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Objective: Since 2024, Japan has experienced a rapid surge in rice prices. This
study aims to explore the underlying climatic drivers of this price increase, with a
particular focus on the potential impact of the El Niño–Southern
Oscillation (ENSO).

Methods:High-frequency climate andmarket data are integrated, and regression
models are constructed in distinct stages along with spatial econometric models
to systematically assess the impact of ENSO on Japan’s rice market. The NINO
index serves as the primary explanatory variable representing ENSO intensity.

Results: The findings reveal that ENSO events indirectly affect rice prices in
Niigata by altering hydrological conditions in the middle reaches of the Shinano
River. These disruptions trigger price co-movement and spatial spillover effects
across different regions, resulting in heterogeneous impacts on rice price
volatility throughout Japan. Moreover, climate shocks are amplified through
hydrological systems in rice-producing areas, ultimately influencing the
national grain market.

Contributions: This study provides a natural explanation for recent fluctuations in
Japanese rice prices and presents new empirical evidence on the climatic
determinants of food price volatility. It also offers actionable policy
recommendations to mitigate climate-related risks and enhance food security
through climate-responsive agricultural strategies.
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1 Introduction

In recent years, global climate change has become increasingly evident, characterized by
a rise in both the intensity and frequency of extreme weather events. In Europe, the number
of extreme weather incidents—including hydrometeorological phenomena—has increased
by 60% over the past three decades (Furtak andWolińska, 2023). In the United States, more
than 90 weather-related disasters have occurred during the same period, each causing losses
exceeding $1 billion (Motha, 2011). These developments have emerged as critical factors
disrupting the stability of agricultural activities and posing significant threats to global food
security. For example, in Germany, summer droughts between 1995 and 2019 led to
substantial winter wheat yield reductions, resulting in estimated losses of €23 million
(Schmitt et al., 2022). Climate-related anomalies—such as heatwaves, torrential rains, and
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severe droughts—have become more frequent, affecting all stages of
agricultural production. In the U.S. alone, over 70% of the decline in
grain yields in 2011 was attributed to droughts and floods (Furtak
and Wolińska, 2023).

The El Niño–Southern Oscillation (ENSO), a major ocean-
atmosphere coupling phenomenon originating in the equatorial
Pacific, exerts broad and far-reaching effects on global climate
systems. By altering precipitation patterns and temperature
distributions, ENSO intensifies climatic anomalies and frequently
triggers large-scale environmental disruptions, which have
significant implications for agricultural productivity. In Thailand,
another key rice-producing country, ENSO phases—particularly El
Niño and La Niña—affect rice yields by modulating local
temperature and rainfall patterns. During El Niño events,
drought conditions induced by ENSO are strongly associated
with significant reductions in rice production. Conversely, La
Niña-related excessive rainfall may benefit some regions but also
brings challenges such as flooding and pest outbreaks
(Wannasingha, 2025). On the island of Java, approximately two-
thirds of the interannual variability in rice planting and 40% of the
variability in rice production can be explained by fluctuations in
ENSO indices measured four and eight months in advance,
respectively (Naylor et al., 2001).

As an island nation surrounded by oceans, Japan is particularly
susceptible to climate change, with its agricultural sector being
heavily dependent on natural conditions. Japan’s unique
topography, characterized by mountainous terrain and numerous
short, fast-flowing rivers, makes its hydrological systems highly
responsive to climatic variability (Kurihara et al., 2024). This
environmental sensitivity introduces substantial risks to
agricultural production.

Rice cultivation is particularly vulnerable to climate fluctuations,
as it is highly sensitive to changes in both water availability and
temperature. According to the Key Points of Rice Cultivation
published by Japan’s Ministry of Agriculture, Forestry and
Fisheries (Ministry of Agriculture, Forestry and Fisheries, 2017),
prolonged high temperatures during the ripening phase can reduce
grain maturity and quality. Moreover, under high-temperature
conditions during the late ripening stage, rice loses moisture
rapidly, potentially leading to kernel cracking and further
complicating harvest and post-harvest processes. Under
conditions of climatic variability, rice production frequently faces
challenges such as shortened grain-filling periods, increased
incidence of pests and diseases, and flooding of paddy fields—all
contributing to reduced yields and, in severe cases, complete crop
failure. Irregular climatic patterns may also disrupt the timing of
planting, growth, and harvest cycles, further exacerbating the
fragility of agricultural systems. Rice cultivation, one of Japan’s
most important agricultural activities, is especially affected by
climate-related factors. Changes in temperature, precipitation,
and sunlight duration can directly or indirectly influence key
growth stages such as sowing, seedling development, heading,
and harvesting. These climatic shifts, in turn, affect rice yields
and market prices, generating supply-side volatility. Against this
backdrop, the vulnerability of Japanese agriculture to climate
fluctuations is becoming increasingly pronounced. Following the
conclusion of the El Niño event in the first half of 2024, Japan
experienced a sharp spike in rice prices. Although human and

policy-related factors also played a role, this phenomenon
underscores the significant impact of natural forces—particularly
climatic variability—on market dynamics.

Niigata Prefecture, located on the northwestern coast of Honshu
Island along the Sea of Japan, is a renowned center of rice
production. According to the statistics of MAFF, the largest rice
production top 3 prefectures are Niigata (7.7%), Hokkaido (7.3%),
and Akita (6.1%) in the year of 2013 in Japan (Ministry of
Agriculture, Forestry and Fisheries, 2021). Benefiting from
favorable natural conditions and a long-standing tradition of rice
farming, Niigata has become widely recognized for its high-quality
rice, particularly the “Koshihikari” variety, which enjoys national
popularity. In 2024, Niigata’s rice output reached 622,800 tons,
representing 8.48% of Japan’s total production—highlighting the
region’s critical role in the country’s agricultural landscape (Ministry
of Agriculture, Forestry and Fisheries, 2025). Analyzing fluctuations
in Niigata’s rice production offers valuable insights into regional
agricultural trends and helps enhance understanding of Japan’s local
responses to climate change. Although Niigata is situated in a
temperate zone and is not typically considered a core area for
ENSO-related research, it remains influenced by the Pacific
circulation system and ENSO-driven climate changes—an area
that has received limited scholarly attention. Incorporating ENSO
indices and associated meteorological and hydrological data into
agricultural analysis is thus essential for uncovering the mechanisms
behind fluctuations in rice production and for developing adaptive
strategies to improve food security at both regional and
national levels.

As Niigata rice holds symbolic and economic importance in the
Japanese grain market, price fluctuations originating from ENSO-
related climate shifts may influence national rice pricing structures
and, in turn, affect food security at both domestic and international
levels. In view of the current insufficient research on the influence of
ENSO in mid-latitude agricultural production areas. Therefore,
investigating the transmission mechanisms by which ENSO
affects Niigata rice production and pricing—particularly through
its influence on the Shinano River system—is not only vital for
improving climate risk management in Japan’s agricultural sector
but also contributes to a deeper understanding of the global
implications of climate-induced agricultural volatility.

2 Literature review

Agricultural production is inherently sensitive to climatic
conditions, making it particularly vulnerable to climate
anomalies. Consequently, numerous scholars have investigated
the impacts of such anomalies on crop productivity across
various geographic contexts. Among these climate phenomena,
the El Niño–Southern Oscillation (ENSO), originating in the
equatorial Pacific, has been identified as a major driver
influencing agricultural outputs worldwide.

Extensive empirical evidence consistently demonstrates that El
Niño events are often accompanied by decreased precipitation and
drought conditions, which negatively affect crop yields and
frequently result in significant reductions in staple food
production (Peethani et al., 2024; Limsakul, 2019; Iizumi et al.,
2014). For instance, Iizumi et al. (2014) showed that both El Niño
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and La Niña phases significantly affect rice production in Japan.
Complementing this, Limsakul (2019) found that in Thailand, El
Niño-related rainfall deficits lead to rice yield declines, while La Niña
tends to increase rainfall, occasionally causing flooding and pest
outbreaks. This evidence collectively highlights that ENSO’s
agricultural impacts are highly context-dependent, shaped by
local climatic and environmental conditions.

Furthermore, regional modeling studies provide additional
insights into ENSO’s differential effects. For example, Tan Yen
et al. (2019) employed the ORYZA crop model to simulate
substantial ENSO impacts on rice production in the Mekong
Delta. Similarly, Zhang et al. (2008) revealed heterogeneous
responses of rice yields to ENSO in southern China, primarily
driven by spatial variation in water availability. Likewise, Zubair’s
analysis of Sri Lanka revealed contrasting regional patterns, with
some areas experiencing yield increases correlated with higher
NINO 3.4 index values, while others suffered declines (Zubair,
2002). These spatially variable outcomes underscore the
geographic specificity of ENSO influences on crop productivity.
Consistent with these findings, Barrios-Perez et al. (2021)
documented that in Central America, El Niño events increase
irrigation water demand and reduce rice yields, whereas La Niña
phases tend to enhance yields. Such patterns emphasize the need for
regionally tailored adaptive management strategies to mitigate
ENSO-induced agricultural risks.

In addition to Asian and Central American contexts, North
African agriculture also exhibits pronounced sensitivity to ENSO
fluctuations. For example, in Morocco, wheat yields decline on
average by 35%–45% during El Niño years compared to neutral
years, while La Niña years are associated with smaller reductions of
4%–7% (Peethani et al., 2024). Importantly, these yield losses stem
not only from drought but also from excess precipitation, indicating
that both extremes of moisture availability can impair crop
production. Similarly, studies in Thailand reaffirm the dual role
of ENSO phases—El Niño correlates with drought-induced yield
reductions, whereas La Niña’s excessive rainfall benefits some areas
but also introduces challenges such as flooding and pest outbreaks
(Wannasingha, 2025).

Examining localized irrigation systems further elucidates how
ENSO-driven climate variability affects production. In Niigata,
Japan, rice cultivation relies heavily on irrigation from open
channels, with drainage flowing into the Shinano River, a vital
regional water source (Takada et al., 2024). This production
system’s dependence on precipitation, temperature, and snowfall
makes it especially susceptible to ENSO-related climate fluctuations
(Yoshida et al., 2016). Specifically, El Niño events tend to increase
snowfall and rainfall (Ohba and Sugimoto, 2022), whereas La Niña
events lead to reduced snowfall. Studies show that the seasonal flow
of the Shinano River is linearly correlated with temperature
(Whitaker, 2025). These hydrological changes directly affect
irrigation availability and thus rice yields (Takada et al., 2024).

Finally, fluctuations in production conditions triggered by
ENSO are closely linked to price dynamics within agricultural
markets. Empirical studies substantiate this transmission
mechanism. For instance, Onumah et al. (2022) employed an
ARDL-ECM approach to demonstrate that rice imports
significantly influence domestic rice prices in Ghana. Similarly,
Ahmed et al. (2024) identified that wheat prices across various

Indian regions adjust in response to price changes in Delhi. These
findings collectively indicate that climatic variability influencing
crop production forms a fundamental basis for regional price
formation and transmission.

3 Theoretical framework and research
hypotheses

3.1 Theoretical framework

ENSO, as a major climate variability phenomenon, exerts
significant influence on agricultural production and price
formation through its effects on regional hydrological conditions.
In this study, NINO 3 and NINO West indices are used to measure
the phases and intensity of ENSO. NINO 3 refers to the sea surface
temperature anomalies in the central-eastern Pacific (typically
5°S–5°N, 150°W–90°W), while NINO West refers to those in the
western Pacific warm pool (typically 0°–10°N, 125°E–140°E) (for
further details, see Section 4.2).

Fluctuations in these indices reflect variation in Pacific climate
patterns, which, in turn, affect precipitation and subsequently
influence the hydrological conditions of the Shinano River. This
process further impacts agricultural yields and markets, ultimately
causing fluctuations in rice prices. Furthermore, price signals
originating from major production centers, such as Niigata, may
spill over to other markets due to their role in price discovery and
transmission mechanisms.

Therefore, this study constructs a transmission framework
linking ENSO (NINO 3 and NINO West) → Hydrological
Conditions → Regional Rice Prices → National Market Volatility
(see Figure 1). This framework forms the theoretical basis for
formulating the hypotheses presented in the subsequent section.

3.2 Research hypotheses

The ENSO phenomenon, by regulating ocean–atmosphere
interactions in the tropical Pacific, triggers a series of global
climate anomalies, primarily manifesting in temperature and
precipitation variation across different regions (Tsonis et al.,
2003). In mid-latitude countries such as Japan, ENSO may
influence the East Asian summer monsoon, thereby affecting
local climate and causing severe floods or droughts (Wang et al.,
2000; Wu and Wang, 2002; Sakashita et al., 2016). In Niigata, these
climate anomalies are particularly reflected in fluctuations in
temperature and precipitation, which in turn influence the
hydrological conditions of the Shinano River (Akiyama, 1981).
ENSO is also associated with a significant reduction in snowfall
in the Niigata region (Ueda et al., 2017), further affecting the flow
and water level of the Shinano River and causing deviations from
their normal patterns.

The timing and intensity of irrigation water supply are crucial
for rice agriculture. Even small deviations may disrupt large-scale
agricultural operations, including sowing density, fertilization
schedules, and pest control, ultimately affecting both yields and
production costs (Alfassassi, 2023; Bouman et al., 2007). Therefore,
by influencing precipitation and snowmelt pathways in Niigata,
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ENSO modifies the hydrological conditions of the Shinano River,
thereby affecting agricultural production in the region, particularly
rice cultivation.

Based on the above analysis, the following hypothesis
is proposed:

H1: There is a significant positive correlation between ENSO indices
and hydrological conditions in the Niigata region.

Agricultural responses to climate change are highly regional and
seasonal. Hydrological conditions, as a mediating variable linking
climate to agricultural output, are particularly critical in rice
cultivation systems. Within a water resource allocation
framework, both excessively high and low water levels can
disrupt farming schedules and raise marginal and risk assessment
costs in agricultural operations. At the same time, hydrological
anomalies may be transmitted through price expectation
mechanisms in agricultural markets. This is especially evident in
premium rice markets, where price formation is strongly influenced
by supply-demand expectations and quality indicators. For instance,
in the Mekong Delta, irrigation conditions are closely related to rice
price formations (Johnson and Kurosaki, 2024). A similar
phenomenon is likely to be present in major rice-producing areas
such as Niigata. Therefore, even in the absence of actual yield losses,
market prices may increase due to heightened risk expectations
when irrigation systems face uncertainty.

Based on this mechanism, the following hypothesis is proposed:

H2: Fluctuations in hydrological conditions in the Niigata region
significantly affect the direction andmagnitude of rice price changes.

Furthermore, if ENSO significantly affects hydrological
conditions, and hydrological conditions in turn influence rice

prices, then it can be inferred that ENSO has an impact on
rice prices.

Accordingly, the following hypothesis is proposed:

H3: ENSO events indirectly influence rice prices in Niigata through
changes in hydrological conditions, forming a significant
transmission pathway.

As one of Japan’s major rice-producing regions, Niigata’s rice
prices reflect not only local agricultural supply and demand
dynamics but also exert a broader influence on the national rice
market due to the region’s strong reputation for quality, brand value,
and premium positioning. In particular, prices for high-end varieties
such as Koshihikari from Niigata are frequently regarded as a
benchmark, shaping consumer expectations, guiding wholesaler
procurement strategies, and influencing pricing decisions in other
production areas (Kobayashi et al., 2018). According to data from
the Statistics Bureau of Japan, Ministry of Internal Affairs and
Communications, Koshihikari produced in Niigata serves as a
baseline variety against which other rice prices are measured.
This price leadership emerges not only from Niigata’s renowned
branding but also from its central role within the interconnected
national rice supply chain.

From a spatial economics perspective, price fluctuations in
leading production areas tend to exhibit both transmissibility and
spillover effects (von Cramon-Taubadel and Goodwin, 2021). These
effects are propagated through mechanisms such as market
information diffusion, the radius of trade flows, and policy
interventions, thereby influencing rice prices in other regions. For
instance, in Indonesia, COVID-19 disrupted price transmission
mechanisms, significantly affecting the time required for price
adjustments to reach a new equilibrium Ariga and Asmarantaka

FIGURE 1
Schematic diagram of the core transmission mechanism.
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(2022). At the same time, the degree to which regional markets
respond to such price signals varies, depending on factors including
geographical proximity, structural differences in supply and
demand, and the extent of their integration into the rice value
chain. Thus, price fluctuations in Niigata not only reflect local
market conditions but also generate strong spillover effects across
related markets.

Based on this, the following hypothesis is proposed:

H4: Fluctuations in rice prices in Niigata exert significant spatial
transmission effects on rice prices in other Japanese cities.

Furthermore, Japan’s regional differences in rice cultivation area
and production volume lead to varied market responses to price
fluctuations. Regions such as Kanto and Kansai have relatively small
rice-growing areas and produce limited quantities, making them
more reliant on rice supplies from major production regions like
Niigata and thus more sensitive to its price changes. In contrast,
agricultural powerhouses like Tohoku and Hokkaido cultivate
extensive rice paddies and generate substantial rice output, which
grants these regions greater market self-sufficiency and resilience,
resulting in weaker sensitivity and stronger buffering against price
shocks from other areas (Ministry of Agriculture, Forestry and
Fisheries, 2025). Therefore, the spatial impact of Niigata’s rice
prices exhibits significant heterogeneity across Japan, shaped
largely by regional disparities in rice production scale and market
dependency.

Accordingly, the following hypothesis is further proposed:

H5: The spatial impact of Niigata’s rice prices exhibits significant
heterogeneity across different agricultural regions in Japan, with
notable regional variation effects.

4 Data sources and variable
descriptions

4.1 Data sources and research period

The selected research period spans from January 2000 to
February 2025, comprising a total of 302 monthly data points.
This time range ensures good continuity and representativeness.
The primary data sources include the Statistics Bureau of Japan, the
Japan Meteorological Agency, the Ministry of Land, Infrastructure,
Transport and Tourism of Japan, and the National Oceanic and
Atmospheric Administration (NOAA) of the United States. All
relevant data are obtained from official statistical platforms,
ensuring their authority and verifiability.

4.2 Variable descriptions

This study covers key variables including climate indicators
reflecting the ENSO status, meteorological and hydrological
variables that describe the agricultural ecological environment,
and rice price indicators that measure market performance.
Table 1 presents the variables used in this analysis. Data
processing and analysis were conducted using Excel and Stata 18.

4.3 Definition criteria for ENSO events

To systematically identify ENSO event periods and improve
model accuracy, this study adopts the definitions provided by
NOAA and the Japan Meteorological Agency. An El Niño period
is defined when the sea surface temperature anomaly (SST
anomaly) in the NINO3 region (5°N–5°S, 150°W–90°W) is
equal to or greater than +0.5°C and persists for at least six
consecutive months. Conversely, a La Niña period is defined
when the SST anomaly is equal to or less than −0.5°C for a
duration of six months or more.

In addition, the NINO West index—which represents sea
surface temperature changes in the region from the equator to
15°N and 130°E to 150°E—effectively captures the direct
transmission pathway of ENSO events near Japanese coastal
waters. This index offers practical relevance and geographic
correlation for the region under study (Hirahara et al., 2014;
Kurihara, 2006).

4.4 Hydrological variables and data
completion method

The hydrological variables used in this study primarily include
the water level (H) and runoff (R) of the midstream region of the
Shinano River. Considering that climate change may initially affect
agricultural production through river systems, variations in
hydrological variables are of critical importance for rice
cultivation.

The water level data were obtained from the “Ōkōzu
Hydrological Station,” located in the midstream of the Shinano
River and operated by the Ministry of Land, Infrastructure,
Transport and Tourism. This station has continuously monitored
hydrological data since 1979 and is known for having the most
complete and consistent records in the entire river basin.

Runoff data (R) became significantly incomplete after 2024,
mainly due to the cessation of runoff observations at several
hydrological stations in the Shinano River basin starting in 2023.
To fill this gap, this study employed a prediction method based on
paired water level and runoff data from the year 2023, referencing
the modeling approach established by Zhiqiang (2025). A predictive
model was fitted using the nonlinear least squares method, as
shown below:

R � 137.92 × H2 − 3883.87 × H + 27255.31

The model incorporates the water level variable H to
parameterize factors such as cross-sectional flow velocity, flow
inertia, and watershed area. According to validation tests, the
model demonstrates a good fit with the observed runoff data
from 2023. Based on this, it was used to predict the runoff data
of the Shinano River from January 2024 to February 2025.

4.5 Agricultural regional classification

In conducting spatial econometric model analysis, to assess
the impacts across different regions, the participating cities were
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categorized into distinct agricultural zones according to the
classification criteria established by the Japanese Ministry of
Agriculture, Forestry and Fisheries, as detailed in Table 2.

5 Empirical methodology and model
specification

5.1 Identification strategy for the mediating
role of hydrological conditions between
ENSO and rice prices

To investigate how the ENSO phenomenon influences rice
prices in Niigata, Japan, through its effects on local hydrological
conditions, this study adopts a two-step mediation analysis
framework inspired by Jiang (2022), which offers a well-
established approach for modeling mediation and moderation
effects in causal inference.

The first step aims to identify whether ENSO significantly
disrupts the regional hydrological system. Specifically, we
estimate a regression model where the ENSO index
(measured by the NINO West Index) serves as the

TABLE 1 Experimental variable.

Variable
name

Symbol Unit Data source Variable
attribute

Description

Niigata rice price P JPY/kg Statistics Bureau of Japan, Ministry of
Internal Affairs and Communications

Dependent variable Monthly average price of Koshihikari and non-
Koshihikari rice

NINO3 index NINO3 °C National Oceanic and Atmospheric
Administration (NOAA)

Primary
explanatory
variable

5-month running mean sea surface temperature (SST)
anomaly in the east-central equatorial Pacific

NINO west index NINO_W °C Japan Meteorological Agency (JMA) Secondary
explanatory
variable

5-month running mean SST anomaly in the northwest
Pacific coastal region

Water level H m Ōkōzu Hydrological Station, Ministry of
Land, Infrastructure, Transport and
Tourism

Core control
variable

Midstream water level of the Shinano River, reflecting its
hydrological conditions. The water level data were
obtained from theŌkōzu Hydrological Station, located in
the midstream of the Shinano River

Runoff R m3/s Nagaoka Hydrological Station, Ministry of
Land, Infrastructure, Transport and
Tourism

Non-core reference
variable

River runoff, measured at Nagaoka Hydrological Station
along the Shinano River. Missing values after 2024 were
imputed but are excluded from regression analyses (see
Section 4.4 for details)

Monthly mean
temperature

T °C Japan Meteorological Agency (JMA) Control variable Represents thermal conditions for agriculture

Monthly
precipitation

Pre mm Japan Meteorological Agency (JMA) Control variable Key indicator of water resource availability

Monthly mean
wind speed

WS m/s Japan Meteorological Agency (JMA) Control variable Influences evaporation and snow accumulation dynamics

Monthly snowfall Snow cm Japan Meteorological Agency (JMA) Control variable Reflects snow depth and delayed hydrological effects

Monthly sunshine
duration

Sun hours Japan Meteorological Agency (JMA) Control variable Affects rice photosynthetic efficiency

City-level rice
prices

Price JPY/kg Statistics Bureau of Japan, Ministry of
Internal Affairs and Communications

Reference variable Used for robustness checks and regional comparative
analysis

TABLE 2 Japan agricultural regional classification.

Agricultural
area

City name

Hokkaido Sapporo, Hakodate, Asahikawa

Tōhoku Aomori, Morioka, Sendai, Akita, Yamagata, Fukushima,
Koriyama

Hokuriku Nagaoka, Toyama, Kanazawa, Fukui

Kantō-Higashiyama Mito, Utsunomiya, Maebashi, Kawaguchi, Tokorozawa,
Chiba

Kawasaki, Sakura, Tachikawa, Fuchū, Yokohama, Tokyo,
Kofu, Nagano, Matsumoto

Tōkai Gifu, Shizuoka, Hamamatsu, Nagoya

Kinki Tsu, Otsu, Kyoto, Osaka, Kobe, Higashiōsaka, Hirakata,
Himeji, Nishinomiya, Itamishi, Nara, Wakayama

Chūgoku Tottori, Matsue, Okayama, Hiroshima,
Fukuyama,Yamaguchi, Ube

Shikoku Tokushima, Takamatsu, Matsuyama, Kochi

Kyūshū Fukuoka, Kitakyushu, Saga, Nagasaki, Sasebo,
Kumamoto, Oita, Miyazaki, Kagoshima, Naha

Note: Okinawa is counted within Kyushu.
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independent variable, and the hydrological condition is proxied
by the water level of the Shinano River (denoted as H). The
specification is as follows:

Ht � α + βNINOWt + γ1Pret + γ2WSt + γ3Snowt + γ4Sunt + εt

WhereHt denotes the monthly average water level measured at
the Okozu hydrological station in the midstream section of the
Shinano River, NINOWt represents the NINO West index for the
current month, and Pret, WSt, Snowt, Sunt represent control
variables for precipitation, wind speed, snowfall, and sunshine
duration, respectively. εt denotes the error term.

To examine the direct impact of ENSO on rice prices in the
Niigata region, the following regression model is specified:

Pt � α + βNINOWt + γ1Rt + γ2Pret + γ3WSt + γ4Snowt + γ5Sunt

+ εt

In this specification, Pt denotes the monthly rice price in
Niigata, NINOWt refers to the ENSO index for the
corresponding month, and Rt, Pret, WSt, Snowt, Sunt represent
control variables for runoff volume, precipitation, wind speed,
snowfall, and sunshine duration, respectively. εt denotes
the error term.

Importantly, the two regressionmodels presented share a similar
structural form but serve different analytical purposes. The first
equation focuses on estimating the effects of the NINO West Index
on the water level of the Shinano River, while the second assesses its
direct impact on rice prices in Niigata. Although both models
include a set of control variables and employ a linear
specification, their dependent variables and coefficients of interest
differ. Specifically, the parameter β in the first equation measures the
transmission from ENSO to water level, whereas in the second it
captures the direct influence of ENSO on agricultural prices.

Regarding the “hydrology-to-price” transmission pathway, in
order to address potential endogeneity issues and avoid
undermining the credibility of the study’s results, this paper does
not employ a mediating effects test (Igartua and Hayes, 2021).
Instead, it draws upon existing literature that offers theoretical
explanations and empirical evidence on the transmission
mechanisms linking hydrological variability to agricultural
product prices, thereby strengthening the logical coherence and
robustness of the argumentation.

5.2 Spatial econometric model specification
and empirical strategy

To further examine the spatial effects of rice prices in Niigata on
other regions in Japan, this study employs spatial econometric
models. An inverse distance weight matrix is constructed to
capture these spillover mechanisms, reflecting the notion that
geographically closer regions are more likely to be influenced by
price signals originating from Niigata.

The selection of inverse distance weights over alternative
schemes, such as inverse squared distance, is motivated by two
primary considerations. First, the inverse distance matrix exhibits a
gradual attenuation of spatial influence with increasing distance, in

contrast to the steep decline characteristic of inverse squared
distance specifications. This property enables the incorporation of
moderate spillover effects that may persist across larger spatial
scales. Second, this weighting approach enhances the robustness
and stability of parameter estimates by mitigating potential
multicollinearity and numerical instability issues (Lu and
Wong, 2008).

Considering the potential price interdependence and spatial
autocorrelation among regions, and following the approach
frequently used in environmental economics and agricultural
economics (Liu et al., 2021; Bai et al., 2024; Cerqueti, et al.,
2025), this paper adopts the Spatial Durbin Model (SDM) and
the Spatial Autoregressive Model (SAR) to systematically assess the
mechanisms through which rice prices originating in Niigata are
transmitted across space.

First, a SDM is constructed using panel data from 67 Japanese
cities with a resident population exceeding 150,000. The main
objective is to evaluate the extent to which rice prices in Niigata
influence rice prices in other urban markets. An inverse distance
weight matrix is used to account for geographic proximity and
market connectivity, thereby capturing the underlying spatial
dependency structure. In this framework, the rice price of each
city is used as the dependent variable, while the contemporaneously
determined rice price in Niigata serves as the key explanatory
variable. Control variables are intentionally excluded to highlight
the pure spillover effects of the main variable.

To account for potential dynamic effects, two additional models
are further specified. The first augments the SDM by including the
lag of the main explanatory variable (Pt−1) alongside its current
counterpart (Pt). The second further extends this specification by
employing both the lag of the main explanatory variable and its
current value, while employing robust standard errors to account for
possible heteroskedasticity and serial correlation in the residuals.

A Hausman test is performed to determine the appropriateness
of a fixed effects specification (with p-value = 0.000), strongly
rejecting the null hypothesis and validating the use of fixed
effects. The respective models are presented as follows:

5.2.1 Original model

priceit � αi + ρWpriceit + βPt + θWPt + εit

Among them, priceit represents the rice price of City i in the
year t, Pt represents the rice price in the Niigata area during the same
period, W is the inverse distance spatial weight matrix, and αi is the
fixed effect of the city. εit is the perturbation term. In the model, ρ
represents the spatial lag term coefficient of the explained variable,
and θ represents the spatial lag term coefficient of the
explanatory variable.

5.2.2 Model with lag of main explanatory variable

priceit � αi + ρWpriceit + β1Pt + β2Pt−1 + θWPt + εit

In this specification, we include a lag of the main explanatory
variable—namely, the lag of Niigata’s rice price (Pt−1) — to
account for potential delayed effects on rice prices in other
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cities or regions. All other control variables and fixed effects
remain the same as in the baseline SDM. This lag term allows us
to capture the temporal dependency and assesses whether past
price signals from Niigata continue to influence current price
formations elsewhere. This consideration is particularly
important in agricultural markets, where price transmission
mechanisms may manifest with a delay due to information
processing, storage, and transportation.

5.2.3 Model with lag of main explanatory variable
and robust standard errors

priceit � αi + ρWpriceit + β1Pt + β2Pt−1 + θWPt + εit

In this specification, robust standard errors are used to account
for potential heteroskedasticity and serial correlation in the error
term. This approach helps mitigate the risk of internal endogeneity
and improves the credibility and robustness of the estimated
coefficients, thereby strengthening the reliability of the
empirical results.

5.2.4 SAR-Based Analysis of Regional Rice Price
Spillovers from Niigata

To further investigate the spatial effects of rice prices in Niigata
at the regional scale, the SAR is employed. This approach focuses on
the transmission mechanisms through which price signals propagate
across agricultural regions in Japan. The average regional rice price
serves as the dependent variable, while the rice price in Niigata is the
main explanatory variable. All control variables are omitted to
highlight pure spatial spillover effects.

pricert � αr + ρWpricert + βPt + εrt

Among them, pricert represents the average rice price of the
agricultural regional r in year t, Pt is the rice price of the Niigata
region, and αr is the regional fixed effect.

Through the above two models, this paper explores the spatial
diffusion path and mechanism of Niigata rice prices from the two
levels of urban scale and regional scale respectively, providing
empirical support for revealing its guiding and influencing role in
the national rice market.

6 Results

6.1 Impact of ENSO indices on rice prices via
hydrological transmission

6.1.1 Effects of ENSO events on rice prices
To investigate the potential mechanisms through which ENSO

events influence rice prices in the Niigata region, this study
constructs a multivariate regression model incorporating
meteorological and hydrological variables. The dependent
variable is the monthly rice price (P) in Niigata, with the core
explanatory variable being the tropical Pacific ENSO index
(specifically, the NINO West index, which exhibits stronger
impacts on Japan). Control variables include monthly average
precipitation (Pre), temperature (T), wind speed (WS), snow

accumulation (Snow), and sunshine duration (Sun). Robust
standard errors (Robust SE) were applied to mitigate potential
heteroskedasticity.

With reference to the methodological framework of Brakat et al.
(2024) and Sun (2010) in their analyses of agricultural economic
benefits, this study applies variance inflation factor (VIF) tests to
address potential multicollinearity concerns. All variables exhibit
VIF values well below 10, with a mean VIF of 2.13, thereby
indicating the absence of severe multicollinearity and ensuring
the stability of the model estimates. Furthermore, the significance
of the variable is robust to the inclusion of a one-period lag, which
further confirms its credibility and robustness.

As shown in Table 3, the NINOWest index exerts a statistically
significant positive effect on rice prices (p < 0.01), with a coefficient
of 1485.15. This indicates that during warm-phase ENSO events,
rice prices rise substantially. This phenomenon is likely linked to
agriculturally adverse climatic conditions triggered by ENSO, such
as elevated temperatures, droughts, and erratic precipitation.
Among other variables, wind speed (WS) demonstrates a
significant negative correlation with rice prices, suggesting that
increased wind speeds may suppress rice growth—potentially by
accelerating soil moisture evaporation—thereby reducing yields and
driving price increases.

6.1.2 Impact of ENSO events on hydrological
conditions in the Shinano River

As shown in Table 4, the regression results indicate thatNINOW
exerts a statistically significant positive effect on water levels, with a
coefficient of 0.1206 (p = 0.003), significant at the 1% level. This
suggests that during intensified El Niño events, the average water

TABLE 3 Results of regression model of NINO WEST index on rice price.

Variable Coefficient

NINOW 1188.558***

(209.9815)

T −10.36799

(8.79737)

Pre −0.1350587

(0.3017031)

WS −403.4057**

(162.5307)

Snow 0.4681011

(0.8417134)

Sun −0.5294133

(0.9320977)

cons 3490.809***

(410.4975)

R2 0.1663

Observations 302

Note: *P < 0.1, **P < 0.05, ***P < 0.01.
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level in the region rises significantly. This mechanism is likely
mediated through ENSO-induced alterations in precipitation
patterns, snowmelt timing, and regional hydrological cycles,
which indirectly affect agricultural irrigation and yields, thereby
establishing a potential hydrological transmission channel for rice
price fluctuations.

Among control variables, runoff (R) exhibits a significant
positive coefficient of 0.00178 (p < 0.01), confirming its direct
and substantial influence on river water levels. Conversely, snow
accumulation (Snow) shows a negative coefficient of −0.00043 (p =
0.004), implying that increased snowpack reduces average water
levels—a phenomenon potentially tied to seasonal water storage and
release dynamics. Other meteorological variables (T, WS, Pre, Sun)
lack statistical significance in this model, indicating that water level
variations in the Shinano River are primarily driven by NINOW,
precipitation, and snow-related factors. The model’s mean VIF of
2.14, well below the multicollinearity threshold, confirms the
absence of severe collinearity and underscores the robustness of
the results.

6.1.3 The influence mechanism of Shinokawa
hydrological conditions on rice price in
Niigata region

Extensive studies have demonstrated a bidirectional
interaction between river hydrological conditions and rice
cultivation. Wilber et al. (1996), through an empirical analysis
of the Cache River’s discharge and surrounding rice cultivation

areas in the Mississippi Valley, found that agricultural irrigation
significantly influences observed river water level fluctuations,
confirming the feedback effect of farming activities on
hydrological processes. Similarly, Li et al. (2021), in a study of
the Yangtze River Basin, highlighted that climatic factors such as
precipitation and temperature alter runoff patterns, thereby
affecting rice planting schedules and yields. In Bangladesh,
Masahiro Tokumura et al. (2019) examined the relationship
between river water quality and irrigation practices in rice
cultivation, assessing potential public health risks associated
with irrigation methods. Parallel findings were reported by
Bandurin et al. (2021), who analyzed the impact of the Kuban
River’s runoff and water quality on local rice production,
underscoring the critical role of favorable hydrological
conditions in ensuring stable and high yields. Additionally,
Patle et al. (2023) investigated seasonal precipitation effects on
runoff variability and rice yields in the Dhuti Dam and Wainganga
River basin in India, further reinforcing these dynamics.

The literature collectively confirms that hydrological
variables—including water level, runoff, and water quality—exert
significant positive effects on rice yield and quality. In this study,
water level is selected as the primary hydrological variable, and the
preceding regression analysis has already established a positive
correlation between the ENSO index and both the Shinano
River’s water levels and Niigata’s rice prices. Building on this
empirical foundation and supported by existing research, we
infer that ENSO events indirectly elevate rice prices in Niigata by
increasing the Shinano River’s water levels, with both variables
exhibiting a co-movement relationship.

6.2 Spatial spillover effects of Niigata rice
prices on other Japanese cities

6.2.1 Diagnostic tests
Before estimating the SDM, by referring to other findings, a

series of diagnostic tests are performed to determine its
appropriateness (Kelejian and Prucha, 2001).

As results in Table 5, Preliminary Moran’s I tests confirm
significant spatial autocorrelation in price variables. The
computed Moran’s I index is 0.177, with a standardized Z-score
of 3.848 (p = 0.000). This robustly rejects the null hypothesis (p <
0.01), validating the necessity of spatial econometric modeling.

As results in Table 6, The Hausman test yields a χ2 statistic of
12.08 (p = 0.005), strongly rejecting the null hypothesis. This
indicates that the fixed effects SDM, is preferred over the
random effects model.

As results in Table 7, The results of the Likelihood Ratio (LR)
test confirm the statistical necessity of employing a spatial
econometric model, as it decisively rejects the null hypothesis of
no spatial effects (χ2 = 1519.57, p < 0.001). This provides robust

TABLE 4 Regression results for the impact of the NINOwest index on water
levels in the Shinano River.

Variable Coefficient

NINOW 0.1205933***

(0.0400656)

R 0.0017827***

(0.0000458)

T 0.0024463

(0.0022363)

Pre 0.0000579

(0.0000987)

WS 0.0510257

(0.0382712)

Snow −0.000426**

(0.0002024)

Sun 0.0002078

(0.0002718)

cons 41.33675***

(0.0933843)

R2 0.8710

Observations 302

Note: *P < 0.1, **P < 0.05, ***P < 0.01.

TABLE 5 Moran’s I Test result.

Variable Moran’s I Z-score p-value

P 0.177 3.848 0.000***

Note: *P < 0.1, **P < 0.05, ***P < 0.01.
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empirical justification for incorporating spatial dependence
structures in the analytical framework.

To account for potential endogeneity, we included lagged terms
of the main explanatory variable and used robust standard errors in
the estimation process. This combination helps to ease the effects of
endogeneity and produce more reliable and accurate estimates of the
spillover effects of Niigata’s rice prices on other agricultural markets
in Japan.

6.2.2 Price transmission mechanism from Niigata
to national markets

Table 8 presents the estimation results for the Space Durbin
Model with robust standard errors (Model 3). The main explanatory
variable rice price in Niigata (P) shows a significantly positive and
large coefficient (1.013408) at the 1% significance level (p < 0.01),
indicating that an increase in Niigata’s rice price is strongly and
positively transmitted to neighboring agricultural regions.
Furthermore, the lag of the main variable (Pt-1) also displays a

significantly positive effect (0.100852) at the 1% significance level
(p < 0.01), reflecting the persistence of spillover effects over time.

The interaction term (WxP) is significantly and negatively
related to the dependent variable (−1.174845) at the 1%
significance level, implying that the spillover effects diminish
with increasing geographical distance. This phenomenon
resonates with the view that closer regions are more influenced
by price signals from Niigata, while farther ones are less affected.
Furthermore, the lag of the interaction term (WxPt-1) maintains its
significantly negative coefficient (−0.128375) at the 5% significance
level (p < 0.05), suggesting the temporal persistence of this
attenuation.

Lastly, the estimated spatial autoregressive coefficient (ρ) is
positively significant (1.164314) at the 1% significance level,
which underscores the strong and significant spillover effects
stemming from neighboring regions’ price formations. The
robustness of these results is further supported by high R2

(0.9232) and a large number of observations (20,167), reflecting a
strong fit to the data.

6.2.3 Impact of Niigata rice prices on rice prices in
other agricultural regions of Japan

As the results in Table 9, the analysis reveals a significant spatial
spillover effect of rice prices (ρ = 0.366, p < 0.01), indicating a strong
spatial correlation of rice prices among cities. The coefficient for the
main variable P is 1.027 (p < 0.01), suggesting that in other
agricultural regions, a 1-yen increase in the rice price in Niigata
leads to an average increase of 1.027 yen in the rice prices of
other cities.

The coefficients for the respective agricultural regions show
significant variation in their responses to price signals originating
in Niigata. Specifically, Hokkaido (β = 0.15896, p < 0.01) and

TABLE 6 Hausman test result.

χ2 p-value

12.08 0.005***

Note: *P < 0.1, **P < 0.05, ***P < 0.01.

TABLE 7 LR test result.

χ2 p-value

1519.57 0.000***

Note: *P < 0.1, **P < 0.05, ***P < 0.01.

TABLE 8 Influence of rice price in Niigata on rice price in other cities in Japan.

Variable (1) (2) (3)

Coefficient Coefficient Coefficient

P 1.114611*** 1.013408*** 1.013408***

−0.0031396 0.80155201 0.0281179

Pt-1 0.1008516*** 0.1008516***

0.153529 0.0284665

WxP −1.316997*** −1.174845*** −1.174845***

−0.0282125 0.0477714 0.0722466

WxPt-1 −0.1283751*** −0.1283751**

0.0400273 0.0616308

ρ 1.176553*** 1.164314*** 1.164314***

−0.024039 0.0244127 0.0480649

R2 0.9249 0.9232 0.9232

Observations 20,234 20,167 20,167

Estimation method SDM SDM SDM with robust standard errors

Note: *P < 0.1, **P < 0.05, ***P < 0.01.

Frontiers in Environmental Science frontiersin.org10

Zhu 10.3389/fenvs.2025.1634195

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1634195


Tōhoku (β = 0.07317, p < 0.01) exhibit significantly positive spillover
effects, reflecting a strong price transmission in these nearby and
closely connected markets. The Tōkai (β = 0.07599, p < 0.01) and
Kyūshū (β = 0.08433, p < 0.01) regions also show significantly
positive responses, although with somewhat lower magnitudes.

In contrast, several other major agricultural areas exhibit
significant and unfavorable spillover effects. The coefficients for
Hokuriku (β = −0.13269, p < 0.01), Kantō-Higashiyama
(β = −0.17832, p < 0.01), Kinki (β = −0.1067, p < 0.01),
Chūgoku (β = −0.10253, p < 0.01), and Shikoku (β = −0.05714,
p < 0.01) are all significantly negative, implying a dampening or
reverse spillover from Niigata’s price signals in these markets.

Furthermore, the spatial autoregressive coefficient (ρ) is
positively significant (β = 0.36607, p < 0.01), indicating strong
spillover effects stemming from the price formations in
neighboring agricultural markets. The high R2 (0.9592) further
confirms a strong fit of the model to the data.

This study utilizes ArcGIS software to visualize the spillover
effects of rice prices in Niigata on other agricultural regions in Japan.

The resulting schematic map (see Figure 2) clearly illustrates how
price fluctuations in Niigata propagate and influence rice markets
across different areas, highlighting the spatial extent and intensity of
these economic interactions.

7 Discussion

7.1 The impact of ENSOonNiigata rice prices
through hydrological conditions of the
Shinano River

According to the results of the empirical analysis, the NINO
West index exerts a significant positive influence on rice prices in
Niigata (coefficient = 1188.558, p < 0.01), as well as on the water level
of the midstream Shinano River (coefficient = 0.1206, p < 0.01).
These findings indicate that ENSO events affect regional agricultural
prices indirectly through hydrological variables. This transmission
mechanism confirms the coupled relationship between ENSO and
the hydrological system of the Shinano River, which in turn affects
rice production and price formation in the Niigata region via
changes in irrigation availability and agricultural scheduling.

From a logical perspective, fluctuations in the NINO index
reflect the intensity of ENSO events, which subsequently
influence local climatic conditions and hydrology in Niigata.
Such environmental changes increase uncertainties in agricultural
production—particularly rice farming—thereby triggering
anticipatory responses in the market and amplifying price
volatility. This establishes a multi-tiered interaction chain of
climate–hydrology–price.

The empirical results provide robust support for the research
hypotheses: H1 (ENSO significantly affects hydrological
conditions), H2 (hydrological conditions significantly influence
rice prices), and H3 (ENSO indirectly affects rice prices through
hydrological variables). These findings not only enrich the research
framework concerning the economic impacts of ENSO climate
events on agriculture in mid-latitude regions, but also offer
theoretical and empirical foundations for regional agricultural
risk management and food price forecasting.

7.2 Spatial transmission of Niigata rice price
fluctuations

The empirical results presented in Table 8 indicate that price
fluctuations in Niigata exhibit significant and robust spillover effects
on agricultural prices in other Japanese regions. The robust SDM
(Model 3) was employed to further investigate the mechanisms
through which price signals originating in Niigata influence price
formation elsewhere.

The coefficient for P is positively significant (1.0134, p < 0.01),
suggesting that a one-unit increase in the price of Niigata rice is
associated with a 1.0134-unit increase in nearby agricultural prices.
This highlights the key role of Niigata in transmitting price signals
across the Japanese agricultural market. Furthermore, the
significantly positive and large spatial autoregressive parameter
(ρ = 1.1643, p < 0.01) confirms the strong spillover effects
stemming from price formations in Niigata. The lag term is also

TABLE 9 Impact of Niigata rice prices on price fluctuations in other
agricultural regions of Japan.

Variable Coefficient

P 1.02714***

(0.013359)

Hokkaido 0.1589571***

(0.0151269)

Tōhoku 0.0731683***

(0.0139046)

Hokuriku −0.1326859***

(0.0144956)

Kantō-Higashiyama −0.1783233***

(0.0136346)

Tōkai 0.0759946***

(0.0144944)

Kinki −0.1066996***

(0.0137437)

Chūgoku −0.1025329***

(0.0138672)

Shikoku −0.0571372***

(0.0144929)

Kyūshū 0.0843284***

(0.0136477)

ρ 0.3660657***

(0.0103329)

R2 0.9592

Observations 20,234

Note: *P < 0.1, **P < 0.05, ***P < 0.01.
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positively significant, implying that the transmission process
operates with a temporal delay, reflecting the influence of
transportation, information diffusion, and other market frictions.

The interaction termWxP is significantly and negatively related
(−1.1748, p < 0.01). This indicates a dampening or competitive
spillover effect: although a price increase in Niigata directly pushes
up prices in nearby markets, indirect effects may be suppressed by
their own pricing mechanisms and market structures. This
phenomenon likely reflects competition and structural differences
in production and consumption across regions. Some neighboring
prefectures, for instance, produce the same varieties of rice and form
a competitive market with Niigata, thereby dampening its price
transmission. Additionally, variation in growing conditions, as well
as in production outcomes—with poor yields in Niigata in 2024 and
strong production in Iwate andMiyagi—further contributes to these
effects (Ministry of Agriculture, Forestry and Fisheries, 2025).

From the above, it can be judged that fluctuations in rice prices
in Niigata exert significant spatial transmission effects on rice prices
in others Japanese cities. In this way, Hypothesis 4 (H4) is correct.

This transmission pattern varies considerably across different
agricultural regions in Japan. The coefficients for Hokkaido (0.1590,
p < 0.01), Tōhoku (0.07317, p < 0.01), Tōkai (0.07599, p < 0.01), and
Kyūshū (0.08433, p < 0.01) are significantly positive, reflecting
strong spillover effects from Niigata’s price signals. These

neighboring areas typically grow analogous varieties of rice and
operate within a competitive market structure, which collectively
foster high price transmission. Furthermore, geographical proximity
may facilitate faster information flow and reduce transaction costs,
thereby strengthening transmission mechanisms.

In contrast, the coefficients for Kantō-Higashiyama (−0.17832,
p < 0.01), Kinki (−0.1067, p < 0.01), Chūgoku (−0.10253, p < 0.01),
and Shikoku (−0.05714, p < 0.01) are significantly negative. This
may be due to differing production conditions, varieties, and market
structures, which dampen or even reverse transmission effects.
These agricultural areas have their own production regimes,
making them less vulnerable to price signals stemming from
Niigata. Shikoku, in particular, is relatively isolated and less
influenced by price signals from the Niigata market, reflecting
greater market self-sufficiency and reduced reliance on external
price formations. This further emphasizes the role of market
preferences and policy mechanisms in mitigating spillover effects.

Overall, the transmission mechanisms of price signals
originating in Niigata are influenced by both market structures
and production conditions across different agricultural regions. The
transmission effect varies in different agricultural regions, and
Hypothesis 5 (H5) holds true. This highlights the necessity for
policy interventions that account for these mechanisms in order to
stabilize the Japanese rice market.

FIGURE 2
Fluctuation coefficients of Niigata rice prices in Japan.
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7.3 Research deficiencies and prospects

This study focuses primarily on the effects of ENSO events on
hydrological conditions and rice prices. The linear regression
framework was adopted to quantify these relationships, under the
main assumption that the effects of different explanatory variables
are additively linear. While this approach is frequently used in
agricultural economics, it may not fully account for potential non-
linear interactions or synergistic effects that can arise under real-
world conditions—for instance, when precipitation and temperature
anomalies combine in a non-additive manner.

Nevertheless, the main effects of ENSO, as measured by NINO
3 and NINO West indices, have a well-established and significant
influence on both agricultural production and prices, as documented
by previous empirical study, which shows a significant negative impact
of El Niño events on rainfed rice production in the Philippines (Boer
and Surmaini, 2020). Thus, the linear framework is appropriate for
capturing these principal relationships in the context of this study.

At the same time, we acknowledge that this approach cannot
fully reflect the complexity of climate–agriculture interactions,
particularly the potential non-linear effects stemming from
interactions among climate variables. This limitation should be
kept in mind when interpreting the results. Future research
employing non-linear models, threshold regressions, or machine-
learning methods may help uncover these additional mechanisms,
thereby strengthening the robustness of policy recommendations
related to climate risk management and agricultural production.

While this study reveals significant and heterogeneous spillover
effects of Niigata’s rice prices on other agricultural regions, there are
several limitations that should be addressed in future research.

One limitation is that this study does not sufficiently uncover the
underlying mechanisms through which these spillover effects are
transmitted. Whether this transmission is driven by differences in
production conditions, consumer preferences, logistics
infrastructure, policy restrictions, or other factors related to
production chains is a matter that warrants further investigation.
A more in-depth understanding of these mechanisms would aid in
interpreting the formation of spillover effects and provide a scientific
basis for policy design.

Additionally, the study falls short in conducting a sufficiently
granular and in-depth analysis of the variation in spillover effects
across agricultural regions. Each region is influenced by its own
production conditions, geographical location, consumer preferences,
infrastructure, and policy regimes—all of which may contribute to the
heterogeneous spillover effects. Without a more disaggregated
empirical analysis, it is difficult to fully account for the mechanisms
underlying these differences. Future research should collect data at the
regional level—including production volumes, price elasticities of
demand, logistics conditions, and import and export flows—and
apply disaggregated models to enable a more exhaustive and
rigorous understanding of spillover mechanisms, thereby offering
policy guidance tailored to the specific conditions of each region.

8 Conclusion

This study contributes to understanding the mechanisms
through which climate signals influence agricultural prices and

how these effects propagate across space. The empirical results
indicate that ENSO events, as represented by the NINO West
Index, affect water levels in the Shinano River, thereby
influencing rice prices in Niigata. An increase in the NINO West
Index typically corresponds to a rise in water levels, which, in turn,
exerts upward pressure on the price of rice in this region. This
process underscores the vulnerability of agricultural markets to
climate-related disturbances and highlights the role of water
conditions in shaping price formations.

Furthermore, price increases originating in Niigata do not
remain isolated; instead, they spill over to other agricultural
markets across Japan. This transmission occurs with a short-lived
lag, reflecting the temporal mechanisms through which price signals
move through space. The effects are particularly pronounced in
nearby agricultural areas, including Hokkaido and Tohoku,
demonstrating a strong and persistent pattern of price contagion.

These findings reveal the significance of climate signals and
spillover mechanisms in understanding price volatility and market
interconnectedness. The results suggest that policymakers and
stakeholders should account for both climate variability and the
transmission of price effects across space when designing strategies
to stabilize agricultural markets and enable greater resilience to
climate-related shocks.
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