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As the dual imperatives of carbon reduction and economic expansion gain
prominence, the pursuit of high-quality development has taken on greater
urgency, with talent agglomeration emerging as a critical driving force. Yet its
specific impact on carbon emissions remains unclear. To address this question,
this study employs a two-tier stochastic frontier model using panel data from 30
Chinese provinces spanning 2013–2023, enabling the identification and
decomposition of the dual effects of talent agglomeration on carbon
emissions. The results show that talent agglomeration exerts asymmetric
bilateral impacts, with the inhibitory effect dominating the promotive effect
and producing an overall decline in emissions. Specifically, the promotive
channel increased emissions by 16.2%, while the inhibitory channel reduced
them by 43.8%, resulting in a net decrease of 27.6% relative to the frontier level.
The net inhibitory effect became more pronounced after 2020 following a brief
uptick in 2014, and spatial heterogeneity was evident, with the largest reductions
occurring in the western region, followed by the central and eastern regions.
Further heterogeneity analysis indicates that larger net reductions occur at higher
levels of talent agglomeration (≥40%), higher economic development (70%–
100%), and under stricter environmental regulation, whereas in the early stages of
urbanization the promotive effect dominates but gradually shifts toward
inhibition as urbanization deepens. These findings demonstrate that although
talent agglomeration has dual channels of influence, its overall impact is to
reduce emissions, thereby providing more precise guidance for carbon
reduction policies that reconcile economic growth with environmental
sustainability.
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1 Introduction

China is undergoing a transformative period aimed at achieving
high-quality and sustainable development (Wang and Han, 2023).
One of the most major dilemma in this transition lies in reducing
carbon emissions while maintaining progress in industrialization
and urbanization (Shi et al., 2018). In response, the State Council
launched the “Beautiful China” initiative to foster a low-carbon
innovation system, underscoring the importance of talent as a driver
of emission reduction and sustainable growth. Building on this
agenda, regional governments have increasingly adopted
measures to attract and concentrate high-level talent, positioning
it as a cornerstone of innovation and economic transformation.
Measures such as improving foundational infrastructure, reforming
the household registration system, and enhancing the business
climate have been implemented to create favorable environments
conducive to both innovation and sustainability (Meyers et al., 2020;
Wang and Chen, 2023). As high technical and scientific talent has
facilitated technological advancement and industrial restructuring
(Wang L. et al., 2020), it is necessary to achieve synergistic effects
that align both economic and environmental goals. Consequently,
clarifying the dual impacts of talent agglomeration and identifying
ways to reinforce its dominant inhibitory effect have become
pressing concerns for both policymakers and scholars during this
transitional phase.

While substantial evidence highlights the link between economic
development and environmental outcomes, there remains a critical
need to integrate talent mobility into low-carbon innovation strategies.
Existing studies show that R&D talent plays a pivotal role in promoting
sustainable development at multiple levels (Crowley-Henry and Al
Ariss, 2018; Lin et al., 2021). Compared to other factors, talent
agglomeration shaped by population mobility significantly
influences industrial innovation competitiveness and supports
sustainable economic progress, offering multifaceted economic,
social, and environmental value (Wang L. et al., 2020; Shi and Lai,
2023). As a concentration of high-quality human capital, talent
agglomeration is essential for innovation. It also generates
knowledge spillovers that promote regional industrial development
and facilitate green technology diffusion (Liu and Zhang, 2021).
However, some studies have indicated that excessive agglomeration,
especially when combined with regional development imbalances or
mismatches in industrial layout, can exacerbate environmental
pollution, thus hindering emission reduction efforts (Liu and
Zhang, 2021; Shen and Peng, 2021). Moreover, the inhibitory
effects from technological innovation and industrial upgrading
induced by talent agglomeration do not fully offset the promotive
effects arising from congestion and urbanization, yielding only limited
net reductions in carbon emissions. Consequently, this study examines
the synergistic effects of talent agglomeration on the environment to
clarify its role in supporting China’s carbon reduction strategies and
sustainable development goals.

The contributions of this research are fourfold. First, this
research introduces a comparative framework that evaluates both
the promotive and inhibitory effects of talent agglomeration on
carbon emissions, moving beyond the traditional one-dimensional
perspective and addressing biases in existing literature. Second, it
develops a robust analytical model that captures regional variations
in economic development, urbanization, and policy conditions,

thereby enriching current research that often isolates factors such
as technological innovation or policy design. Third, it offers
empirical evidence on the environmental impacts of talent
agglomeration, particularly in the context of China’s diverse
regional economies. Fourth, the findings indicate that in most
regions—especially in eastern provinces—the restraining effect of
talent agglomeration on carbon emissions outweighs its stimulative
effect, offering policymakers practical guidance on leveraging talent
strategies to support both carbon reduction and sustainable
economic growth.

The subsequent content of this study is organized in the
following way: Section 2 discusses relevant literature and
formulates the hypotheses. Section 3 introduces the models and
research data. Section 4 describes the empirical process and results,
followed by the conclusion, policy implications, and suggestions for
further study in the final section.

2 Literature review and hypothesis
development

2.1 Literature review

At present, there has been little investigation into the
environmental effects of scientific and technological talent
agglomeration. The overwhelming majority of the literature has
examined the relationship between socioeconomic dynamics, such
as industrial agglomeration and urbanization, on carbon emissions,
arguing that these factors significantly enhance regional energy
efficiency and environmental protection while highlighting the
unintended negative consequences of neglecting a comprehensive
approach (Zhang Y. et al., 2024). Some research shows that regional
agglomeration of population and industry increases energy demand
and carbon emission (York, 2007; Li et al., 2022). Nonetheless, when
examining the agglomeration effects, researchers have largely found
substantial evidence supporting improved public infrastructure
efficiency, thereby reducing energy emission intensity (Glaeser
and Kerr, 2009; Wuyts and Dutta, 2014).

Research supporting the first view contends that agglomeration
can effectively reduce carbon emissions. This is because industrial
agglomeration facilitates the scaling of regional industries, which
helps lower production costs and promotes resource sharing,
thereby improving energy efficiency and supporting
environmental protection (Zou et al., 2024). Using panel data at
the provincial level spanning 1991 to 2016, Zhang et al. (2017)
demonstrated that regional industrial agglomeration can directly
enhance regional production efficiency in the short term. High
human capital not only promotes knowledge sharing and
collaboration, driving process innovation and product quality
improvement in enterprises (Dost and Badir, 2018), but also
contributes to promoting sustainable practices through low-
carbon policies, green technological innovation, and industrial
optimization (Yang et al., 2022). High human capital promotes
knowledge sharing and collaboration, significantly driving process
innovation and product quality improvement in enterprises
Regional industrial and population agglomeration has been
recognized as a crucial strategy advancing environmental
sustainability and fostering a green economy (Wang et al., 2020b).
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In contrast, other research suggests that regional industrial and
population agglomeration can exacerbate environmental
degradation. On one hand, regional industrial and population
agglomeration significantly increases energy demand, complicates
the acquisition of resources such as land and energy, and leads to
higher emissions of industrial pollutants (Andersson and Lööf,
2011). On the other hand, while agglomeration can improve
accessibility in urban areas, it may also generate large volumes of
waste and further raise energy consumption (Yi et al., 2022). For
example, a study using urban population density and per capita
energy consumption in China found a positive correlation between
the two (Wang et al., 2024). Moreover, in highly agglomerated
regions, the productivity gains associated with concentration may be
accompanied by higher carbon emissions (Oliveira et al., 2014).

Nonetheless, certain research has suggested that the relationship
between agglomeration economies and carbon emissions is
nonlinear (Wang F. et al., 2020). Some researcher noted that
there is significant difference across countries at different stages
of development. While some scholars found that agglomeration in
low-income countries effectively reduces carbon emissions, others
observed the opposite trend in high-income countries, with an
increase in carbon emissions. As demonstrated by Wang and
Wang (2019), agglomeration is linked to environmental pollution
in a manner that follows an inverted U-shaped trajectory. Initially,
agglomeration generates sizable innovation and knowledge
spillovers; once density surpasses a critical level, congestion and
crowding erode these benefits, so the spillover gains weaken andmay
vanish. Only when surpassing a specific threshold does
agglomeration begin to positively contribute to reducing
pollution emissions (Wang F. et al., 2020; Wu et al., 2021). The
research identified a positive N-shaped relationship between
agglomeration and carbon emissions, suggesting that after
surpassing an inefficient level of agglomeration, further
agglomeration can theoretically mitigate carbon emissions (Li
et al., 2022). Over extended periods, this relationship consistently
exhibits a positive N shape, indicating that, theoretically, beyond
certain levels of inefficiency, agglomeration can again contribute to
reducing carbon emissions.

Despite the importance of talent agglomeration, research on this
topic remains superficial, and the heterogeneous characteristics of
these impacts have not been comprehensively explored. Therefore,
this study further expands in three aspects: First, it establishes a
bilateral analytical framework for assessing the effect of talent
agglomeration on carbon emissions and evaluates this
relationship across 30 provinces in China. Second, it investigates
the twofold impact of talent agglomeration on regional carbon
emissions and empirically explores its spatiotemporal evolution
and changing patterns. Third, the study explores the differential
impacts of urbanization and economic development at different
levels of development and investigates practical paths to reinforce
the inhibitory effects of talent agglomeration on emissions.

2.2 Hypothesis

The agglomeration of elements within a region can enhance the
quality and flow direction of these elements, thereby achieving
economies of scale and generating economic benefits (Ye et al.,

2022). But are the environmental impacts of spatial agglomeration
the same? Agglomeration can promote the sharing of public facilities
and technologies within a region, reduce pollution, and enhance
collaborative innovation, thereby improving ecological efficiency
(Tian et al., 2024). The increase in regional energy consumption and
exacerbation of congestion caused by agglomeration place
significant pressure on the sustainable development of the
regional ecological environment (Martin and Sunley, 2006). As
an essential prerequisite for innovation, scientific and
technological talent extends urbanization and industrial
agglomeration in regional development. Thus, its dynamics have
two opposing effects on carbon utilization.

2.2.1 The inhibition impact of talent agglomeration
on carbon emission

Talent agglomeration strengthens knowledge exchange and
collaboration, catalyzing green innovation and accelerating the
adoption, diffusion, and assimilation of low-energy technologies,
thereby reducing carbon emissions. High-value knowledge and skills
serve as the primary drivers of innovation, directly enhancing
regional innovation capacity under supportive policies and
favorable environmental conditions (Zhou et al., 2018). By
fostering innovation and creativity, talent agglomeration can
facilitate the regional adoption of low-energy technologies,
thereby reducing carbon emissions while simultaneously
improving energy efficiency (Wang and Wang, 2019). Moreover,
regions with abundant knowledge and specialized skills tend to drive
the practical implementation of innovation that reduces carbon
emissions. Talent agglomeration enhances technological
assimilation by translating individual innovations into practical
applications and facilitating the sharing and absorption of
technologies within the region, thereby lowering carbon
emissions (Wingreen and Blanton, 2018).

The gathering and concentration of R&D talent facilitate the
development of green industries, thus driving cleaner industrial
restructuring. The foundation for regional adjustments and
upgrades lies in restructuring labor markets with scientific and
technological talent, which reduces the costs and risks of
technological advancements for businesses and facilitates
emissions reduction (Cheng et al., 2021). Green technologies,
which optimize energy consumption, improve resource efficiency,
and enable sustainable energy systems, rely heavily on the support of
scientific and technological talent, thereby cutting carbon emissions.
Moreover, the diffusion of talent across regions supports further
reductions in carbon emissions and advances progress toward
sustainable development goals (Wang et al., 2022).

Talent agglomeration process involves the improvement of
regional public services, enhancing service quality and advancing
decarbonization. Regions with well-developed public services and
living infrastructure are more likely to attract scientific and
technological talent while simultaneously reducing carbon
emissions. Owing to the improved urban living environment,
regions are more likely to attract talent and enhance public
services, which supports emissions reduction (Jiang et al., 2020).
Additionally, the agglomeration process raises overall
environmental awareness, driven by higher standards for
environmental quality and stronger preferences for low-carbon
living, thereby curbing emissions (Zhang P. et al., 2024).
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Hypothesis 1: Talent agglomeration can inhibit regional
carbon emissions.

2.2.2 The promotion impact of talent
agglomeration on carbon emission

Some researchers argue that agglomeration acts as a
contributing factor to China’s carbon emissions. The degree of
agglomeration will lead to modifications in production
equipment capacity (Robertson and Gatignon, 1986). As the scale
of talent agglomeration grows, competition intensifies and resource
allocation becomes increasingly unequal, particularly hindering the
diffusion of innovative green technologies. Intense competitive
pressures diminish collaboration and create technological
barriers, restricting the dissemination of green technologies. In
addition, the consolidation of existing production structures
reinforces carbon-intensive practices, thereby aggravating
environmental pressures.

In China, severe distortions in resource allocation influence
corporate investment preferences and production behaviors,
resulting in environmental damage (Peng et al., 2021). The
substantial costs associated with acquiring scientific and
technological talent drive enterprises to scale up production,
boost output, and redirect resources away from technological
innovation, thereby impeding advancements in production
technology (Cao et al., 2023). This path dependency exacerbates
resource misallocation, leading to higher levels of environmental
pollution. Moreover, talent agglomeration tends to raise regional
living and production costs, contributing to increased greenhouse
gas emissions and crowding effects (Han et al., 2018). The
agglomeration of scientific and technological talents accelerates
urban expansion, which results in infrastructure congestion and
subsequent environmental degradation. Such non-productive
consumptions significantly elevate the levels of direct carbon
emissions. These non-productive consumptions substantially
increase direct carbon emission levels.

Hypothesis 2: Talent agglomeration can promote regional
carbon emissions.

Building on the two streams of talent agglomeration’s impact on
carbon emissions, we analyzed the bilateral effects through the
mechanism illustrated in Figure 1.

3 Methodology and research data

3.1 The two-tier stochastic frontier model

To measure the bilateral relationship between talent
agglomeration and carbon emissions, we follow the two-tier
stochastic frontier model of Kumbhakar and Parmeter (2009). As
shown in Equation 1:

Diff it � xit*δ + ωit − uit + εit � xit*δ + ξit (1)

As shown in Equation 1, Diffit represents the carbon emission
boundary, and xit denotes a set of control variables influencing regional
carbon emissions, specifically urbanization, industrialization, energy
structure and environmental regulation; ωit represents the inefficiency
component related to carbon emissions, uit denotes the stochastic error
term capturing other unobservable factors affecting carbon emissions. δ
denotes the vector of parameters that require estimation The composite
residual term ξit is defined ξit � ωit − uit + εit, where εit is a normally
distributed random error termεit ~ N(0, σ2), accounting for deviations
in the carbon emission gap.

Given that ξit may not equal zero, relying on Ordinary Least
Squares (OLS) estimates would result in bias. Therefore, the parameters
are estimated using Maximum Likelihood Estimation (MLE) to ensure
more accurate results. This model helps isolate the impact of talent
agglomeration on the carbon emission gap, considering regional
disparities in key economic and environmental factors. If ωitP0, it
indicates a positive effect of the concentration of technological talent on
the carbon emission gap. Conversely, if uit#0, it signifies a negative
effect on the regional innovation efficiency gap, indicating a hindrance.
When uit#0, ωit � 0 or ωitP0, uit � 0, the model constitutes a
unilateral stochastic frontier model.

If ωit � uit � 0, the model reduces to an OLS model, which
would be biased if ξit is non-zero. Therefore, MLE is applied to
mitigate this bias and ensure more reliable estimates (Lei et al.,
2024). The residuals εit are assumed to follow a normal distribution
with a mean of zero and variance σ2ε , i.e., εit ~ iidN(0, σ2ε ).

It is assumed that both ωit and uit are follow exponential
distributions, specifically, ωit ~ iidEXP(σω, σ2ω) and uit ~
iidEXP(σu, σ2u), and uit ~ iidEXP(σu, σ2u), with the residual
terms being mutually independent and uncorrelated with inter-
provincial characteristic factors. Given these distributional
assumptions, the probability density function is derived, as
shown in Equation 2:

f ξit( ) � exp αit( )
σu + σω

Φ γit( ) + exp βit( )
σu + σω

∫∞

−ηit
φ x( )dx

� exp αit( )
σu + σω

Φ γit( ) + exp βit( )
σu + σω

φ ηit( ) (2)

Within this framework, Φ(·) and φ(·) denote the cumulative
distribution function (CDF) and the probability density function
(PDF) of the standard normal distribution, respectively, and the
reparameterizations are defined in Equation 3:

αit � σ2v
2σ2u

+ ξ it
σu
; βit �

σ2v
2σ2ω

− ξ it
σω

γit � −ξit
σv

− σv
σu
; ηit �

ξ it
σv

− σv
σω

(3)

FIGURE 1
Mechanism analysis of the effects of talent agglomeration on
carbon emissions.
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The log-likelihood to be maximized is given by Equation 4:

lnL X; π( ) � −n ln σω + σu( ) +∑
n

i�1
ln eαitΦ γit( ) + eβitΦ ηit( )[ ] (4)

Within this framework, let π � [β, σv, σω, σu]. Consequently, the
values for all parameters can be explicitly obtained via Maximum
Likelihood Estimation (MLE). Furthermore, it is necessary to
estimate ωit and uit, thus necessitating the further derivation of
the conditional density function, as shown in Equations 5, 6:

f ωit | ξ it( ) �
1
σu
+ 1

σω
( ) exp − 1

σu
+ 1

σω
( )ωit[ ]Φ ωit

σv
+ ηit( )

exp βit − αit( ) Φ ηit( ) + exp αit − βit( )Φ γit( )[ ] (5)

f uit | ξ it( ) �
1
σu
+ 1

σω
( ) exp − 1

σu
+ 1

σω
( )uit[ ]Φ uit

σv
+ ηit( )

Φ ηit( ) + exp αit − βit( )Φ γit( ) (6)

Based on Equations 5, 6, the conditional expectations follow
from Equations 7, 8:

E ωit | ξ it( ) � 1
1
σu
+ 1

σω
( )
+ σv Φ −ηit( ) + ηitΦ ηit( )[ ]
exp βit − αit( ) Φ ηit( ) + exp αit − βit( )Φ γit( )[ ] (7)

E uit | ξit( ) � 1
1
σu
+ 1

σω
( ) +

exp αit − βit( )σv Φ −γit( ) + ηitΦ γit( )[ ]
Φ ηit( ) + exp αit − βit( )Φ γit( )] (8)

The conditional expectations are used to quantify the absolute
deviations of regional carbon utilization gaps from the frontier,
representing positive and negative effects. For ease of subsequent
discussion and comparison, these conditional expectations are
further converted into percentages that represent deviations from
the frontier level. Equations 9, 10 transform these expectations into
percentage deviations from the frontier:

E 1− e−ωit | ξ it( )

� 1−
1
σu
+ 1

σω
( ) Φ γit( )+ exp βit −αit( )exp σ2v

2 −σvηit( )Φ ηit −σv( )[ ]
1+ 1

σu
+ 1

σω
( )[ ] exp βit −αit( ) Φ ηit( )+ exp αit −βit( )Φ γit( )[ ][ ]

(9)
E 1− e−uit | ξ it( )

� 1−
1
σu
+ 1

σω
( ) Φ ηit( )+ exp αit −βit( )exp σ2v

2 −σvγit( )Φ γit −σv( )[ ]
1+ 1

σu
+ 1

σω
( )[ ] Φ ηit( )+ exp αit −βit( )Φ γit( )[ ]

(10)
Finally, the net effect is defined in Equation 11:

NE � E 1 − e−ωit | ξ it( ) − E 1 − e−uit | ξit( ) � E e−uit − e−ωit | ξit( )
(11)

Herein, NE represents the difference between the facilitating
and hindering effects. If NE >0, it indicates that the facilitating
effects are stronger than the hindering effects, thus playing a
dominant role. Conversely, if NE <0, it signifies that the
hindering effects are predominant.

3.2 Data source and sample selection

Referring to the conceptual and empirical framework, and
considering data availability, Chinese provincial panel data

spanning 2013 to 2023 were used to investigate the effect of
scientific and technological talent concentration on
interprovincial atmospheric pollution. Owing to data constraints,
the regions of Tibet, Hong Kong, Macao, and Taiwan were excluded
from this study. All variables involving price factors were adjusted
for inflation using 2010 as the base year.

3.2.1 Variable selection
3.2.1.1 Carbon emission

As specified in Equation 12, a carbon emission calculation
method is derived from the guidelines of the Intergovernmental
Panel on Climate Change (IPCC), which serves as a standard
approach for estimating greenhouse gas emissions. This approach
is commonly applied in environmental studies to estimate emissions
from various energy sources. Additionally, based on prior literature
(Liu et al., 2023; Kuang et al., 2024)., the emissions are calculated
using data from eight key energy sources—coke, gasoline, natural
gas, raw coal, fuel oil, crude oil, kerosene, and diesel—factored into
end-use consumption:

EC � ∑
6

i�1
ECi � ∑

6

i�1
Ei × CFi × CCi × COFi × 3.67 (12)

Among these, EC represents the total emissions of Co2, where i
denotes the type of energy consumed. Ei refers to the total
consumption of the i th type of energy in each province. CFi

signifies the calorific value, CCi indicates the carbon content, and
COFi represents the oxidation factor.

CFi × CCi × COFi represents the carbon emission factor, while
CFi × CCi × COFi × 3.67 denotes the carbon dioxide emission
factor. Since there is an order of magnitude difference between
the carbon emissions of each region and other variables, combined
with the experience of previous studies, the logarithm of carbon
emissions is taken for calculation in this study Wu et al. (2021).

3.2.1.2 Talent agglomeration
The degree of talent agglomeration is the clustering

phenomenon formed by the same type of talent gathering in a
certain area, with strong spatial characteristics (Shi and Lai, 2019).
Building on previous research, this study employs the location
entropy index to measure the level of talent agglomeration.
Specifically, as shown in Equation 13:

TASit � Tit/Lit

Tt/Lt
(13)

In this model, TASit represents the density of talent
agglomeration of in region i for the year t. This ratio is
calculated by dividing the number of R&D personnel (Tit) by the
total number of employed individuals (Lit) in the region. Tt

represents the national full-time equivalent of R&D personnel,
while Lt refers to the total national employment. A TASit value
exceeding 1 signifies a higher level of talent agglomeration within the
area, whereas a value below 1 implies a lower level of agglomeration.

3.2.1.3 Other inter-provincial characteristic variables
Drawing on existing research, it has been identified that carbon

emission is influenced not only by talent agglomeration but also by
urbanization, industrialization and local governance (Taskin and Zaim,
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2001). Following the approach of Sun andHuang (2020), urbanization is
represented by the non-agricultural population ratio (lnUrb). And the
level of economic development (lnPGdp) and environmental regulation
(ER) are selected as control variables (Liu et al., 2023). Environmental
regulation is evaluated by the ratio of industrial pollution control
investment to GDP, indicating the government’s prioritization of
environmental sustainability (Zhang et al., 2022).

3.2.2 Research area and data source
Given the notable regional disparities in socioeconomic

development, governance capacity, and environmental
complexity, as well as unique challenges in implementing talent
agglomeration policies on carbon emissions in China (Li and
Ramanathan, 2018; Wu et al., 2020) we address these differences
effectively by dividing the research area into eastern, central, and
western regions. Figure 2a delineates this regionalization, while
Figure 2b reports provincial mean carbon emissions for
2013–2023. Overall, a clear spatial gradient emerges, with
emissions decreasing from north to south and from east to west,
and the eastern region consistently recording the highest totals,
followed by the central region.

The scope of this research encompasses the provinces of China
over the years 2013–2023, excluding Tibet, Hong Kong, Macao, and
Taiwan due to data limitations. Data concerning energy were
extracted from the China Energy Statistics Yearbook, while
information from other domains was drawn from the China
Statistical Yearbook and the China Statistical Yearbook of Science

and Technology. The energy consumption data for 2018 were
projected using linear regression, while interpolation techniques
were employed to address other missing data. Descriptive statistical
results for all variables can be found in Table 1.

4 Empirical analysis

4.1 Estimation of bilateral stochastic
frontier model

4.1.1 Analysis of factors influencing
carbon emission

The dual impacts of agglomeration on carbon emissions are
estimated using Equation 12. The results are presented in Table 2,
with column 2 displaying the OLS estimates that exclude deviation
effects, column 3 to column 5 report maximum-likelihood estimates
from the two-tier stochastic frontier model. Specification
M2 includes year fixed effects only, M3 includes regional fixed
effects only, and M4 includes both sets of fixed effects. In M4,
urbanization (lnUrb = 0.166*,Z = 63.21) and environmental
regulation (ER = 0.294*,Z = 17.29) are positively associated with
carbon emissions, whereas per-capita GDP (lnPGdp = −0.029*,
Z = −57.28) is negatively associated; relative to the OLS baseline,
these sign and significance reversals indicate that explicitly modeling
inefficiency within the two-tier stochastic frontier model yields
materially different inferences.

FIGURE 2
Provinces and regions covered with average carbon emissions during the study period.

Frontiers in Environmental Science frontiersin.org06

Zhang et al. 10.3389/fenvs.2025.1630688

mailto:Image of FENVS_fenvs-2025-1630688_wc_f2|tif
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1630688


4.1.2 Variance decomposition: analyzing the
impact coefficients of bilateral effects

The results demonstrate that talent agglomeration exerts a net
inhibitory effect on carbon emissions, primarily by improving
energy efficiency. As shown in Table 3, talent agglomeration
exerts both promotive and inhibitory effects on carbon emissions,
with the inhibitory effect measured at 0.438, significantly exceeding
the promotive effect of 0.162. The results confirm the coexistence of
bilateral effects, while further indicating that the inhibitory effect
dominates, thereby supporting both theoretical assumptions.
Overall, the impact on emission reduction is positive, with E
(ω − u) = σω-σu = −0.276], reflecting the dominance of the
inhibitory effect.

Further analysis reveals that the combined bilateral component
accounts for 95.3% of the variance in carbon emissions. As shown in
Table 3, within this component, the promotive effect accounts for
only 12.1%, whereas the inhibitory effect accounts for 87.9%, further

evidencing the leading role of the inhibitory effect in
emission reduction.

4.1.3 Frontier-level examination analyzing the
bilateral effect

Based on Equations 9–11, the promotive, inhibitory, and net
effects of talent agglomeration on carbon emissions were
estimated as percentages. As shown in Table 4, talent
agglomeration increases emissions by 16.2% and reduces them
by 43.8%, producing a net reduction of 27.6% relative to the
frontier level. This finding suggests that, with the coexistence of
both promotive and inhibitory effects of talent agglomeration,
assuming the frontier carbon emission is 100%, the final emission
level would be 72.4%.

Table 4 demonstrates the variations in the promotive, inhibitory,
and net effects of talent agglomeration on carbon emissions.
Specifically, at the 25th percentile, the combined effects result in

TABLE 1 Descriptive statistics of variables.

Variables Symbols N Mean Std.dev Min Max

Carbon Emissions lnCo2 330 10.2972 0.7538 8.1161 12.2170

Talent agglomeration lnTa 330 0.1052 0.6035 −1.3445 1.6381

Urbanization lnUrb 330 −0.5608 0.2314 −1.4848 −0.1100

GDP per capita lnPGdp 330 10.7829 0.4770 9.4636 12.1417

Environment Regulation ER 330 8.0808 6.1310 2.5763 36.0529

TABLE 2 The basic estimation of the two-tier stochastic frontier model.

Variables OLS M 2 M 3 M 4

lnUrb 0.695** 0.638*** 0.086*** 0.166***

(2.47) (28.28) (12.68) (63.21)

lnPGdp −0.031 0.059*** 0.039*** −0.029***

(-0.72) (5.28) (15.09) (-57.28)

ER −0.342*** 0.169*** 0.128*** 0.294***

(-3.02) (6.38) (18.29) (17.29)

Constant 3.267 (1.21) 1.390*** (7.18) 4.221*** (14.39) 2.109*** (72.17)

Constant item −10.421*** (−15.16) −12.753*** (−14.28) −17.808*** (−18.62)

Inhibitory effect −7.021*** (−12.19)

Promotive effects 1.288*** (5.20)

Constant item −1.697*** (−12.10) −5.281*** (−23.29)

R-squared 0.667

Log-L 133.91 253.71 263.22 281.31

pro fixed No No Yes Yes

Year fixed No Yes No Yes

N 330 330 330 330

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, with the corresponding Z statistics provided in parentheses. This notation is used consistently throughout the

text.
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a 28.6% reduction in actual carbon emissions across one-quarter of
the regions. At the 50th percentile, the combined effects lead to a
4.2% reduction, while at the 75th percentile, there is a 38.8% increase
in carbon emissions. This finding further substantiates the overall
inhibitory effect of scientific talent agglomeration on regional
carbon emissions. Further analysis reveals that at the second
percentile, the impact of environmental regulation decreases by
23.4% compared to the first percentile, whereas at the third
percentile, the effect of environmental regulation increases
instead of decreasing. This further corroborates the conclusion
that talent agglomeration plays a positive environmental role by
reducing carbon emissions.

The distribution of the promotive, inhibitory, and net effects
of talent agglomeration on carbon emissions is presented in
Figure 3, based on province–year estimates for 2013–2023. As
shown in Figure 3a, the promotive effect exhibits a right-tailed
distribution: most observations lie below 15%, and the frequency
drops sharply beyond 20%. This pattern suggests that the
emissions-increasing channel is typically weak but occasionally
exhibits spikes in a small subset of observations, which may be
consistent with short-run scale effects. As shown in Figure 3b, the
inhibitory effect has a heavier right tail than the promotion
distribution: most observations are at low percentages, with
occasional large reductions, which may reflect the lagged
materialization of efficiency and regulation gains. As shown in
Figure 3c, the net-effect distribution is concentrated on negative
values and positive observations are rare, indicating the
dominance of the reducing mechanism. This distribution
highlights that the inhibitory effect is both more frequent and
more substantial than the promotive effect. Overall, these
distributions confirm that talent agglomeration exerts a net
inhibitory impact on carbon emissions, consistent with our
theoretical analysis.

4.2 Spatial characteristics in the effect of
talent agglomeration on regional
carbon emissions

Subsequently, we examine the spatial variation in the emission-
reducing effects of talent agglomeration across China’s three major
regions: Eastern, Central, and Western. Overall, talent agglomeration
generates both promotive and inhibitory effects across regions, with
the inhibitory effect consistently prevailing and leading to net
emission reductions. These results suggest that while talent
agglomeration consistently contributes to carbon emission
reductions, the magnitude of its impact varies significantly by region.

In the western regions, where infrastructure and technological
development levels are relatively low, the technological advancements
and government policy support, including talent-rewarding policies and
improvements in infrastructure, financial development, and credit
optimization, driven by talent agglomeration can substantially
improve carbon emission efficiency (Zhuo and Deng, 2020; Zheng
et al., 2022). These measures strengthen innovation capacity and energy
efficiency, ensuring that the inhibitory effect outweighs the promotive
effect and produces the greatest emission reduction in the western
region. In the central region, although energy-intensive industries still
account for a larger share of the industrial structure (Fan et al., 2011),
recent policy-driven talent agglomeration has enhanced efficiency
improvements and management upgrading, leading to significant
emission reductions (Yang et al., 2021). In the eastern regions, with
better infrastructure and technological conditions, and a focus on
technology industries and services, talent agglomeration primarily
promotes management optimization and technological innovation
(Chen et al., 2020). The overall evidence suggests that although both
promotive and inhibitory effects coexist in all three regions, the
inhibitory effect consistently dominates, producing regionally
differentiated but uniformly negative net effects on carbon emissions.

Table 5 displays the frequency distributions of the promotive,
inhibitory, and net effects of talent agglomeration on carbon emissions.
The inhibitory effect exhibits a pronounced right-tailed distribution,
extending beyond the 90th percentile, indicating that in certain
provinces carbon emissions indicating that in certain provinces,
large reductions occur as talent agglomeration increases. In
contrast, the promotive effect weakens beyond the 90th percentile
and remains below the inhibitory effect, underscoring its secondary
role. The comparative distributions show that while both effects

TABLE 3 Variance decomposition of the impact of talent agglomeration.

Meaning Variance meaning Symbols Measurements coefficients

Impacts Random error term σv 0.104

Promotive effect σu 0.162

Inhibitory effect σω 0.438

Variance decomposition Random total error term σ2u + σ2ω + σ2v 0.229

The weight of the two effects σ2u+σ2ω
σ2u+σ2ω+σ2v

0.953

Promotive effect weight σ2u
σ2u+σ2ω

0.121

Inhibitory effect weight σ2ω
σ2u+σ2ω

0.879

TABLE 4 Estimation of the net effect of talent agglomeration on carbon
emissions (%).

Variable mean Sd p25 p50 p75

thepromotive effect 0.26 0.14 0.17 0.20 0.27

the inhibitory effect 0.44 0.24 0.21 0.40 0.63

the net effect −0.18 0.34 −0.46 −0.22 0.08
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coexist, the inhibitory effect is more frequent and more substantial,
consistently dominating the promotive effect. Accordingly, the overall
distribution of effects is concentrated on the left half-axis below zero,
with higher frequencies than on the right half-axis, confirming that
the net impact of talent agglomeration is negative at most quantile
points. These findings confirm the dominance of the inhibitory effect
and underscore the need for region-specific emission reduction
strategies.

4.3 Temporal characteristics of talent
agglomeration impacts on carbon emissions

Different from the linear or nonlinear regression methods used
in other literature, the approach in this paper can be used to
decompose the bilateral effects of talent agglomeration on carbon
emissions for different years, and then analyze the trend
characteristics of this impact over time. Figure 4 shows the
annual variations in the promotive, inhibitory, and net effects.
The results indicate that while both effects coexist, the inhibitory
effect generally dominates, keeping the net effect negative in all years
except 2014, when a temporary surge in promotion (46.27%)
produced a positive net outcome (25.39%). The inhibitory effect
peaked in 2013 (71.08%) and again in 2021 (67.80%), while the
promotive effect reached its lowest in 2020 (19.90%). This produced
a sizable negative net effect in 2020 (−17.36%), which deepened
further by 2023 (−27.06%). These patterns suggest that while
agglomeration may temporarily raise emissions in the early phase
(e.g., 2014), its maturation strengthens the inhibitory channel
through efficiency gains and structural upgrading, leading to
persistently negative net effects that intensify after 2020.

In summary, the net effect of talent agglomeration on carbon
emissions was predominantly negative during 2013–2023. Drawing
on China’s practice, implementation exhibits a phased transition
and lagged cumulative effects: an early and temporary scale-up (e.g.,
2014), a near-neutral middle stage around 2018–2019, and a post-
2020 efficiency-dominated phase in which the inhibitory channel
strengthens with a lag (promotion bottoming in 2020 at 19.90%,
inhibition peaking in 2021 at 67.80%). This shows that the impact of

talent agglomeration on carbon emissions exhibits stage-specific
dynamics and lagged materialization.

4.4 Heterogeneity test of the net effect of
talent agglomeration on carbon emission

Drawing from the preceding mechanism analysis, this study
hypothesizes that the effects of talent agglomeration on carbon
emissions are twofold. The promotive effects may increase energy
consumption and emissions through urban expansion, energy-
intensive industrial structures and resource misallocation, while
the inhibitory effects may enhance energy efficiency and reduce
carbon intensity through knowledge exchange, green innovation
and industrial upgrading. To examine the heterogeneous effects of
talent agglomeration on carbon emissions, this study categorizes
regions by urbanization, economic development, and environmental
regulation levels, and tests the impacts across different percentiles.
The results are presented in Table 6.

First, this study tested the effects of different degrees of talent
agglomeration on emissions. In the 10%–40% range, emissions show
a significant increase, followed by a decrease beyond 40%. This
inverted U shape identifies a 40% agglomeration degree as the
inflection point, demonstrating a substantial impact on
sustainable development. However, regional disparities in China
make it challenging for all areas to attract talent equally due to
varying conditions for talent attraction.

Next, the study examined the urbanization level, a crucial element of
the macroeconomic environment that is highly correlated with regional
population structure and productionmethods (Nathaniel et al., 2021). At
low levels of urbanization, the promotive effect dominates, as increased
infrastructure construction and energy demand temporarily raise
emissions. As urbanization advances, however, the inhibitory effect
strengthens and overtakes the promotive effect, resulting in a net
reduction in emissions. This pattern indicates that while both effects
coexist, the balance shifts toward inhibition as urbanization deepens. In
the 70%–100% range, the inhibitory effect becomes dominant, reducing
emissions relative to lower levels of economic development. This further
confirms the inverted U-shaped relationship, with promotive effects

FIGURE 3
Characteristics of the net effect of talent agglomeration on regional carbon emissions (%).
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stronger at early stages and inhibitory effects prevailing as economic
development advances.

Finally, we examined the relationship between talent
agglomeration and carbon emissions under different levels of
environmental regulation. At low levels of regulation (bottom 40%),
the promotive effect dominates, and emissions increase. By contrast, in

regions with stricter regulation, the inhibitory effect overtakes the
promotive effect, resulting in significant net reductions. This further
supports the view that emissions are more effectively reduced through
environmental regulation than through other measures.

4.5 Robustness

Three verification methods were adopted to ensure the
robustness of the results.

First, considering that potential reverse causality may exist, in
which talent agglomeration may affect carbon emissions while carbon
emissions may also affect talent agglomeration, this paper adopts the
instrumental variable (IV) approach to address the endogeneity
problem. Based on this consideration, the first lag of talent
agglomeration variable is selected as the instrumental variable, and
a two-stage least squares (2SLS) estimation is conducted under the
framework of province and year two-way fixed effects. The regression
results are reported in Models M5 and M6 of Table 7. In M6, the
Cragg–Donald Wald F statistic is 40.5, and the Kleibergen–Paap rk
Wald F statistic is 35.2 (p < 0.001), indicating that the selected
instrumental variable satisfies the relevance condition. As shown in
M6, the impact of talent agglomeration on carbon emissions remains
significantly negative, which is consistent with the main conclusions
of the baseline regression and the bilateral frontier decomposition,
suggesting that the findings of this paper are not driven by
endogeneity due to reverse causality.

Then replacing the proportion of total city RCE toGDP as a proxy
for carbon emissions still confirmed the existence of bilateral effects.
The findings show that the promoting effect is 0.5590, while the
inhibiting effect stands at 0.9486. This result confirms the statistical
significance of talent agglomeration on carbon emissions and clarifies
that talent agglomeration has bilateral effects on carbon emissions,
consistent with the findings mentioned above.

Moreover, based on the impact weights, the promoting and
inhibiting effects of talent agglomeration account for 9.2% and
90.8%, respectively. This indicates that over the years, the
inhibiting effect has been dominant, which is consistent with the
study’s conclusions. The variations in the inhibiting, net, and
promoting effects were re-estimated, and these results are
illustrated in Table 8. The study found that as the degree of
talent agglomeration increases, its promoting effect raises carbon
emissions, while the inhibiting effect curbs regional carbon
emissions. The net effect leads to actual carbon emissions falling
below the frontier level, aligning with the conclusions.

5 Conclusion and policy implications

5.1 Conclusion

This study proposed a decomposition approach to examine the
bilateral effects of talent agglomeration on carbon emissions. Utilizing
panel data from 30Chinese provinces from 2013 to 2023 and applying
a two-tier stochastic frontier model, the study empirically
decomposed the promotive and inhibitory effects of talent
agglomeration and assessed their net impact. It further investigated
the temporal, regional, and contextual heterogeneity of these effects.

TABLE 5 Characteristics of the net effect of talent agglomeration on
regional carbon emissions (%).

Province and
region

Net effect
mean value

p25 p50 p75

Beijing −0.13 −0.45 −0.04 0.12

Tianjin −0.14 −0.43 −0.05 0.08

Hebei −0.24 −0.53 −0.19 −0.01

Liaoning −0.15 −0.45 −0.09 0.1

Shanghai −0.01 −0.28 0.13 0.33

Jiangsu 0.03 −0.21 0.17 0.37

Zhejiang −0.01 −0.3 0.1 0.34

Fujian −0.19 −0.39 −0.3 0.02

Shandong −0.1 −0.34 −0.12 0.08

Guangdong −0.19 −0.27 −0.31 −0.04

Guangxi −0.08 −0.51 −0.38 −0.09

Hainan −0.24 −0.55 −0.38 −0.12

Shanxi −0.25 −0.53 −0.23 −0.06

Neimenggu −0.24 −0.52 −0.21 0.02

Jilin −0.31 −0.56 −0.33 −0.04

Heilongjiang −0.29 −0.51 −0.28 0

Anhui −0.17 −0.44 −0.11 0.15

Jiangxi −0.29 −0.48 −0.38 −0.14

Henan −0.31 −0.45 −0.29 −0.11

Hubei −0.15 −0.4 −0.22 −0.03

Hunan −0.31 −0.43 −0.29 0.23

Chongqing −0.32 −0.44 −0.38 0.06

Sichuan −0.21 −0.48 −0.26 0.2

Guizhou −0.18 −0.54 −0.47 0.05

Yunnan −0.18 −0.46 −0.26 0.2

Shaanxi −0.18 −0.33 −0.11 0.1

Gansu −0.24 −0.48 −0.34 0.07

Qinghai −0.32 −0.54 −0.41 0.05

Ningxia −0.21 −0.47 −0.32 0.05

Xinjiang −0.18 −0.47 −0.3 0.2

Eastern Region −0.18 −0.46 −0.22 0.08

Central Region −0.12 −0.39 −0.12 0.10

Western Region −0.22 −0.47 −0.32 0.11
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TABLE 6 Differences of the bilateral effects under various talent agglomeration levels (%).

Percentage range Effects Talent agglomeration Urbanization Economic Environmental regulation

Mean SD Mean SD Mean SD Mean SD

10%–40% Promotive effect 0.316 0.126 0.27 0.14 0.26 0.13 0.348 0.147

Inhibitory effect 0.299 0.214 0.44 0.25 0.46 0.27 0.341 0.271

Net effect 0.016 0.358 0.17 0.35 −0.21 0.36 0.007 0.36

40%–70% Promotive effect 0.262 0.107 0.24 0.14 0.23 0.13 0.307 0.124

Inhibitory effect 0.428 0.29 0.44 0.24 0.46 0.23 0.479 0.309

Net effect −0.166 0.333 −0.2 0.33 −0.23 0.32 −0.172 0.306

70%–100% Promotive effect 0.29 0.184 0.27 0.14 0.29 0.15 0.305 0.157

Inhibitory effect 0.517 0.238 0.43 0.24 0.39 0.23 0.68 0.262

Net effect −0.226 0.372 −0.17 0.35 −0.1 0.33 −0.375 0.366
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The empirical findings reveal the following: (1) Talent
agglomeration exhibits asymmetric bilateral effects on regional
carbon emissions, with an overall inhibitory impact. On average,
it increases emissions by 16.2% through the promotive channel
but reduces them by 43.8% through the inhibitory channel,
leading to a net reduction of 27.6% relative to the frontier
level. (2) The net effect of talent agglomeration on carbon
emissions is predominantly negative across different periods.
After a brief increase in 2014, the inhibitory effect
strengthened, particularly after 2020. (3) Regional
heterogeneity is evident: the western region achieves
significantly larger net reductions than the central and eastern
regions. (4) Heterogeneity analysis shows that regions with
higher talent agglomeration (≥40%), advanced economic
development (70%–100%), and stricter environmental
regulation experience greater net reductions in emissions,
whereas at low urbanization stages the promotive effect
dominates but shifts toward inhibition as urbanization deepens.

5.2 Policy implications

For policymakers aiming to harness talent agglomeration as a
mechanism to promote sustainable development, our findings
provide essential guidance, highlighting that while both
promotive and inhibitory effects coexist, the inhibitory effects
dominate overall, leading to a net reduction in carbon emissions.
Tailoring strategies to fit specific regional conditions is therefore
crucial to fully leverage talent’s role in emission reduction.

First, policymakers should adopt a demand-oriented approach to
talent agglomeration, ensuring that talent attraction is closely aligned
with local industrial development and environmental needs. Our
findings demonstrate that enhancing the degree of talent
agglomeration contributes significantly to effective emission
reductions, if strategies are tailored to fit specific regional conditions.
Accordingly, the identification and prioritization of key demands in
industrial upgrading, R&D, and technology transfer is proposed, along
with policies to guide the precise agglomeration of talent to address
these needs. By aligning talent policies with local economic and
environmental priorities, regions can foster multi-stakeholder
collaboration and build sustainable innovation ecosystems that
amplify the environmental benefits of talent agglomeration.

Second, the optimization of the spatial layout of talent
agglomeration and the strengthening of cross-regional cooperation
are advocated to enhance overall emission reduction. Empirical
evidence shows that the inhibitory effect has strengthened since
2020, with the western region demonstrating greater emission
reductions than the central and eastern regions. Regional
cooperation should proceed along two complementary paths.
Promoting local and neighboring talent exchange is anticipated to
mitigate the negative spillover effects of over-agglomeration;
meanwhile, cooperation and technical support with economically
similar regions—through interregional talent cooperation funds, joint
R&D, and technology transfer platforms—can unlock positive spillover

FIGURE 4
Temporal trends of the bilateral effects of scientific and technological talent agglomeration.

TABLE 7 Endogeneity test results of the impact of talent agglomeration on
carbon emissions.

Indicators M 5 M6

TA −0.12** −0.11**

(-4.81) (-4.50)

Cragg–Donald Wald F 40.5

Kleibergen–Paap rk Wald F - χ2 = 35.2 (p < 0.001)

Kleibergen–Paap rk LM - 24.7

N 300 300

Province FE Yes Yes

Year FE Yes Yes
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potential and ensure that inhibitory effects dominate, resulting in net
emission reductions. Ultimately, building cross-regional
complementary innovation networks is essential to generate
synergistic effects among regions, thereby enhancing national carbon
reduction benefits and promoting high-quality economic development.

Finally, it is necessary to tailor talent agglomeration strategies to
distinct regional conditions to strengthen the inhibitory effects on
carbon emissions. Establish flexible, region-specific policies that align
with the economic development stage, industrial structure, and existing
talent levels in each area. Developed regions should consolidate the
energy-efficiency gains of talent agglomeration, whereas less-developed
regions should focus on building the foundations to enhance its
inhibitory effects. In practice, this requires creating supportive
platforms and career opportunities for talent retention—such as
establishing region-specific priority projects and improving
compensation schemes—so that talent agglomeration can more
effectively contribute to carbon reduction and environmental
sustainability across regions. These tailored strategies will ensure
that talent agglomeration contributes effectively to carbon reduction
and environmental sustainability in each region.

5.3 Research limitation and future work

These findings open the door to future longitudinal research linking
the bilateral effects of talent agglomeration on carbon emissions by
showing that such agglomeration might be generally viewed as related
to significant environmental outcomes, thus supplementing and
extending previous studies. Like any other study, this study is not
free from limitations. Owing to data constraints, this study analyzes the
bilateral effects of talent agglomeration on carbon emissions from a
macro perspective and does not account for the impact of micro-level
enterprises and individual talent contributions on regional energy
conservation and emission reduction. Ideally, these findings should
be replicated in a study that explores a wider variety of environmental
pollutants, including carbon dioxide emissions, wastewater
contamination, and solid waste pollution. This approach would yield
a more comprehensive understanding of how scientific and
technological talent agglomeration impacts the environment.
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TABLE 8 Robustness test for the deviation of talent agglomeration’s impacts on regional carbon emissions (%).

Meaning Variance meaning Symbols Measurements coefficients

Impacts Random error term σv 0.094

Promotive effect σu 0.136

Inhibitory effect σω 0.427

Variance decomposition Random total error term σ2u +σ2w +σ2v 0.210

The weight of the two effects σ2u+σ2w
σ2u+σ2w+σ2v

0.958

Promotive effect weight σ2u
σ2u+σ2w

0.092

Inhibitory effect weight σ2w
σ2u+σ2w

0.908
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