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Urban expansion and land cover changes significantly influence land surface
temperature (LST), especially in arid environments. This study investigates spatial
and temporal patterns of land cover and LST across Abu Dhabi, UAE, for the
benchmark years 2017, 2020, and 2024, using Sentinel-2 imagery and MODIS
thermal data via Google Earth Engine (GEE). Four dominant land cover classes
were mapped: bare desert, urban areas, vegetation, and water bodies. Between
2017 and 2024, bare desert coverage declined from 92.8% to 90.9%, while urban
land grew from 3.0% to 4.5%, vegetation increased from 3.3% to 4.1%, and water
decreased from 0.9% to 0.5%. Thermal analysis based on MODIS summer
composites revealed that 2020 was the hottest year, with an average LST of
53.14 °C, higher than 2017 (52.40 °C) despite COVID-19 mobility restrictions,
likely due to extreme heat and atmospheric conditions. These values reflect
emirate-wide averages, aggregated across all land cover types. By 2024, average
LST declined to 48.76 °C, coinciding with expanded vegetation and milder
summer temperatures. The observed 3.6 °C reduction may reflect both
climatic moderation and land cover transformations. LST comparisons across
land cover types showed a consistent thermal hierarchy: bare desert exhibited the
highest surface temperatures, followed by urban areas, vegetation, and water
bodies. These results highlight the cooling role of green infrastructure in hyper-
arid cities. The findings contribute to Sustainable Development Goals (SDGs) 11,
13, and 15 by providing geospatial insights for sustainable land management and
urban climate resilience.

KEYWORDS

land cover, land surface temperature (LST), google earth engine (GEE), urbanheat island
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1 Introduction

Land cover land cover transformations in arid urban areas carry significant
environmental and socio-economic consequences. As cities expand into desert terrains,
they disrupt natural surface energy balances, potentially intensifying or even reversing the
urban heat island (UHI) phenomenon (Al Blooshi et al., 2020). Globally, converting natural
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landscapes into built environments typically raises urban
temperatures due to heat retention by impervious surfaces
(Vujovic et al., 2021). However, in hot desert cities like those
across the Arabian Peninsula, an inverted UHI pattern may
emerge during the day, with urban centers appearing cooler than
the adjacent barren lands. This reversal is driven by factors such as
urban irrigation, vegetation presence, and higher thermal inertia in
cities, all of which moderate daytime heat, unlike the rapidly heating,
sparsely vegetated desert soil.

Understanding these dynamics is crucial for advancing
sustainable urban development aligned with global climate
objectives. Changes in land cover directly impact land surface
temperature (LST), as different surface materials and vegetation
types exhibit distinct thermal characteristics and evapotranspiration
rates, leading to varied surface heating. Past research consistently
shows that barren or minimally vegetated areas reach the highest
daytime LSTs, followed by urban spaces, with vegetated zones and
water bodies being the coolest. For example, (El Kenawy etal., 2019),
noted that in an Egyptian desert setting, bare land exhibited mean
LSTs exceeding 42 °C hotter than urban zones and significantly
hotter than irrigated fields or water surfaces. High-density built-up
regions tend to be warmer than vegetated ones due to lower
reflectivity and reduced cooling via evapotranspiration (Ramadan
M. et al., 2024). However, urban green spaces and water bodies can
effectively alleviate such heating, especially in extreme arid climates
where landscaped cities may become thermal oases amid scorching
deserts (Ramadan et al., 2025).

Cities like Abu Dhabi often exhibit this daytime inverted UHI
effect (Lazzarini et al., 2013). reported that in Abu Dhabi, central
urban areas were 5-6 K cooler than the surrounding desert during
summer days, although this flipped at night when urban zones
became 2-3 K warmer. The daytime cooling is attributed to
irrigated green areas, shading from structures, and coastal
breezes, in contrast to the intense heat absorption by dry sand
in the desert. Yet, as cities expand and more built-up zones emerge
alongside new green areas, these temperature patterns may shift
(Taiema and Ramadan, 2021). Thus, ongoing Land Cover and LST
monitoring is essential to determine whether urban growth is
easing or worsening heat stress.

Satellite remote sensing offers an efficient approach to track
Land Cover changes and LST variations across large regions. High-
resolution imagery from platforms like Sentinel-2 allows precise
land cover classification, while thermal data from sensors like
MODIS and Landsat TIRS provide valuable surface temperature
readings. Google Earth Engine (GEE) streamlines the processing of
these extensive datasets, enabling fast and scalable multi-temporal
analyses for researchers and planners (Gorelick et al, 2017).
Leveraging GEE’s cloud-based processing and satellite archives
supports robust assessments of land change impacts on the
environment at scale.

The year 2020 presented a unique context with the COVID-19
pandemic, which temporarily curtailed traffic and industrial
activities due to lockdowns. In the UAE, this led to enhanced air
quality and a decrease in UHI intensity during lockdown months
(Algasemi et al., 2021). Reported an approximate 19% reduction in
urban-rural LST differences between April and June 2020 compared
to 2019, attributing this to lower anthropogenic heat and emissions.
However, the impact on overall LST in arid environments remains
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complex, as reduced human activity coincided with one of the
hottest years globally (Tewari and Srivastava, 2023). The net
effect on Abu Dhabi’s LST during this period remains an
open question.

Investigating Abu Dhabi’s land cover and thermal dynamics
contributes directly to several Sustainable Development Goals. SDG
11 (Sustainable Cities and Communities) emphasizes the need for
urban areas to be safe, resilient, and climate-adaptive, particularly
through strategies like urban greening. SDG 13 (Climate Action)
underscores preparing for extreme climate events, while SDG 15
(Life on Land) supports sustainable land cover and combating
desertification. This study aims to provide evidence-based
insights to guide climate adaptation and urban planning in
rapidly evolving desert environments.

Despite increasing attention to Land Cover and UHI research in
the Arabian Gulf, recent high-resolution analyses for the broader
Abu Dhabi Emirate remain limited. Many past studies relied on
older Landsat datasets or focused narrowly on urban cores without
linking them to broader land cover dynamics (Sultan et al., 2024).
This research addresses that gap by offering a comprehensive
assessment of Land Cover and LST changes in Abu Dhabi from
2017 to 2024. Through advanced Earth observation combining
Sentinel-2 imagery and MODIS thermal data processed via GEE.
We evaluate changes at multiple time intervals. The key objectives
are: (1) to classify major Land Cover types in Abu Dhabi for the
years 2017, 2020, and 2024, assessing spatial shifts and area changes;
(2) to analyze temporal variations in land surface temperature
during this period; and (3) to explore how changes in land cover,
such as urban sprawl or increased vegetation, influence LST
patterns. This work seeks to shed light on how development and
land management practices affect environmental conditions in
arid cities.

This study offers several methodological and contextual
contributions. First, it applies a multi-year analysis of Land
Cover and LST interactions across three benchmark years (2017,
2020, 2024), with a special focus on the anomalous dynamics of the
2020 pandemic year. Second, the study combines high-resolution
Sentinel-2 Land Cover classifications with MODIS-derived LST data
using Google Earth Engine, while addressing spatial scale
mismatches through aggregation and sensitivity testing. Third, it
explores the inverse relationship between NDVI and LST as a
thermal mitigation indicator and evaluates Surface Urban Heat
Island Intensity (SUHII) across different urban zones. Together,
these elements provide a reproducible, scalable framework for urban
climate monitoring and land-based adaptation planning in arid
regions, with implications for SDG-aligned policymaking in the
Gulf context.

2 Study area

Abu Dhabi Emirate, the largest of the seven emirates in the
United Arab Emirates, spans approximately 66,300 km” accounting
for nearly 87% of the country’s total land area. Situated within the
hyper-arid zone of the Arabian Peninsula, it stretches between
latitudes 22.5°-26.1° N and longitudes 51°-56.3° E. The region
experiences an extremely arid climate, marked by scorching
summer temperatures ranging from 40 °C to 50 °C during the
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FIGURE 1
Location of the study area.

day, mild winters, and minimal annual rainfall (typically less than
100 mm) (Wehbe et al., 2017).

The emirate’s landscape is diverse, comprising expansive desert
areas including sand dunes and sabkha (salt flats), scattered
agricultural zones and oases like the Liwa Oasis in the south,
rapidly growing urban centers along the coastline (notably the
Abu Dhabi metropolitan area), and ecologically important coastal
zones featuring mangroves and shallow gulf waters (Ramadan M. S.
et al, 2024). The study area, illustrated in Figure 1, covers the entire
emirate. As of 2020, Abu Dhabi had an estimated population of
3.4 million, primarily concentrated in the city of Abu Dhabi and the
Al Ain region in the east. In contrast, the vast Al Dhafra region to the
south and west remains sparsely inhabited. This stark contrast
densely  developed regions  and
surrounding desert landscapes highlights the significance of

between urban/coastal
environmental transitions.

Urban greenery such as parks and roadside vegetation as well as
large-scale afforestation projects in desert areas have become
integral to Abu Dhabi’s land cover planning. These initiatives,
along with substantial urban, industrial, agricultural, and
infrastructure development in recent decades, have significantly
reshaped the emirate’s terrain. Understanding how these
transformations affect land cover and land surface temperature is
essential for effective resource management and the promotion of

sustainable urban growth across the emirate.

3 Materials and methods

To clearly illustrate the methodological approach employed in
this study, Figure 2 presents a schematic workflow. This diagram
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encapsulates the complete sequence of steps ranging from the
selection and preprocessing of satellite imagery to classification,
LST extraction, and the final analytical procedures conducted within
the Google Earth Engine platform.

3.1 Data collection

Multi-temporal datasets were sourced from two primary
satellite systems (outlined in Table 1): Sentinel-2 for optical
land cover classification and MODIS Terra for thermal infrared
measurements. All datasets were accessed and processed via
Google Earth Engine (Gorelick et al., 2017). Operated by the
European Space Agency (ESA), Sentinel-2A and 2B provide
multispectral imagery at 10-20 m spatial resolution across
visible, near-infrared (NIR), and shortwave infrared (SWIR)
bands.  Level-2A data,  already
atmospherically corrected using the Sen2Cor processor, were
utilized for this study (Phiri et al, 2020). Cloud-free or
minimally cloudy composite images from Sentinel-2 were
selected for the years 2017, 2020, and 2024, focused around the
summer months (June to August) to capture peak seasonal heating

surface reflectance

and vegetation growth. Within GEE, imagery was filtered by
acquisition date and cloud coverage (using QA60 masks), and
median composites were generated per year to minimize cloud
interference. All relevant Sentinel-2 spectral bands were used,
including visible bands (Blue, Green, Red at 10 m), NIR (10 m),
SWIR (20 m), and red-edge bands (20 m), aiding in the
differentiation of vegetation and built-up areas (see Table 1 for
details). These composites were resampled to a unified 10 m
resolution for classification purposes.
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FIGURE 2

Schematic representation of the methodological workflow for

the spatiotemporal analysis of land cover and land surface
temperature in Abu Dhabi, utilizing Sentinel-2 and MODIS datasets
within Google Earth Engine (GEE).

For surface temperature analysis, we utilized MODIS Land Surface
Temperature (LST) data from the Terra satellite, specifically the
MOD11A2 Version 6.1 product, which offers 8-day composite daytime
LST measurements at a 1 km spatial resolution. The Terra platform has a
nominal overpass time of approximately 10:30 am. local time. We chose
Terra only to maintain temporal consistency across years and avoid
potential mismatches from combining Terra and Aqua. The 8-day
composites were retrieved via Google Earth Engine (GEE) for June and
August of 2017, 2020, and 2024, representing peak summer conditions in
the study area. We applied the provided quality assurance (QA) flags to
exclude cloudy or low-quality pixels, ensuring that only reliable LST
observations were included. Although MODIS spatial resolution is
coarser than Sentinel-2, it remains sufficient to detect large-scale
thermal patterns between built-up and desert environments, which
aligns with the study’s focus on macro-scale trends across the emirate.

3.2 Preprocessing steps

All satellite datasets were appropriately transformed into top-of-
atmosphere reflectance (for Sentinel-2) or brightness temperature
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(for MODIS), as required. Atmospheric correction for Sentinel-2
imagery was carried out using the Sen2Cor algorithm within the
Google Earth Engine (GEE) environment. To support land cover
classification, indices such as the Normalized Difference Vegetation
Index (NDVI) and the Normalized Difference Water Index (NDWT)
were computed. NDVI, derived using the formula:

NIR - Red

NDV] = ———
NIR + Red

was employed to detect vegetated regions due to its high
responsiveness to chlorophyll levels and vegetation density (Xue
and Su, 2017). Meanwhile, NDWI, calculated as:

- NI
NDWI = Green R
Green + NIR

Served to identify water bodies and evaluate surface moisture,
given its efficiency in differentiating water from other land cover
types. MODIS LST data, initially in Kelvin, were converted to
degrees Celsius. All datasets were harmonized to a unified
coordinate reference system (WGS84/UTM Zone 40N), ensuring
consistent pixel alignment. A land-sea mask was also implemented
to limit the analysis to terrestrial zones within the emirate, with
coastal waters explicitly classified as “Water.”

3.3 Land cover classification

To represent Abu Dhabi’s landscape accurately, we categorized
the land into four key Land Cover types: (1) Bare land/
Desert-including sand dunes, exposed soil, rocky terrain, and
uncultivated salt flats (sabkha), (2) Urban/Built-up-covering
industrial  zones, (3)

Vegetation—consisting of areas with substantial plant coverage

cities, infrastructure, roads, and
such as farms, landscaped zones, forests, grassy patches, and
mangroves, and (4) Water bodies—encompassing both coastal
seawater and any inland water sources, such as reservoirs. These
categories were selected to capture the major land cover types that
exhibit distinct thermal properties. Classification was carried out
using a supervised machine learning approach based on Sentinel-2
composite images.

Training data for each category were compiled using a
field knowledge,

imagery from Google Earth, and supplementary land cover

combination of expert high-resolution
datasets provided by local authorities. For each land cover
class, approximately 100-150 labeled polygons were collected,
ensuring representation across various locations in the emirate.
For example, urban areas were sampled from both central Abu
Dhabi and surrounding towns, while vegetation was sampled
Each
demonstrated clear spectral patterns: urban zones typically

from diverse agricultural and green areas. class
reflected strongly in visible and SWIR bands (due to concrete
and structures) but had low vegetation index values; vegetation
was distinguishable by high NDVI and pronounced red-edge
responses; water showed very low reflectance and strong NDWI
signals; and bare desert areas reflected heavily in the red
and SWIR spectrum but had weak NIR and NDVI
These differences

classification outcomes.

values. spectral supported reliable
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TABLE 1 Technical and spectral specifications of the satellites used.

Satellite Wavelength Spatial

resolution (m)

Acquisition
years

(um)

Sentinel-2A/B  Google Earth Engine (GEE), Multispectral Band 1 - Coastal 0.433-0.453 60 2017, 2020, 2024
data provided by European Instrument (MSI) Aerosol
Space Agency (ESA)
Band 2 - Blue 0.458-0.523 10
Band 3 - Green 0.543-0.578 10
Band 4 - Red 0.650-0.680 10
Band 5 - Vegetation 0.698-0.713 20
Red Edge 1
Band 6 - Vegetation 0.733-0.748 20
Red Edge 2
Band 7 - Vegetation 0.773-0.793 20
Red Edge 3
Band 8 - Near 0.785-0.900 10
Infrared (NIR)
Band 0.855-0.875 20
8a - Narrow NIR
Band 9 - Water 0.935-0.955 60
Vapor
Band 10 - SWIR 1.360-1.390 60
Cirrus
Band 11 - SWIR 1 1.565-1.655 20
Band 12 - SWIR 2 2.100-2.280 20
MODIS Google Earth Engine (GEE), MODI11A2 V6.1 - LST Band 31 - Thermal 10.78-11.28 1,000 2017, 2020, 2024
(Terra) data provided by NASA Daytime Infrared

TABLE 2 Accuracy assessment of land cover classification for 2017, 2020,

Using the compiled training samples, classification was
and 2024.

performed on the GEE platform utilizing a Random Forest
(RF) algorithm, known for its effectiveness in arid region
Land Cover mapping (Belgiu and Dragut, 2016; Sultan et al.,

Year

Overall accuracy (%)

Kappa coefficient

2024). The Random Forest classifier was implemented with o017 88.75% 085
100 trees and a maximum depth of 25. The feature set 2020 91.30% ‘ 0.88
included Sentinel-2 bands 2 (Blue), 3 (Green), 4 (Red), 8 2024 93.45% ‘ 0.91

(NIR), 11 (SWIR 1), and 12 (SWIR 2), as well as two indices:
NDVTI and NDBI, enhancing discrimination between vegetation

and built-up areas. A 70/30 training-to-validation split was used,
with independent training datasets generated separately for each
study year (2017, 2020, and 2024) to ensure model adaptability to
changing land dynamics.

The model was initially trained using the 2017 composite and
then applied to classify the other 2 years. The assumption was that
the spectral traits of land cover types remained relatively stable;
however, to ensure year-specific accuracy, we did not reuse the same
training set across years. Instead, we refined the classifications for
2020 and 2024 by generating independent, additional training
samples for each respective year, especially targeting areas with
new urban development or recent vegetation growth. This hybrid
approach ensured consistency across years while avoiding data
leakage. The final outputs consisted of high-resolution (10 m)
land cover maps for each of the 3 years. A 3 x 3 mode filter was
used post-classification to reduce isolated pixel-level noise and
misclassifications.

Frontiers in Environmental Science

3.4 Accuracy evaluation

To ensure classification reliability, accuracy was measured
through confusion matrices and independent validation samples.
For each year, a stratified random set of 200 points was manually
validated using high-resolution imagery. All maps achieved overall
accuracy above 88% (see Table 2). Specifically, the 2017 map
achieved  88.8%  accuracy (Kappa 0.85), while the
2024 classification reached 93.5% (Kappa 0.91),
improvements in both training data and image quality.

Per-class

reflecting
classification performance was evaluated and
confirmed to be consistent with standard expectations in arid-
region Land Cover mapping. The most common classification
errors were between Vegetation and Bare land in transitional
areas (e.g., sparse shrubs being misclassified), and between Urban
and Bare land at urban edges. Water bodies, due to their unique
spectral features, were classified with nearly 100% user’s accuracy.
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These performance metrics align well with other remote sensing
applications in arid environments (Stehman and Foody, 2019),
confirming the validity of the maps for further analysis.

3.5 Land surface temperature retrieval

To assess surface temperature patterns within the study region,
we utilized thermal imagery from the MODIS Terra satellite. Two
approaches were initially considered: (1) relying on the standard
MODIS LST product, which applies a generalized split-window
algorithm  with preset coefficients; and (2) a custom
implementation of the split-window method. After evaluation, we
selected the validated MOD11A2 Land Surface Temperature (LST)
dataset available on Google Earth Engine (GEE), which is pre-
processed for atmospheric correction and surface emissivity using
well-established calibration parameters (Wan, 2014; Wan, 2014).
This product provides 8-day composites of daytime LST at a spatial
resolution of 1 km, with overpass times around 10:30 a.m. local time.

For each benchmark year (2017, 2020, and 2024), we focused on
the summer months (June through August) to capture peak thermal
conditions. The average daytime LST was calculated by aggregating
the MODI11A2 images within this period, and we additionally
computed the maximum summer temperature per pixel to assess
extreme heat conditions. This seasonal averaging approach helped
reduce short-term variability while highlighting meaningful spatial
heat distribution patterns.

To mitigate atmospheric interference such as cloud cover or
dust, we applied MODIS-provided quality assurance (QA) bitmasks
to filter out low-confidence pixels. Only clear-sky observations were
retained, ensuring the reliability of the derived thermal patterns.
Fortunately, Abu Dhabi typically experiences minimal cloud
coverage in the summer, so most pixels passed the QA filtering
process. Spatial inspection of the resulting LST maps showed high
consistency and realistic thermal gradients across the study area.

For further MODIS-derived LST from the
2017 dataset was compared with coinciding temperature outputs

validation,

from Landsat-8’s Thermal Infrared Sensor (TIRS), using a basic
radiative transfer model over selected zones. Results showed strong
agreement, with average deviations within +2 °C, supporting the
suitability of MODIS for broader-scale thermal analysis in arid
environments. We note that this validation was indicative only;
detailed statistical metrics (e.g., R?, MAE) were beyond the present
scope but are recommended for future research.

To reconcile the spatial resolution mismatch between MODIS
LST (1 km) and Sentinel-2 Land Cover maps (10 m), the classified
land cover data were aggregated using a majority voting scheme.
Each 1 km MODIS pixel was assigned the dominant land cover class
present within its extent. This resampling approach ensured spatial
alignment for subsequent LST-Land Cover overlay analysis.

To address potential aggregation bias and the Modifiable Areal
Unit Problem (MAUP), a sensitivity test was conducted by
excluding pixels where no single land cover class exceeded 60%
coverage. The resulting changes in average LST values across land
cover types were minimal (typically <2%), indicating the robustness
of the spatial integration process.

Once validated and aligned, the MODIS LST data were used to
examine how surface temperatures varied across land cover types.
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Using the Land Cover classification results, we extracted the mean
and standard deviation of LST for each land class and each year. This
enabled us to monitor how urban, vegetated, bare land, and water
areas responded thermally over time (see Table 5), identifying
possible warming or cooling trends and linking them to land
management dynamics.

3.6 Data integration and analysis

With both Land Cover and LST datasets properly aligned, a
comprehensive analysis was conducted. The first step involved
evaluating land cover changes between 2017 and 2024 by
calculating the net area variation for each class and visualizing
spatial transformation patterns. This was achieved through a cross-
tabulation of land cover classifications over the years and mapping
where shifts occurred. Key areas of interest included the spread of
urbanization commonly marked by desert land being converted into
built environments and greening initiatives where previously barren
land was transformed into vegetated zones through farming or
landscaping efforts.

We then focused on the spatial distribution of surface
temperature (see Figure 5). Thermal patterns were reviewed
qualitatively by pinpointing heat-intensive and cooler zones, and
quantitatively by summarizing the range of LST values (Table 6). To
understand how specific land cover types correlate with temperature
levels, we overlaid the classified LAND COVER boundaries onto
LST maps. This enabled both visual interpretation and statistical
assessment of thermal behavior across different land types (Al-
Ruzouq et al., 2022). For instance, urban regions were anticipated to
appear cooler than adjacent desert areas during the day, and this
assumption was verified across the temporal dataset.

Subsequently, we examined temperature changes over the years.
A core objective was to determine whether average LST had
increased or decreased between 2017 and 2024, considering the
backdrop of climate change and local land development. Since
2020 was an atypical year impacted by pandemic lockdowns and
unprecedented global temperatures, it was separately analyzed to
identify anomalies. We plotted average LST values across the
emirate for each year and also segmented the results by land
cover type using data from Table 5 to identify trends over time.

The final stage assessed the interaction between land cover
transitions and thermal shifts. We explored whether newly
urbanized zones experienced temperature rises or declines and
whether areas that became vegetated contributed to localized
cooling. To approximate the Surface Urban Heat Island Intensity
(SUHII), we calculated the difference in average LST between urban
zones and adjacent bare land using concentric buffer zones as a rural
reference. Buffer distances were set incrementally around urban
clusters, but the analysis is presented here as an indicative
comparison rather than a fully parameterized statistical design.
This provided a consistent benchmark for evaluating relative
thermal behavior across cities. Results suggested a persistent
daytime urban cooling pattern across most urban clusters,
potentially influenced by irrigation practices, surface reflectivity,
and organized landscaping schemes.

Furthermore, a comparative evaluation of vegetation cover
(NDVI) and land surface temperature (LST) across the study
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years revealed a consistent negative spatial association. Areas with
higher vegetation density especially agricultural lands and green
urban spaces tended to exhibit cooler surface temperatures
compared to neighboring barren regions. This observed trend
aligns with the widely recognized cooling function of vegetation
in arid environments, where plant cover promotes
evapotranspiration and moderates surface heating.

All data processing tasks and analyses were performed within
the Google Earth Engine platform, with supplemental geographic
visualization completed using local GIS tools. Although detailed
statistical modeling and meteorological normalization were beyond
the present study’s scope, the spatial overlays between NDVI and
LST consistently illustrated an inverse relationship across the
emirate. These qualitative patterns underscore the importance of
vegetation in heat mitigation and highlight the potential of land
cover planning as a climate adaptation strategy in hyper-arid

urban regions.

3.7 Comparative advantage of GEE over
traditional GIS platforms

This study highlights the distinct advantages of using Google
Earth Engine (GEE) over conventional GIS platforms for large-scale
environmental analysis. GEE’s cloud-based processing capabilities
offer remarkable scalability, enabling users to work with multi-
temporal satellite imagery and extensive geographic datasets without
the constraints of local computing power (Amani et al, 2020).
Unlike desktop-based tools like ArcGIS or QGIS which require
manual data downloads, storage, and processing GEE streamlines
workflows through code-driven automation, real-time access to
global data archives, and built-in functions for classification,
visualization, and time-series analysis. This makes it particularly
well-suited for longitudinal and region-wide studies, such as
monitoring urban expansion or assessing climate adaptation.
GEE’s
proficiency may limit its accessibility for some users. Addressing

However, reliance on internet access and coding
this gap through hybrid toolkits or targeted training programs could

broaden its utility across institutional and geographic contexts.

4 Results and discussion
4.1 Land cover dynamics (2017-2024)

4.1.1 Overall land cover composition

km? (92.8%) of the emirate’s land area (Table 3). By 2024, this
had slightly declined to 60,300 km* (90.9%), signifying a gradual
shift of barren land into alternative uses. The built-up urban
footprint increased significantly during this period from about
2,000 km* (3.0%) in 2017 to nearly 3,000 km?® (4.5%) in 2024.
This reflects a 50% expansion in urban areas over 7 years, largely
fueled by ongoing construction, housing developments, and
industrial expansion. Vegetation also showed a positive trend,
growing from roughly 2,200 km® (3.3%) in 2017 to 2,700 km’
(4.1%) in 2024. This increase stems from agricultural growth in
oasis regions and enhanced landscaping projects, such as park
roadside greenery,

development, and mangrove restoration
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(Aljaddani et al, 2022). Water bodies, including coastal waters
and artificial ponds, declined slightly from 600 km® (0.9%) in
2017 to 300 km®> (0.5%) in 2024. This reduction may be
attributed to coastal reclamation and changes in man-made water
retention areas. The total land area assessed was consistently around
66,300 km” across all years, confirming the stability of mapping
procedures.

These findings highlight a mild yet noticeable transition from
barren terrain to areas influenced by human activities. Combined,
urban and vegetated zones grew from 6.3% in 2017 to 8.6% in
2024 of the emirate’s area over the studied timeframe. While desert
still dominates, the expansion of human-managed land is evident.
Similar conclusions were reached in national studies (Sultan et al.,
2024), which observed that although desert areas still cover the
majority of the UAE, developed and green zones have expanded
significantly due to construction and environmental initiatives. Abu
Dhabi’s development trajectory mirrors broader national trends
toward urbanization and ecological enhancement.

4.1.2 Spatial patterns of transformation

The land cover maps for 2017, 2020, and 2024 (Figure 3) show
clear patterns of urban and vegetative expansion. Urban
development is mainly concentrated in the northeastern
coastal corridor around Abu Dhabi city and near Al Ain in
the east, with additional clusters along major transport routes.
Vegetative growth appears near oases (notably Liwa in the south),
farms in Al Ain, and as green patches in urban areas (e.g., city
parks and shoreline mangroves). Desert regions still occupy most
of the map in all years. By visually comparing the maps, it is clear
that urban zones have pushed further into former desert edges,
particularly around the Abu Dhabi metropolitan area. Al Ain also
exhibits outward expansion. Vegetation has increased in density
and distribution, notably through more intensive farming in Al
Ain and the appearance of new plantations in western desert
regions. Coastal waters appear broadly stable in extent on the
maps, though the statistics indicate a net reduction by 2024, likely
linked to coastal reclamation and changes in man-made water
retention areas.

4.1.3 Quantifying transitions (2017-2024)

Table 4 and Figure 4 present the detailed land cover transitions
between the key intervals. Between 2017 and 2020, urban zones grew
by around 400 km® (an annual average of +133.3 km?), with this gain
mainly resulting from a reduction in barren land (-600 km* over
3 years). Vegetated areas also expanded by approximately 200 km®
(+66.7 km” per year), again largely from desert conversion. Water
zones remained stable during this period (0 km® net change).
Between 2020 and 2024, urban expansion accelerated, averaging
+150 km?® annually (a total of +600 km®> over 4 years), while
vegetation increased by roughly +75 km® per year (+300 km?
overall). The rate of desert reduction slowed to about —150 km?
annually (-600 km® in total). Meanwhile, water bodies declined
more sharply, losing around —300 km* overall (=75 km” per year),
likely linked to land reclamation projects and reductions in artificial
ponds. These figures suggest that development activity picked up
pace after a temporary slowdown in 2020, possibly tied to the
pandemic, with growth surging again as construction and
agricultural initiatives resumed.
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TABLE 3 Land cover class areas in Abu Dhabi for 2017, 2020, and 2024. (Areas in square kilometers and percentage of total land area, approx).

Land cover class

Bare land/Desert 61,500 92.8% 60,900 91.9% 60,300 90.9%
Built-up (Urban) 2,000 3.0% 2,400 3.6% 3,000 4.5%
Vegetation 2,200 3.3% 2,400 3.6% 2,700 4.1%
Water 600 0.9% 600 0.9% 300 0.5%
Total 66,300 100% 66,300 100% 66,300 100%
All area statistics are based on terrestrial zones after applying a land-sea mask; coastal waters are represented only within the “Water” class.
2024

2017 2020

Built-up (Urban)

Bare land/Desert

FIGURE 3
Land cover change in Abu Dhabi for 2017, 2020, and 2024.

Vegetation Water

TABLE 4 Annual change (km?/year) in land cover classes.

Class (2017-2020) (2020-2024)
Bare Land/Desert —200.00 —-150.00
Urban (Built-up) +133.33 +150.00

Vegetation +66.67 +75.00
Water 0.00 ~75.00

4.1.4 Reliability of change detection

Classification accuracy, detailed in Table 2, provides further
confidence in the observed land cover shifts. Kappa values ranging
from 0.85 to 0.91 reflect strong consistency with reference data.
Importantly, the classification methodology was applied uniformly
across all years, minimizing potential inconsistencies. Therefore,
even if minor underestimations exist (e.g., sparse vegetation
misclassified), the observed trends are likely genuine. Field checks
further confirmed the emergence of new farms, expanded irrigation
schemes, and urban extensions, reinforcing confidence in the
accuracy of mapped changes.

In summary, between 2017 and 2024, Abu Dhabi

experienced steady land transformation marked by a
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1,200 km?* reduction in barren desert, alongside significant
urban expansion of about 1,000 km?* and vegetation gains of
roughly 500 km®, while water bodies declined by around
300 km?. These developments continue a long-term pattern
seen across the UAE, driven by investment in infrastructure,
greening projects, and coastal reclamation. The observed
changes are directly relevant to global sustainability goals,
particularly SDG 11 (sustainable cities) and SDG 15 (land
ecosystem conservation).

4.2 Land surface temperature patterns

4.2.1 Overall distribution of LST

The spatial distribution of surface temperature across Abu
Dhabi presents a vivid thermal landscape. As depicted in
Figure 5, the hottest zones correspond to the interior desert
regions, particularly areas far from the sea’s moderating
influence. The Rub’ al Khali (Empty Quarter) in the emirate’s
consistently exhibits the highest land
temperatures (LST), often surpassing 55 °‘C during midday in
summer. Conversely, urban environments and green areas stand
out as noticeably cooler. The Abu Dhabi metropolitan area, situated

southwest surface
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FIGURE 4
Annual change in land cover classes in Abu Dhabi for the periods 2017-2020 and 2020-2024.
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FIGURE 5

Spatial/temporal distribution of LST in Abu Dhabi for 2017, 2020, and 2024.
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along the coast, forms a visible cluster of pixels with lower LST
compared to adjacent desert zones. Similar cooling effects are
observed in Al Ain and in large cultivated zones, with many
appearing in blue-green tones indicating lower temperatures
compared to the orange-red shades of the hot desert. Coastal
mangroves and water bodies are the coolest zones, often
remaining under 40 °C, thanks to evaporative cooling and the
thermal inertia of water. While coastal moderation likely
contributes to lower LST in shoreline cities (e.g., Abu Dhabi
Island), we note that inland urban clusters (e.g., Al Ain) also
exhibit a relative daytime cool signal compared to surrounding

Frontiers in Environmental Science

desert, suggesting that urban form and greening play a role beyond
coastal effects.

These patterns illustrate an atypical form of urban-rural thermal
behavior. Rather than conventional urban heat islands (UHIs), a
daytime “cool island” effect emerges urban areas are cooler than the
surrounding desert. This thermal inversion is significant. Based on
Table 5 and Figure 6, in 2017, the average LST for barren land was
around 50.2 °C (£2.1), while urban zones averaged 42.1 °C (£3.0),
resulting in an 8 °C difference. Vegetated regions were even cooler,
averaging 36.5 “C (£3.5), nearly 14 °C lower than the desert. Water
surfaces registered the lowest LST, at approximately 33.2 °C roughly
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TABLE 5 Temporal changes in mean LST (°C) for different land cover classes in abu dhabi.

Land cover 2017 (°C) + SD 2020 (°C) + SD 2024 (°C) + SD
Bare Land 50.2 + 2.1 51.8 + 1.9 49.5 + 1.8
Urban 42.1 + 3.0 43.0 £ 2.8 41.7 * 2.7
Vegetation 36.5 £ 3.5 372+ 33 358 £ 3.1
Water 332+ 32 34.0 + 3.0 329+ 29

Temperature (°C) £ SD

Bare Land Urban

FIGURE 6

Mean land surface temperature and standard deviation by land cover class in Abu Dhabi for 2017, 2020, and 2024.

Water

Vegetation

17 °C cooler than bare land. These disparities align with earlier
research; for example, (El Kenawy et al., 2019), reported desert areas
in Egypt being 5 °C-8 °C hotter than developed or vegetated sites,
and (Lazzarini et al., 2013) observed downtown Abu Dhabi as 5 K
cooler than adjacent desert suburbs. Our findings suggest even
greater temperature differences, likely influenced by factors such
as urban landscaping, building materials, high-albedo surfaces, and
shading from infrastructure.

4.2.2 Temporal trends in surface temperature

The year 2020 emerges as the hottest in our temporal dataset.
According to Table 6, the emirate’s average LST in 2020 reached
53.14 °C, with maximum values peaking at 57.5 °C. This surpasses
the 2017 mean of 52.40 °C and reflects the influence of an intense
summer season and broader global warming patterns. Notably, this
increase occurred despite reduced anthropogenic activity due to
COVID-19 lockdowns, underscoring the role of natural climatic
forces. Reports from that period confirm record-breaking air
temperatures in parts of the UAE, including 51.8 °C in Al Dhafra
(June 2020) (Algasemi et al., 2021). Our thermal imagery captures
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TABLE 6 Statistics of the different ranges of LST ("C).

Year MIN MAX MEAN STD
2017 35.11 56.53 52.40 1.94
2020 33.92 57.53 53.14 2.32
2024 3311 52.23 48.76 1.89

this anomaly clearly, emphasizing how extreme weather events can
dominate short-term heat signatures.

By 2024, the average LST had declined significantly to 48.76 °C a
reduction of approximately 3.6 “C compared to 2017. This cooling
may reflect milder seasonal conditions, increased green cover, or a
combination of both. With desert area decreasing by over 1,200 km?
between 2017 and 2024, and cooler land types expanding in its place,
part of this temperature drop is likely land-use driven. Additional
contributing factors could include differences in wind patterns,
humidity, or cloud cover in 2024. While longer-term climate data
would be needed to fully separate land cover impacts from weather
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variability, the correlation is strong enough to suggest that
vegetation and urban expansion played a cooling role.

This consistent pattern temperature rising in 2020 and falling by
2024 across all classes supports the view that 2020 was an outlier due
to climatic extremes, and that the subsequent cooling likely reflects a
mix of environmental shifts and milder summer conditions.
Interestingly, the standard deviation in LST also decreased across
classes from 2017 to 2024 (e.g., bare land SD dropped from 2.1 to
1.8), indicating more thermal homogeneity within each class,
possibly due to increased land cover consistency or redistribution
of class boundaries into more climatically moderate zones.

4.2.3 Urban cool island effects and UHI dynamics

Our findings affirm that cities in Abu Dhabi function as daytime
cool zones compared to the surrounding desert. However, this does
not negate the occurrence of urban heat islands at night, when
materials in built environments retain and slowly release heat. It is
important to note that all results presented here are daytime-specific,
and therefore nocturnal UHI dynamics and humidity effects are not
captured in this analysis. While our study focuses on daytime
satellite-based surface temperatures where contrasts are most
visible, other investigations (Algasemi et al, 2021) noted that
UHI effects were less intense at night during 2020, likely due to
decreased pollution and reduced human activity.

Interestingly, in our data, the urban cool effect slightly increased
in 2020, despite expectations of lower anthropogenic heat. One
might assume that less traffic and industrial activity would reduce
city temperatures further. However, reduced irrigation and fewer
operations of water features during lockdown might have offset
cooling. Additionally, extreme ambient heat likely overwhelmed the
minor decline in waste heat from human sources. Thus, cities still
got hotter overall, but the desert surroundings heated up even more,
maintaining or even widening the contrast.

By 2024, with normal urban activity resumed and vegetation
expanded, the daytime cool island effect persisted. The mean LST
gap between urban and desert zones was still close to 7.8 °C. This
suggests that urbanization, in this context, is not exacerbating
surface heat during the day. In fact, the replacement of bare, heat-
intense sand with structured and often irrigated surfaces has

Still, full
comfort, night-time

helped moderate local for a
of

conditions and humidity levels would need to be considered

temperatures.

understanding urban  thermal
alongside daytime surface temperature. While this pattern is

partly shaped by site-specific factors such as coastal
moderation, the persistence of a cool signal in inland cities
like Al Ain supports the conclusion that urban form and

greening contribute to daytime cooling beyond shoreline effects.

4.3 Impact of COVID-19 in 2020 on land
cover and LST

The year 2020 stands out as a unique interval within the study
period, offering a potential lens into how a global disruption like
the COVID-19 pandemic may have influenced land cover and
surface temperature patterns. In terms of land cover, the trends
did not shift dramatically during 2020. Both urban and vegetated
areas continued their expansion, albeit at slightly reduced annual
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rates compared to the period that followed (see Table 4). This
suggests that the early impacts of the pandemic, particularly on
construction and agriculture, may have momentarily slowed land
transformation efforts. For instance, urban growth from 2017 to
2020 averaged around 133 km® per year, whereas between
2020 and 2024, this figure rose to 150 km?* annually. Similarly,
vegetation expanded at 66.7 km® per year pre-2020, and 75 km”
per year afterward. These differences point to possible delays in
development projects during 2020, with acceleration occurring
post-pandemic. Nevertheless, the overall direction of change
remained consistent, and any slowdown due to COVID-19
was modest and short-lived.

The more notable environmental effects of the pandemic
particularly on-air quality and thermal dynamics were likely
most pronounced during the strict lockdown period in early
2020 (April-May). While our analysis focuses on aggregated
LST data for the summer months (June-August), which
followed the relaxation of most movement restrictions, some
residual thermal effects may still be detectable (Alqasemi et al.,
2021). reported significant reductions in nitrogen dioxide (NO,)
and aerosol concentrations over urban areas in the UAE during
the lockdown, along with a roughly 19% decline in Surface
Urban Heat (SUHII), defined the
temperature differential between urban and surrounding non-

Island Intensity as
urban zones.

Interestingly, our dataset for summer 2020 shows that urban
areas were approximately 8.8 “C cooler than surrounding land types
(Table 5), a slightly larger contrast than in 2017, where the difference
was 8.1 °C. While this observation appears counter to Alqasemi’s
findings, the divergence is likely due to differences in spatial
resolution, land cover definitions, and temporal windows. Our
analysis captures broader seasonal averages across the entire
their
conditions during peak lockdown months. Additionally, the use
of MODIS 1 km LST may smooth finer-scale thermal contrasts
observed in higher-resolution data.

emirate, whereas study focused on more localized

Closer inspection of the 2020 LST maps (Figure 5) reveals that
some zones such as smaller settlements and farming areas registered
slightly elevated temperatures compared to previous years. One
plausible explanation is that reduced field activity or labor
disruptions during lockdowns led to less frequent irrigation,
resulting in plant stress or surface drying. As a result, these
vegetated patches may have retained more heat. Conversely,
major cities like Abu Dhabi probably maintained core services,
including irrigation of green spaces, which helped preserve their
relative coolness. Moreover, 2020 was characterized by exceptionally
high solar radiation and ambient air temperatures (Tewari and
Srivastava, 2023), which likely exerted a stronger influence on
LST patterns than short-term emission reductions.

Thus, despite reduced human activity in early 2020, the summer
months recorded the highest surface temperatures across the study
period. This the
anthropogenic and natural drivers of urban thermal behavior.

underscores complex interplay between
From the perspective of climate policy and adaptation (SDG 13),
this finding highlights the need for sustained, long-term mitigation
strategies such as expanding vegetative cover and improving land
surface design, rather than relying on transient reductions in activity

levels to influence urban heat patterns.
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4.4 Relationship between land cover and LST

Our comprehensive analysis highlights a strong link between
different land cover types and their corresponding surface
temperatures, aligning with established theories and prior
research. Vegetation notably exhibits a cooling influence, with
higher NDVI values consistently associated with lower LST
across all observed years (Yu et al, 2025). Between 2017 and
2024, an expansion in vegetated areas coincided with a modest
overall temperature reduction counteracting the expected effects of
global warming. For instance, newly cultivated farms in the western
desert appear 5 “C-10 ‘C cooler than adjacent barren sand in the
2024 LST imagery. This directly illustrates how efforts under SDG 15
(Life on Land), such as combating desertification through planting,
can help mitigate extreme heat locally, thereby supporting SDG 13
(Climate Action).

Urban zones in Abu Dhabi also generally exhibit cooler
temperatures than surrounding bare land, a phenomenon
extensively examined in our study. This trend is somewhat
specific to the local context, as urban areas in temperate or
tropical climates usually present higher temperatures than their
vegetated counterparts (i.e., a positive Urban Heat Island effect).
Here, however, an “urban cool island” forms due to the transition
from sand to constructed surfaces and greenery. Most classified
urban pixels combine structures, paved areas, landscaped vegetation,
and trees. These contribute to a moderate surface reflectivity (many
of
evapotranspiration (due to irrigated landscaping), and proximity

buildings have light-colored exteriors), some degree
to coastal breezes all factors contributing to reduced LST (Al-
Ruzouq et al., 2022). Still, variability exists within urban zones;
dense city centers with high-rises are generally warmer than
suburban neighborhoods with abundant gardens (Chakraborty
and Lee, 2019). Our 1 km resolution LST data cannot fully
capture such micro-variations, but higher-resolution imagery
(e.g., Landsat’s 100 m TIR data) would likely reveal this urban
thermal pattern where green spaces like parks and golf courses are
the coolest, and dense commercial areas slightly warmer, though still
cooler than deserts.

The desert or bare land category itself is heterogeneous,
comprising sand dunes, rocky outcrops, and salt flats each with
distinct thermal characteristics (e.g., moist sabkhas vs dry dunes).
The 2 °C standard deviation in desert LST reflects this diversity.
Nonetheless, deserts remain the warmest Land Cover type and the
main source of regional heat. As desert coverage declines, regional
temperatures are expected to decrease. Our findings support that a
1.8% reduction in desert area was associated with a 3.6 °C drop in
area-weighted average LST from 2017 to 2024 though interannual
climate variability also played a role.

Water bodies, though limited in coverage, are effective at
cooling. Coastal waters around Abu Dhabi Island lower shoreline
temperatures during the day, visible as an LST gradient from coast to
inland. Artificial inland water features, like ponds on farms, also
provide minor local cooling, although Abu Dhabi lacks large lakes.

These patterns offer practical insights, expanding vegetative
cover via urban forests, agricultural initiatives, or green corridors
is one of the most viable approaches to lowering surface
temperatures and addressing extreme climate conditions. This

strategy aligns with SDG 11 (sustainable cities). Urban planning
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should prioritize green infrastructure in new developments;
otherwise, construction without greenery risks creating urban
heat islands as intense as, or worse than, the desert. Fortunately,
Abu Dhabi has historically incorporated greening measures, as
reflected in its inverted UHI effect. Sustaining and enhancing
these actions such as planting drought-resistant trees and
maintaining park irrigation even in crises like pandemics will be
crucial as the city grows. In contrast, developments without
vegetation (e.g., large paved areas) should be avoided or
mitigated with shading and reflective materials to prevent
additional heat accumulation.

Finally, LST dynamics have implications for human heat stress.
Although surface and air temperatures are distinct, cooler surfaces
typically foster cooler surrounding air and greater thermal comfort,
particularly during the day. Urban greenery contributes to shading
and evaporative cooling at street level, enhancing comfort beyond
what satellite LST measurements reveal. Therefore, lower urban
surface temperatures likely translate into more livable conditions
compared to desert areas even accounting for urban humidity. This
links directly to SDG 11.7, which emphasizes access to safe, inclusive
public spaces such as shaded parks in Abu Dhabi that offer essential
refuge from extreme heat.

5 Sustainable Development Goals
(SDGs) and implications

Our study vyields several important insights for advancing
sustainable development in arid urban environments:

o SDG 11 (Sustainable Cities and Communities): The absence of
a daytime Urban Heat Island (UHI) effect despite urban
expansion and the presence of localized cooling is a
promising outcome (Saxena et al., 2024). It suggests that
with thoughtful urban planning that incorporates green
spaces and reflective materials, cities in desert climates can
grow without exacerbating heat stress. Abu Dhabi serves as a
model by prioritizing urban vegetation and efficient irrigation,
a cooler microclimate can be achieved. To further align with
SDG 11, urban planners should leverage land cover and
thermal data to strategically locate new parks or install
green roofs particularly in emerging hotspots (e.g., a warm
industrial zone seen in the 2024 LST map may benefit from
targeted tree planting). Maintaining urban coolness is also
essential for public health and overall livability, both central
to this SDG.

o SDG 13 (Climate Action): This research provides baseline
information for climate adaptation planning. As the Gulf
region faces intensifying heat due to climate change,
expanding green cover and maintaining water features
emerges as a viable mitigation strategy. These nature-based
interventions directly support adaptation efforts under SDG
13. In addition, long-term LST monitoring offers a way to
assess climate impacts. While the temperature dip in 2024 may
reflect short-term variability rather than a sustained trend,
continued satellite observation is essential to understand long-
term patterns. This data can also help evaluate intervention
outcomes (e.g., measuring how much urban LST dropped after
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planting one million trees). Furthermore, cooler city surfaces

can reduce air conditioning use, cutting energy consumption

and greenhouse gas emissions supporting climate
mitigation goals.

« SDG 15 (Life on Land): Monitoring changes in land cover
directly contributes to tracking SDG 15 indicators, such as
land degradation neutrality. Abu Dhabi’s slight reduction in
natural desert and corresponding increase in managed
ecosystems (like farms and plantations) present both
opportunities and challenges. While desert habitats may
appear lifeless, they support uniquely adapted biodiversity
that urban expansion could endanger. On the flip side,
increased vegetation can enhance biomass and even attract
new species such as migratory birds frequenting newly
forested areas (Zhao and Yu, 2025). Sustainable land cover
planning should seek to balance development with protection
of desert ecosystems. Our maps can help pinpoint untouched
versus altered areas, guiding conservation efforts. Moreover,
greening initiatives also relate to desertification control under
SDG 15 cooler, vegetated areas suggest better soil moisture and
stability. However, care must be taken to manage water

resources sustainably to prevent groundwater depletion.

this integrated assessment underscores that land cover
management is pivotal to environmental sustainability in arid
urban contexts. Abu Dhabi exemplifies how urban greening can
mitigate heat, while also facing the challenge of managing
surrounding hot desert expanses. Large-scale afforestation or
other interventions might be required to reduce dust and surface
heating. This research demonstrates how remote sensing and SDG
frameworks can work together offering a quantitative method for
tracking sustainability progress. For example, increases in urban
green space can be directly measured as contributions to SDG 11.
Our approach, using Sentinel-2 and MODIS data within the Google
Earth Engine platform, provides a replicable template. The cloud-
based system allows for regular updates (annually or more
frequently), and can be adapted to other cities in similar climates
to assess their performance in sustainable land cover and climate
resilience.

5.1 Policy recommendations for urban
planning in arid regions

The results of this study provide actionable recommendations
for policymakers, urban planners, and environmental stakeholders
operating in arid regions such as Abu Dhabi. The demonstrated link
between increased vegetation and lower land surface temperatures
(LST) underscores the need to embed green infrastructure into
urban development frameworks (Norton et al., 2015). Spatially
detailed LST and Land Cover datasets can help identify high-risk
heat zones, guiding the implementation of targeted cooling
interventions such as tree planting, green roofs, shaded walkways,
or high-albedo materials. Regular monitoring of land cover change
supports the evaluation of sustainability initiatives and enables data-
driven policy formulation (Chakraborty and Lee, 2019). By
leveraging these
adaptive,

insights, municipal planners

strategies

can develop

climate-resilient urban balancing heat
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mitigation, efficient water use, and improved public health
outcomes amidst the dual challenges of climate change and
accelerated urban growth in desert environments.

6 Limitations and directions for
future research

While this study offers valuable insights, several limitations
should be acknowledged. The use of MODIS LST data at a 1 km
spatial resolution introduces potential scale mismatches when
overlaid with the 10 m Sentinel-2-based LAND COVER
classifications. Although majority resampling and mixed pixel
exclusion were applied to mitigate the Modifiable Areal Unit
Problem (MAUP), finer thermal variations such as temperature
gradients between urban blocks or within green corridors may
remain unresolved. While we implemented a 60% purity
threshold to reduce mixed-pixel bias, we recognize that more
thresholds (e.g., 80%-90%)
aggregation bias, though potentially at the cost of sample size.

stringent may further reduce
Future studies could adopt higher-resolution thermal datasets
(e.g., Landsat 8/9 TIRS or ECOSTRESS) to better capture intra-
urban variability and apply tighter sensitivity thresholds to
enhance accuracy.

Additionally, the analysis focused exclusively on daytime LST
during the summer months (June-August), which limits insight into
nighttime cooling dynamics and full diurnal heat cycles.
Incorporating nighttime LST observations and meteorological
station data would enable a more complete characterization of
effects. Moreover,
classification captured broad landscape patterns, vegetation was

urban heat island while the land cover
grouped into a single class. Disaggregating it into subtypes such
as croplands, natural vegetation, and mangroves could better reveal
the specific contributions of different vegetation types to
surface cooling.

The SUHII analysis was included as an indicative comparison
only, and we note that detailed parameterization (e.g., buffer
distances, sample counts, confidence intervals) is left for future
research. The analysis was conducted using concentric buffers
around urban clusters, but detailed reporting of buffer distances,
sample sizes, and statistical significance testing was beyond the
scope. Coastal
confounder of observed urban coolness; a stratified distance-to-

present moderation is another potential
coast analysis would help disentangle shoreline effects from urban
form, but this lies beyond the scope of the present study. Similarly,
MODIS-Landsat cross-validation was applied at selected locations
and showed agreement within +2 °C, but full statistical metrics (R?,
MAE, scatter plots) were not included and are recommended for
future work.

Water availability is another critical, yet unquantified, factor.
Vegetation expansion in arid environments often depends on
intensive irrigation. Future research should integrate remote
sensing with in situ data on irrigation efficiency, water
consumption, and evapotranspiration rates to evaluate the
sustainability of greening initiatives, particularly in the context of
SDG 6 (Clean Water and Sanitation) and SDG 15 (Life on Land).

The temporal design of this study was also limited to three

benchmark years (2017, 2020, and 2024), selected for data quality
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and spacing. Expanding the temporal window to include earlier
years where Sentinel-2 or Landsat coverage exists would allow for
more robust trend detection and improve understanding of long-
term land-climate interactions. Additionally, while the impact of the
COVID-19 lockdown on LST was qualitatively noted, a higher-
frequency temporal analysis using daily MODIS and station records
could better isolate anthropogenic effects during that period.

While causal interpretations were avoided, meteorological
variables such as ambient air temperature, humidity, and wind
conditions were not explicitly controlled for. Future studies may
benefit from incorporating ERA5 or station-based covariates to
statistically normalize LST patterns and support stronger
attribution analyses.

Finally, predictive modeling could offer valuable foresight into
how future land cover scenarios may influence urban climate
dynamics. For instance, simulating the impact of converting 5%
of desert land into vegetation, or projecting thermal outcomes under
different urban growth trajectories, could support climate-resilient
planning and policy formulation.

Despite these limitations, the present study provides robust,
policy-relevant findings that deepen understanding of land-climate
interactions in hyper-arid urban environments and lay the
groundwork for future resolution- and variable-sensitive research.

7 Conclusion

This study leveraged satellite-based Earth observation and cloud
computing to examine land cover change and the presence of an
inverted urban heat island (UHI) effect across Abu Dhabi Emirate
between 2017 and 2024. By classifying Sentinel-2 imagery, we
tracked the expansion of urban and vegetated areas into the
desert. MODIS thermal data enabled us to assess how these land
cover changes, alongside broader climatic influences, impacted land
surface temperatures (LST). Rapid Yet Controlled Development:
Abu Dhabi has continued its trajectory of urbanization and desert
greening. Urban areas expanded by roughly 50% over the 7-year
period, with a concurrent rise in vegetated land cover. These
developments support the emirate’s broader strategic goals and
were mapped with high classification accuracy (>89%). Growth
primarily occurred as contiguous extensions of existing urban
and agricultural zones, minimizing fragmented sprawl. Daytime
Urban Cooling in a Desert Context: In contrast to the conventional
UHI effect, built-up and vegetated areas in Abu Dhabi are
significantly cooler during the day than surrounding bare desert.
Average summer LSTs in urban zones (41 “C-43 °C) were 7 “C-8 °C
lower than nearby desert areas (49 “C-52 °C), with vegetated regions
showing even stronger cooling (14 °C cooler). This highlights how
human-altered landscapes, when designed with greenery and water
integration, can substantially reduce extreme surface heating in
arid regions.

Climate Extremes and the 2020 Heat Spike: The year 2020 was
anomalously hot in terms of LST, despite reductions in traffic and
emissions during the COVID-19 lockdown. The highest average
surface temperatures were recorded that year, underscoring the
dominance of global climate factors. However, the urban cool
island effect persisted urban areas remained cooler than the
desert, even if all zones warmed overall. A relative cooling of
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about 3.6 “C was noted by 2024, reinforcing the importance of
multi-year analysis to distinguish long-term trends from single-
year anomalies.

Land Cover-LST Relationships: The conversion of desert to
urban or vegetated land consistently led to localized cooling, helping
buffer extreme surface heat. However, sustaining these cooler zones
often requires increased water and energy inputs. Spatial LST
variations were closely linked to land cover changes; for example,
newly vegetated zones emerged as distinct cool spots on thermal
maps. Maintaining water bodies and expanding vegetated “oases”
appear to be effective heat mitigation strategies.

The findings offer actionable insights relevant to multiple
Sustainable Development Goals (SDGs). Urban greening (SDG
11) is shown to directly reduce LST and aid in climate
adaptation (SDG 13). Additionally, our approach enables
monitoring of land degradation and restoration trends (SDG 15)
by tracking desert extent and land cover transitions. Abu Dhabi’s
model integrating green infrastructure into urban development
offers a scalable framework for sustainable planning in dryland
cities, although sustainable water management remains an essential
parallel priority. This independent analysis of Abu Dhabi’s land
cover and thermal evolution demonstrates the effectiveness of
combining Sentinel-2, MODIS, and Google Earth Engine (GEE)
for monitoring environmental change. Our results reveal that even
in one of the world’s most extreme climates, strategic land cover,
particularly urban greening can produce cooler and more livable
conditions. However, the persistent threat of surrounding desert
heat reinforces the ongoing need for adaptation and careful planning
in the face of climate change.

The methodology used here can be expanded to track future
developments in Abu Dhabi or adapted for use in other arid urban
regions, providing a valuable tool set for data-driven decision-
making toward sustainable, climate-resilient urban futures. To
build on this foundation, integrating additional datasets such as
socio-economic indicators, energy consumption, or public health
metrics related to heat exposure can yield a more holistic picture of
urban sustainability. Monitoring nighttime LST would also
complete the 24-h UHI profile. As satellite technology advances,
including the launch of higher-resolution thermal sensors, our
capacity to assess and manage urban climates will continue to
improve. This study offers a timely and relevant case example of
how land cover strategies can shape urban climate resilience
informing local policies in the UAE and offering insights to the
global community working toward sustainable and livable cities.
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