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Introduction: The scientific measurement of urban atmospheric environmental
efficiency is a vital prerequisite for achieving air pollution control and regional
green high-quality development.

Methods: Based on the data of 11 cities in Zhejiang Province from 2014 to 2022,
this study calculates the synergistic governance environmental efficiency (SGEE)
of PM2.5 and O3 from both static and dynamic perspectives. Furthermore, a
quantile regression model (QRM) is employed to reveal the impact mechanisms
of educational investment and technological innovation on the efficiency.

Results: The results show that: (1) there are significant spatio-temporal variations
in the concentrations of PM2.5 and O3 among the 11 cities. The effectiveness of
coordinated governance is not significant. (2) The average value of SGEE of PM2.5
and O3 in Zhejiang Province is 0.533. Technological advancement is the primary
driving force behind the improvement of the SGEE of PM2.5 and O3. (3) The
results of QRM indicate that educational investment primarily improves the SGEE
of PM2.5 and O3 at lowefficiency stages, while it exerts a certain resource
“Crowding-out effect” at highefficiency stages.In contrast, the rise in the level
of technological innovation and the transformation and adjustment of industrial
structure can effectively promote the improvement of the SGEE of PM2.5 and O3.

Discussion: In the future, it need strengthen the role of technological innovation
in improving the SGEE of PM2.5 and O3.

synergistic governance environmental efficiency of PM, s and Oz, data envelopment
analysis, quantile regression model, educational investment, technological innovation

1 Introduction

Continuous improving air quality and promoting high-quality economic development
are key measures in the fight for blue skies (Li et al., 2024). With the strong push for the
battle against air pollution, the environmental air quality in China has shown a steady
upward trend. Initial results have been achieved in the synergistic control of PM, 5 and
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ozone (O3) (Kong et al,, 2024). In 2024, the PM, 5 concentration in
cities at the prefecture level and above nationwide is expected to be
29.3 ug/m’, a year-on-year decrease of 2.7%; compared to 2019, the
national PM,s concentration has decreased by 19.4%. O;
concentration has decreased by 2.7% and has remained stable at
144-145 pg/m’ for three consecutive years. Since 2015, the rising
trend of ozone has been initially curbed (Yang J. et al., 2025; Yang Z.
etal,, 2025). Therefore, adhering to precise, scientific, and law-based
pollution control, and emphasizing environmental air quality
management, are of great significance for achieving high-quality
green transformation and development (Wang H. et al., 2025; Shao
et al.,, 2025).

Environmental efficiency characterizes the environmental
performance level of production units through the ratio of
economic output to environmental impact (Zadmirzaei et al,
2024; Paramati et al, 2022; Song et al, 2012). Atmospheric
environmental efficiency (AEE) represents a further deepening
and expansion of environmental efficiency in the field of
atmospheric environments, which can effectively reflect the
level of the
environment and embody the efficiency of transforming resource

comprehensive  management atmospheric
input into economic value while managing atmospheric pollution
emissions (Fang et al., 2023; Huang et al., 2021).

As the prevention and control of air pollution in China has received
widespread attention from society these years, numerous scholars have
conducted research on the measurement and evaluation of AEE (Ren
et al,, 2023; Miao et al., 2019a), specifically including: (1) Indicators for
measuring AEE: One category uses inputs such as labor, capital, energy,
and land, with GDP as the output indicators and the amount of air
pollutant emissions as the undesirable output or input indicators (Fang
et al, 2023; Lu et al,, 2019; Ding et al,, 2019). The other category uses
indicators such as the number of pollution control facilities and
operational costs as inputs, and the removal rate or amount of air
pollutants as output indicators, which are commonly referred to as
atmospheric pollution control efficiency (Zhou et al., 2023; Wu et al,
2020; Yang and Li, 2018). The first category takes into account both
economic development and environmental governance, providing a
more comprehensive reflection of the overall performance in air
pollution control (Sueyoshi and Yuan, 2015 Wu et al, 2021).
However, the selected indicators for air pollutant emissions or
concentrations often rely on traditional metrics such as SO,, NO;,
PM,, and the rate of good air quality (Wu et al, 2021; Lu et al,
2019; Wang et al, 2017), while lacking efficiency measurements for
newer air pollution control targets such as PM, s, Os, and VOCs. (2)
Measurement methods for AEE: Data Envelopment Analysis (DEA) has
been widely applied in the measurement of AEE due to its advantages in
handling multiple input and output indicators (Zhou et al., 2023; Song
et al,, 2012). In terms of specific model construction, existing literature
has employed various DEA models, including the traditional DEA
model, non-radial directional distance function DEA model (Wang
et al,, 2017), weighted DEA (Ye and Wang, 2019), dynamic network
SBM model (Rashid et al., 2024; Fu et al., 2024), Super-efficiency SBM
model (Xu et al., 2024; He et al,, 2018), two-stage DEA (Guo et al., 2020)
and three-stage slack based measure-data envelopment analysis (SBM-
DEA) model (Li et al,, 2025; Zhang et al., 2024). Additionally, techniques
such as the Malmquist index (Ma et al,, 2021), Luenberger index (Miao
et al,, 2019b), and Global Malmquist-Luenberger index have been used
to analyze the dynamic changes in AEE (Lu et al, 2019). (3) Socio-
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economic factors influencing AEE: These factors mainly include the level
of economic development, population density, environmental
regulations, industrial structure, technological level, degree of
openness, urbanization level, and the level of digital economy
development (Fang et al, 2023; Miao et al., 2019b; Li et al, 2019).
The analysis models used are primarily based on ordinary least squares
(OLS) regression models, lacking detailed comparative analysis of the
varying degrees of influence among the different explanatory variables
(Liu H. et al., 2022). Meanwhile, the selected indicators did not take into
account potential impacts of variables such as educational investment on
pollution control. Existing studies have pointed out that education could
achieve ecological benefits not only by improving production methods
and technological levels but also by promoting ecological protection and
cultivating environmental awareness during the basic education phase
(Liu K. etal,, 2022; Zaléniené and Pereira, 2021). It, in turn, could change
people’s consumption concepts and lifestyles, thereby reducing resource
consumption and protecting the air environment (Uralovich et al., 2023).
However, an increase in educational investment also lead to a resource
“Crowding-out effect” on environmental governance investment to
some extent, which could be detrimental to the short-term guarantee
of air pollution control (Tao et al., 2022; Underdal, 2010).

In summary, while existing research has made many valuable
explorations regarding AEE, there are still several shortcomings.
Firstly, most studies use a single pollutant indicator as an
undesirable output, without adequately considering the impacts of
synergistic control of comprehensive and compound air pollutants
(such as PM, 5 and Os). Secondly, the existing literature mainly focuses
on static dimensional efficiency and lacks studies that comprehensively
measure AEE from both static and dynamic dual dimensions, as well as
from a long-term and broad spatial perspective. Lastly, there is a lack of
comprehensive examination of the socio-economic influencing factors
related to AEE, particularly regarding educational investment and
technological innovation at different levels.

Given that PM,5 and O; pollution is influenced by various
intersecting factors such as natural conditions, economic
development, and political factors, scientifically evaluating AEE has
become a key measure for improving regional air quality (Mo et al,
2024; Zhou et al., 2023). Therefore, this study focuses on Zhejiang
Province, a developed coastal economic region in eastern China. It
uses the annual average concentrations of PM, s and Oj; as undesirable
outputs and employs a Slacks-Based Measure (SBM)-Undesirable
DEA model that accounts for undesirable outputs to measure urban
AEE from 2014 to 2022. Then, a Quantile Regression model (QRM) is
used to comprehensively reveal the mechanisms of how educational
investment and technological innovation impact AEE, and it proposes
governance strategies and recommendations. It aims to provide
evidence and decision-making references for the synergistic
governance of PM, 5 and Oj; in rapidly urbanizing areas.

2 Methodology
2.1 Study area

The study area is selected as Zhejiang Province because it is a
typical economically developed province in the southeast coastal
region of China, and it represents an area facing dual pressures of
transformation towards

economic green development and
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TABLE 1 Air pollution status in Zhejiang province from 2014 to 2023.

10.3389/fenvs.2025.1632050

Year p SO, p NO, p PMyq p PM35 p O3 p CO Proportion of good
(ug/md) (ug/md) (ng/m3) (ug/md) (ug/m3) (mg/m3) days (%)
2014 21 39 78 53 153 1.4 75.5
2015 16 37 70 47 158 1.4 78.2
2016 13 34 63 41 153 1.2 83.1
2017 11 34 61 39 159 1.2 82.7
2018 9 32 56 33 159 1.2 85.3
2019 7 31 53 31 154 1.0 88.6
2020 6 29 45 25 145 0.9 93.3
2021 6 29 47 24 142 0.9 94.4
2022 6 24 43 25 154 0.8 89.3
2023 6 26 46 27 149 0.8 91.3

Data Source: Ecological Environment Status Bulletin of Zhejiang Province from 2014 to 2023.

TABLE 2 Descriptive statistics of variables from 2000 to 2020 in Zhejiang Province.

Variable Indicator Variable Average Standard Minimum Maximum
name EITS deviation value values
Input variable Number of Labor 99 33347 189.27 69.64 759.68
employed
Energy Energy 99 1,060.15 718.60 217.32 3,103.81
consumption
Fixed-asset Investment 99 2,918.74 1,803.32 665.08 8,430.45
investment
Desirable outputs =~ GDP PGDP 99 87,148.61 26,590.25 44,263.00 153,922.00
Undesirable PM, 5 PM, 5 99 36.21 11.69 15.00 65.00
outputs
0O, (e 99 152.68 17.48 119.00 195.00

environmental governance. In addition, it is also one of the key areas
in China for air pollution prevention and control (Fang et al., 2023;
Zhang et al,, 2023; Lu et al., 2019).

The air quality in Zhejiang Province has improved to some extent
(as shown in Table 1) in recent years. For instance, SO, and NO, have
reached the national first-level standard for ambient air quality, while
PM,, has met the national second-level standard (Xia et al., 2020).
However, the ongoing improvement of air quality across the province
has become increasingly challenging. The concentration of PM, 5
remains relatively high and shows some signs of rebound, especially
during the spring and winter seasons. Meanwhile, the Hangzhou Bay
area (including Hangzhou, Huzhou, Jiaxing, and Shaoxing) has a high
proportion of days with O; exceeding the standard, making it the
primary pollutant affecting the improvement of urban ambient air
quality (Ding et al,, 2024). Thus, focusing on the two pollutants, PM, 5
and O;, can provide a more accurate assessment of the urban air
pollution situation. Besides, existing studies that use conventional
pollutants such as SO,, NO,, and PM,, for measuring and assessing
AEE cannot accurately reflect the current environmental quality status
and lead to an overestimation of the efficiency values. It highlights the
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need to scientifically the regional atmospheric environmental efficiency
by constructing a new indicator for undesirable outputs (PM, 5 and Os).

2.2 Data sources

This study employs labor, capital, and energy as input indicators,
regional Gross Domestic Product (GDP) as the output indicators
(Fang et al,, 2023; Lu et al,, 2019), and PM,; 5 and O; annual average
concentrations as undesirable outputs to construct an evaluation
system for the synergistic governance environmental efficiency
(SGEE) of PM, 5 and O; in Zhejiang Province (Table 2). The aim
is to achieve economic development and improve the quality of
PM, 5 and O; while decreasing the input of production factors per
unit simultaneously. The above indicators are all sourced from the
Zhejiang Statistical Yearbook and the Zhejiang Natural Resources
and Environment Statistical Yearbook for the years 2015-2023, with
individual missing data filled in by linear interpolation (Fang et al.,
2023). To eliminate the deviation of economic indicators caused by
the influence of inflation, the GDP value we have taken here has been
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inflation-adjusted. The undesirable outputs are the annual average
PM, 5 concentration values and annual average O; concentrations
(the 90th percentile of the maximum 8-h average O; daily
concentration in each city) expressed for each city (Ding et al., 2024).

The descriptive statistics for each variable are shown in Table 2.

2.3 Methods and models

2.3.1 Nemerov integrated pollution index

To comprehensively assess the pollution levels of PM, 5 and O;
in different cities, the Nemero integrated pollution (NIP) index
method is introduced for evaluation (Ciarkowska and Gambus,
2020). This index is one of the most common-used methods for
calculating comprehensive pollution indices both domestically and
internationally. It particularly takes into account the factors with the
most severe pollution and avoids the influence of subjective factors
in the weighting process (Swidwa-Urbariska and Batlle-Sales, 2021).
The specific calculation formula (Equations 1, 2) is as follows:

P, = Ci/Si (1)

2 2
NIP = (Pimax) ; (Piave) (2)

In the formula: P; is the single-factor pollution index of air
pollutant #; C; is the measured concentration value of i; S; is the
standard limit concentration value of air quality. According to the
China Ambient Air Quality Standards (GB3095-2012), the
secondary standard limits for PM, 5 and O; are 35 pg/m* and
160 pg/m’ respectively. NIP is the Nemero integrated pollution
index, which means the higher the value, the greater the integrated
pollution, the worse the synergistic management of PM, 5 and Os3;
P;max is the maximum value of the pollution index of air pollutant i;
Pj.ye is the arithmetic mean value of each air pollution index.

2.3.2 Undesirable output SBM-DEA model
2.3.2.1 SBM-DEA model

In this study, the Slacks-Based Measure (SBM)-Undesirable
DEA model was employed to assess the SGEE of PM, 5 and Os.
The SBM model, constructed by Tone (2001), is a non-radial and
non-angular DEA model. In the standard DEA model, radial
requires that inputs or outputs move in the same proportion
when evaluating efficiency, while oriented requires that modeling
choices based on inputs (assuming outputs are constant) or outputs
(assuming inputs are constant) be made when evaluating efficiency
(Lu et al,, 2019; Banker et al,, 2004). The SBM model measures
efficiency based on slack variables, overcomes the radial and
DEA
measurement of final results (Zhang et al., 2024; Lee, 2021; Deng
et al., 2016).

Here, n cities (n = 11) are treated as n decision units, each of

oriented problems of classical and facilitates the

which contains three elements: inputs, desirable outputs, and
undesirable outputs (PM,s and O; concentration). Then, input
and desirable output variables are set as X = (x;;) € R"™ and =
(ykj) € R°™" , non-desirable outputs as Z = (zj;) € R, and then
make X >0, Y >0, and Z>0. The production possibility set is
P={(x,9,2)x>XA, y<YA,z>ZA,A>0}, where denotes the
vector of weight coefficients A = (A1,1,,..,A,) € R*. The first
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inequality in the set P denotes that the actual level of inputs is
greater than the frontier level of inputs, and the second one denotes
that the actual level of outputs is less than the frontier level of
outputs. The SBM-DEA model with undesirable outputs is as
follows (Fang et al.,, 2023):

me=i=lxi
1 s1 Si S S?’
1+ Zk—l + 21—1 -
S+ 5 = Yko 1 Zp

—_ " X \S7.
Xip = ijl)t]-xj + 57, Vis

minp =

yio = D Ay — sk Vk;

j=1
S.t.

n
Zjp = Z/\ij + Slz,Vl;
=

[ 572058, 20357 20;4;20; Vi, j, k, I;

Among them, s* € R™, s* € R®, s” € R" respectively represent
the surplus of inputs and undesirable outputs, as well as the shortage
of desirable outputs. p is the SGEE of PM, 5 and Os in a city. m, s;
and s, are the number of variables for inputs, desirable and
undesirable outputs, respectively.

Equation 3 satisfies the assumption of constant returns to scale
(CRS), and if constraints Z ?:1/1 i = l are added to this equation, the

assumption of variable returns to scale (VRS) is satisfied (Li et al.,
2025; Fang et al., 2023).

When p =1, that is, s* = 0, and s” = s* = 0, it means that the
SGEE of PM, 5 and O3 in the evaluated city is effective. If p< 1, it
means that the SGEE of PM, 5 and Oj in the current city is non-
effective and there are still improvements to be made (Fang
et al., 2023).

2.3.2.2 Malmquist index based on SBM model

The Malmquist index is essentially the ratio of two distance
function values and it is a theoretical index (Zheng, 2021). This
research evaluates the Malmquist index using the Malmquist
productivity index developed by Fire et al. (1992), which is based
on input orientation and operates under the assumption of constant
returns to scale (CRS):

Et (XHI,)/HI) Et+1 (XHI, yt+1) %
Et (xt)yt) Et+1 (Xt’ yt)

Mf+1 (xt yt xt+1 yf+1) - (4)
Where, M™! (x!, y, x™*1, y™*1) denotes total factor productivity
(TFP) from period ¢ to period t + 1. When TFP>1, it indicates an
increase in efficiency. While TFP<1 indicates a decrease in efficiency.
E"1(x', y') denotes the value of SGEE of PM, 5 and O3 management
for a city in period t under the technology in period ¢ + 1.
t+1 t+1 t+l t t+1 o+l t t ot
When EC = EiEt(zcxf,;r) ); and TC = [E}::ﬂ(zcxni)jyng) N Eltsﬂ(z(x)t})}y
set, the Malmquist index is then decomposed into efficiency change

2)]% are

(EC) and technical change (TC, technological progress):

Fare et al. (1994), based on the decomposition method by Fire
etal. (1992), derived different efficiency values using VRS and CRS.
It further decomposed the efficiency change (EC) from Fire et al.
(1992) decomposition method into pure technical efficiency change
(PEC) and scale efficiency change (SEC).
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M"! = EC*TC = PEC*SEC*TC (5)
Amon them, PEC = %, and
B (Y EE (x ]yt b )
SEC = = r . The subscript ¢ represents CRS,

EL(x',y")/EL (x', ")
while the subscript v represents VRS (Lu et al., 2019; Zofio, 2007).

2.3.3 Quantile regression model

To quantitatively study the influencing factors of AEE, and
combined with existing relevant research (Lu et al., 2019; Ding et al.,
2019), this study selected the following independent variables:
education investment (EI, measured by fiscal education
spending), scientific and technological innovation (STI, measured
by R&D expenditure), industrial structure (IS, measured by the
proportion of secondary industrial output value to GDP), and
environmental regulation (ER, measured by the operating
expenses of industrial waste gas treatment facilities in the current
year, in ten thousand yuan). To reduce the deviation caused by
different
processing was carried out to improve the interpretation accuracy
of the model (Fang et al., 2023; Ding et al., 2024). Furthermore,

based on the most common and fundamental estimation method in

dimensions of explanatory variables, logarithmic

ordinary linear regression model—the Ordinary Least Squares
(OLS) method—the following regression equation (Equation 6)
has been constructed (Liu H. et al., 2022):

Yit = + ﬁ]EIit + ﬁZSTIit + ﬁSIS“ + ﬁ4ERit + & (6)

In the above equation: Y represents the SGEE of PM, s and Os; i
denotes the 11 cities within the sample; ¢ indicates the time variable
(9 years); B;~B, represents the impact coefficients of various factors
on the SGEE of PM, 5 and Oj; « is the city fixed effect; and ¢, is the
random error term, which follows the normal distribution
assumption, and it represents the changed parts of the dependent
variable that cannot be explained by the independent variables.

However, ordinary linear regression only obtain the expected
value of the impact of various influencing factors on AEE and cannot
analyze the effect of these factors on the distribution pattern of AEE
(Wang, 2024). Quantile regression model (QRM) analysis more
comprehensively describe the impact of independent variables on
the changes in the dependent variable and its conditional
distribution (Huang et al, 2017). It can profoundly reveal the
marginal effects of influencing factors on AEE in different cities
and delve into the quantile heterogeneity of these effects. When
estimating parameters, the heterogeneity analysis of quantile
methods uses the explained variable as a reference and specifies
several different quantile points (Chou et al., 2020). It groups the
sample points according to these quantile points and applies
different weights to the sample points in different groups during
estimation, thereby obtaining the estimated values. This method of
exploring the quantile heterogeneity of influencing factors does not
rely on reducing the sample size and takes into account the
information from the entire sample, resulting in more robust
outcomes (Veeravel et al., 2024; Ozkan et al., 2024).

Koenker and Hallock (2001) first proposed the theory of QRM,
which involved a detailed study of significant quantiles in the
distribution of Y|X to analyze and compare the effects of
independent variables on the dependent variable at different
quantile points. When the dependent variable is influenced
differently by various portions of the independent variable
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distribution, such as exhibiting left or right skewness, QRM
capture the tail features of the distribution, providing a more
comprehensive characterization of its properties. For a random
variable Y in general, the linear conditional quantile function
(Equation 7) for the 7-th quantile is given by Chou et al. (2020):

Q11X =x) =x'B(7) (7)

For any 7 € (0,1), where x; is a p-dimensional vector, p, (+) is the
tilted absolute value function, and the estimate 3 (7) shown in
Equation 8 is referred to as the regression coefficient estimate at the
1-th quantile.

[AS(T) = argminiﬁeRprT(yi - x;ﬁ) (8)
i1

Finally, this study takes static SGEE of PM, s and Oj; as the
dependent variable and uses a QRM to reveal the key influencing
factors at different levels of static SGEE of PM, s and Os;. The
calculation formula (Equation 9) is as follows:

Yit,q = ait,q + ﬁl)anEIit,q + ﬁz)anSTIit,q + ﬁ:’,)anISit,q + ﬁ‘thnER,‘t,q

+ Eitg

)

In the above formula: q represents the selected quantiles, which
are 10%, 25%, 50%, 75%, and 90%; /31,,1 ~/34,q indicates the impact
effect of various factors on the SGEE of PM, 5 and Oj at different
level quantiles (Wang, 2024). i denotes the 11 cities within the
sample; ¢ indicates the time variable (9 years); ;4 is the random
error term, which follows the normal distribution assumption.

3 Results

3.1 Overall pollution characteristics of PM, 5
and Oz

3.1.1 Spatial-temporal distribution of PM, 5 and O
concentrations

Based on Arcgis 10.0 software, the spatial-temporal distribution
characteristics of PM, s and O; concentrations in 11 cities of
Zhejiang Province are revealed. For comparison, the distribution
status of pollutant concentrations in four cross-sectional time
periods from 2014-2017-2020-2022 are selected for specific
analysis. The results are shown in Figures 1, 2.

Comparing Figures 1, 2, it can be found that, (1) there were
significant time-series variation differences in PM,s and O;
concentrations in 11 cities in Zhejiang Province, with PM,5
generally more polluted before 2017 and O; generally more
severe after 2017. In particular, PM, s concentrations showed a
steady improvement trend, while O; concentrations showed
then
decreasing and improving, and finally rebounding and worsening.

multiple fluctuations, with pollution first increasing,
It has been shown that O is the primary pollutant in the air
environment of Zhejiang Province in recent years (Ding et al,
2024), especially in the summer when the temperature is high.
(2) There were some spatial distribution differences of PM, 5 and O3
concentrations in 11 cities in Zhejiang Province. In terms of the

average PM,s concentration in the past years, Hangzhou >
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Spatial and temporal distribution characteristics of PM, s concentration in 11 cities in Zhejiang Province, 2014-2022.

Shaoxing > Huzhou > Jinhua > Jiaxing > Quzhou > Wenzhou >
Ningbo > Taizhou > Lishui > Zhoushan. Sorting from the average
O3 concentration in the past years, Huzhou > Jiaxing > Hangzhou >
Shaoxing > Jinhua > Ningbo > Quzhou > Taizhou > Wenzhou >
Zhoushan > Lishui. Cities with more severe pollution of both are
mainly located in the cities around Hangzhou Bay in the north-
central part of Zhejiang, such as Huzhou, Jiaxing, Hangzhou and
Shaoxing, which are also the key cities in the Yangtze River Delta
region for the prevention and control of air pollution. Cities with
relatively mild pollution levels are mainly located in Zhoushan and
Lishui, characterized by relatively backward industrial output,
minimal and favorable
natural conditions. (3) Generally, Zhejiang Province has not yet

anthropogenic  pollution emissions,
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achieved significant synergistic management of PM, 5 and O;. In the
future, how to efficiently promote the stable reduction of PM, 5 and
O5 remains a tough task (Shu et al., 2024).

3.1.2 Comprehensive evaluation of PM, 5 and
O3 pollution

Based on the above mentioned NIP index calculation, an
evaluation of the comprehensive status of PM, 5 and O pollution
in 11 cities of Zhejiang Province was conducted, with the results
shown in Figure 3.

From the above Figure 3, it can be seen that (1) the NIP values in
various cities showed a significant downward trend, indicating that
the comprehensive pollution status of PM, 5 and O in these cities has
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Spatial and temporal distribution characteristics of Oz concentration in 11 cities in Zhejiang Province, 2014-2022.

improved to some extent. Among them, the cities with relatively
lighter comprehensive pollution are mainly coastal cities such as
Zhoushan, Ningbo, and Wenzhou. (2) The NIP values of various
cities exhibited certain regional disparities. Based on the average NIP
values over the years, the ranking is as follows: Huzhou > Hangzhou >
Jiaxing > Shaoxing > Jinhua > Quzhou > Ningbo > Wenzhou >
Taizhou > Lishui > Zhoushan. Cities in northern and central Zhejiang
have significantly higher NIP values compared to those in the
southeastern part. The former has a relatively higher concentration
of air pollution-intensive industries (Ding and Fang, 2022), and their
meteorological and topographical conditions are less favorable for
pollutant dispersion compared to the coastal cities in the southeast. (3)
In 2022, the NIP values of various cities showed a certain rebound,
indicating that there were considerable challenges in the coordinated
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management of PM,s and O;. In particular, affected by adverse
meteorological conditions and precursor pollution emissions, it is
necessary to actively prevent the rebound of PM, 5 and O3 pollution
concentrations (Wang L. et al., 2025).

3.2 Estimation results of SGEE of PM, 5
and Oz

3.2.1 Analysis of static SGEE of PM, 5 and Oz

Through the non-radial measurement SBM-DEA model, the
SGEE of PM, s and O; in 11 prefecture-level cities in Zhejiang
Province was estimated based on the aforementioned Equation 3,
and the results are shown in Table 3.
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FIGURE 3

Analysis of NIP index of PM, s and Oz pollution in Zhejiang Province from 2014 to 2022.

TABLE 3 The static estimation results of SGEE of PM, 5 and Os in 11 cities in Zhejiang Province from 2014 to 2022.

Area City 2014 2017 2020 2022 Average for 9 years Rank
Hangzhou Bay urban agglomeration Hangzhou 0.412 0.633 0.707 0.671 0.606 3
Ningbo 0.625 0.761 0.802 0.744 0.733 2
Jiaxing 0.360 0.384 0.364 0.344 0.363 11
Huzhou 0.406 0.423 0.325 0.301 0.364 10
Shaoxing 0.412 0.424 0.463 0.442 0.435 8
Zhoushan 1.000 0.913 1.000 1.000 0.978 1
Non-Hangzhou Bay area Wenzhou 0.403 0.448 0.451 0.475 0.444 7
Jinhua 0.399 0.502 0.508 0.512 0.480 5
Quzhou 0.401 0.428 0.418 0.407 0.413 9
Taizhou 0.461 0.467 0.506 0.473 0.477 6
Lishui 0.590 0.617 0.491 0.567 0.566 4
Overall average 0.497 0.545 0.549 0.540 0.533

From the above Table 3, it can be seen that during the 9 years,
the average value of the overall SGEE of PM, 5 and O; of the 11 cities
in Zhejiang Province was 0.533, which was still about 46.7% of the
improvement margin from the production frontier (the maximum
output level that can be achieved with a given input), and a large
potential for PM, 5 and O; environmental improvement existed.

In terms of SGEE of PM, s and Oj; in each city, the static
efficiency values showed a fluctuating increasing trend. Among
them, only Zhoushan City achieved the production frontier in
7 years, while the remaining 10 cities have not reached the
synergistic emission reduction technology level of PM,s and O;
compared to the leading cities. It implies that the vast majority still
have significant potential for improving SGEE of PM, s and Os,
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indicating regional differences in SGEE of PM, 5 and O; among
different cities. From the average environmental efficiency values of
the 9-year period in each city, the ranking is as follows: Zhoushan >
Ningbo > Hangzhou > Lishui > Jinhua > Taizhou > Wenzhou >
Shaoxing > Quzhou > Huzhou > Jiaxing. The ranking indicates
similarities with the city ranking based on PM, s environmental
efficiency in previous study (Fang et al., 2023).

Over different years, the ranking of SGEE of PM, 5 and O; have
varied across different cities. The cities with higher SGEE of PM, 5
and O; are mainly Zhoushan, Ningbo, and Hangzhou, which are
important regions leading the development of science and
technology and emerging industries in Zhejiang Province. Since
the 13th Five-Year Plan, relying on huge investment in education
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FIGURE 4

Changes in total factor productivity and decomposition indicators of dynamic SGEE of PM, s and Os in Zhejiang Province.

and technological innovation, especially the role of new research and
development institutions in the process of enterprises’ green
transformation, Ningbo and Hangzhou have strengthened the
digital management transformation and end-of-pipe control of
key polluting industries (Lu et al., 2019; Ding and Fang, 2022;
Ding et al., 2024), effectively reducing emissions of atmospheric
pollutants such as NOx and particulate matter. It has accelerated the
treatment of volatile organic compounds (VOCs) and improved the
SGEE of PM, 5 and O;. As an international island tourism city,
Zhoushan has its unique characteristics of being green and low-
pollution in terms of industrial policy positioning. In recent years,
around technological innovations such as green new materials and
digital marine industries, Zhoushan has continued to perform
significantly in the control of air pollution sources, thus having
the highest SGEE value. Cities with low SGEE of PM, s and O;
include Jiaxing, Huzhou, Quzhou, and Shaoxing. It means that in the
future, the area around Hangzhou Bay will continue to be a key
region for the coordinated control of PM, s and O; in Zhejiang
Province, including preventing the rebound of PM,s and O;
concentrations (Wang H. et al,, 2025).

3.2.2 Analysis of dynamic SGEE of PM, s and O3

To further clarify the dynamic evolution process of the SGEE of
PM, 5 and Oj in various cities in Zhejiang Province, a non-radial
DEA model with the Malmquist index (Zofio, 2007) was employed.
Based on Equations 4, 5, the total factor productivity (TFP) of each
city was measured (Lu et al., 2019; Ding et al., 2019), decomposed
into three components: pure technical efficiency change (PEC), scale
efficiency change (SEC), and technological progress index (TC), as
shown in Figure 4.

From a provincial perspective, the average TFP of the SGEE of
PM, s and O; in Zhejiang Province from 2014 to 2022 was 1.153,
indicating an annual average growth of 15.3% in the overall SGEE of
PM,s and Os;. It suggests a clear improvement trend in the
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relationship between atmospheric PM,s; and O; coordinated
control and regional economic development in Zhejiang Province.

From the results of the index decomposition, the average value
of the PEC is 0.961 and shows a slightly decreasing trend in general,
which means that the PEC is an important factor inhibiting the
improvement of environmental productivity in the synergistic
management of PM, 5 and Os in Zhejiang Province.

The average value of SEC is 1.094 and shows a decreasing trend,
which implies that enterprise scale expansion contributes to the
increase of economic efficiency. Relying on the current digital
transformation of enterprises and the development of digital
economy in Zhejiang Province, SEC helps to improve the
efficiency of optimal allocation of resources, reduce energy
consumption and pollution emissions in dimensions such as
product management and transportation (Ding et al., 2019; Fang
et al,, 2023), and promote synergistic emission reduction of PM, 5
and VOCs, but the effect of this role is gradually weakening.

The average value of the TC is 1.163, fluctuating up and down
around 1 and tending to be stable and greater than 1, with an overall
average annual growth rate of 16.3%, which is higher than the
average annual growth rate of the index of SCE of 9.4%.

The above indicates that technological progress represented by
process innovation, equipment improvement, and upgrading of
pollution control technologies is the main driving force for
improving the SGEE of PM,s and O; (with Hangzhou and
Ningbo as typical examples). However, the contribution of pure
technical efficiency characterized by soft technical conditions such
as innovative management modes and optimized industrial
structures has not yet been realized. Therefore, actively and
effectively optimizing industrial structures (such as reducing the
proportion of industries with high VOCs emissions), innovating
enterprise management modes, optimizing resource allocation, and
focusing on enhancing technological efficiency are key pathways for
future improvements in SGEE of PM, 5 and O; in Zhejiang.
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TABLE 4 OLS regression results of static SGEE of PM, 5 and Oz in Zhejiang Province.

10.3389/fenvs.2025.1632050

Variable M1 M2 M3
(Constant) 0.575 *** (4.243) 2.482 *** (5.289) 2.647 ** (5.133)
Ln EI 0.025 (0.700) -0.041 (-1.136) -0.060 (-1.374)
Ln STI ~0.196 *** (=2.655) ~0.013 (~0.165) ~0.017 (=0.213)
Ln IS —-0.478*** (-4.216) —0.512%** (-4.207)
Ln RE 0.021 (0.779)
R? 0.090 0.233 0.238
Samples 99 99 99

Note: The numbers in parentheses indicate the standard error t-values, *p < 0.1, **p < 0.05, ***p < 0.01.

3.3 Factors influencing the SGEE of PM, 5
and Oz

3.3.1 Estimation of OLS regression model

Due to the potential correlations or multi-collinearity among the
aforementioned influencing factors, this study first conducted a
correlation coefficient test and Variance Inflation Factor test on
the four variables mentioned above (Dormann et al., 2013). The test
results indicated that the average VIF was 9.87 (<10), suggesting that
there was no serious multi-collinearity, allowing all explanatory
variables to be included in the regression model.

Then, employing OLS regression, the study analyzed the SGEE
of PM, 5 and O; along with four independent variables for 11 cities
from 2004 to 2022. The results indicate that the model passed the
diagnostic tests. The effects of EI and STI on the SGEE of PM, 5 and
05 are estimated by step-based regression (see Table 4 for details). It
can be found that in the initial OLS model (M1), LnEI coefficient is
positive but does not pass the significance test, and LnSTI has a
significant negative impact. With the introduction of intermediary
variables (M2 and M3), there is a significant negative correlation
between the influence of LnIS on the SGEE of PM, 5 and O3, while
other variables fail the significance test. At the same time, in the
three OLS models, the goodness of fit are low, and the OLS model
estimation results are generally not ideal.

3.3.2 Estimation of the QRM

Since the low goodness of fit of the OLS regression model,
accurate influence judgments cannot be made based solely on the
obtained regression coefficients (Cade and Noon, 2003; Wang,
2024). Therefore, it is necessary to further analyze the influence
coefficient using a QRM. The results are presented in Table 5
and Figure 5.

Based on the regression results, the influence coefficients of
different factors show significant variation across different quantiles,
specifically reflected in the following aspects:

(1) Educational investment: it shows a non-significant positive
correlation before the 0.1 quantile, but a significant negative
correlation after the 0.25 quantile (Figure 5a). It indicates that
in regions with low SGEE of PM, 5 and Os, an increase in the
level of educational investment promotes the improvement of
environmental efficiency. Conversely, in regions with high
SGEE of PM, 5 and O3, an increase in educational investment
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suppresses the improvement of environmental efficiency.
Existing research has shown that green education helps to
consolidate the achievements of ecological civilization
construction and improve the level of environmental
governance (Liu K. et al, 2022; Cheng et al, 2024). An
increase in educational investment could, in the short
term, mobilize students and stimulate public participation
in environmental protection, gradually assisting to raise
ecological conservation awareness throughout society. It, in
turn, strengthens public supervision of environmental
pollution and enhances the efficiency of environmental
governance (Varela-Candamio et al, 2018). Therefore, in
regions with SGEE of PM,s and O; for medium to low
levels (such as Jiaxing and Shaoxing), an increase in
educational investment is beneficial for managing key air
pollutants. However, in high environmental efficiency areas
like Zhoushan and Ningbo, increased educational investment
lead to a resource “Crowding-out effect” on the inputs for
managing air pollutants (Tao et al., 2022; Underdal, 2010).
Given limited financial resources, an increase in educational
investment can undermine the stable operation of facilities for
managing industrial emissions, thereby reducing the SGEE of
PM,s; and Os;. Moreover, an increase in educational
investment enhances the overall human capital of the
province, thereby accelerating economic growth, but it
does not directly lead to an improvement in
environmental quality.

Technological innovation: After the 0.25 quantile point, there
is a significant positive correlation, and the regression
coefficient increases to some extent (Figure 5b). It indicates
that the rise in the level of technological innovation can
effectively promote the improvement of the SGEE of PM, 5
and Os, and the enhancing effect is more pronounced in areas
with higher SGEE of PM, 5 and O;. Existing research indicates
that through technological breakthroughs and innovation, it
is possible to gradually elucidate the mechanisms of PM, 5
and O; formation, develop catalytic technologies and
equipment to eliminate pollutant concentrations, and
establish
monitoring system for ozone and its precursors (Cui et al,

2023; Chen et al, 2019). It can effectively organize and

a  comprehensive and  multi-dimensional

implement collaborative prevention and control plans and
strategies for PM, 5 and O3 pollution, thereby improving the
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TABLE 5 Quantile regression estimation of the static SGEE of PM, s and Oz in Zhejiang Province.

Variable Q10 Q25 Q50 Q75 Q90
(Constant) 1.228 (0.323) 2.319%** (0.285) 3.520%* (0.348) 4.155%* (1.282) 2.516"** (0.574)
Ln EI 0.016 (0.452) —0.087** (0.395) —0.185%** (0.487) —0.327* (0.487) —0.399*** (0.080)
Ln STI ~0.004 (0.031) 0.070** (0.027) 0.102** (0.033) 0.162* (0.121) 0.225** (0.054)
Ln IS —0.239** (0.074) —0.490** (0.064) —-0.719** (0.079) —0.739** (0.291) —0.240% (0.130)
Ln RE -0.002 (0.017) 0.001 (0.015) —0.001 (0.018) —0.032 (0.067) 0.011 (0.030)
Samples 99 99 99 99 99

Note: The quantiles selected are 10th, 25th, 50th, 75th and 90th, where the 10th and 25th percentiles represent low SGEE, of PM, 5 and Os, and the 75th and 90th percentiles represent high
SGEE, of PM, 5 and Oj; the numbers in parentheses indicate the standard error t-values, *p < 0.1, **p < 0.05, **p < 0.01.
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Dynamic trend of impact coefficients for 10~90 quantile variables (Note: The black dashed lines represent the quantile regression estimates for each
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the regression coefficients of the influencing factors in the mean regression model, and the area between the upper and lower red dashed horizontal lines
represents the 95% confidence interval for the regression coefficients of the explanatory variables in the mean regression model.).

SGEE of PM, 5 and O;. Meanwhile, cities like Hangzhou and data, and early prediction and warning processing, thereby
Ningbo, which have advanced modern technological means, enabling SGEE of PM, 5 and Os.

have constructed a digitized and intelligent air governance (3) Industry structure: a significant negative correlation is
system that achieves precise identification of pollution observed at all quantile points. It illustrates that a decrease
sources, real-time aggregation of PM, s and O; monitoring in the proportion of industrial output value effectively
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(4)

enhances the SGEE of PM, 5 and O; (Figure 5¢). From the
perspective of the impact coefficients, in cities with low and
high SGEE of PM,s and Oj;, the suppressive effect of
industrial structure adjustment on environmental efficiency
is somewhat reduced. Thus, the improvement of SGEE of
PM,s and O; through industrial structure adjustment is
mainly reflected in cities at the 0.25-0.75 quantile points,
while its impact on high-efficiency cities is limited. Existing
research demonstrates that industrial sources are the primary
contributors to PM, 5 and Os pollution (Li et al., 2024; Yang
J. etal, 2025). With the adjustment of the industrial structure,
the reduction and elimination of industries related to severe
air pollution, along with Zhejiang Province’s acceleration of
the green transformation and upgrading of traditional
industries (Ding et al, 2020), and the vigorous promotion
of the development of high-tech industries and strategic
emerging industries, will help enhance the SGEE of PM, 5
and O;. It is particularly evident in cities such as Hangzhou,
Ningbo, and Wenzhou. For instance, Hangzhou and Ningbo
are promoting industrial digitalization and the digitalization
of industries, utilizing digital technologies to advance smart
manufacturing. It enhances operational efficiency in
enterprises, drives technological iteration, and focuses on
air pollution reduction and control in key industries. The
aim is to address the prominent issues causing PM, s and
O; pollution.

Environmental regulation: there is no significant correlation
at any quantile (Figure 5d), which indicates that the current
investment and intensity of air pollution environmental
regulation have not had a significant impact on the SGEE
of PM,5 and O;. On one hand, the current operational
funding for air pollution control under environmental
regulation mainly focuses on the management of industrial
pollutants such as SO, and NOx, and has not had a direct and
effective impact on the collaborative governance of PM, 5 and
O; pollution. On the other hand, a significant portion of the
pollution sources for urban PM, 5 and O; comes from traffic
and mobile sources, which are not directly reflected in the
investments in environmental regulation. Therefore,
environmental regulations need to raise the emission
standards for environmental pollutants and strengthen the
supervision and control of pollutant emissions (Fang et al.,
2023). Meanwhile, while continuing to address industrial
pollution sources, there should be increased efforts for the
collaborative governance of pollution from traffic and mobile
sources (Jiang et al., 2019). For instance, cities can reduce the
impact of motor vehicle emissions of PM,s and O; by
promoting clean energy vehicles, strengthening vehicle
exhaust the

development of public transportation.

emission  standards, and facilitating

3.4 Discussion and policy implications

Based on the above analysis, the following strategies and

recommendations for the synergistic governance of PM, 5 and O3

are proposed:
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2)
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Rationally value the limited role of educational investment in
enhancing the SGEE of PM, 5 and O;. In existing research,
educational investment has been an overlooked variable
influencing AEE (Lu et al, 2019; Fang et al, 2023). The
study indicates that educational investment primarily affects
the enhancement of SGEE of PM,s and O; during the
medium to low efficiency stages. It suggests that in terms
of the areas severely affected by PM, 5 and O; pollution and
with relatively low SGEE of PM,s and O, increasing
could
mobilize public recognition of PM,s and O; pollution in

educational investment and public awareness
the short term, leading to the adoption of proactive and
effective measures to improve pollution management
efficiency. However, in regions with higher SGEE of PM, 5
and O;, an increase in educational investment may lead to a
“Crowding-out effect” on resources allocated for PM, 5 and
O synergistic governance, necessitating the use of other
regulatory measures for deeper efficiency enhancements
(Tao et al., 2022; Underdal, 2010).

Strengthen the role of technological innovation in improving
the SGEE of PM, 5 and O;. Existing research has shown that
technological advancement is a key factor in enhancing AEE.
Therefore, cities in Zhejiang should increase investment in
technological research and development, cultivate high-level
scientific and technological talent, implement innovation-
driven development strategies, and strengthen independent
innovation capabilities (Hua et al., 2022). It is essential to
enhance the cooperation and connection among local
research institutions, enterprises, and environmental
protection departments, and to establish various forms of
technology innovation alliances to improve the technologies
and capabilities for the synergistic governance of PM, 5 and
0s. Cities like Hangzhou and Ningbo should continue to
elevate the level of technological innovation applications, with
a focus on enterprises that are highly polluting, difficult to
manage, and have significant pollution outputs. Additionally,
they should promote the extensive application of cutting-edge
fields such as Internet+ and big data to enhance the
applicability of technological innovations and improve the
level of comprehensive governance technologies (Jiang et al.,
2019; Ding et al., 2020).

Continuous optimization of industrial structure to promote
the improvement of SGEE of PM, 5 and O;. Existing research
has shown that adjusting the industrial structure is an
important factor in enhancing AEE (Fang et al, 2023).
Currently, Zhejiang should continue to eliminate high
energy consumption, high pollution, and high emissions
industries, reduce the proportion of heavy-polluting
industrial output, and accelerate the green transformation
and development of traditional industries (Wang et al., 2023;
Ding and Fang, 2022). Among them, Hangzhou and Ningbo
should fully leverage the advantages of the service sector and
strategic emerging industries, and continue to capitalize on
the advantages of the digital economy to accelerate the
technological upgrading of the manufacturing sector and
vigorously develop high-tech industries (Zhang et al,

2023). Meanwhile, cities like Jiaxing and Shaoxing should
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focus on improving their own environmental protection
industries while enhancing the processes of industrial
products, reducing high-energy-consuming enterprises, and
promoting industrial transformation and upgrading.

4 Conclusion

A
efficiency is an important measure for continuously improving

scientific evaluation of atmospheric environmental
regional air quality. The study focuses on the synergistic
governance environmental efficiency of PM,s and Os, using
11 cities in Zhejiang Province, a typical green transformation
area in eastern China, as a case study for empirical analysis.

The results show that:

(1) The PM, s and O; concentrations in the 11 cities of Zhejiang
Province show significant spatio-temporal variation. Cities
experiencing severe levels of both types of pollution are
primarily found in the central and northern parts of
Zhejiang, especially in the Hangzhou Bay area, including
Huzhou, Jiaxing, Hangzhou, and Shaoxing, which also
exhibit higher NIP values. There remain challenges in the
simultaneous reduction of

PM, 5 and Os;.

The average SGEE of PM, 5 and O; in Zhejiang Province is

governance and emission

(2

~

0.533, indicating there is approximately 46.7% room for
improvement compared to the production frontier. Cities
with higher
Zhoushan, Ningbo, and Hangzhou. Technological
advancement is the main driving force behind the
improvement of SGEE of PM,s and O;, while the
contribution of pure technical efficiency needs further

environmental efficiency mainly include

exploration.

—
W
~

The results of the quantile regression indicate that the
influence coefficients of different factors on the synergistic
governance environmental efficiency of PM,s and O; vary
significantly at different quantiles. Educational investment
primarily improves the SGEE of PM, 5 and O; during low-
efficiency stages, while it exerts a certain “Crowding-out
effect” on resources during high-efficiency stages. In
contrast, the rise in technological innovation levels and the
adjustment of industrial structures can effectively promote
the improvement of SGEE of PM, 5 and Os.

Although the study has explored the SGEE of PM, 5 and O3 to
some extent, there are limitations due to the restricted range of
sample cities and indicator data. Future studies could focus on other
emerging pollutants, such as VOCs, to continuously optimize the
indicator system for undesirable outputs of AEE. Additionally, it will
be necessary to expand the sample size of cities over a broader range,
to assess the impact and incentives of indicators such as educational
investment, technological innovation, and the digital economy on
AEE at a larger scale (e.g., at the inter-city or national level) and in a
more precise manner.
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