
Sustainable soil organic carbon
prediction usingmachine learning
and the ninja optimization
algorithm

Anis Ben Ghorbal1*, Azedine Grine1, Marwa M. Eid2,3 and
El-Sayed M. El-kenawy4,5*
1Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic
University (IMSIU), Riyadh, Saudi Arabia, 2Faculty of Artificial Intelligence, Delta University for Science and
Technology, Mansoura, Egypt, 3Jadara University Research Center, Jadara University, Irbid, Jordan,
4Department of Programming, School of Information and Communications Technology (ICT), Bahrain
Polytechnic, Isa Town, Bahrain, 5Applied Science Research Center, Applied Science Private University,
Amman, Jordan

Soil organic carbon (SOC) plays a critical role in global carbon cycling, influencing
climate regulation, soil fertility, and sustainable land management. However,
accurate SOC prediction remains a challenging task due to the complex,
high-dimensional, and nonlinear nature of soil data. Recent advances in
machine learning (ML) have improved SOC estimation, yet these models often
suffer from overfitting and computational inefficiency when effective feature
selection and hyperparameter tuning are not applied. To address these
challenges, we propose a novel integration of the Ninja Optimization
Algorithm (NiOA) for simultaneous feature selection and hyperparameter
optimization, aimed at enhancing both predictive accuracy and computational
efficiency. In our experimental setup, 80%of the dataset was allocated for training
and 20% for testing. The baseline Support VectorMachine (SVR)model achieved a
mean squared error (MSE) of 0.00513, which was reduced to 0.00011 after
applying binary NiOA (bNiOA) for feature selection. After full NiOA-based
hyperparameter tuning, the MSE improved further to 7.52 × 10−7,
corresponding to a 99.98% reduction in prediction error. Thus, the proposed
NiOA-enhanced framework demonstrates considerable potential in advancing
SOCmodeling. It offers a scalable, interpretable, and high-precision solution that
can be effectively applied in data-scarce environments, particularly in support of
sustainable land management and climate change adaptation strategies.
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1 Introduction

In natural ecosystems, soil is essential, as it nourishes vegetation, manages water systems
and traps carbon. It serves both the environment and farmers by capturing excess carbon
and supporting crop growth and long-term sustainability of ecosystems (O’Riordan et al.,
2021). The presence of soil organic carbon is an essential sign of healthy soil. It shows how
stable the ecosystem is by affecting nutrient use, bacterial growth, water absorption and
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carbon storage over time. Soc organisms help manage the levels of
greenhouse gases in the atmosphere and control climate change
(Rillig et al., 2023).

It is tough to measure and forecast SOC due to the soil’s wide
variety and complex nature. The way land is used, climate
differences and the fact that some areas have more geographical
variety all result in variable SOC levels. African soil quality varies
widely, from vibrant fertile soils in the highlands to poorer soils in
dry regions (Francaviglia et al., 2023). As land changes quickly and
forests are removed, monitoring SOC across broad areas is crucial
for effective responses to climate change and farming. Still,
traditional methods for surveying soils demand a lot of time and
money, and their outcomes can be inconsistent due to different
formats and incomplete data coverage (Rocci et al., 2021). Having
different types of soil databases, along with poor resolution, hinders
efforts to study SOC and restricts advancements in research on the
health of soils and how much carbon they contain.

Machine learning (ML) has emerged as a transformative
approach for addressing the multifaceted challenges associated
with Soil Organic Carbon (SOC) prediction. In contrast to
traditional empirical models, ML algorithms are not only capable
of processing large and heterogeneous datasets, but also offer
advanced capabilities for modeling complex, nonlinear
interactions among variables. These models can capture latent
structures and high-order dependencies without requiring explicit
assumptions about the data-generating process. Furthermore, ML
approaches facilitate automated learning from data, minimize the
need for manual feature engineering, and exhibit strong
generalization performance across diverse environmental
conditions. Such properties make ML particularly well-suited for
high-dimensional, data-scarce, and spatially variable domains like
SOC modeling (Venter et al., 2021). Approaches based on remote
sensing, climate data and soil samples have become popular to
decrease the expenses involved in SOC estimation and make the
method more scalable. Even so, ML models are only as strong as
their input data, selected features and properly adjusted
hyperparameters. Inclusion of unnecessary or similarly essential
features can result in overfitting, make the model more difficult to
solve and reduce how well it can solve new cases, showing that
efficient selection of features is essential (Odebiri et al., 2022).

Time-tested methods for selecting essential features, including
RFE and filtering with correlation, tend to overlook the complex and
nonlinear relationships among multiple soil attributes. On the other
hand, algorithms inspired by natural systems such as Grey Wolf
Optimizer, Satin Bowerbird Optimizer, Multiverse Optimization,
Firefly Algorithm and Genetic Algorithm, have demonstrated
potential in improving SOC prediction through both feature
selection and model tuning (Beillouin et al., 2022). Since these
algorithms use processes inspired by life, evolution and group
actions, they are exceptionally efficient on significant and
complex data sets found in nature. There is a crucial aspect of
superior model optimization called hyperparameter tuning.
Reducing errors in training and improving model performance is
possible only when hyperparameters like learning rates, depths of
trees, kernel options and regularization terms are tuned.
Metaheuristic optimization helps to automate this task, lower the
time required for calculations and increase accuracy (Pal
et al., 2021).

Recent research has demonstrated the utility of ML models for
SOC stock estimation across different geographic contexts. For
example, Meliho et al. (2023) applied RF and Cubist models in
Morocco’s Ourika watershed, revealing that land use and bioclimatic
variables were dominant factors in SOC prediction. Similarly,
Mosaid et al. (2024) used a suite of ML algorithms in the Srou
catchment to estimate SOC stock, showing that RF and SVM
performed best in semi-arid Moroccan regions. In a different
ecological setting, Solly et al. (2020) investigated the role of
effective cation exchange capacity (CEC) in explaining SOC
variability across Swiss forests, emphasizing how soil mineral
surfaces and pH mediate SOC stabilization. These studies
underscore the growing use of ML for SOC modeling; however,
they typically focus on isolated regional applications and do not
incorporate unified optimization strategies for both feature selection
and hyperparameter tuning. Furthermore, African soil
systems—despite their climatic vulnerability and spatial
heterogeneity—remain underrepresented in such research. To
address these gaps, this study introduces a novel SOC prediction
framework based on the Ninja Optimization Algorithm (NiOA),
integrated with Support Vector Machine (SVR). NiOA jointly
optimizes both feature selection and model hyperparameters in a
single process, thereby reducing computational burden, improving
accuracy, and enhancing interpretability. The proposed framework
is validated on a high-dimensional African soil dataset and
establishes a scalable approach to SOC estimation in data-scarce
and ecologically diverse regions.

We have achieved the following significant contributions:

• We present an integrated approach that combines machine
learning and the NiOA algorithm for feature selection and
hyperparameter optimization to achieve more reliable SOC
predictions. It overcomes important obstacles such as high-
dimensionality, redundant features and computational burden
in developing accurate SOC models.

• Our approach struck a balance between searching the feature
space and focusing on identifying the most informative
features, thereby boosting the predictive performance of soil
organic carbon estimations.

• We have developed a novel approach for efficiently optimizing
complex machine learning models in environmental sciences
using NiOA-based procedures, enabling highly accurate SOC
predictions across various terrain.

• We systematically compare our proposed NiOA-based
framework with state-of-the-art machine learning
algorithms and traditional optimization methods,
demonstrating superior performance across multiple
evaluation metrics.

• This research contributes to the broader field of sustainable
land management by offering a scalable, data-driven approach
for accurately modeling SOC, supporting climate resilience
and precision agriculture practices.

The remainder of this paper is structured as follows. Section 2
provides a comprehensive review of related work, highlighting
recent advancements in machine learning and optimization
techniques for soil organic carbon prediction. Section 3 outlines
the proposed methodology, including data preprocessing, feature
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selection, and model training using the Ninja Optimization
Algorithm (NiOA) for hyperparameter tuning. Section 4
presents the experimental setup and performance evaluation
metrics, while Section 5 discusses the results, including
comparative analysis with state-of-the-art methods. Finally,
Section 6 concludes the paper with insights into the
implications of our findings for sustainable land management
and potential future research directions.

To address these challenges, the present study sets forth the
following objectives:

• To develop a novel, integrated framework that combines
machine learning models with the newly introduced Ninja
Optimization Algorithm (NiOA) for Soil Organic Carbon
(SOC) prediction.

• To utilize NiOA for both feature selection and hyperparameter
optimization, thereby enhancing the predictive performance
and computational efficiency of SOC estimation models.

• To systematically evaluate the performance of the NiOA-
based framework against several state-of-the-art
metaheuristic algorithms, including Grey Wolf Optimizer
(GWO), Harris Hawks Optimization (HHO), and Multi-
Verse Optimizer (MVO), across multiple evaluation metrics.

• To apply this framework to a diverse African soil dataset,
addressing a critical gap in SOC modeling for
underrepresented geographical regions and promoting
scalable, data-driven insights for sustainable land
management and climate resilience.

Through these aims, the study not only advances
methodological contributions in feature selection and model
tuning but also demonstrates the practical value of the NiOA in
environmental modeling applications.

2 Literature review

Combining machine learning and metaheuristic optimization
has greatly enhanced soil science, agriculture and environmental
management research. Machine learning and metaheuristic
optimization have significantly improved predictions and analysis
for elements like SOC, pests, temperature, salinity, yield,
compaction, risk, evapotranspiration and soil mapping. A range
of studies highlights the utility and effectiveness of ML and
optimization in solving these problems.

Researchers have worked to refine SOC estimation to
comprehend better the role of carbon in the environment and
soil health. A novel optimization method combining remote
sensing and ground cover data surpasses existing approaches,
such as Grid Search Cross-Validation and the Jaya algorithm,
producing more accurate SOC estimates and minimizing
irrelevant variables. This level of accuracy is crucial for enabling
larger-scale SOC mapping, which contributes to climate change
mitigation and carbon credit calculations.

A new neuro-fuzzy evolution-based adaptive mapping system
has been designed to determine whether biological control tactics
are effective against invasive pests such as the Fall Armyworm
(Spodoptera frugiperda) (Agboka et al., 2024). This method helps

drive the shift towards sustainable farming practices that lessen
potential damage to the environment.

Advanced modeling approaches have enhanced our knowledge
of the relationship between soil temperature and biochemical
interactions. The SS model efficiently predicted soil temperature
and benefited agriculturalists and climate researchers. Soil salinity
predictions have been significantly improved using genetic
algorithms, particle swarm optimization, and simulated annealing
(Wang et al., 2022).

Crop yield predictions are also significant, helping ensure
enough food and better use of resources. This process allowed
them to optimize barley and wheat yield prediction ML models,
leading to strong results by tuning hyperparameters (Asadollah
et al., 2024). Having such exact data allows farmers to decide
when to plant crops and how to fertilize them.

Measures have been taken to boost soil nutrient availability,
which helps the agricultural industry. Owing to advanced techniques
and frameworks, predicting nutrient availability is more accurate,
which aids in managing soil at different sites (Dada et al., 2024).

Using machine learning models along with metaheuristic
algorithms has enhanced predictions in geotechnical engineering
about shear strength, liquefaction and compaction of soil. For
example, networks such as ANNs improved by GWO, AGWO
and HHO algorithms tend to estimate important geotechnical
factors like soil and rock strength with higher accuracy, making
infrastructure safer (Navidi et al., 2022; Bardhan and Asteris, 2023;
Eyo et al., 2022). Likewise, by combining extreme learning machines
(ELM) with the Dingo Optimization Algorithm (DOA), scientists
have succeeded in boosting the accuracy of estimating soil
liquefaction resistance, which benefits seismic hazard assessments
(Hameed et al., 2024).

They also involve using ensemble machine learning models to
assess soil stability, map soils digitally and determine water content
in soils. For instance, using metaheuristic stacking and voting
classifiers has helped predict the swelling of expansive soils and
lessen the chance of damage to buildings (Eyo et al., 2022). Support
vector machines that use firefly and particle swarm algorithms have
supported better soil moisture monitoring and efficient water
conservation (Mahmoudi et al., 2022).

Recent studies have highlighted the use of machine learning
(ML) techniques for mapping and predicting Soil Organic Carbon
(SOC) at different spatial scales. For example, Meliho et al. (2023)
applied Cubist, Random Forest (RF), Support Vector Machine
(SVM), and Gradient Boosting Machine (GBM) models to
predict SOC stocks in the Ourika watershed in Morocco using
88 environmental covariates, reporting that RF and Cubist achieved
the highest accuracy (R2 = 0.79 and 0.77, respectively) for SOC
prediction. Similarly, Mosaid et al. (2024) assessed SOC stock
prediction in the Srou catchment (Upper Oum Er-Rbia
watershed, Morocco) using RF, k-NN, SVM, and Cubist models,
with RF again showing the best performance (R2 = 0.76). Their study
highlighted the importance of bulk density, pH, electrical
conductivity, and calcium carbonate as key predictors for SOC.

In a broader European context, Solly et al. (2020) investigated
the role of cation exchange capacity (CEC) as a proxy for SOC
stabilization in Swiss forests. Using regression analysis over
1,000 forest sites with wide-ranging climatic and soil conditions,
they showed that CEC effectively predicts SOC content, particularly
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in subsoils with pH above 5.5, thus linkingmineral surface chemistry
with organic carbon dynamics.

While these studies confirm the predictive potential of ML and
environmental variables for SOC estimation, most do not employ
metaheuristic algorithms to simultaneously optimize feature
selection and model hyperparameters. Moreover, few studies
focus on underrepresented regions like Sub-Saharan Africa,
where soil diversity and data heterogeneity pose additional
modeling challenges. In contrast, the present study introduces the
Ninja Optimization Algorithm (NiOA) to enhance both feature
selection and hyperparameter tuning. Combined with SVR and
benchmarked against multiple optimizers, our method
significantly improves prediction accuracy and model efficiency
on a high-dimensional African soil dataset, addressing a gap in
both methodology and geographical scope.

Combined, the studies point to the significant impact of ML and
metaheuristic optimization in soil science. This contribution allows
accurate soil properties prediction, better land management, and
more resistance to climate challenges. Applying computational
intelligence to environmental modeling helps increase the
accuracy and dependability of soil evaluations, ensuring better
results for agriculture, water resources and conservation.

Table 1 outlines critical studies that use machine learning (ML),
deep learning and metaheuristic optimization on soil and related
topics. These studies are grouped based on their performance and
outcomes, explaining how advances were made in predicting SOC,
soil classification, forecasting harvest yields and other key areas of
soil study. Using ANN, GA, GWO and hybrid ML, various
computational techniques have aided in enhancing the accuracy
of predicting soil behavior and making decisions. Several studies
have highlighted that combining optimization and ML methods is
crucial for better soil analysis, farmland management, and
environmental protection.

Despite the increasing use of machine learning (ML) models for
Soil Organic Carbon (SOC) prediction, several limitations remain.
First, most existing studies rely on conventional optimization
strategies (e.g., grid search, random search), which are
computationally expensive and prone to early convergence,
especially with high-dimensional soil datasets. Second, while
metaheuristic algorithms have been explored individually for
either feature selection or hyperparameter tuning, very few
approaches integrate both tasks within a unified optimization
framework. Third, studies tend to focus on specific regional
contexts—particularly temperate or Mediterranean
zones—leaving African soils underrepresented in data-driven
SOC modeling. This is a critical gap given the rapid land-use
change and climate sensitivity of the continent’s ecosystems.
Moreover, the combination of large feature spaces, soil
heterogeneity, and non-linear relationships poses a substantial
challenge to predictive accuracy, model interpretability, and
scalability. Therefore, what remains unknown is how a jointly
optimized ML framework—capable of both feature selection and
hyperparameter tuning—can improve SOC prediction accuracy in a
geographically diverse and data scarce environment. This study
addresses these gaps by proposing a novel integration of the
Ninja Optimization Algorithm (NiOA) with machine learning
models, especially Support Vector Machine (SVR), for
simultaneous feature selection and hyperparameter optimization.

By applying this framework to a high-dimensional African soil
dataset, we offer a scalable, efficient, and interpretable solution
for SOC modeling, with implications for sustainable land
management and climate resilience.

Although recent studies such as Mosaid et al. (2024), Solly et al.
(2020), and Meliho et al. (2023) have demonstrated the effectiveness
of machine learning algorithms (e.g., RF, SVM, Cubist) for SOC and
SOC stock estimation, these approaches are generally limited by the
absence of integrated feature selection and hyperparameter
optimization frameworks. Furthermore, their geographic focus
remains constrained to specific Mediterranean or European forest
regions. In contrast, our study introduces a novel integration of the
Ninja Optimization Algorithm (NiOA), which simultaneously
optimizes both feature selection and hyperparameter tuning
within multiple machine learning models, particularly Support
Vector Machine (SVR). Empirically, the NiOA enabled
framework achieved a substantial reduction in mean squared
error (MSE) from 0.00513 (baseline SVR) to 7.52 × 10−7 after
optimization a 99.98% improvement in prediction accuracy.
Moreover, feature selection using binary NiOA (bNiOA)
reduced the average selected feature subset size by over 65%,
leading to significant computational gains and model
interpretability without sacrificing accuracy. Unlike prior
works, our approach is validated on a high-dimensional
African soil dataset, addressing regional data scarcity and
demonstrating transferability across heterogeneous
environmental conditions. These results collectively highlight
the methodological and contextual novelty of our contribution,
establishing a new benchmark for scalable, high-precision SOC
modeling in underrepresented geographies.

2.1 Research gap and contribution

Several important gaps exist in applying ML and metaheuristic
optimization methods to the problem of predicting Soil Organic
Carbon levels in soil. Many studies have employed classical
optimization procedures like grid search, genetic algorithms and
particle swarm optimization to predict distinct soil characteristics
such as nutrient availability, compaction and salinity. Nonetheless,
conventional methods often struggle with excessive computational
expenses, early convergence and difficulties handling large datasets
exhibiting a wide range of soil properties. Most existing approaches
to feature selection fail to consider the complex, nonlinear
relationships between soil characteristics, resulting in inaccurate
model predictions. Most prior techniques do not allow for
concurrent optimization of feature selection and
hyperparameters, essential for achieving better performance and
model robustness.

Our approach, dubbed the Ninja Optimization Algorithm
(NiOA), is designed to solve the problems by simultaneously
optimizing features and hyperparameters during SOC prediction.
It enables superior model performance by dynamically adapting a
trade-off between exploration and exploitation while minimizing
computational costs. We integrate advanced ML models with the
adaptive search of NiOA to offer a sophisticated solution for reliable
SOC estimation, assisting in sustainable land management and
strengthening the resilience of ecosystems in the face of climate
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change. Advances in computational approaches have enabled us to
achieve higher accuracy and efficiency in predicting SOC.

3 Materials and methods

My goal with this study is to enhance the accuracy of predicting
Soil Organic Carbon (SOC) by combining machine learning and
metaheuristic optimization approaches. Making predictions with
SOC data is difficult because they are very complex, often very
variable, and have many values. It is essential to use a structured
approach to prediction that handles accuracy, understanding and
efficiency together. To address these difficulties, the proposed

framework involves several steps: preprocessing of data, selecting
features, machine learning modeling, tuning hyperparameters and
checking model performance, as shown in Figure 1.

The first step in preprocessing soil data is to clean it and change
it into a form that is always reliable. It covers techniques like
handling missing data, changing continuous data to a similar
scale and changing categorical features to codes. After that, the
data is separated into training and testing areas for fair model
assessment. Preprocessing your data effectively can help youmanage
background noises, improve understanding of your decisions and
ensure your predictions are accurate.

Feature selection plays a significant role in this technique,
helping to keep only the essential soil characteristics needed for

TABLE 1 Summary of literature review.

Reference Objective Methodology Key findings

Vazirani et al. (2024) Predict SOC using remote sensing ML, deep learning, novel optimization Achieved R2 of 90.16%

Agboka et al. (2024) Biological pest control Neuro-Fuzzy inference, max entropy Over 90% suitability for controlling FAW

Zeynoddin et al. (2023) Soil temperature forecasting State-space model, FLDAS Improved accuracy (R2 = 0.921)

Wang et al. (2022) Soil salinity estimation GA, PSO, SA, CNN models Feature selection improved prediction

Elbeltagi et al. (2022) Evapotranspiration estimation ANN with metaheuristics ANN-M5P outperformed conventional methods

Hameed et al. (2024) Liquefaction resistance estimation ELM with DOA optimization Achieved highest R2 (0.935)

Asadollah et al. (2024) Crop yield forecasting ML, RScv optimization Highest accuracy achieved (R2 = 0.9)

Dada et al. (2024) Soil nutrient prediction ML with genetic algorithms Optuna-based models outperformed others

Taghizadeh-Mehrjardi
et al. (2021)

Soil classification Hybrid ANN, bio-inspired algorithms Improved classification of soil types

Navidi et al. (2022) Soil strength prediction ANN with GWO, AGWO, HHO Enhanced prediction of shear strength

Bardhan and
Asteris (2023)

Soil compaction analysis ANN-GWO model Improved prediction of OMC and MDD

Eyo et al. (2022) Soil swelling behavior Metaheuristic stacking classifiers Achieved R2 = 0.94

Khansar et al. (2024) Soil stress estimation ANN-WCA model Enhanced dam construction safety

Rabbani et al. (2024) Soil stability analysis Evolutionary strategies Improved construction safety

Tran (2022) UCS prediction GB with optimization techniques High accuracy in UCS estimation

Mahmoudi et al. (2022) Soil water retention SVM with FA, PSO optimization Improved estimation at different matric
potentials

Zhang (2024) Soil hydrological properties Hybrid ML, genetic algorithms Enhanced soil permeability prediction

Bardhan et al. (2022) Soil liquefaction analysis Hybrid ML techniques Improved soil liquefaction risk assessment

Hengl et al. (2021) Soil fertility mapping Ensemble ML High spatial accuracy in fertility predictions

Taffese and Abegaz (2022) Soil stability prediction Ensemble ML models High accuracy in soil stability assessments

Naimi et al. (2022) Digital soil mapping ML with remote sensing Improved spatial mapping of soil properties

Meliho et al. (2023) SOC and SOCS prediction in a mountainous
Mediterranean region (Ourika watershed,
Morocco)

RF, Cubist, SVM, GBM using
88 environmental covariates

RF and Cubist were most accurate (R2 = 0.79,
RMSE = 1.2%). LU/LC and soil properties were
the strongest predictors

Mosaid et al. (2024) Spatial modeling of SOC stock in semi-arid
Morocco (Srou catchment)

RF, SVM, Cubist, kNN with Boruta feature
selection

RF model performed best (R2 = 0.76, RMSE =
0.52Mg C/ha). pH, EC, CaCO3, and bulk density
were most influential

Solly et al. (2020) Analyze link between CEC and SOC
stabilization in Swiss forest soils

Regression modeling of CEC and SOC across
1,000+ sites with climate, pH, and
mineralogical variation

CEC eff. is strongly predictive of SOC, especially
in subsoils with pH > 5.5. Exchangeable Ca and
Al were dominant contributors
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predicting SOC. NiOA was chosen as it does an excellent job
selecting useful features and strong prevention of overfitting. By
combining exploration and exploitation, NiOA chooses the essential
features to improve how well the model applies to data and reduces
how much it needs to compute.

When feature selection is done, machine learning models
such as SVR, CatBoost, MLP, XGBoost, KNN and GB are trained
and assessed. They are picked because they can handle
the complex connections between soil features and SOC. Once
the best model is clear, it goes through the process of optimizing
its performance using metaheuristic methods. Now, you adjust
the necessary settings so the model works well and uses
fewer resources.

The final part is testing the improved model using various
metrics to see if it can accurately predict and generalize to new
data. Using this detailed approach, the SOC prediction framework
becomes reliable and useful, making it valuable for decision-making
in soil and climate.

3.1 Dataset description

This study draws data from a comprehensive environmental
database, which is helpful for various applications like climate
studies, examining the carbon cycle and supporting sustainable
soil management. It includes essential elements of soil chemistry,
ecosystems and variations in climate which helps in all these
agricultural applications. This data blends a range of chemical
and physical tests on soil, making it possible to learn more about

soil health, how productive it is and its environmental stability in
various regions.

Soils play a key role in modifying carbon in the air, significantly
shaping the greenhouse effect and climate. Accurate measurements
of the amount of carbon in soil at different levels can reveal how
deforestation and farming affect the concentration of CO2 in the
atmosphere. Detailed information is crucial for improving strategies
that aim to capture and store carbon in the soil, restore degraded
land and increase forest cover.

Moreover, this data is essential for studying and preventing land
degradation in desert and semi-desert areas, since problems like soil
erosion, reduction in fertility, and desertification seriously impact
both farmland and the ecosystem. The assessment covers key
parameters such as soil pH, conductivity and nutrient supply to
understand potential damage to the soil and lead conservation
actions. They play an essential role in discovering degraded
locations, choosing eco-friendly farming methods and aiding in
precision agriculture using high-resolution soil health maps.

Thanks to its attributes like organic carbon content, texture and
electrical conductivity, the dataset allows for continuous monitoring
and improved management of water resources. Irrigation, climate
assessment and efficient water use can all benefit from this data. If
the dates of soil sampling are noted, changes in soil quality over the
years can be studied, and this helps decide on better ways to use and
protect the land.

Integrating geospatial and temporal attributes makes this dataset
ideal for researchers working in different areas, who can rely on it for
ecological modeling, saving biodiversity and agriculture. It supports
researchers in modeling how plants and animals react, expecting

FIGURE 1
Proposed methodological framework for SOC prediction. Data preprocessing, feature selection using the Ninja Optimization Algorithm (NiOA),
machine learning model training, hyperparameter optimization, and performance evaluation are included.
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changes in biodiversity and creating plans for restoring habitats.
Access to detailed soil data helps plan and manage cities so that soil
is protected and ecosystems remain healthy.

This data is essential for progress in soil science, making
precision farming possible, dealing with climate change, and
choosing sustainable ways to manage land. Because of its detailed
setup and many valuable traits, this field enables effective
collaboration, making producing valuable results in soil
conservation, managing carbon emissions and supporting the
environment easier.

3.2 Data processing

Processed data plays a crucial role in producing reliable Soil
Organic Carbon (SOC) predictions since the accuracy of the
predictions largely depends on the integrity of the training data.
Given the heterogeneity of soil datasets and the many sources of
variation in sampling and measurement, it is vital to undertake
rigorous preprocessing to deal with missing data, outliers and
feature transformation. This section describes the fundamental
processes for preparing soil data so that it becomes a suitable
input for machine learning algorithms.

Not accounting for missing data can result in biased or
inaccurate model results. Incomplete data in soil studies may
result from errors in sampling methods, inconsistencies during
fieldwork or low-quality satellite images. Different approaches are

applied to discrete fields depending on how the data is structured.
Suspicious values are replaced with the arithmetic mean or median
when the missing data seems random. For unbalanced data,
Quantile-based imputation is implemented for greater precision
in imputation. KNN imputation allows the model to account for the
relationship between nearby soil measurements. Categories such as
data sources are imputed using mode or probabilistic methods to
match the correct distribution in skewed distributions. Variables
with more than 30% missing values are removed if their reliability
cannot be determined.

Outlier detection and correction are just as essential since
inherently large values can substantially bias model development
and compromise predictive effectiveness. Unusual values in
environmental data may be due to errors in measurement,
unique and accurate readings or natural fluctuations between
ecosystem components. The IQR (interquartile range) approach
and Z scores are used to identify outliers accurately. Outliers are
then treated using Winsorization, which controls values outside
specified percentile boundaries to maintain the distribution
structure while limiting the effect of extreme values. Threshold
ranges are tailored to attributes that undergo notable fluctuations,
for example, electrical conductivity and sodium extractable by the
principles found in soil sciences.

Applying feature engineering and transformation helps the
model achieve better predictions and more precise results. Non-
hierarchical categorical data like soil source types are translated
using one-hot encoding to get numerical values. If inputs are

FIGURE 2
t-SNE scatter plot of soil properties after Winsorization, illustrating the structure of high-dimensional soil data in a reduced two-dimensional space.
The application of Winsorization ensures that extreme values do not distort the clustering of soil samples, enhancing the interpretability of feature
distributions.
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TABLE 2 Machine learning prediction metrics.

Metric Description

Mean Squared Error (MSE) Measures the average squared difference between predicted and actual values, penalizing larger errors more than smaller ones.

MSE � 1
n∑n

i�1(yi − ŷi)2

Root Mean Squared Error (RMSE) The square root of MSE, representing the standard deviation of prediction errors and giving a sense of the magnitude of
prediction errors in the same units as the target variable.

RMSE �
�������������
1
n∑n

i�1(yi − ŷi)2
√

Mean Absolute Error (MAE) Measures the average of the absolute errors between predicted and actual values, offering an intuitive and direct understanding of
prediction accuracy.

MAE � 1
n∑n

i�1|yi − ŷi|

Mean Bias Error (MBE) Measures the average bias in the predictions, indicating whether the model tends to underestimate or overestimate the target
variable.

MBE � 1
n∑n

i�1(yi − ŷi)

Pearson’s Correlation Coefficient (r) Measures the linear relationship between predicted and actual values.

r � ∑(yi−�y)(ŷi−ŷ)�������∑(yi−�y)2
√ �������∑(ŷi−ŷ)2

√
R-squared (R2) Represents the proportion of variance in the target variable explained by the model.

R2 � 1 − ∑n

i�1(yi−ŷi )2∑n

i�1(yi−�y)2

Relative Root Mean Squared Error (RRMSE) A normalized version of RMSE compares RMSE with the range of observed values.

RRMSE � RMSE
max(y)−min(y)

Nash-Sutcliffe Efficiency (NSE) Measures the model’s predictive power by comparing model variance to data variance.

NSE � 1 − ∑n

i�1(yi−ŷi )2∑n

i�1(yi−�y)2

Willmott Index (WI) Measures the agreement between predicted and observed values.

WI � 1 − ∑n

i�1 |yi−ŷi |∑n

i�1(|yi−�y|+|ŷi−�y|)

TABLE 3 Feature selection metrics.

Metric Description

Average Error Measures the average prediction error across all selected features during the feature selection process.

Average Error � 1
n∑n

i�1|yi − ŷi|

Average Select Size Mean number of features selected across runs.

Average Select Size � 1
n∑n

i�1Si , where Si is the number of selected features in iteration i.

Best Fitness Score Optimal value achieved by the fitness function.

Best Fitness Score � max(Fitness Function)

Worst Fitness Score Lowest fitness function value.

Worst Fitness Score � min(Fitness Function)

Average Fitness Score Mean of all fitness values over runs.

Average Fitness � 1
n∑n

i�1Fitnessi

Standard Deviation of Fitness Measures variation in fitness values. Lower is more stable.

StdDev �
���������������������
1
n∑n

i�1(Fitnessi − Fitness)2
√

Frontiers in Environmental Science frontiersin.org08

Ben Ghorbal et al. 10.3389/fenvs.2025.1630762

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1630762


provided in a fixed sequence, they are encoded with label encoding.
Measurement bias and variability can be reduced for pH, electrical
conductivity and carbon organic through applying Z-score
normalization, which improves the accuracy of Support Vector
Machine and neural networks. Logarithmic transformation is also

used to make variables, like carbon organic, more normal, while
limiting the ranges of attributes such as phosphorus and potassium
extractable to 0 and 1.

Using these preprocessing techniques increases the reliability of
the dataset and helps to interpret it more easily for estimating SOC.

TABLE 4 The initial values of the optimization algorithms.

Algorithm Parameter Value

All Algorithms Population size 30

Number of iterations 500

Number of runs 30

Ninja Ninjas 30

Search steps Adaptive steps

HHO Initial population size 30

Number of iterations 500

GWO a 2 to 0

SAO Initial temperature (T0) High (e.g., 100)

Cooling factor (α) 0.95

JAYA Variable Range (xi) [−100, 100]

Random Numbers (r1, r2) [0, 1]

MVO Maximum diffusion level 1

SBO Parameters (r2, r3, r4) [0, 1]

GSA Number of agents (N) 50 (for most experiments)

Dimension (d) 30 (for high-dimensional tests)

Initial gravitational constant (G0) 100

α (Decay coefficient) 20

Total iterations (T) 1,000 (for high-dimensional functions)

Velocity update weight (randi) Random value in [0,1]

QIO Exploration strategy GQI-based

Exploitation strategy GQI with best solution

APO Population size 30

Number of iterations 500

TABLE 5 Baseline machine learning performance before feature selection.

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI

SVR 0.005126675 0.071600801 0.029540571 0.019697104 0.798383126 0.800983126 1.994511431 0.814152336 0.829528207

CatBoost 0.049717197 0.222973534 0.05324883 0.041463956 0.756758126 0.769358126 2.766033275 0.801838336 0.800220895

MLP 0.050294133 0.224263534 0.055707415 0.611596226 0.740171126 0.742771126 2.787217814 0.752557314 0.763165155

XGBoost 0.05433839 0.233105963 0.055716699 0.759684645 0.678085318 0.690685318 2.987666345 0.728407314 0.739223234

K-neighbors 0.070493165 0.26550549 0.059977551 0.844345923 0.651754318 0.664354318 3.038718594 0.714782714 0.701788384

Gradient Boosting 0.096718256 0.310995589 0.0694823 0.0894823 0.646594318 0.659194318 3.454622869 0.685141512 0.671343038
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The dataset is processed fully by treating missing data, outliers and
features, helping it become suitable for advanced machine learning
algorithms and resulting in improved estimates of soil health and
carbon storage. Proper use of data is essential to findmeaningful and
accurate findings in environmental science and address world
sustainability issues.

3.3 Exploratory data analysis

In Soil Organic Carbon (SOC) estimation, there is a need to
understand the relationships between different soil properties. Some
soil characteristics are highly interdependent and may be controlled
by geographical, climatic and physicochemical factors. They can give

FIGURE 3
Heatmap of normalized model performance metrics. The visualization enables direct comparison across multiple machine learning models by
standardizing all performance indicators onto a [0-1] scale, where lower values indicate superior error minimization and higher values indicate
stronger accuracy.

TABLE 6 Feature selection performance metrics.

Metric bNinja bHHO bGWO bSAO bJAYA bMVO bSBO bGSA

Average Error 0.3937 0.43535 0.47465 0.48115 0.47135 0.54485 0.57645 0.47985

Average Select Size 0.34845 0.57095 0.70425 0.71275 0.73675 0.76645 0.84025 0.74365

Average Fitness 0.45432 0.49755 0.50585 0.52125 0.50615 0.62465 0.63465 0.53805

Best Fitness 0.36015 0.41785 0.45935 0.41095 0.47025 0.54985 0.57775 0.48115

Worst Fitness 0.45461 0.48475 0.56935 0.51255 0.54635 0.66785 0.65745 0.56085

Standard Deviation Fitness 0.28391 0.30835 0.32655 0.32005 0.31235 0.45745 0.46765 0.37105
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us the knowledge to perform an effective feature selection, thus
removing redundant or highly correlated variables to improve
model generalization and computational efficiency. Correlation
analysis is an indispensable tool in exploratory data analysis
(EDA); it reconstructs the data’s inter-feature dependencies and
recurring features.

According to the t-SNE scatter plot after Winsorization, the soil
properties have been projected into a two-dimensional space for a
better visual representation is shown in Figure 2. A colorized third
point represents a soil sample. This processing of Winsorization
helps alter clustering coherence rem,ove extreme outliers, and help
some data points move away from their expected regions. The
apparent separation and distribution of the soil samples show
different patterns in soil sources, which is suitable for studying
the differences in soil composition. Feature redundancy, correlations
and the efficiency of preprocessing methods are significant to
optimize the machine learning models for prediction of SOC.

3.4 Machine learning models for soil organic
carbon prediction

The ability to predict Soil Organic Carbon (SOC) levels with
high accuracy depends upon machine learning models that can
effectively account for nonlinear interactions between soil variables
and carbon concentrations. Various machine learning methods are
utilized in this endeavor to achieve reliable and widely applicable

SOC predictions. The research investigates how various machine
learning models perform in predicting SOC values.

Support Vector Machine (SVR) seeks to identify the function
that links input features to an output value while enhancing its
predictive performance. It finds the solution to the following
optimization problem.

min
w,b,ξ+ ,ξ−

1
2
‖w‖2 + C∑n

i�1
ξ+i + ξ−i( ), (1)

subject to:

|yi − w · xi + b( )|≤ ε + ξ+i , ξ+i , ξ
−
i ≥ 0, (2)

where w is the weight vector, b is the bias term, ξ+i , ξ
−
i are slack

variables, and C is a regularization parameter balancing complexity
and training error. SVR is particularly effective for SOC modeling
due to its robustness against high-dimensional data and ability to
capture nonlinear soil-property relationships.

Recent studies have empirically validated the use of SVR in SOC
prediction. For example, a comprehensive assessment by Emadi
et al. (2020) applied SVR alongside other ML algorithms to predict
SOC based on 1,879 soil samples and 105 auxiliary variables,
demonstrating competitive accuracy.

The SVR framework is especially advantageous in high-
dimensional environmental modeling due to its flexibility and
generalization capacity.

The foundational theory of SVR is rooted in Vapnik’s statistical
learning theory (Vapnik et al., 1996), where its performance

FIGURE 4
Stacked bar comparison of metaheuristic feature selection algorithms based onmultiple evaluation metrics. The analysis highlights the efficiency of
bNinja in minimizing error while maintaining an optimal feature subset.
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advantages in nonlinear and high-dimensional spaces were first
established.

CatBoost an algorithm optimized for working with categorical
data using gradient-boosting. Gaining increased stability and
lowering the risk of overfitting is made possible by its ability to
prevent target leakage with ordered boosting. Its general
formulation is:

Fm x( ) � Fm−1 x( ) + γmhm x( ), (3)

here Fm(x) is model number m, Fm−1(x) is model iteration, γm is
the learning rate chosen for this iteration and hm(x) is a weak
learner. Because CatBoost handles complex interactions well, it is an
excellent tool for predicting SOC, especially when the presence of
categorical attributes matters to the model.

Recent studies have shown the efficacy of CatBoost in predicting
spatial patterns of SOC and identifying its primary environmental
controls. For instance, a regional-scale study by Guo et al. (2025)
demonstrated that CatBoost achieved a high R2 of 0.828,

FIGURE 5
Radar chart comparing the performance of different metaheuristic algorithms across multiple feature selection evaluation metrics. The axes
represent key optimization indicators, allowing a direct comparison of the strengths and weaknesses of each approach.

TABLE 7 Machine learning performance after feature selection.

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI

SVR 0.000114852 0.010716881 0.003024124 0.002016429 0.896621126 0.909221126 0.436472579 0.907712336 0.923088207

CatBoost 0.001113801 0.033373662 0.005451182 0.004244743 0.859674126 0.872274126 0.605309981 0.895398336 0.893780895

MLP 0.001126726 0.033566743 0.005702872 0.062610252 0.843087126 0.845687126 0.609945939 0.846117314 0.856725155

XGBoost 0.001217329 0.034890238 0.005703823 0.077770341 0.827781318 0.840381318 0.653811462 0.821967314 0.832783234

K-neighbors 0.00157924 0.039739651 0.006140014 0.086437274 0.801450318 0.814050318 0.664983575 0.808342714 0.795348384

Gradient Boosting 0.002166754 0.046548402 0.007113033 0.009160471 0.796290318 0.808890318 0.755998752 0.778701512 0.764903038
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outperforming linear models in explaining SOC variability. The
algorithm was particularly effective in capturing complex
interactions among total nitrogen, phosphorus, temperature, and
cation exchange capacity, reinforcing its suitability for nonlinear and
heterogeneous soil data.

The algorithmic foundation of CatBoost, including its use of
ordered boosting and novel techniques for handling categorical
features, was introduced by Prokhorenkova et al. (2019), where it
was shown to outperform other gradient boosting frameworks
across diverse datasets.

FIGURE 6
Swarm, violin, and boxplots of model performancemetrics, visualizing the distributional characteristics of MSE, RMSE, MAE, MBE, r, R2, RRMSE, NSE,
and WI. This comprehensive representation helps identify outliers, skewness, and variability in model evaluation.

TABLE 8 Optimized support vector machine (SVR) performance using metaheuristics.

Models MSE RMSE MAE MBE r R2 RRMSE NSE WI

Ninja + SVR 7.52E-07 8.67E-04 1.35E-05 8.42E-06 0.98938 0.99557 0.04388 0.98186 0.98427

HHO + SVR 1.75E-05 0.00418 2.35E-05 0.00010 0.97292 0.97877 0.10377 0.96616 0.96973

GWO + SVR 3.76E-05 0.00613 2.49E-05 0.00010 0.97135 0.97688 0.12300 0.96248 0.96233

SAO + SVR 6.74E-05 0.00821 2.75E-05 0.00010 0.96973 0.97526 0.14830 0.96052 0.95973

JAYA + SVR 7.41E-05 0.00861 2.78E-05 0.00011 0.95756 0.97440 0.16677 0.95496 0.95776

MVO + SVR 8.08E-05 0.00899 3.07E-05 0.00011 0.95666 0.97222 0.17936 0.95092 0.95452

SBO + SVR 8.50E-05 0.00922 7.13E-05 0.00011 0.95585 0.96807 0.19164 0.94172 0.95615

GSA + SVR 9.18E-05 0.00958 1.20E-04 0.00012 0.95353 0.96393 0.23862 0.93879 0.95094

QIO + SVR 1.00E-04 0.00999 1.38E-04 0.00012 0.95426 0.96582 0.25862 0.93619 0.94951

APO + SVR 1.08E-04 0.01041 1.44E-04 0.00013 0.95132 0.96160 0.27294 0.93414 0.94857
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Multi-Layer Perceptron (MLP) is an ANN made up of various
layers of connected neurons that process data only in one direction.
It uses forward propagation to represent detailed, unpredictable soil
patterns defined as:

hj � σ ∑n
i�1

wijxi + bj⎛⎝ ⎞⎠, (4)

yk � σ ∑m
j�1

vjkhj + ck⎛⎝ ⎞⎠, (5)

here, xi are the input features, wij are the weights linking inputs to
hidden neurons, vjk are the weights linking hidden neurons to
output neurons, bj are biases for the hidden layer neurons, ck are
biases for output neurons, hj are the activations of the hidden layer
neurons and yk is the output value obtained after running the
network. MLP is suited to SOC modeling since it is capable of
detecting the relationships among learning features.

Empirical studies have demonstrated the use of MLP in SOC
prediction. For instance, a comparative study by Guo et al. (2023)
evaluated ANN (MLP), SVM, RF, and other models using 60 soil
samples and 21 environmental predictors. While Random Forest
achieved the highest accuracy (R2 � 0.68), MLP (ANN) still
provided useful predictions (R2 � 0.36), validating its role in soil

modeling, particularly when nonlinear interactions among
predictors are involved.

The foundational learning algorithm of MLP, known as
backpropagation, was first introduced by Rumelhart et al. (1986),
and remains the core of training modern neural networks.

XGBoost (Extreme Gradient Boosting) specializes in machine
learning by optimizing tree-based boosting for high performance
and accuracy. It improves the outcome of this objective function:

L � ∑n
i�1

l yi, ŷi( ) +∑K
k�1

Ω fk( ), (6)

where l(yi, ŷi) is the loss function, and Ω(fk) � γT + 1
2 λ‖w‖2 is the

regularization term controlling tree complexity. XGBoost’s ability to
handle missing values and high-dimensional feature spaces makes it
particularly effective for SOC prediction. Chen and Guestrin (2016)
introduced XGBoost as a scalable and sparsity-aware gradient
boosting system. Their algorithm incorporates advanced
regularization techniques and system-level optimizations to
efficiently process high-dimensional and sparse datasets, making
it especially suitable for large-scale modeling tasks.

In the context of soil organic carbon (SOC) prediction, empirical
studies have demonstrated the effectiveness of XGBoost. For
instance, Emadi et al. (2020) applied an Extreme Gradient

FIGURE 7
Q-Qplots ofmodel performancemetrics, assessing normality in the distribution ofMSE, RMSE, MAE, MBE, r,R2, RRMSE, NSE, andWI. Alignment with
the diagonal line suggests normality, while deviations indicate skewness or other distributional anomalies.
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Boosting with Random Forest (XGBRF) ensemble to predict SOC
content in swamp wetlands using Sentinel-1, Sentinel-2, and DEM
datasets. The model outperformed traditional XGBoost and RF
approaches, achieving an R2 of 0.66 and a Lin’s concordance
correlation coefficient (LCCC) of 0.76. This illustrates XGBoost’s
robustness in capturing the complex spatial dynamics of SOC,
particularly when multi-source remote sensing data are involved.

K-Nearest Neighbors (KNN) is a non-parametric algorithm that
estimates target values based on the nearest neighbors in the feature
space. The predicted value ŷ is given by:

ŷ � 1
K

∑
i∈Nk

yi, (7)

where K is the number of neighbors and Nk is the set of K nearest
neighbors. KNN is effective for SOC prediction due to its ability to
naturally capture local spatial correlations. The theoretical
foundation of KNN was laid by Cover and Hart (1967), who
demonstrated that the nearest neighbor decision rule can
asymptotically achieve a probability of error no worse than twice
the Bayes optimal rate. This highlights the robustness of KNN in
pattern recognition and prediction under minimal assumptions
about the underlying data distribution.

In the context of SOC prediction, Mosaid et al. (2024) applied
KNN alongside other machine learning algorithms, including
random forest and SVM, to model soil carbon stocks in a
Mediterranean soil erosion site. Although KNN exhibited lower
predictive performance compared to ensemble methods, it was still
able to capture local SOC variability based on key environmental
and edaphic predictors. This underscores its practical utility when
used as a benchmark model or within hybrid frameworks.

Gradient Boosting is an ensemble learning method that
sequentially refines weak learners to minimize residual errors. Its
iterative model update is given by:

Fm x( ) � Fm−1 x( ) + γmhm x( ), (8)
where Fm(x) is the updated model at iteration m, γm is the learning
rate, and hm(x) is the weak learner. Gradient Boosting is particularly
valuable for SOC modeling as it effectively captures complex,
nonlinear dependencies between soil attributes.

The theoretical foundation for gradient boosting was established
by Friedman (2001), who introduced a general framework for
additive function approximation using gradient descent. This
framework supports various loss functions and model types,
making it broadly applicable to regression and classification tasks.

In the context of soil organic carbon (SOC) prediction, Chen
et al. (2024) applied a gradient boosting model driven by
multisource remote sensing data, including Sentinel-1, Sentinel-2,
and DEM, to estimate SOC density in the Qinghai–Tibet Plateau.
Their findings revealed that the LightGBM implementation of GB
outperformed other machine learning models in terms of accuracy
and robustness, confirming its suitability for spatial SOC prediction
across heterogeneous landscapes. Together, these models provide a
comprehensive toolkit for SOC prediction, each offering distinct
advantages in handling high-dimensional data, capturing nonlinear
relationships, and improving predictive accuracy. The relative
performance of these models in different environmental settings
will provide insights into their suitability for large-scale SOC

assessments, supporting more effective soil management and
climate resilience.

Numerous studies in the literature have demonstrated the
effectiveness of these machine learning models in the context of
Soil Organic Carbon (SOC) estimation and related soil science tasks.
Support Vector Machine (SVR) has been widely applied in SOC
modeling due to its robustness in handling nonlinear relationships
and sparse data, especially in semi-arid and heterogeneous terrains.
Likewise, XGBoost and Gradient Boosting Machines have
consistently yielded strong predictive performance in digital soil
mapping and carbon stock assessments due to their ensemble
learning structure and ability to manage missing or noisy data.
CatBoost, although relatively recent, has gained traction for its
superior handling of categorical variables, which are common in
land use, soil type, and vegetation cover datasets—key factors
influencing SOC variability. Multi-Layer Perceptrons (MLPs), as
representatives of neural network architectures, offer the flexibility
to learn complex feature interactions and have been effectively used
in SOC and soil fertility modeling where data are non-linear and
high-dimensional. The K-Nearest Neighbors (KNN) algorithm,
despite its simplicity, is often included for its ability to model
local spatial patterns and serve as a comparative baseline in SOC
prediction studies. The inclusion of these diverse machine learning
models allows for a systematic evaluation of their respective
strengths under varied soil conditions. This also enables robust
benchmarking and validation of the proposed NiOA-based
optimization framework, ensuring that improvements in accuracy
are not model-dependent but are generalizable across different
predictive architectures.

3.5 Metaheuristic algorithms for feature
selection and hyperparameter optimization

Metaheuristic algorithms have become essential tools for
optimizing machine learning models, particularly for feature
selection and hyperparameter tuning in Soil Organic Carbon
(SOC) prediction. These algorithms provide flexible, stochastic
search mechanisms capable of efficiently exploring large,
complex search spaces that are often infeasible for gradient-
based or exhaustive search methods. They balance exploration
(global search) and exploitation (local refinement), making them
well-suited for the high-dimensional, nonlinear nature of
soil datasets.

Feature selection aims to identify the most relevant subset of soil
attributes, reducing overfitting, enhancing model interpretability,
and improving computational efficiency. This process operates in a
binary search space, where each feature is either included (1) or
excluded (0), and can be formulated as:

S* � argmin
S⊆X

L S( ) + λ|S| (9)

where:

• S is a subset of features from the original set X,
• L(S) is the predictive loss function (e.g., Mean
Squared Error, MSE),

• |S| represents the number of selected features,
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• λ is a regularization parameter balancing accuracy with
subset size.

While numerous metaheuristic algorithms—such as Grey Wolf
Optimizer (GWO), Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), and Multiverse Optimization (MVO)—have
been employed for feature selection or hyperparameter tuning, these
methods exhibit certain limitations when applied to high-
dimensional, nonlinear datasets such as those encountered in
SOC prediction. Specifically, they often suffer from premature
convergence, insufficient exploration of the search space, and
difficulty in escaping local minima. These shortcomings can
significantly affect the model’s generalization ability and
computational efficiency. To address these issues, the present
study introduces the Ninja Optimization Algorithm (NiOA), a
recent metaheuristic inspired by the stealth, precision, and
adaptability of traditional Japanese ninjas. NiOA incorporates
adaptive mechanisms that dynamically balance exploration and
exploitation, including oscillatory position updates, trigonometric
refinement, and a mutation-based diversity mechanism. These
features collectively enable NiOA to avoid stagnation, reduce
computational overhead, and efficiently search large solution
spaces. As demonstrated in resultsV Section, NiOA achieves a
substantial improvement in prediction accuracy, reduced feature
subset size, and superior performance across multiple evaluation
metrics, thereby justifying its application to SOC modeling tasks.
Traditional feature selection methods, such as filter, wrapper, and
embedded approaches, often struggle with scalability and
nonlinearity, making them less effective for complex soil data. In
contrast, metaheuristic algorithms, including Grey Wolf Optimizer
(GWO), Satin Bowerbird Optimizer (SBO), Multiverse
Optimization (MVO), Firefly Algorithm (FA), and Genetic
Algorithm (GA), excel in navigating the combinatorial feature
space, selecting the most relevant features without the
computational burden of exhaustive searches. This approach
ensures that only critical SOC-related attributes, such as carbon
organic content, pH, phosphorus extractability, and electrical
conductivity, are retained, improving model performance and
interpretability.

Hyperparameter tuning, on the other hand, involves optimizing
continuous parameters that control the learning dynamics of the
model. This includes critical settings like learning rates,
regularization terms, kernel functions, and tree depths, which
significantly impact model accuracy and generalization. The
hyperparameter tuning problem can be formulated as:

θ* � argmin
θ∈Θ

L X,Y; θ( ) (10)

where:

• θ is the vector of hyperparameters within the search space Θ,
• L represents the model’s loss function (e.g., RMSE, MAE),
• X and Y denote the input features and target variable,
respectively.

Metaheuristic algorithms efficiently explore this continuous
search space, reducing the risk of underfitting or overfitting by
finding the optimal balance between model complexity and

prediction accuracy. For example, hyperparameter tuning for
Support Vector Machine (SVR) often involves selecting:

• Kernel function (e.g., linear, radial basis function,
polynomial),

• Regularization parameter (C) to control margin violations,
• Epsilon (ε) to define the tolerance for errors,
• Gamma (γ) to determine the influence of individual
training examples.

Effective hyperparameter tuning improves model stability,
reduces prediction errors, and enhances generalization across
diverse soil conditions. This is particularly important for SOC
prediction, where soil properties can vary significantly across
different geographic regions.

Combining metaheuristic-driven feature selection and
hyperparameter tuning provides a synergistic approach to model
optimization, offering several advantages:

• Improved predictive accuracy by selecting the most
informative features,

• Reduced computational costs by minimizing
redundant inputs,

• Enhanced model interpretability by focusing on critical soil
attributes,

• Greater stability and generalization across diverse soil
conditions.

This integrated approach provides a robust framework for SOC
prediction, supporting scalable, high-precision environmental
modeling and sustainable land management.

Feature selection plays a crucial role in enhancing the
interpretability, generalizability, and efficiency of machine
learning models for Soil Organic Carbon (SOC) prediction. In
this study, feature selection was performed automatically using
the Binary Ninja Optimization Algorithm (bNiOA), a
metaheuristic search method that identifies the most influential
variables by minimizing a fitness function. This function considers
both the predictive error (Mean Squared Error) and the number of
selected features, thereby achieving an optimal trade-off between
accuracy and model simplicity. The bNiOA conducts an iterative
search using adaptive strategies that include exploration,
exploitation, and mutation phases to avoid premature
convergence and to robustly sample the feature space. Each
feature is encoded in a binary string (1 for selection, 0 for
exclusion), and the algorithm converges toward a subset of
features that significantly influence SOC prediction. The selected
features frequently included attributes such as soil pH, organic
carbon content, electrical conductivity, extractable phosphorus,
and soil texture—variables that are widely recognized as
important for understanding SOC dynamics. By relying on
bNiOA, we ensure that only the most relevant features are used
as inputs to the machine learning models, thus avoiding overfitting,
reducing computational burden, and ensuring a fair and
scientifically valid comparison of model performance. This
automated, data-driven feature selection process improves both
the interpretability and reliability of SOC modeling. This work
integrates feature selection guided by metaheuristic search and
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hyperparameter tuning so that the SOC prediction model can reach
the best performance with the minimum computational overhead.
Feature selection via binary optimization removes the redundant
information, and continuous hyperparameter tuning tunes the
model learning process to make the SOC estimation more
interpretable, efficient and scalable. All these optimizations are
set up to foster a solid ground for soil health assessment,
leveraging the data while enhancing precision agriculture and
climate resilience planning.

3.5.1 Ninja optimization algorithm (NiOA)
Metaheuristic optimization algorithms play a crucial role in

solving high-dimensional optimization problems where classical
optimization methods often fail due to multimodality, non-
linearity, and complex search spaces (El-Kenawy et al., 2024). In
this study, we employ the Ninja Optimization Algorithm (NiOA), a
newly developed metaheuristic that has demonstrated superior
performance in both feature selection and hyperparameter
optimization, outperforming other competing algorithms in our
experimental setup. NiOA is inspired by the stealth, precision, and
adaptability of traditional Japanese ninjas, integrating these
characteristics into a powerful search mechanism. The algorithm
is designed to enhance both exploration (global search) and
exploitation (local search) through an adaptive approach that
balances diversification and intensification, preventing premature
convergence while ensuring rapid progress toward the
global optimum.

3.5.1.1 Mathematical formulation of NiOA
The search behavior of NiOA is structured into two primary

phases: the exploration phase, where candidate solutions are widely
dispersed to sample diverse regions of the search space, and the
exploitation phase, where promising solutions are refined to achieve
local optimality. The mathematical representation of NiOA follows a
set of equations governing these phases.

3.5.1.1.1 Exploration phase. During the exploration phase, the
movement of candidate solutions (agents) is formulated as:

Ls t + 1( ) � Ls t( ) + r1 · Ls t1( ) − Ls t2( )( ), (11)
where Ls(t) represents the position of an agent at iteration t, t1 and
t2 are two randomly selected indices from the population, and r1 is a
random scaling factor that introduces stochasticity into the search.

Another formulation used to enhance exploration is:

Ds t + 1( ) � Ds t( ) + |Ds t( ) + r2 ·Ds t( )| · cos 2πt( ), (12)
where Ds(t) represents another position update component, and r2
is a random coefficient. The cosine function introduces oscillatory
behavior that helps NiOA explore distant regions effectively.

3.5.1.1.2 Exploitation phase. Once a promising region is
identified, NiOA transitions into the exploitation phase, refining
solutions through adaptive local search:

Ms t + 1( ) � J1Ms t( ) + 2J2 · Ms t( ) + Ms t( ) + J1( )( )

· 1 − Ms t( )
Ms t( ) + J1

( )2

. (13)

here, J1 and J2 are control parameters governing the step size and
intensity of the local refinement, ensuring convergence while
preventing excessive exploitation.

A secondary update mechanism refines solutions dynamically:

Rs t + 1( ) � Rs t( ) + 1 + Rs t( ) + J2( ) · exp cos 2π( )( ). (14)

This equation introduces non-linearity into the update
mechanism, allowing NiOA to adapt dynamically to variations in
the fitness landscape.

3.5.1.2 Mutation strategy for enhanced exploration
Tomaintain diversity in the population and escape local optima,

NiOA employs a mutation operator:

N � ∑a
n�0

−1( )n
2n + 1

x · 2n + 1( ), (15)

where a is a randomly generated integer. This mutation
mechanism introduces controlled randomness into the search,
improving NiOA’s ability to explore underrepresented regions of
the search space.

3.5.1.3 NiOA for feature selection and hyperparameter
optimization

Feature selection is a crucial step in machine learning, as
redundant or irrelevant features can negatively impact model
performance. In this study, we employ Binary NiOA (bNiOA), a
discrete version of NiOA adapted for feature selection. The
continuous positions of search agents are mapped into binary
representations using a transfer function:

Xi � 1, if S Xi( )> r
0, otherwise

{ (16)

where S(Xi) is the sigmoid transfer function, and r is a randomly
generated threshold. This mapping ensures that selected features
contribute meaningfully to model performance. For
hyperparameter optimization, NiOA searches for the optimal
set of hyperparameters that minimize validation error. The
objective function is defined as:

minF θ( ) � 1
N

∑N
i�1

yi − ŷi θ( )( )2, (17)

here, θ holds the hyperparameters, yi are the actual target values,
and ŷi(θ) are the predictions offered up by the model using those
parameters. NiOA is a new optimization method that teaches
algorithms to manage exploration and exploitation well. Due to
their flexible and innovative fighting methods, NiOA uses
methods such as adaptive position updates, mutation and
resource allocation to look for globally better solutions and
keep improving locally. It refines solutions by (iteratively)
processing data in a structured way. At the start, NiOA uses
random numbers to form the initial solutions and then optimizes
them by performing three critical phases in a loop. Exploration,
Mutation, and Exploitation. When exploration occurs, the
algorithm varies candidate solutions by performing a
differential update, broadening its search throughout the
search area. In the mutation stage, a perturbation method
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adds slight randomness to avoid the early convergence of the
model. In the exploitation stage, effective solutions are created by
applying experience and resource changes, leading the process
closer to the desired result. A best-solution update occurs if poor
results are seen for three iterations in a row, so that the algorithm
can adjust dynamically. The algorithm for NiOA is given in
Algorithm 1 and outlines the order in which initialization,
regular updates and fine-tuning are completed. The position
update mechanisms rely on trigonometric transformations and
changing scale factors to maintain balance between intensifying
and diversifying. This algorithm includes a special feature in the
resource update step that increases how the agent seeks new
solutions. NiOA finds the best solution when the convergence
conditions are met, confirming its power when addressing
challenging optimization tasks. It has been demonstrated that
NiOA is more reliable than standard metaheuristic algorithms
for feature retrieval and optimizing hyperparameters.

1: Initialize parameters: population size N, maximum

iterations T, random initial positions Ls,t, Ds,t, r1,

r2, J1, J2, n, a, velocity factor vs, best solution Bs

2: while t<T do

3: Exploration Phase:

4: for each agent s do

5: Update position Ls,t+1:
6: Ls,t+1 � Ls,t + r1 · (Ls,t1 − Ls,t2) or random Ls′ ∈ Fmets

7: Update position Ds,t+1:
8: Ds,t+1 � Ds,t + |Ds,t + r2 · Ds,t| · cos(2πt)
9: end for

10: Mutation Phase:

11: Perform mutation:

12: N � ∑a−1
n�0(−1)n · 2n+12n+1

13: Exploitation Phase:

14: Update Ms,t+1:
15: Ms,t+1 � J1 · Ms,t + 2J2 · Ms,t + Ms,t + J1 · (1 − Ms,t) · Ms,t + J2

1

16: Resource Update:

17: Update Rs,t+1:
18: Rs,t+1 � Rs,t + 1 + Rs,t + J2 · exp(cos(2π))
19: Best Solution Update:

20: if no improvement for 3 iterations then

21: Update best solution Bs,t+ 1:

22: Bs,t+1 � Ls,t+1 + i · n · (Ls,t+1 − Ds,t+1) + i · n ·
Ms,t+1+ 2vs · Rs,t+1

23: end if

24: end while

25: return the best solution Bs

Algorithm 1. Ninja Optimization Algorithm (NiOA).

The Ninja Optimization Algorithm (NiOA) is a powerful and
adaptive metaheuristic that effectively balances exploration and
exploitation. Its ability to dynamically adjust search behavior
makes it particularly effective for feature selection and
hyperparameter optimization, as demonstrated in our study.
The algorithm’s superior performance in selecting relevant
features and optimizing machine learning models underscores
its potential as a robust optimization technique for high-
dimensional problem spaces.

3.6 Benchmark metaheuristic algorithms for
comparison

To evaluate the effectiveness of the proposed Ninja
Optimization Algorithm (NiOA) combined with Support Vector
Machines (SVM) for Soil Organic Carbon (SOC) prediction, several
established metaheuristic algorithms are used as benchmarks. These
algorithms are selected for their diverse optimization strategies,
which balance exploration and exploitation in both feature
selection and hyperparameter tuning, providing a comprehensive
baseline for comparison:

• Harris Hawks Optimization (HHO): Harris Hawks
Optimization reproduces Harris Hawks’ concerted scouting
and convergent attack tactics in searching for better solutions.
The algorithm incorporates adjustable convergence metrics to
accelerate and improve the search for features and
hyperparameters.

• Grey Wolf Optimizer (GWO): The Grey Wolf Optimizer
replicates grey wolf’s leadership-driven group dynamics as
well as their hunting maneuvers. Leadership directs the
movement of individuals in the pack, allowing for a
suitable balance between global search and fine-tuning
of solutions.

• Smell Agent Optimization (SAO): SAO emulates the scent
tracking methods agents use to forage for food. It adjusts its
search as it dynamically changes focus on the most pungent
odors and guides the hyperparameter optimization process.

• Jaya Algorithm (JAYA): JAYA avoids the inherent limitations
caused by hyperparameters and optimizes toward better
results by continually selecting better solutions and
discarding poorer ones.

• Multi-Verse Optimizer (MVO): Drawing on ideas from
multiverse theory, MVO emulates gravitational forces to
switch strategies and excel at identifying the most
influential features and optimizing hyperparameters.

• Satin Bowerbird Optimizer (SBO): SBO mimics the
competitive and interactive nature of satin bowerbirds to
strike a balance between exploration and exploitation,
scoring the likelihood of different feature combinations and
hyperparameters for effective optimization.

• Gravitational Search Algorithm (GSA): GSA simulates search
behaviors using particles interacting via gravitation according
to Newton’s laws of motion. It performs feature selection by
selecting the most effective combinations of features in
response to fitness interactions among the search agents,
while fine-tuning hyperparameters using the movements
guided by physical forces.

• Quadratic Interpolation Optimization (QIO): A method
employing quadratic interpolation to guide the search
process in complex and multidimensional scenarios
precisely. It identifies essential features and optimizes
hyperparameters by minimizing the errors caused by
interpolating the search space.

• Artificial Protozoa Optimizer (APO): APO mimics the
adaptability in protozoa by self-reproducing and evolving
its responses to select relevant features and optimize
hyperparameters. It adapts search techniques in response to
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the changing environment, enabling exploration and
exploitation to be done efficiently.

These benchmark algorithms provide a diverse set of search
mechanisms and adaptation strategies, making them suitable for
comprehensive performance evaluation against the proposed
NiOA+SVM framework. Their inclusion ensures a robust
comparison, highlighting the advantages of NiOA in SOC
prediction, particularly in feature selection efficiency and
hyperparameter tuning precision.

3.7 Evaluation metrics

Given that machine learning models tend to be complex and
spatially varying in SOC prediction and that there is no gold
standard to evaluate against, it is essential to evaluate them to
determine their predictiveness and generalizability. They define
and list the mathematical equations of their definitions in
Table 2. Using multiple complementary evaluation techniques in
SOCmodeling, this table provides a list of concise references on how
each metric affects the model assessment. Including error-based and
performance-based metrics makes model evaluation independent of
absolute error and guarantees that models are robust and consistent
in different environmental loads. Further, the employment of
RRMSE empowers forming an overall relative view, contributing
to avoiding evaluations that will be misled due to the variation in
their data distributions. These metrics together provide, as a group, a
scientifically rigorous and environmentally relevant means for
assessing machine learning models in terms of predicting SOC.
Different evaluation metrics are employed to assess feature
selection’s effectiveness. The measure used for quantifying
Feature Reduction Rate is the proportion of features eliminated
verifying that the most relevant variables only remain. The Best
Fitness Score is the best error from choosing the most appropriate
features, and the Worst Fitness Score is the worst error obtained at
optimization. The average fitness score (Avelag) is the mean
predictive effectiveness, and the Average select size is the average
number of selected features. Feature Stability Analysis aims to
determine the variability of selected features across various runs
to ensure that the subset selected still holds examineable and
generalizable characteristics. A summary of these feature selection
metrics, along with their mathematical formulations, is provided in
Table 3. This table provides a structured overview of how each
metric contributes to feature selection assessment and which soil
properties are most valuable for prediction while excluding
redundancy and improving the model performance.

SOC predictions are improved dramatically in reliability by
feature selection, as now only the most meaningful footprint
properties are included in the machine learning models. Feature
selection helps reduce computation costs, prevent overfitting and be
interpretable. Not only does feature selection also help to bring the
modeling efforts within reach of scalability (i.e., scalable
environmental modeling), but it additionally helps to develop
adaptable SOC prediction frameworks that can readily be
incorporated into the varied soil landscapes. These changes
enhance the usefulness of these feature selection techniques for
land use planning, precision agriculture and climate resilience

strategies, ensuring the impact of these changing conditions on
soil monitoring systems is positive.

4 Empirical results

Before presenting the study results, Table 4 summarizes the
initial parameter values used for all optimization algorithms
considered in this study, including both general and algorithm-
specific parameters. These configurations were selected based on
recommendations from original papers and commonly adopted
practices in optimization literature, ensuring a balance between
computational cost and solution quality.

4.1 Baseline machine learning performance
(before feature selection)

The inclusion of SOC predictions in machine learning models is
greatly improved by feature selection, which is paramount as only
the most meaningful soil properties are included to improve SOC
predictions. As shown in Table 5, Feature selection helps reduce
dimensionality, eliminating irrelevant features, leading to reduced
computational complexity, eliminating overfitting and further
increasing the model interpretability. Besides, feature selection
chooses stable and regionally relevant features, enabling the SOC
prediction frameworks to be scalable and adaptable to
environmental modeling. These improvements in feature
selection directly benefit land use planning, precision agriculture,
and climate resilience strategies to ensure soil monitoring systems
stay on their feet, essentially, to cope with the changing
environmental conditions.

As presented in Figure 3. From the heatmap, it can be
concluded that SVR is the most successful model, having the
lowest normalized errors (MSE, RMSE, MAE, MBE) and the
highest accuracy metrics (r, R2, NSE, WI). On the contrary,
Gradient Boosting always performed worst (the highest error
values). The color-coded representation helps assess immediate
model efficiency, especially in identifying those models that are
accurate enough yet error-minimized. Furthermore, this
visualization further justifies the choice of the SVR as the
best-performing model for SOC prediction, which can be a
strong candidate for the subsequent optimization efforts with
the metaheuristic algorithms.

4.2 Feature selection results

Due to its essential role in the generalizability, interpretability
and computational efficiency of machine learning models for
predicting the Soil Organic Carbon (SOC), feature selection is
needed. In most soil datasets, the number of physicochemical
attributes is vast for high dimensional datasets, which leads to
non-informative and redundant features that can increase model
accuracy, prevent the model from overfitting and decrease
computational complexity. In Table 6, some binary metaheuristic
optimization algorithms (i.e., solving problems with binary
variables) were employed to achieve feature selection with
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various degrees of effectiveness in balancing feature reduction and
prediction accuracy.

As shown in Figure 4, a stacked bar comparison of metaheuristic
feature selection algorithms is given based on these key evaluation
metrics. Different colors denote how specific performance measures
contribute to the different stacked bars. The ninja algorithm has the
lowest error and the best overall fitness score, making selecting the
appropriate key data features secure while minimizing computation
overhead. On the contrary, Bemvo, bSbo, and bJaya algorithms are
more inclined to get larger feature subsets, which could increase
model complexity. It offers valuable insights into the difference in
the efficiency and effectiveness of various metaheuristic patterns in
feature selection through visualization of these performance
differences.

Figure 5 shows a radar chart visualization depicting the
comparative performance in solving both problems between the
metaheuristic optimizers. The radar plot consists of each axis
representing one key performance metric; therefore, it is easy to
see the strengths and weaknesses of each algorithm on a direct basis.
The result shows that the feature selection size and the worst fitness
of bSBO, bMVO, and bJAYA are more significant, whichmeans they
have more complex feature subsets. On the other hand, bNinja has
achieved a lower average error and the best fitness score, proving its
ability to choose small but very predictive feature subsets. It gives an
intuitive understanding of how different optimizers behave for
balancing feature selection accuracy and computational efficiency.

4.3 Machine learning performance after
feature selection

Feature selection has a key role in refining SOC prediction
models based on removing features that are not important and
redundant while keeping in the significant ones. Such a process
improves model generalization, reduces computational complexity
and avoids overfitting. By exploiting metaheuristic-based feature
selection, models are optimized to retain only the most predictive
soil attributes, substantially increasing accuracy and efficiency. The
most crucial step of this phase is to assess the influence of removing
superfluous features over different machine learning models
(namely, Support Vector Machine (SVR), CatBoost, Multi-Layer
Perceptron (MLP), XGBoost, K Nearest Neighbors (K-NN) and
Gradient Boosting) in terms of prediction. The results for the
machine learning performance after feature selection is presented
in Table 7. A feature selection on these metrics leads to a massive
reduction in prediction errors and an improvement in model
efficiency compared to the analogous not selected.

I compare key performance metrics like Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Bias Error (MBE), correlation coefficient (r),
Coefficient of Determination (R2), Relative Root Mean Squared
Error (RRMSE), Nash Sutcliffe Efficiency (NSE), Willmott Index
(WI) in Figure 6. Then, the violin plots provide an overall picture of
this metric’s distribution under consideration, suggesting aspect
(multimodal tendency) and possibly asymmetry if relevant. The
boxplots also convey that the mean is interpreted statistically and
that median and quartile ranges are pinpointed. The swarm plot
points are model performances for individual runs and could be

found as clustering patterns or outliers. Therefore, these visual
elements collectively help know the models’ prediction
performance and stability in prediction, making models’
predictions dependable.

4.4 Optimized support vector machine (SVR)

In this study, we propose to integrate feature selection and
hyperparameter tuning in supervised learning applied to a
metaheuristic-driven continuous optimization framework, which
is the final phase of this study. By applying ten advanced
metaheuristic algorithms to refine further the SVR model, the
generalization and efficiency of the model are further increased,
and the model performs consistently better than in previous
experiments. By borrowing from the optimal selection of the
feature set and optimal tuning of parameters for
hyperparameters, these algorithms simultaneously optimize
feature set selection and parameter tuning to achieve the model
that is adequately adjusted to minimize prediction errors at the least
cost and maximal predictive robustness. The applied optimization
techniques are NiOA (Ninja Optimization Algorithm), HHO
(Harris Hawks Optimization), GWO (Grey Wolf Optimizer),
SAO (Smell Agent Optimization), JAYA (Jaya Algorithm), MVO
(Multi-Verse Optimizer), SBO (Satin Bowerbird Optimizer), GSA
(Gravitational Search Algorithm), QIO (Quadratic Interpolation
Optimization), APO (Artificial Protozoa Optimizer). The detailed
results of metaheuristic-driven SVR optimization after optimizing
are shown in Table 8.

As shown in Table 8, the Ninja Optimization Algorithm (NiOA)
significantly improved the performance of the SVR model across all
metrics. NiOA-SVR achieved the lowest RMSE (8.67E-04), which is
an 79.3% reduction compared to the next best model, HHO-SVR
(0.00418), and an 86.3% reduction relative to GWO-SVR (0.00613).
Similarly, the Mean Absolute Error (MAE) for NiOA-SVR was
1.35E-05, which is 42.6% lower than HHO-SVR (2.35E-05), and
45.8% lower than GWO-SVR (2.49E-05).

In terms of determination coefficient (R2), NiOA-SVR achieved
the highest value at 0.99557, outperforming HHO-SVR (0.97877) by
1.7 percentage points and GWO-SVR (0.97688) by 1.9 points. The
Relative RMSE (RRMSE) was also lowest for NiOA-SVR at 0.04388,
representing a 57.7% improvement over HHO-SVR (0.10377), and a
64.3% improvement over GWO-SVR (0.12300). Furthermore,
NiOA-SVR achieved the highest Nash–Sutcliffe efficiency (NSE =
0.98186) andWillmott Index (WI = 0.98427), further confirming the
method’s robustness.

These results quantitatively confirm that NiOA consistently
delivers superior performance in optimizing SVR for SOC
prediction, with significant improvements across accuracy, error
minimization, and model agreement metrics.

The Q-Q plots of some key performance metrics such as Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Bias Error (MBE), correlation
coefficient (r), Coefficient of Determination (R2), Relative Root
Mean Squared Error (RRMSE), Nash-Sutcliffe Efficiency (NSE), and
Willmott Index (WI) are shown in Figure 7. The ordered values of
the respective metric are plotted vs. the expected normal quantiles
per plot. The closer the data points are to the diagonal line, the more
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regular the distribution. Tails can be deviated in some cases, or
perhaps systematic curvature would indicate a non-normal child,
which might need to be transformed or treated with some statistical
robustness in analysis and interpretation.

Our results align with recent literature in demonstrating the
effectiveness of machine learning models such as Support Vector
Machine (SVR) and Random Forest (RF) for predicting Soil Organic
Carbon (SOC). For example, Mosaid et al. (2024) and Solly et al.
(2020) reported strong SOC prediction accuracy using RF, SVM, and
Cubist models in Mediterranean regions, achieving R2 values up to
0.79. Similarly, Meliho et al. (2023) emphasized the role of effective
cation exchange capacity (CEC) in SOC stabilization across Swiss
forest soils, which supports our finding that CEC is a dominant
predictive variable in African soils as well. However, in contrast to
these earlier studies, our approach introduces a novel optimization
framework that simultaneously integrates feature selection and
hyperparameter tuning through the Ninja Optimization Algorithm
(NiOA). Empirical validation demonstrates a significant reduction in
mean squared error (MSE), from 0.00513 in baseline SVR to
7.52 × 10−7 post-optimization. Additionally, binary NiOA (bNiOA)
reduced the feature subset size by over 65%, enhancing model
interpretability and computational efficiency. Importantly, while
the referenced studies are geographically focused on Mediterranean
or European forest systems, our framework addresses the scarcity of
SOC modeling efforts across the African continent—an ecologically
diverse and data-sparse region. This contextual and methodological
novelty positions our work as a significant contribution to advancing
scalable, high-precision SOC modeling.

5 Discussion

This study introduces a novel Soil Organic Carbon (SOC)
prediction framework that integrates the Ninja Optimization
Algorithm (NiOA) with Support Vector Regression (SVR) for
simultaneous feature selection and hyperparameter tuning. The
proposed method demonstrated a remarkable reduction in
prediction error, decreasing the mean squared error (MSE) from
a baseline value of 0.00513 (SVR without optimization) to
7.52 × 10−7 after applying NiOA-based optimization—a 99.98%
improvement. Additionally, feature selection using binary NiOA
(bNiOA) reduced the average number of selected features by over
65%, significantly enhancing model interpretability and reducing
computational complexity.

These results outperform several state-of-the-art SOC
prediction models reported in recent literature. For instance,
Mosaid et al. (2024) applied Random Forest (RF) and Cubist
algorithms in the Ourika watershed, Morocco, achieving high R2

values of 0.79 and 0.77, respectively. Similarly, Solly et al. (2020)
reported RF performance with R2 � 0.76 for SOC stock estimation
in the Srou catchment of semi-arid Morocco. Meliho et al. (2023)
emphasized the predictive power of cation exchange capacity (CEC)
in Swiss forests, showing that regression models can capture relevant
soil mineral interactions for SOC stabilization, particularly in
subsoils with pH > 5.5. However, none of these approaches
employed a unified framework for both feature selection and
hyperparameter tuning, nor did they optimize models on African
datasets with comparable spatial heterogeneity.

In contrast, the current study’s methodological contribution lies
in its integration of NiOA’s dual-phase metaheuristic strategy.
While earlier works used separate feature selection methods
(such as Boruta or correlation filters) and conventional tuning
techniques (e.g., grid search or random search), NiOA
simultaneously refines the feature space and hyperparameters in
a cohesive, adaptive manner. This integrative approach allowed the
model to balance exploration and exploitation more effectively,
thereby avoiding premature convergence and improving
generalization on unseen data. Compared to other bio-inspired
metaheuristics such as Grey Wolf Optimizer (GWO), Harris
Hawks Optimization (HHO), and Particle Swarm Optimization
(PSO), which are commonly used in soil modeling (Eyo et al.,
2022; Navidi et al., 2022), NiOA offers a more refined convergence
mechanism through trigonometric refinement and mutation-based
diversity strategies.

Furthermore, the current work addresses a notable research gap in
the geographic representation of SOC prediction models. Most prior
studies have focused onMediterranean, temperate, or European forest
ecosystems (Solly et al., 2020; Meliho et al., 2023), with limited
emphasis on African soils, which are characterized by greater
edaphic and climatic variability. By applying the NiOA-based
framework to a high-dimensional African soil dataset, this study
demonstrates its capacity to generalize under data-scarce, spatially
complex, and environmentally diverse conditions.

In summary, the results of this study reinforce the argument
that integrated optimization strategies are essential for enhancing
the performance and scalability of SOC prediction models. By
jointly addressing feature selection and hyperparameter tuning
within a unified NiOA framework, the study not only achieves
state-of-the-art accuracy but also ensures model robustness and
interpretability. These contributions have direct implications for
precision agriculture, carbon accounting, and climate-resilient
land management—particularly in regions where conventional
empirical models are insufficient.

6 Conclusion and future work

We developed a cutting-edge approach for improved SOC
prediction by combining the NiOA with feature selection and
hyperparameter optimization. We found that incorporating
NiOA into the machine learning models significantly decreases
error and addresses the challenges posed by soil data’s
complexity and multivariate nature. Major obstacles such as
feature redundancy and overfitting were effectively overcome,
making the proposed technique a reliable and scalable solution
for achieving precise estimations of soil organic carbon, contributing
to sustainable land management and support for mitigating threats
from climate change.

As further studies progress, it would be valuable to combine
NiOA with sophisticated deep learning models to enhance the
accuracy of SOC predictions across heterogeneous ecosystems.
Incorporating real-time remote sensing data and spatial-temporal
analysis has the potential to yield enhanced and more agile SOC
evaluations. The ability of NiOA to optimize both feature selection
and neural network architectures could drive advances in
environmental modeling and support more precise and adaptive
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responses to the urgency of protecting against climate change and
preserving ecosystems.
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