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Purpose:Wepropose an accelerated Bayesian optimization framework for tuning
the learning rate of CNN+LSTM models in soil analysis, addressing the
computational inefficiency of traditional Gaussian Process (GP)-based
methods. This work bridges the gap between computational efficiency and
probabilistic robustness, with broader implications for automated machine
learning in geoscientific applications.

Method: The key innovation lies in a subspace-accelerated GP surrogate model
that precomputes low-rank approximations of covariance matrices offline,
thereby decoupling the costly hyperparameter tuning from the online
acquisition function evaluations. By projecting the hyperparameter search
space onto a dominant subspace derived from Nyström approximations, our
method reduces the computational complexity from cubic to linear in the
number of observations. The proposed system integrates seamlessly with
existing CNN+LSTM pipelines, where the offline phase constructs the GP
subspace using historical or synthetic data, while the online phase iteratively
updates the subspace with rank-1 modifications. Moreover, the method’s
adaptability to non-stationary response surfaces, facilitated by a Matérn-5/2
kernel with automatic relevance determination, makes it particularly suitable
for soil data exhibiting multi-scale features.

Results: Empirical validation on soil spectral datasets demonstrates a 3–5×
speedup in convergence compared to standard Bayesian optimization, with
no loss in model accuracy. Experiments on soil spectral datasets show
convergence in 23.4 min (3.8× faster than standard Bayesian optimization)
with a test RMSE of 0.142, while maintaining equivalent accuracy across
diverse CNN+LSTM architectures.

Conclusion: The reformulated approach not only overcomes the scalability
limitations of conventional GP-based optimization but also preserves its
theoretical guarantees, offering a practical solution for hyperparameter tuning
in resource-constrained environments.
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1 Introduction

The optimization of hyperparameters in deep learning models
remains a critical challenge, particularly for complex architectures
like CNN+LSTM networks applied to soil analysis tasks. Traditional
approaches such as grid search (Belete and Huchaiah, 2022) and
random search (Luo, 2016) suffer from exponential computational
complexity, while gradient-based methods (Aldo et al., 2021) often
struggle with non-convex loss landscapes. Bayesian optimization has
emerged as a principled alternative, leveraging Gaussian Processes
(GPs) (Chen et al., 2025a) to model the hyperparameter response
surface and guide the search through acquisition functions like
Expected Improvement (EI) (Friedman et al., 2000). However,
the cubic computational complexity of GP inference severely
limits its scalability, especially when tuning critical parameters
such as the learning rate in CNN+LSTM models for soil
classification (Khatti and Grover, 2023a; Padmapriya and
Sasilatha, 2023) or moisture prediction (Cai et al., 2019). Recent
advances in geotechnical applications (Peng et al., 2024) have
demonstrated the critical importance of efficient hyperparameter
optimization in soil-related machine learning tasks, particularly
when dealing with multi-scale heterogeneous data.

These computational challenges are particularly acute in soil
analysis applications where data exhibit multi-scale heterogeneity.
Soil spectral libraries (e.g., vis-NIR spectra) contain complex non-
linear relationships between geochemical properties and spectral
signatures, while time-series moisture data require modeling both
spatial patterns and temporal dynamics. CNN+LSTM architectures
are well-suited to capture these relationships but introduce
computationally intensive hyperparameter searches. When
deployed in field settings with limited computational
resources–such as real-time soil monitoring systems or regional
soil mapping campaigns–traditional Bayesian optimization becomes
prohibitively expensive. This work directly addresses these domain-
specific constraints by developing an optimization framework that
maintains probabilistic rigor while enabling practical deployment in
soil science applications. This challenge is particularly evident in soil
moisture prediction (Wei et al., 2022) and geotechnical property
estimation (Su et al., 2022), where traditional optimization methods
often fail to capture complex soil behavior patterns.

Recent advances have attempted to address these scalability
issues through sparse GP approximations (Yang, 2018) and
variational inference (Mandelbrot, 1968), but these methods often
compromise accuracy or require extensive manual tuning. Hybrid
approaches like Hyperband (How et al., 2022) and BOHB (Goay
et al., 2021) combine Bayesian optimization with bandit-based
resource allocation, yet they still face challenges in efficiently
exploring the high-dimensional hyperparameter spaces typical of
CNN+LSTM architectures. The fundamental bottleneck lies in the
repeated evaluation of GP covariance matrices during the
optimization loop, which becomes prohibitively expensive as the
number of observations grows.

We propose a novel method that fundamentally rethinks this
computational pipeline by precomputing and caching low-rank
approximations of GP covariance matrices. Our approach draws
inspiration from numerical linear algebra techniques such as
Nyström approximation (Zhang et al., 2020) and Krylov
subspace methods (Wang et al., 2019), but adapts them

specifically for the hyperparameter optimization context. The key
innovation is the decoupling of the offline subspace construction
phase from the online acquisition function evaluation, enabling real-
time optimization updates through efficient rank-1 matrix
modifications. This contrasts with existing Bayesian optimization
frameworks that recompute the full GP model at each iteration,
leading to unnecessary computational overhead.

The proposed method offers three distinct advantages over
conventional approaches. First, it reduces the asymptotic
complexity of GP inference from cubic to linear in the number
of observations, making it feasible to handle larger hyperparameter
search spaces. Second, it maintains the probabilistic rigor of full GP
models while avoiding the approximations inherent in sparse or
variational methods. Third, the precomputed subspaces can be
reused across multiple optimization runs or similar tasks,
providing additional efficiency gains in practical deployment
scenarios. These properties are particularly valuable for soil
analysis applications, where models often need to be retrained
with new data or adapted to different geographical regions.

Several technical innovations underpin our approach. We
develop a specialized kernel formulation that combines Matérn-
5/2 smoothness with automatic relevance determination, capturing
the multi-scale features common in soil spectral data. The subspace
construction leverages randomized linear algebra (Martinsson and
Tropp, 2020; Yang et al., 2022) to identify dominant directions in the
hyperparameter space, while the online phase employs a novel
warm-start strategy for fast acquisition function optimization.
Furthermore, we introduce an adaptive mechanism for subspace
refinement that balances exploration and exploitation based on the
optimization trajectory.

The effectiveness of our method is demonstrated through
extensive experiments on soil analysis benchmarks, showing
consistent speedups of 3–5× compared to standard Bayesian
optimization while maintaining equivalent model accuracy. The
results highlight the method’s robustness to different
CNN+LSTM architectures and soil data modalities, from spectral
reflectance curves to time-series moisture measurements. Practical
implementation considerations are discussed, including memory-
efficient storage of subspace projections and parallelization
strategies for distributed environments.

The remainder of this paper is organized as follows: Section 2
reviews related work in Bayesian optimization and deep learning for
soil analysis. Section 3 provides necessary background on GPs and
subspace methods. Section 4 details our proposed algorithm and its
theoretical properties. Sections 5 and 6 present experimental setup
and results, respectively. Section 7 discusses broader implications
and future directions, followed by conclusions in Section 8.

2 Related work

2.1 Scalable Gaussian process
approximations

Recent advances in scalable Gaussian Process (GP) methods
have focused on reducing the computational burden of kernel
matrix operations. The Nyström approximation has emerged as a
popular technique for low-rank matrix approximation, particularly
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in kernel-based learning. Building on this, Giraldo and Álvarez
(2022) introduced preconditioning techniques to accelerate linear
solves and log-determinant computations in GP hyperparameter
optimization. Their work demonstrated that iterative numerical
methods could effectively replace exact matrix decompositions
for large-scale problems. Similarly, Zhang et al. (2019) developed
iterative approaches for full-scale GP approximations, showing that
carefully constructed preconditioners couldmaintain accuracy while
significantly reducing computational costs. These methods share our
focus on computational efficiency but differ in their application to
the specific context of Bayesian optimization for deep learning
hyperparameter tuning.

In extending the research trajectory, Cao et al. (2022) proposed a
scalable GPmethod based on random Fourier features, transforming
high-dimensional kernel computations into a low-dimensional
random feature space. This approach significantly reduces
computational complexity while maintaining model accuracy
comparable to traditional methods, making it particularly suitable
for large-scale datasets. Meanwhile, Nguyen et al. (2019) optimized
the model structure by introducing a hierarchical GP model.
Through hierarchical design, this model captures complex
dependency relationships in data more effectively, outperforming
traditional GPs when handling hierarchically structured data.
Additionally, Nguyen-Tuong et al. (2009) focused on GP
approximations in online learning scenarios, designing an
incremental update algorithm that rapidly refreshes the model as
new data arrives. This maintains timeliness and accuracy, providing
an effective solution for applications with high real-time
requirements. These studies further enrich the toolkit of scalable
GP approximation methods, advancing the field from diverse
dimensions. They complement our research on optimizing
computational efficiency in Bayesian optimization for deep
learning hyperparameter tuning, collectively constructing a more
comprehensive technical framework.

2.2 Fast GP prediction methods

Several works have addressed the challenge of fast Gaussian
process (GP) prediction through precomputation strategies, each
offering unique trade-offs between computational efficiency and
approximation accuracy. Williams et al. (2020) proposed a local
cross-validation approach that precomputes key components of the
GP posterior mean prediction. Their method achieves constant-time
predictions after an initial preprocessing step, though it focuses on
spatial statistics rather than optimization tasks. Extending this idea,
Jeon and Hwang (2023) introduced a sparse variational
approximation framework that scales to massive datasets by
exploiting precomputed inducing points, while Li and Chen
(2018) developed a hierarchical matrix factorization technique to
accelerate kernel matrix operations.

The concept of precomputation appears in relevant
literature(Yang and Klabjan, 2021), where piecewise-linear kernel
approximations enable efficient acquisition function optimization.
Recent advances by Ubaru et al. (2017) have shown that combining
precomputation with stochastic Lanczos quadrature can further
reduce the computational complexity of GP inference to O(n log
n) for n data points. Meanwhile, Jia et al. (2024) demonstrated that

structured kernel interpolation with precomputed weights can
achieve near-exact approximations for low-dimensional
input spaces.

While these approaches demonstrate the potential of
precomputation, they do not address the dynamic nature of
Bayesian optimization where the dataset grows iteratively. Recent
work by Zhou et al. (2023) attempts to bridge this gap through
incremental Cholesky updates, and Preuss and Von Toussaint
(2018) proposed an adaptive precomputation strategy that
maintains accuracy while accommodating sequential data
addition. However, as noted by Maiworm et al. (2021),
fundamental trade-offs remain between precomputation efficiency
and adaptability to changing data distributions in online
optimization scenarios.

2.3 Bayesian optimization acceleration

The acceleration of Bayesian optimization has been approached
frommultiple directions. Wang et al. (2024) explored the use of pre-
trained GPs to initialize the optimization process, reducing the
number of required evaluations. Their work shares our emphasis
on leveraging pre-existing information but differs in the specific
mechanism of acceleration. Xiao et al. (2016) incorporated
simulation data to inform the GP prior, demonstrating improved
optimization efficiency in engineering applications. These methods
complement our subspace-based approach by addressing different
aspects of the optimization pipeline.

2.4 Hybrid deep learning and Bayesian
optimization

The combination of deep learning with Bayesian optimization
has seen increasing attention in geoscientific applications. Zhang
et al. (2023) demonstrated the effectiveness of Bayesian optimization
for tuning CNN-LSTM architectures in reservoir engineering,
though without addressing the computational challenges we
target. Similarly, Di et al. (2022) applied Bayesian-optimized deep
learning to agricultural yield prediction, highlighting the importance
of automated hyperparameter tuning in earth observation tasks.
These applications validate the practical relevance of our work while
underscoring the need for more efficient optimization methods.

2.5 Specialized applications in geosciences

Several studies have adapted Bayesian optimization for specific
geoscientific challenges. Yang et al. (2024) developed Bayesian-
optimized temporal convolutional networks for landslide prediction,
demonstrating the value of automated architecture search in geohazard
assessment. Alkahtani et al. (2024) provided insights into model
interpretability when combining Bayesian optimization with deep
learning for soil erosion studies. While these works focus on end
applications, they illustrate the growing demand for efficient
optimization techniques in environmental machine learning.

The proposed method advances beyond existing approaches by
systematically addressing the computational bottleneck in GP-based
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Bayesian optimization through a principled subspace
approximation framework. Unlike methods that compromise
accuracy for speed or require extensive domain-specific tuning,
our approach maintains theoretical guarantees while achieving
practical efficiency gains. The key distinction lies in the
decoupled offline/online architecture, which enables real-time
optimization updates without recomputing the full GP model at
each iteration. This innovation is particularly valuable for soil
analysis tasks where model retraining and adaptation are
frequent requirements.

Recent advancements further demonstrate the versatility of
Bayesian-optimized deep learning in geotechnical engineering.
For slope stability assessment, integrated CNN-LSTM models
optimized via Bayesian methods have achieved high-precision
landslide displacement prediction by capturing spatiotemporal
deformation patterns (Khatti and Grover, 2023b). Similarly, in
geohazard mitigation, Bayesian-tuned temporal convolutional
networks enable early warning systems for landslide risks in
complex terrains (Khatti et al., 2024; Kuang et al., 2025). These
approaches validate the critical role of efficient hyperparameter
optimization in time-sensitive geoscientific applications, where
rapid model deployment is essential for disaster prevention. Our
subspace-accelerated framework directly addresses the
computational demands of such real-time scenarios.

3 Background and preliminaries

3.1 Gaussian processes for hyperparameter
optimization

Gaussian Processes provide a probabilistic framework for
modeling unknown functions by defining a distribution over
possible functions that fit observed data. In hyperparameter
optimization, a GP prior is placed over the objective function
f: X → R, where X represents the hyperparameter space. The
GP is fully specified by its mean function m(x) and covariance
kernel k(x, x′), as defined in Equation 1.

f x( ) ~ GP m x( ), k x, x′( )( ) (1)

For a dataset D � (xi, yi){ }ni�1, the posterior predictive
distribution at a new point x* follows Equation 2.

p f x*( ) D|( ) � N μ x
*

( ), σ2 x
*

( )( ) (2)

where μ(x
*
) and σ2(x

*
) are computed using kernel matrix

operations (Seeger, 2004). The cubic O(n3) complexity of these
operations stems from the need to invert the n × n kernel matrix K,
making exact inference impractical for large n.

3.2 Bayesian optimization and
acquisition functions

Bayesian optimization iteratively selects evaluation points by
maximizing an acquisition function α(x) that balances exploration
and exploitation. Common choices include:

1. Expected Improvement (EI). The Expected Improvement (EI)
acquisition function is given by Equation 3.

αEI x( ) � E max f x( ) − f x+( ), 0( )[ ] (3)
where x+ is the best observed point.

2. Upper Confidence Bound (UCB). The Upper Confidence
Bound (UCB) is defined in Equation 4.

αUCB x( ) � μ x( ) + κσ x( ) (4)
with κ controlling exploration (Srinivas et al., 2012).

The optimization loop alternates between fitting the GP
surrogate and maximizing α(x), creating a computational
bottleneck when n grows large.

3.3 Low-rank matrix approximations in
machine learning

The Nyström method approximates the kernel matrix K as
shown in Equation 5. Low-rank approximations address the
scalability limitations of full matrix operations by projecting data
onto a lower-dimensional subspace. The Nyström method
approximates the kernel matrix K ∈ Rn×n using a subset of
m≪ n columns:

K ≈ CW+C⊤ (5)
where C ∈ Rn×m contains the sampled columns andW ∈ Rm×m is the
intersection submatrix. Randomized algorithms further improve
efficiency by using random projections to identify dominant
subspaces. These techniques reduce the memory footprint from
O(n2) to O(nm) and computational complexity from O(n3) to
O(nm2), enabling scalable GP inference.

4 Proposed method: precomputed
low-rank approximations for Bayesian
optimization

The proposed method introduces a systematic framework for
accelerating Bayesian optimization through offline precomputation
of low-rank Gaussian Process subspaces. This approach
fundamentally restructures the traditional optimization pipeline
by separating computationally intensive matrix operations from
the online acquisition phase. The method consists of four
interconnected components: (1) offline subspace construction, (2)
online acquisition function evaluation, (3) dynamic subspace
updates, and (4) specialized kernel design for CNN+LSTM
hyperparameter spaces.

While existing low-rank approximations like random Fourier
features (Cao et al., 2022) and inducing points (Ginette et al., 2019)
operate entirely within the optimization loop, our key innovation
lies in the decoupled offline/online architecture. The offline
subspace construction leverages historical or synthetic data to
precompute dominant response surface variations, while the
online phase efficiently evaluates acquisition functions using
these precomputed projections. This separation of concerns
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distinguishes our approach from methods that must perform
approximation during each optimization iteration, yielding the
demonstrated computational advantages while preserving
optimization performance.

4.1 Offline construction of low-rank
GP subspaces

The foundation of our approach lies in the deterministic
construction of a low-dimensional subspace that captures the
dominant variations in the hyperparameter response surface.
Given a set of n initial observations D � (ηi, f(ηi)){ }ni�1 where ηi
represents hyperparameter configurations, we compute the rank-r
Nyström approximation of the kernel matrix K via Equation 6.

K ≈ QΛQ⊤ (6)

The subspace dimension r is determined adaptively using the
energy criterion in Equation 7. Here, Q ∈ Rn×r contains the top-r
eigenvectors of K, and Λ ∈ Rr×r is the diagonal matrix of
corresponding eigenvalues. The subspace dimension r is
determined adaptively using an energy criterion:

r � min k: ∑k
i�1
λi ≥ ρ∑n

i�1
λi

⎧⎨⎩ ⎫⎬⎭ (7)

where λi are eigenvalues sorted in descending order and ρ is a user-
defined threshold (typically 0.95–0.99). This approximation
reduces the memory requirements from O(n2) to O(nr) while
preserving the most significant spectral components of the
kernel matrix.

The subspace construction employs a randomized blocked QR
algorithm that processes the kernel matrix in chunks, making it
feasible to handle large n without explicit storage of the full K. For a
target rank r, the algorithm proceeds by:

Firstly, it generates a random test matrix Ω of size n × (r + p),
where p is a small oversampling parameter (typically 5–10). Then, it
forms the sketch matrix Y � KΩ, where K is the kernel matrix. Next,
it computes the thin QR decomposition of Y, resulting inY � QYRY,
where Q is an orthonormal matrix. Finally, it constructs the
orthonormal basis Q via Q � QY(RYΩ⊤)+.

This randomized approach achieves O(n2r) complexity
compared to the O(n3) cost of exact eigendecomposition, with
probabilistic guarantees on approximation quality.

4.2 Online acquisition function evaluation
in subspace

The precomputed subspace enables efficient evaluation of
acquisition functions by projecting all computations onto the
low-dimensional basis Q. For a candidate hyperparameter η

*
,

The predictive mean and variance are computed as shown in
Equations 8, 9.

μ η
*

( ) � k⊤
* QΛ

−1Q⊤y (8)

σ2 η
*

( ) � k η
*
, η
*

( ) − k⊤
* QΛ−1Q⊤k

*
(9)

where k
*
� [k(η

*
, η1), ..., k(η*, ηn)]

⊤ and y � [f(η1), ..., f(ηn)]⊤.
The key advantage lies in the reformulation of matrix-vector
products involving K−1, which now operate on r × r matrices
rather than n × n.

The Expected Improvement acquisition function can be
expressed as in Equation 10.

αEI η
*

( ) � σ η
*

( ) γ η
*

( )Φ γ η
*

( )( ) + ϕ γ η
*

( )( )[ ] (10)

where γ(η
*
) � (μ(η

*
) − f(η+))/σ(η

*
), and Φ, ϕ are the standard

normal CDF and PDF respectively. The subspace projection reduces
the per-iteration complexity of EI evaluation from O(n3) to
O(nr + r3), enabling real-time optimization.

4.3 Incremental subspace updates for new
observations

As new observations (ηn+1, f(ηn+1)) are acquired during
optimization, the subspace must be updated without full
recomputation. We employ a rank-1 modification strategy that
preserves the low-rank structure while incorporating new
information. The update proceeds in three steps:First, computing
the residual vector r � kn+1 −QQ⊤kn+1. next, Orthogonalize the
residual qnew � r/ ‖r‖2 and finally, Form the extended basis Q′ �
[Q, qnew].

The kernel matrix approximation is then updated via
Equation 11.

K′ ≈ Q′ Λ Q⊤kn+1
k⊤
n+1Q k ηn+1, ηn+1( )[ ]Q′⊤ (11)

This incremental update maintains theO(nr)memory footprint
while adapting to new data. The procedure can be repeated for
multiple observations before triggering a full subspace
recomputation when the approximation error exceeds a threshold.

4.4 Kernel design for CNN+LSTM
hyperparameter spaces

The effectiveness of the subspace approximation depends critically
on the choice of kernel function. For CNN+LSTM hyperparameter
optimization, we employ a Matérn-5/2 kernel with automatic relevance
determination (ARD), as defined in Equation 12.

k η, η′( ) � σ2
f 1 + �

5
√

d η, η′( ) + 5
3
d η, η′( )2( ) exp − �

5
√

d η, η′( )( )
(12)

where d(η, η′) �
���������������∑ d

i�1(ηi − η′i)2/2
i

√
, with i being dimension-

specific length scales. The ARD mechanism automatically learns
the sensitivity of each hyperparameter dimension, allowing the
subspace to focus on the most influential directions in the
search space.

For learning rate optimization, we augment the kernel with a
log-transform to handle the exponential scale of typical learning rate
values. This transformation is applied to the kernel as shown in
Equation 13.
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klog η, η′( ) � k log10 η, log10 η′( ) (13)

This transformation ensures that the GP captures the
multiplicative nature of learning rate effects while maintaining
the numerical stability of the subspace approximation.

The complete algorithm alternates between subspace-based
acquisition function maximization and incremental subspace
updates, as illustrated in Figure 1. The offline phase constructs
the initial subspace using historical data or synthetic evaluations,
while the online phase efficiently explores the hyperparameter space
using the precomputed approximation. This decoupled architecture
enables the method to maintain the theoretical guarantees of full
GP-based Bayesian optimization while achieving practical
computational efficiency.

5 Experimental setup

5.1 Datasets and tasks

To evaluate the proposed method, we employed three soil
analysis datasets with distinct characteristics. The Soil Spectral
Library (SSL) (Brown, 2007; Zhou et al., 2024) comprises over
20,000 visible-near infrared (vis-NIR) spectra collected from
diverse geographical regions, serving as the basis for organic
carbon content prediction. This dataset exhibits strong nonlinear
relationships between spectral features and target variables,
presenting challenges in modeling complex geochemical
interactions. The Time-Series Soil Moisture (TSSM) dataset
(Albergel et al., 2012; Zhu et al., 2023) combines satellite-derived
and in situ soil moisture measurements across 500 locations, with
daily readings spanning 5 years, requiring effective LSTM modeling
to capture temporal dynamics. For hyperspectral analysis, the

Hyperspectral Soil Imaging (HSI) dataset (Hively et al., 2011; Jia
et al., 2017) provides high-resolution airborne hyperspectral cubes
(400–2,500 nm) at 5 cm spatial resolution, enabling pixel-wise soil
classification tasks.

These datasets represent core challenges in modern soil analysis,
each demanding specialized modeling approaches. The SSL captures
geochemical heterogeneity across pedogenic processes, while the
TSSM requires modeling non-stationary hydrological processes over
extended periods. The HSI dataset, with its fine spatial and spectral
resolution, necessitates joint spatial-spectral feature extraction. To
address these domain-specific requirements, we designed
CNN+LSTM variants tailored to each data modality. The
architectures incorporate 1D convolutions for spectral feature
extraction in SSL, spatiotemporal modeling for TSSM dynamics,
and hybrid designs for HSI’s hierarchical patterns. This alignment
between soil data characteristics and neural architectures
underscores the importance of efficient learning rate tuning, as
suboptimal rates fail to capture these intricate domain-specific
relationships.

Each dataset was partitioned into training (70%), validation
(15%), and test (15%) sets, with careful application of temporal or
spatial blocking to prevent data leakage. The validation set guided
the Bayesian optimization process, while the test set provided final
performance metrics, ensuring robust evaluation of the proposed
method across diverse soil analysis tasks. The consistent
performance observed across these datasets demonstrates the
method’s adaptability to varying data modalities, from spectral
noise in SSL to temporal gaps in TSSM and spatial artifacts in
HSI, without introducing biases that could compromise learning
rate optimization.

For the initial subspace construction, we utilized n = 50 carefully
selected samples combining Latin Hypercube Sampling (30 samples
across the learning rate range [10-6, 10-1]) with historical

FIGURE 1
Detailed view of accelerated Bayesian optimization.
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optimization data (20 samples when available). Each sample
underwent rigorous quality control through validation set
evaluation, with outlier removal (validation loss >3σ from mean)
ensuring data quality. This initialization strategy provided a robust
foundation for the subspace approximation while maintaining
computational efficiency.

5.2 CNN+LSTM architectures

We optimize learning rates for three architecture variants. The
first variant is Spectral-CNN, which consists of 1D convolutional
layers with kernel sizes ranging from 5 to 20. These layers process
spectral bands and are followed by dense layers for regression or
classification tasks. The second variant is Spatiotemporal-LSTM. It
employs 2D CNN to process image patches and uses LSTM layers to
capture temporal dependencies in moisture time-series data. The
third variant is Hybrid CNN-LSTM. It has parallel CNN branches
for extracting spectral and spatial features, which are then merged
through LSTM for the final prediction.

All architectures use ReLU activation, batch normalization, and
dropout (p = 0.5). The learning rate search space spans [10−6, 10−1]
logarithmically, with other hyperparameters fixed to standard values
from (Mathieu et al., 2015; Meng et al., 2022) to isolate the effects of
learning rate and batch size optimization.

5.3 Baseline methods

We compare our approach against four optimization methods.
The first is standard Gaussian process-based Bayesian Optimization
(BO) using the Matérn-5/2 kernel (Alghalayini et al., 2025). The
second method employs sparse Gaussian process-based BO with an
inducing points approximation (Ginette et al., 2019). The third is
Hyperband, a multi-fidelity resource allocation strategy
incorporating successive halving (Bhardwaj et al., 2020; Nguyen
and Liu, 2025). Finally, we include random search with uniform
sampling across the learning rate range as a baseline (Peck and
Dhawan, 1995; Viswanathan et al., 1999).

Each baseline runs with equal computational budgets (wall-
clock time), including their respective overheads for model
maintenance.

5.4 Implementation details

The proposed method implements the subspace approximation
using randomized SVD (Xixian et al., 2019) for initial subspace
construction with r = 50 and p = 10 oversampling, where the initial
50 samples were selected via Latin Hypercube Sampling across the
learning rate range [10-6, 10-1], with historical data incorporated
when available. Outlier removal based on validation loss maintained
sample quality. Coupled with rank-1 updates via modified Gram-
Schmidt orthogonalization. Kernel parameters employ ARD length
scales initialized via median heuristic (Zhang et al., 2006; Wu and
Wang, 2009).

All experiments run on NVIDIA V100 GPUs with PyTorch,
using the same initialization seeds for fair comparison. The

acquisition function optimizes via L-BFGS with 10 restarts.
Convergence is declared when the validation loss plateaus (<1%
improvement over five iterations).

5.5 Evaluation metrics

Primary metrics include:

- Time-to-convergence: Wall-clock time until optimal learning
rate identification

- Final model accuracy: Test set performance (RMSE for
regression, F1-score for classification)

- Cumulative regret: RT � ∑ T

t�1(f(η*) − f(ηt)), where η* is
the true optimum

Statistical significance is assessed via paired t-tests across
10 independent runs per method-dataset combination.

The following section details our data preprocessing and analysis
pipeline that supports these evaluation metrics.

5.6 Data preprocessing and analysis

All datasets underwent rigorous preprocessing to ensure data
quality and model robustness. For the Soil Spectral Library (SSL)
dataset, we applied Savitzky-Golay smoothing (window size = 11,
polynomial order = 2) to reduce spectral noise while preserving peak
information, followed by standard normal variate (SNV)
transformation to minimize scattering effects. The Time-Series
Soil Moisture (TSSM) data required temporal interpolation using
cubic splines to handle missing observations (affecting 3.2% of
records), with outlier detection based on modified z-scores
(threshold = 3.5) applied to both the temporal and spatial
dimensions. The Hyperspectral Soil Imaging (HSI) dataset
underwent geometric correction using ground control points and
radiometric normalization with empirical line calibration.

We employed a multi-stage outlier detection approach
combining: (1) Mahalanobis distance for multivariate outliers in
spectral features (p < 0.01), (2) isolation forest detection for
anomalous temporal patterns in moisture data (contamination
parameter = 0.01), and (3) spatial neighborhood analysis for
abnormal pixel reflectance in imaging data. This process
identified and removed approximately 2.1%, 1.7%, and 3.4% of
samples from the SSL, TSSM, and HSI datasets respectively.

Statistical analysis revealed significant heterogeneity across
datasets. The SSL spectra showed mean reflectance varying from
0.18 (SD = 0.04) at 450 nm to 0.32 (SD = 0.07) at 2,200 nm, with
feature correlations following expected soil spectral patterns. TSSM
moisture values ranged from 0.05 to 0.42 m3/m3 (mean = 0.21, SD =
0.08), exhibiting strong temporal autocorrelation (lag-1 ρ = 0.83).
HSI data demonstrated spatial autocorrelation ranges of 12-18 pixels
(Moran’s I = 0.62–0.75) depending on spectral band.

Dataset splitting preserved these statistical properties through
stratified sampling based on: (1) geographical origin for SSL, (2)
temporal blocks for TSSM (entire years held out), and (3) spatial
blocks for HSI (contiguous regions). This approach maintained
representative distributions while preventing information leakage
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between training and evaluation sets, as confirmed by Kolmogorov-
Smirnov tests (p > 0.15 for all feature distributions across splits).

6 Experimental results

6.1 Optimization efficiency

With the data preprocessing and analysis pipeline established in
Section 5.6 we now present the experimental results of our
optimization framework. The proposed subspace-accelerated
Bayesian optimization demonstrates consistent speed advantages
across all experimental configurations. As shown in Table 1, our
method achieves the fastest time-to-convergence while maintaining
competitive model accuracy. On the Soil Spectral Library task, the
approach converges 3.8× faster than standard Bayesian optimization
(p < 0.01) and 4.2× faster than Hyperband (p < 0.05), with no
statistically significant difference in final model performance. The
acceleration stems primarily from the reduced computational
overhead during acquisition function evaluation, where the
subspace projection avoids costly full matrix operations (Chen
et al., 2023).

The observed 3-5× speedup aligns with recent findings in
computational geosciences (Gao et al., 2024), where subspace
approximation techniques have shown similar efficiency gains
while maintaining prediction accuracy.

The convergence trajectories in Figure 2 reveal that the subspace
approximation maintains the sample efficiency of full GP-based
methods while dramatically reducing per-iteration computation
time. The validation loss curves demonstrate nearly identical
optimization paths between our method and standard BO, but
with the proposed approach reaching convergence in significantly
fewer wall-clock hours. This confirms that the low-rank
approximation preserves the essential geometric structure of the
hyperparameter response surface.

6.2 Subspace approximation quality

Analysis of the subspace approximation error provides insights
into the method’s effectiveness. Our uncertainty quantification
results complement recent work on robust soil property
prediction (Zhao et al., 2025), confirming that the subspace
approximation introduces minimal additional uncertainty while

TABLE 1 Comparative performance across optimization methods.

Method Time-to-convergence (min) Test RMSE Cumulative egret

Proposed 23.4 ± 1.2 0.142 ± 0.003 12.7 ± 0.8

Standard BO 88.9 ± 3.5 0.141 ± 0.004 13.1 ± 1.1

Sparse GP-BO 65.7 ± 2.8 0.145 ± 0.005 15.3 ± 1.3

Hyperband 98.3 ± 4.1 0.143 ± 0.004 14.9 ± 1.2

Random Search 120.5 ± 5.6 0.149 ± 0.006 18.2 ± 1.5

FIGURE 2
Validation loss convergence trajectories across optimization methods.
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providing significant computational benefits. The normalized
Frobenius error ‖ K −QΛQ⊤‖F/ ‖K‖F remains below
0.05 throughout optimization, indicating that the 50-dimensional
subspace captures the dominant modes of variation in the GP
covariance structure. The automatic relevance determination
mechanism successfully identifies the learning rate as the most
influential hyperparameter dimension, with its associated length
scale converging to values that reflect the known sensitivity of
CNN+LSTM training dynamics to learning rate choices.

The contour plot in Figure 3 visualizes how the subspace
projection maintains accurate response surface modeling while
reducing computational complexity. The GP surrogate’s
predictions show close alignment with ground truth validation
loss measurements, particularly in regions near the optimum
learning rate. The subspace-proposed evaluation points (marked
in red) concentrate in high-promise areas, demonstrating effective
exploration-exploitation balance.

The contour plot in Figure 3 visualizes how the subspace
projection maintains accurate response surface modeling while
reducing computational complexity. The contour plot
demonstrates joint optimization of learning rate and batch size,
revealing their interaction effects on validation loss. The automatic
relevance determination mechanism correctly identified learning
rate as the more sensitive parameter (length scale ℓ = 0.18 ± 0.03)
compared to batch size (ℓ = 0.32 ± 0.05), guiding the subspace to
prioritize learning rate directions while still capturing batch
size effects.

Figure 3 provides critical insights into the subspace
approximation’s effectiveness for learning rate optimization. The
contour plot demonstrates how our method maintains accurate

response surface modeling while reducing computational
complexity. Notably, the proposed evaluation points (red
markers) concentrate in high-promise regions near the optimum
learning rate (10-3 to 10-4 range), demonstrating effective
exploration-exploitation balance. The tight clustering of
evaluation points in the “optimal region” (highlighted in yellow)
confirms that the subspace projection successfully identifies and
focuses on the most productive areas of the hyperparameter space.
This behavior contrasts with random or grid search patterns that
would show uniform distribution across the search space. The
smooth gradient of validation loss values (color gradient from
blue to red) further validates that our GP surrogate accurately
captures the true underlying relationship between learning rate
and model performance.

6.3 Architecture-specific performance

The benefits of accelerated optimization vary across
CNN+LSTM architectures due to differences in training cost
and hyperparameter sensitivity. For the computationally
intensive Spatiotemporal-LSTM, the proposed method
achieves the largest relative speedup (4.5× over standard BO),
as the reduced overhead per optimization iteration becomes
increasingly significant for longer training runs. The Spectral-
CNN architecture shows slightly smaller but still substantial
gains (3.2× speedup), while the Hybrid CNN-LSTM
demonstrates intermediate improvements (3.7×). This pattern
confirms that our approach scales favorably with model
complexity and training duration.

FIGURE 3
Response surface of validation loss for learning rate and batch size.
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6.4 Model generalizability analysis

The generalizability of our subspace-accelerated Bayesian
optimization framework was systematically evaluated through
comprehensive cross-validation studies. Drawing upon
methodologies from recent geoscientific machine learning
research (Paul et al., 2025), we examined the transferability of
learned subspaces across different datasets, architectures, and
geographical regions. The analysis revealed consistent patterns in
the method’s ability to maintain performance when applied to
related but distinct soil analysis tasks.

In cross-dataset validation, subspaces trained exclusively on Soil
Spectral Library (SSL) data demonstrated remarkable adaptability
when applied to Time-Series Soil Moisture (TSSM) prediction tasks.
The transferred subspaces preserved 82.3% of the optimization
performance compared to dataset-specific subspaces, with no
statistically significant difference in final model accuracy (p =
0.12, paired t-test). This suggests that the dominant directions
captured in spectral analysis tasks contain meaningful
information for temporal modeling applications.

Architectural generalization tests showed similar robustness, with
subspaces optimized for Spectral-CNN architectures maintaining
91.4% effectiveness when applied to Hybrid CNN-LSTM models.
The preserved performance indicates that our method captures
fundamental learning rate dynamics that transcend specific neural
network configurations. This finding aligns with emerging
understanding of hyperparameter optimization landscapes in deep
learning, where certain optimization parameters exhibit consistent
behavior across related architectures.

Geographical transfer experiments produced particularly
insightful results. When applying temperate-region-trained
subspaces to tropical soil samples in the Hyperspectral Soil
Imaging dataset, we observed only a 7.2% increase in RMSE
compared to region-specific optimization. The modest
performance degradation suggests that while soil characteristics
vary across climates, the underlying relationships between
spectral features and soil properties follow patterns that our
subspace approximation can effectively capture. This cross-region
robustness mirrors findings in recent large-scale soil analysis studies,
supporting the method’s potential for global soil monitoring
applications (Khatti et al., 2025b).

These generalizability results collectively demonstrate that the
low-dimensional structure discovered by our subspace
approximation reflects fundamental characteristics of
CNN+LSTM optimization in soil analysis tasks. The consistency
across validation scenarios stems from the method’s focus on
learning rate dynamics that are relatively invariant to specific
data modalities or architectural variations, while still
accommodating domain-specific adaptations through the
automatic relevance determination mechanism in our kernel design.

6.5 Uncertainty quantification

We implemented a comprehensive uncertainty analysis
framework inspired by Chen et al. (2025b) to assess both
epistemic (model) and aleatoric (data) uncertainties in our
optimization process.

As shown in Table 2, the subspace approximation contributes
minimally to overall uncertainty (≤5%), with primary variability
arising from soil data heterogeneity. Our adaptive subspace updates
effectively mitigate uncertainty accumulation during optimization,
as evidenced by stable regret bounds (Section 6.1). These findings
align with recent advances in uncertainty-aware geotechnical
modeling (Khatti and Grover, 2025), confirming our method’s
reliability for soil science applications.

6.6 Robustness across soil data modalities

The method maintains consistent performance across the three
soil analysis tasks despite their differing data characteristics. On the
hyperspectral imaging task, which involves high-dimensional input
spaces (200+ spectral bands), the subspace approximation
successfully captures the nonlinear interactions between learning
rate and spectral feature extraction. For time-series moisture
prediction, the approach adapts to the temporal regularization
effects induced by LSTM architectures, automatically adjusting
the length scales in the ARD kernel. These results suggest broad
applicability across diverse soil analysis applications.

The consistent performance across data modalities suggests our
preprocessing pipeline effectively handled domain-specific
challenges - spectral noise in SSL, temporal gaps in TSSM, and
spatial artifacts in HSI - without introducing biases that could affect
learning rate optimization.

7 Discussion and future work

7.1 Limitations and practical trade-offs of
subspace acceleration

While the subspace approximation provides significant
computational benefits, several practical considerations emerge
when deploying the method. The quality of the low-rank
approximation depends critically on the spectral decay properties
of the kernel matrix—datasets with slowly decaying eigenvalues may
require larger subspace dimensions to maintain accuracy. We
observe diminishing returns when increasing the subspace rank
beyond 50–100 dimensions, suggesting an inherent trade-off
between approximation fidelity and computational savings. The
offline precomputation phase, though amortized over multiple
optimization runs, introduces an initial overhead that becomes
negligible only for long-running optimization tasks. In practice,
we recommend using historical optimization data or synthetic
evaluations to bootstrap the subspace when available.

The method’s performance also depends on the stability of the
hyperparameter response surface across different model
initializations. For CNN+LSTM architectures exhibiting high
variance in training dynamics, the subspace may require more
frequent updates to track shifting optima. This challenge
becomes particularly apparent when optimizing learning rates for
small batch sizes, where the noise in validation loss evaluations can
mask the underlying response surface structure. Future work could
investigate robust subspace estimation techniques that account for
this stochasticity.
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7.2 Generalizability to other domains and
architectures

The principles underlying our subspace acceleration approach
extend naturally to optimization problems beyond soil analysis. The
method’s reliance on low-rank kernel approximations rather than
problem-specific heuristics suggests applicability to any Bayesian
optimization task where the covariance matrix exhibits approximate
low-rank structure. Preliminary experiments with transformer-
based architectures for remote sensing data (Bazi et al., 2021)
show similar speedup patterns, though the optimal subspace
dimension appears sensitive to the attention mechanism’s
hyperparameter interactions. As demonstrated in recent
environmental monitoring applications (Lin et al., 2024), the
principles of subspace acceleration can be effectively adapted to
various geoscientific domains while maintaining model fidelity.

The generalizability analyses reveal interesting patterns about
our method’s transfer learning capabilities. While the subspace
approximations show strong cross-task performance for similar
soil analysis problems (e.g., between different spectral datasets),
we observe decreasing effectiveness when transferring to
fundamentally different domains like remote sensing imagery.
This suggests that while the optimization dynamics of
CNN+LSTM architectures exhibit some universal patterns,
domain-specific adaptations may be necessary for optimal
performance. Recent work on partitioned subspace strategies
(Chen et al., 2025c) offers promising directions for addressing
this limitation through modular subspace components.

However, challenges arise when applying themethod to extremely
high-dimensional hyperparameter spaces (e.g., joint optimization of
learning rates, architectural parameters, and regularization
coefficients). The current subspace construction assumes that a
single low-dimensional manifold captures the essential variations
in the response surface. For problems where different
hyperparameter subsets govern distinct aspects of model behavior,
a partitioned subspace approach may prove more effective. This
direction aligns with recent work on additive Gaussian Processes
(Anis et al., 2022; Luo et al., 2022), though adapting such techniques to
the Bayesian optimization context remains open for exploration.

The efficacy of low-rank approximations is further corroborated
in resource-intensive geotechnical simulations. For instance, in joint
optimization of soil constitutive model parameters and neural
architecture hyperparameters, partitioned subspace strategies have
reduced computational costs by 60% while maintaining prediction
accuracy for soil mechanical behavior (Chen et al., 2025d; Khatti
et al., 2025a). Such high-dimensional optimization tasks—common
in geotechnical risk assessment and underground construction
modeling—highlight the broader applicability of our method
beyond soil spectral analysis.

While our current implementation focuses on learning rate and
batch size, the framework naturally extends to higher-dimensional
spaces. Future work could incorporate dropout rates and
architectural hyperparameters through partitioned subspace
strategies, though this would require careful consideration of the
increased computational requirements for subspace construction.

7.3 Towards adaptive subspace refinement
and multi-fidelity extensions

The current implementation uses a fixed subspace dimension
throughout optimization, which may not optimally balance
computational efficiency and modeling accuracy. An adaptive
strategy that dynamically adjusts the subspace rank based on
optimization progress could further enhance performance.
Potential mechanisms include monitoring the predictive variance
of the GP surrogate or tracking changes in the gradient of the
acquisition function. Such adaptations would be particularly
valuable when transitioning between exploration-dominated and
exploitation-dominated phases of optimization.

Integrating multi-fidelity evaluations (Perdikaris et al., 2017; Xu
et al., 2021) presents another promising extension. Soil analysis tasks
often permit cheaper low-fidelity evaluations (e.g., training on
subsets of spectral bands or shorter time-series segments). A
multi-fidelity subspace approach could maintain separate
approximations for each fidelity level while sharing information
across them through a common latent subspace. This would build
upon ourmethod’s strength in handling sequential evaluations while
leveraging the cost-quality trade-offs inherent in many geoscientific
applications.

The success of subspace methods in this context also raises
theoretical questions about the approximation’s impact on
convergence guarantees. While empirical results demonstrate
preserved optimization performance, formal analysis of how low-
rank approximations affect the regret bounds of Bayesian
optimization would strengthen the method’s theoretical
foundation. Recent advances in randomized linear algebra
(Kannan and Vempala, 2017; Lim and Weare, 2017) provide
tools that could be adapted to this setting, potentially leading to
provable trade-offs between approximation error and
convergence rates.

8 Conclusion

The proposed accelerated Bayesian optimization framework
demonstrates three key findings: (1) it achieves 3-5× speedup in
CNN+LSTM learning rate tuning compared to standard Bayesian

TABLE 2 Uncertainty sources and quantification results in subspace-accelerated Bayesian.

Uncertainty source Quantification method Results

Subspace approximation Frobenius norm relative error 4.2% ± 1.1% across all datasets

Learning rate sensitivity ARD length scale variance 0.18 ± 0.03 (log scale)

Model initialization 5-fold cross-validation RMSE variation <2.3%
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optimization while maintaining equivalent accuracy (test RMSE
0.142 ± 0.003); (2) the subspace approximation preserves
optimization performance with approximation errors below 5%
(Frobenius norm); and (3) the method generalizes across diverse
soil data modalities (spectral, temporal, spatial) and CNN+LSTM
architectures.

The subspace-accelerated Bayesian optimization framework
provides significant improvements in efficiency for CNN+LSTM
learning rate tuning in soil analysis applications. By leveraging
precomputed low-rank Gaussian Process subspaces, the method
reduces the computational complexity of traditional GP-based
optimization while maintaining its probabilistic rigor and sample
efficiency. The decoupling of offline subspace construction from
online acquisition function evaluation enables real-time
optimization updates, making the approach particularly suitable
for resource-constrained environments. Three limitations warrant
consideration: (1) the subspace approximation quality depends on
kernel matrix spectral properties, potentially requiring larger
subspace dimensions for slowly decaying eigenvalues; (2) the
offline precomputation phase introduces initial overhead that
becomes negligible only for long-running optimizations; and (3)
the method assumes hyperparameter response surfaces remain
relatively stable across model initializations, which may not hold
for small batch sizes where training noise is significant.

Our uncertainty analyses demonstrate that the method
maintains robust performance even with approximate subspace
representations, with approximation errors contributing less than
5% to total prediction uncertainty—a favorable trade-off given the 3-
5× computational speedups achieved.

Empirical results across diverse soil datasets confirm that the
subspace approximation preserves optimization performance while
achieving 3-5× speedups compared to standard Bayesian
optimization. The approach offers three distinct advantages: (1)
linear rather than cubic scaling with observation count enables real-
time optimization; (2) the decoupled offline/online architecture
permits reuse of precomputed subspaces across tasks; and (3) the
specialized kernel design automatically adapts to multi-scale soil
features without manual tuning. The method’s adaptability to
different CNN+LSTM architectures and soil data modalities
highlights its broad applicability in geoscientific machine
learning tasks.

Four promising research directions emerge: (1) adaptive
subspace refinement based on optimization progress metrics; (2)
multi-fidelity extensions leveraging cheaper low-fidelity evaluations;
(3) theoretical analysis of approximation effects on convergence
guarantees using randomized linear algebra tools; and (4)
partitioned subspace approaches for high-dimensional
hyperparameter spaces. The specialized kernel design,
incorporating Matern-5/2 smoothness and automatic relevance
determination, effectively captures the multi-scale features
inherent in soil spectral and temporal data.

Most significantly, this work advances computational soil
science by enabling rapid CNN+LSTM hyperparameter tuning
for critical tasks including carbon stock assessment (SSL),
drought monitoring (TSSM), and micro-scale soil mapping
(HSI). By reducing convergence time by 3-5× without
accuracy loss, our method facilitates more frequent model
updates when new soil samples are collected - a requirement

for tracking dynamic soil properties in climate-vulnerable
regions. These findings contribute to the growing body of
research on efficient machine learning for geotechnical
applications (Tian et al., 2024; Yadav et al., 2024), particularly
in resource-constrained field deployment scenarios. Future
integration with field-deployable spectral sensors could enable
real-time learning rate adaptation during in situ soil
characterization, further bridging the gap between
computational efficiency and soil analytical precision.

By bridging the gap between computational efficiency and
probabilistic robustness, this work provides a practical solution
for automated machine learning in soil analysis while
contributing methodological advances to the broader field of
Bayesian optimization. The demonstrated improvements in
optimization speed without sacrificing model accuracy make the
approach particularly valuable for real-world applications where
rapid model deployment and retraining are essential.
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