 84 ± 34b

Soil + DG 2.8 ± 2.1bA 22 ± 5 aA 92 ± 54 aA 858 ± 376 aA 280 ± 122a

Soil + SS 10 ± 6 aA 8 ± 4b 45 ± 27bA 378 ± 265bA 152 ± 61 ab

p-value <0.01 <0.01 0.04 0.02 0.02

F. esculentum Soil 1.1 ± 0.3bBC <1B 7 ± 3b 237 ± 151A 93 ± 65A

Soil + DG 0.8 ± 0.6bB <1B 6 ± 4bB 204 ± 78B 82 ± 38B

Soil + SS 7.1 ± 1.4aAB <1 14 ± 4 aB 281 ± 139A 104 ± 57A

p-value <0.001 n.a <0.01 0.68 0.84

C. tinctorius Soil 4.7 ± 1.4A 12 ± 7 aA 11 ± 8 207 ± 152 aA 79 ± 48a

Soil + DG 3.6 ± 1.0A <1 4 ± 2B 96 ± 20abB 44 ± 12 ab

Soil + SS 4.3 ± 1.0B 2 ± 1b 8 ± 2B 70 ± 22bB 35 ± 10b

p-value 0.33 0.02 0.11 0.03 0.05

L. albus Soil 0.09 ± 0.03bC 7 ± 4A 9 ± 1 ab 39 ± 13bB 18 ± 4b

Soil + DG 0.16 ± 0.05bB 4 ± 1B 16 ± 6 aB 65 ± 22 aB 19 ± 5b

Soil + SS 0.24 ± 0.07 aC 8 ± 7 8 ± 3bB 31 ± 10bB 26 ± 5a

p-value <0.01 0.70 0.05 0.01 0.04
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clearly indicated that the plants released carboxylates under low P
conditions (Lambers, 2022). Indeed, the lupin cultivar used in our
study exhibited a substantially higher carboxylate release when P
supply declined (Table 4).

Carboxylates and protons released by plant roots not only
mobilize P and micronutrients, but also increase the solubility of
an array of non-essential elements (Andresen et al., 2018) through
dissolution, complexation, and ligand exchange (Kang and Peña,

2023; Wiche and Pourret, 2023). However, the mobile elements are
not necessarily available for uptake when the elements are present as
organo-metal complexes (Lee et al., 2021). Uptake systems
predominantly shuttle ions through membranes, as demonstrated
for Al, Cd, and REE (Wiche et al., 2023). Consequently, rhizosphere
acidification, which predominantly mobilizes elements through
dissolution and cation exchange, is likely an important plant trait
related to accumulating non-essential elements in non-metalliferous

FIGURE 1
Effect of substrate properties on the accumulation of essential elements in the target plant species. Mean ± se (n = 4–5). Soil (S) unamended, soil +
digestate (Soil + DG) and soil + sewage sludge (Soil + SS). Differences in shoot element contents were identified by one-way analysis of variance (ANOVA)
followed by a Bonferroni test. Small letters show accumulation differences among different treatments within a specific plant species. Capital letters
denote the accumulation differences of elements within a specific substrate among different plant species. Means with small letters (without
bracket) different letters are statistically significantly different at (ɑ = 5%). Small letters in brackets denote a statistical significance at (ɑ = 10%).
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environments, unlike carboxylate release. Overall, this explains the
relatively low contents of non-essential elements in L. albus and the
high contents in F. esculentum (Table 6; Figure 1). Possibly, the
lupins efficiently mobilized the elements in the root zone, but
chelation by carboxylates excluded them from uptake, whereas F.
esculentum acidified the rhizosphere and translocated the absorbed
elements to the shoots. High shoot Ga contents in L. albus could be a
side effect of Mn hyperaccumulation and the upregulation of
transition metal transporters under high Mn availability inflicted
by P deficiency (Olt et al., 2022), given that Ga shares chemical
similarities with Fe (Yandem and Jabłońska-Czapla, 2024).
Concomitantly, Ga mobilization in the soil requires substantial
changes in pH and/or the presence of high concentrations of
carboxylates (Tyler and Olsson, 2001). We emphasize that
information on differences in Ga accumulation in plant species is
very scarce in the literature, and the elucidation of processes is
fundamental in the face of soil pollution with this emerging
pollutant (Shtangeeva, 2023). Carthamus tinctorius released
minor amounts of carboxylates and did not acidify the
rhizosphere (Table 4) as it has been previously described for
P-inefficient phosphophilic species of the Brassicaceae (Lambers,
2022). Hence, this plant species accumulated only high amounts of
Cd (Figure 1), which exhibited the highest mobility in the substrate
(Table 3). Unfortunately, we did not analyze the carboxylate release
of A. murale. Nonetheless, the literature indicates that A. murale is
adapted to environments with high metal solubility (Bani et al.,
2010) and relies on effective metal transport and internal
detoxification rather than rhizosphere processes related to
element mobilization and/or exclusion (Wiche and Pourret,
2023). Therefore, it is not surprising that the plants grown in
unamended soil in our study exhibited relatively low Zn, Mn,
and Ni concentrations (Table 5). The concentrations observed
were two orders of magnitude lower than in plants from
metalliferous environments (Bani et al., 2015; Van der Ent et al.,
2021). Possibly, the plants suffered Ni deficiency, which in turn may
have affected biomass development (Bani et al., 2015). In this plant
species, high shoot concentrations of Ga, Ge, and REE might be
related to processes of metal tolerance, but the resulting net element
uptake was low due to the low biomass of this species.

4.2 Effect of digestate on plant nutrition and
element accumulation in plants

All plants except C. tinctorius responded to the addition of
digestate by accumulating less biomass. However, all plants showed
higher micronutrient concentrations (Table 5), likely resulting from
a higher proportion of labile nutrients in the digestate-amended soil
(Table 2). A higher portion of labile P (Table 2) did not improve
shoot P supply (Table 5), indicating metabolic changes or changes in
root activity. Fedeli et al. (2023) investigated the effect of different
forms of digestate on plant growth and demonstrated that solid
digestate may have adverse effects, while liquid digestate improved
plant growth. In our study, we observed growth inhibition following
the addition of liquid digestate, except for C. tinctorius, where plant
growth remained unchanged. Possibly, the digestate detrimentally
altered the soil microbiome (Karimi et al., 2022), led to soil
compaction (Caracciolo et al., 2022) or altered other

physicochemical soil properties (Przygocka-Cyna and Grzebisz,
2018). Future studies should consider microbial communities
changes depending on digestate composition. In this regard, the
unaffected growth of C. tinctorius is particularly interesting
(Table 4). Carthamus tinctorius develops extensive root systems
(Montiel et al., 2020) and is described as a suitable species for crop
production on marginal soils (Rosero et al., 2020), highlighting the
role of species-specific traits in plant responses to soil additives like
digestate. Given that concentrations do not necessarily reflect
element uptake due to enrichment or dilution of elements in
varying biomass, plant availability was evaluated by net shoot
uptake (Figure 1). Changes in aboveground biomass are typically
accompanied by changes in root biomass and altered metabolic
activity as a stress response that, in turn, can affect element
absorption (Shtangeeva, 2023). The present work concentrates on
shoot content. In a future study, root content will be considered to
clarify the total net uptake of plant biomass.

Nevertheless, we clearly observed that the digestate did neither
affect labile Cd in the soil (Table 3) nor Cd uptake in the tested
plants (Figure 1). A lower Ge uptake (Figure 1) but unchanged
element mobility could derive from a lower Ge diffusion in the soil
when the pH and soil organic matter (OM) raised following
digestate addition (Table 1). Moreover, slightly higher
concentrations of labile REEs in the substrate did not alter LREE
and HREE uptake in A. murale, C. tinctorius and F. esculentum. The
LREE/HREE ratios in A. murale reflected the higher LREE/HREE
ratio of the digestate-treated soil (Table 3; Figure 1), suggesting that
A. murale utilizes this element pool for uptake and translocates the
elements to the shoots without discrimination. Although not
statistically significant at α = 5%, the LREE/HREE ratio of L.
albus exceeded the LREE/HREE ratio of A. murale, suggesting a
discrimination of HREE relative to LREE through extracellular
complexation with carboxylates (Wiche and Pourret, 2023)
(Figure 1). In fact, L. albus showed a significantly lower HREE
uptake, which cannot be explained by altered soil properties
(Figure 1). Still, the digestate-treated lupins were P-deficient
(Table 5) and released large amounts of carboxylates, as
indicated by the high shoot Mn concentrations (Table 5). Non-
significant results might be from low sample size so the validation
remains field for future studies. Similarly, a higher Gamobility in the
digestate treatment increased Ga uptake only in F. esculentum, while
A. murale, L. albus, and C. tinctorius did not respond to a higher
portion of labile Ga in the substrate. Overall, this suggests that Ga
and REE uptake and accumulation are predominantly controlled by
plant physiological traits related to nutrition acquisition (Zohar
et al., 2024) rather than by element mobility in the soil.

4.3 Effect of sewage sludge on plant
nutrition and element accumulation in
the plants

The sewage sludge-treated soil was characterized by a
substantially higher mobility of all measured essential nutrients, as
well as Cd and Ga (Tables 2, 3). Ge mobility was not affected by
sewage sludge, and Ge uptake in plants tended to decrease (Figure 1),
suggesting that the impact of biosolids on the soil–plant transfer of Ge
is low. All plants except A. murale responded to the sewage sludge
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treatment with substantially higher biomass and all plants exhibited a
luxury supply of P and micronutrients (Table 5). High Mn and Zn
concentrations in A. murale, F. esculentum, and C. tinctorius likely
derive from a higher portion of labile elements in the substrate in
concert with higher root activity. All plants responded to the higher
Cd mobility in the substrate with a higher Cd uptake (Figure 1). Still,
the plants exhibited the same pattern of shoot Cd contents as the
plants grown in unamended soil, supporting the application of NH4

+-
acetate-extracts for estimating overall Cdmobility in soil (Wang et al.,
2024). However, species-specific physiological traits clearly govern the
degree to which a plant can utilize this mobile element pool in the soil.
Similarly, to the treatment with digestate, a higher Ga mobility in the
substrate only affected shoot accumulation in F. esculentum.
Moreover, the addition of sewage sludge resulted in unchanged
LREE and HREE accumulation in A. murale, F. esculentum, and
C. tinctorius. Possibly, the nutrients contained in the sewage sludge
improved root growth, leading to a larger soil volume accessed by the
roots. At the same time, L. albus exhibited a significantly lower LREE/
HREE ratio that clearly resulted from a higher shoot uptake of HREE
relative to LREE, which cannot be solely explained by altered soil
chemistry (Table 3; Figure 1). Instead, it seems that the changes in
nutrient supply following sewage sludge amendment altered root
activity and element acquisition processes. In L. albus, Mn
concentrations declined, suggesting a lower carboxylate release
under conditions of high P supply (Lambers et al., 2015; Tables 4,
5). Given that HREEs form more stable complexes with carboxylates
than LREEs (Wiche and Pourret, 2023), reduced carboxylate
concentrations in the rhizosphere and apoplast may enhance
HREE uptake and thus decrease the LREE/HREE ratio (Wiche
et al., 2023). This demonstrates that the assessment of the effects
of biosolids on the soil-plant transfer of Ge, Ga, and REE should
include not only altered element concentrations in the soil but also
physiological responses of the plant to altered nutritional status.

5 Conclusion

We demonstrated that both digestate and sewage sludge influence
not only the mobility of nutrients in the soil but also the occurrence of
Ge, Ga, and REE in plant-available forms. The physico-chemical
properties and the spectrum of elements in sewage sludge and
digestate may vary depending on their origin and the treatment
technology. Moreover a longer experimental time would be
necessary to explore the fate of elements in soil plant system in
detail. Nevertheless, changes in total concentrations and element
mobility assessed by NH4

+-acetate extraction do not sufficiently
explain element availability to plants, especially when it comes to
the assessment of soil-plant transfer of Ga and REE. Of the
investigated elements, Ge mobility and its uptake by plants were the
least affected by sewage sludge and digestate, suggesting that the risk of
soil-plant transfer is relatively low. We emphasize that digestate
amendment increases the total Ge in the soil, which may
accumulate in the soil over time and pose a risk once the element is
released from the organic matrix. In contrast, mobility and plant-
availability of Cd, Ga, and REEs were clearly affected depending on soil
amendment and plant species. A higher portion of NH4

+-acetate-
extractable Cd in the soil resulting from the sewage sludge treatment
increased Cd accumulation in all species, indicating that the plants

utilized this mobile element pool during uptake. Consequently, the
assessment of mobile/exchangeable elements seems to be a good proxy
of soil-plant transfer for this element. However, plant-availability of Ga
and REE was not directly reflected by the elements’mobility in the soil.
Instead, it seems that the soil-plant transfer of Ga is governed by
physiological traits involved in uptake, while the soil-plant transfer of
REE additionally depends on the plant’s nutritional status and below-
ground functional traits related to phosphorus acquisition. This
highlights the necessity for the evaluation of soil-plant transfer of
Ge, Ga, and REEs in long-term field experiments, in which changes
in soil chemistry aremonitored in addition to physiological responses of
species and genotypes to altered nutrient supply.
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