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Citizen science plays a crucial role in enhancing the spatial and temporal
resolutions of environmental observations. The Global Learning and
Observations to Benefit the Environment (GLOBE) Observer application is a
mobile extension of the GLOBE Program that is empowering the public to
collect environmental data in support of both scientific research and
educational outreach. In this study, we leverage citizen science data from the
GLOBE Observer program to evaluate and validate three canopy height models:
the ice, cloud, and land elevation satellite-2 (ICESat-2) product, a global
ecosystem dynamics investigation (GEDI)-Landsat-derived global map (GL),
and a GEDI-Sentinel-2 fusion map (GS-2). Tree height measurements
obtained with GLOBE were filtered for forested areas using the Landscape Fire
and Resource Management Planning Tools (LANDFIRE) existing vegetation cover
data and analyzed across multiple ecozones within the contiguous United States;
then, manual comparisons were performedwith airborne lidar data from selected
sites. Our findings indicate that although GLOBE data provide extensive temporal
and spatial coverage, these exhibit low general agreement with airborne lidar
reference heights (R2 = 0.14) owing to geolocation inaccuracies and
measurement inconsistencies inherent in citizen-collected data. Validations
performed with spaceborne lidar-derived canopy height maps (ICESat-2, GL,
and GS-2) showed generally low correlations (R2 = 0.08–0.17) that could be
improved (up to R2 = 0.22) by filtering for greater location accuracy (0–25 m),
even though challenges persist. These results underscore both the potential and
limitations of using citizen science data for validating spaceborne lidar-derived
canopy height maps while highlighting the need for enhanced data collection
protocols to improve geolocation accuracies for future ecological monitoring
efforts.
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1 Introduction

Forest canopy height mapping is crucial for understanding and
managing forest ecosystems as it provides essential information
about the structures, health, and biodiversity of forests (Alvites et al.,
2024; Migliavacca et al., 2021). Accurate canopy height maps are
essential for estimating aboveground biomasses that are key
indicators of carbon storage and sequestration potential in forests
(Potapov et al., 2021; Qadeer et al., 2024; Malambo and Popescu,
2024) as well as fundamental for climate change studies and
development of effective strategies to mitigate global warming by
enhancing carbon sinks (Lang et al., 2023). Additionally, canopy
height information can help with monitoring forest dynamics, such
as the growth rates, disturbances, and recovery processes, thereby
aiding in sustainable forest management and conservation efforts
(Wulder et al., 2012; Malambo and Popescu, 2024; Liu and
Popescu, 2022).

Traditionally, tree heights are obtained through in situ field
measurements that require considerable amounts of manpower and
time while being difficult to scale up (Enterkine et al., 2022).
Satellite-based observations provide opportunities to map the
canopy heights globally through efforts like NASA’s current ice,
cloud, and land elevation satellite-2 (ICESat-2) (Markus et al., 2017)
and global ecosystem dynamics investigation (GEDI) (Dubayah
et al., 2020a) missions. ICESat-2 has been in operation since
September 2018 and provides surface elevation measurements of
the Earth with its Advanced Topographic Laser Altimeter System
(ATLAS) instrument by counting the photons transmitted and
received. The main purpose of ICESat-2 was to detect changes in
the elevation of sea ice (Markus et al., 2017), although ICESat-2 data
and its derivatives have also been used for vegetation and water
management applications. Various ICESat-2-derived products have
been developed for mapping canopy heights (Malambo and
Popescu, 2021; Malambo et al., 2022), monitoring forest fires
(Liu and Popescu, 2022), and estimating biomass levels (Narine
et al., 2020; Nandy et al., 2021). Malambo and Popescu (2024)
integrated ICESat-2 data with ancillary datasets to model canopy
heights across the continental United States. The canopy height map
produced thus was generally consistent with reference airborne lidar
data (R2 = 0.72, mean absolute error (MAE) = 3.9 m) across the
United States, and the model performances varied by biome type.

GEDI was launched in December 2018 and has been collecting
data since April 2019. GEDI is a spaceborne lidar installed on the
International Space Station and has been specifically designed for
vegetation structure measurements. GEDI measures and maps
three-dimensional forest structures and provides high-resolution
data on forest canopy heights, canopy vertical structures,
aboveground biomass estimates, and surface elevations (Dubayah
et al., 2020a). GEDI provides sparse footprint-level data, so it is
necessary to integrate GEDI data with continuous optical time-series
data such as Landsat and Sentinel-2 satellite imagery to extrapolate
and monitor forest changes in a specific area (Schlund et al., 2023).
GEDI level-2 data include two products, namely, GEDI L2A
elevation and height metrics as well as GEDI L2B canopy cover
and vertical profile metrics (Dubayah et al., 2020b). Potapov et al.
(2021) extracted multiple relative height metrics from GEDI L2A
data and integrated these metrics with global Landsat data to create a
30-m global forest canopy height map for the year 2019, which is

referred to herein as the GL map. This global GEDI canopy height
map was validated with airborne lidar data with the desired accuracy
(root mean-squared error (RMSE) = 9.07 m, MAE = 6.36 m, R2 =
0.61). In another similar work, Lang et al. (2023) fused the sparse
height data from GEDI with dense Sentinel-2 images (GS-2) using a
probabilistic deep-learning model and created a continuous 10-m
global canopy height map; this method improved the retrieval of
canopy heights for tall trees. This map was further evaluated against
independent airborne lidar data (RMSE = 7.9 m, bias = 1.7m), which
indicated its general tendency to overestimate canopy heights
compared to the airborne lidar measurements. This 10-m GEDI-
derived global canopy height product will be referred to herein as the
GS-2 canopy height map.

Despite the availability of spaceborne lidar-derived data, it is
critical to understand their performances in measuring tree heights.
One approach is to utilize ground-based measurements to validate
the maps produced (Enterkine et al., 2022). Citizen science data
serve as alternative data for comparisons given their broad temporal
and spatial coverages (Enterkine et al., 2022; Molinier et al., 2016).
NASA’s Global Learning and Observations to Benefit the
Environment (GLOBE) Program is an international and
educational program where users collect tree height data from
around the world using the GLOBE Observer (GO) application.
Such citizen science data with global coverage serve as valuable
sources to validate satellite-based measurements, including canopy
height data derived from ICESat-2 and GEDI (Enterkine et al.,
2022). Other studies have also illustrated the usability and potential
of citizen science data in ecological research and forestry (Dujardin
et al., 2022; Roman et al., 2017; Molinier et al., 2016). Although
citizen science data have been utilized in various ecological studies,
their use in validating high-resolution satellite-derived canopy
height products remains limited. Campbell (2021) and Enterkine
et al. (2022) explored the potential of GLOBE data as comparison for
tree height information obtained with ICESat-2, but there are
currently no studies assessing its applicability for validating large-
scale spaceborne lidar-derived canopy height models (CHMs). The
present study is the first comprehensive evaluation of GLOBE citizen
science tree height data against multiple spaceborne lidar canopy
height products across diverse biomes in the contiguous
United States (CONUS). Therefore, we integrated ground-based
measurements from citizen science data with spaceborne lidar-
derived canopy height maps in this study to investigate the
potential utility of citizen science data in ecological studies. The
specific objectives of this study are as follows: evaluate the reliability
of manually collected GLOBE data with airborne lidar data; validate
the performances of spaceborne lidar-derived canopy height data
against GLOBE data.

2 Materials and methods

2.1 Study areas

The validation of canopy height maps encompasses the CONUS,
which is a diverse region characterized by a wide range of climatic
zones, topographies, and vegetation types. The region spans the
dense forests of the Pacific Northwest and towering redwoods of
California to the mixed hardwood forests of the northeast and
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subtropical forests of the southeast United States; this area can be
considered a comprehensive representation of the forest ecosystems
in North America (Oswalt et al., 2019). The variability in forest
types, management practices, and environmental conditions across
the CONUS provides an ideal setting for assessing the accuracy and
applicability of spaceborne lidar-derived height maps. This diversity
allows validation of the canopy height maps obtained with ICESat-2,
GL, and GS-2 as representative data for capturing forest canopy
heights across different biomes and land cover types. The findings of
this study are expected to have broad implications for forest
management, carbon accounting, and ecological research across a
wide array of forested landscapes in the United States.

2.2 Data

2.2.1 GLOBE citizen science data
The GLOBE Program is an international effort involving

science, citizen science, and education that encourages volunteers
to collect environmental observations, such as tree height and
circumference, using the GO application. These data support
Earth system science and enhance the interpretation of tree
height data from satellite missions like ICESat-2 and GEDI.
Before measuring the tree heights, the citizen scientists need to
enter their own heights, from which the average stride length of the
user and height of the phone at eye level are estimated. The users are
prompted to measure trees for which the base and crown are clearly
visible and within 7–25 m of walking distance from themselves. The
users then use the cameras on their phones or tablets to measure the
angles to the base and crown of the tree at their eye levels. Next, the
users walk to the base of the tree in a straight line without obstacles,
record the number of steps taken, confirm the longitude and latitude
of the tree, and are able to set the tree location using a touchscreen
map. The app then uses the information collected by the citizen
scientists to estimate tree heights. Users may also enter their actual
average stride lengths, heights of their phones at eye level, and
distances to the trees with measured values to improve data
accuracy. The app records the tree location and estimates the
location accuracy. Measuring the circumference of the tree at
breast height using a tape is an optional step. Details of the
geometry used to calculate the tree heights are mentioned in a
previous report (Enterkine et al., 2022). The GLOBE data are
available for download online through the GLOBE Advanced
Data Access Tool (https://datasearch.globe.gov/), GLOBE
Visualization System (https://vis.globe.gov/GLOBE/), and GLOBE
API (https://www.globe.gov/globe-data/globe-api). In this study, the
tree height data collected through the GO application were used to
validate three CHMs across United States. The ICESat-2 and G2-2
canopy height maps were produced for 2020, while the GL canopy
height map was created for 2019. We downloaded the GLOBE data
from 2019 to 2021 to match the years of the three CHMs. We then
overlaid all the citizen science data on the 2020 Landscape Fire and
Resource Management Planning Tools (LANDFIRE) existing
vegetation cover (EVC) data to investigate the data distribution.
As shown in Table 1, the distribution indicates that a substantial
portion of the GLOBE tree height data (~65%) was collected in
developed or urbanized areas (Developed - High Intensity,
Developed - Low Intensity, Developed - Medium Intensity,

Developed - Roads), while only ~12.5% of the data were from
forested regions where canopy height measurements are most
relevant. This uneven distribution suggests that although the
GLOBE dataset is valuable for broad citizen science engagement,
it may have limited representation for large-scale forest canopy
height validation without additional filtering.

2.2.2 Airborne lidar data
To validate the GLOBE data, we selected three sites in the

United States (Figure 1) and downloaded the airborne lidar data
for each site from OpenTopography (https://opentopography.org/)
for manual comparisons between the GLOBE tree heights and
airborne laser scanning (ALS) CHM. The spatial resolution of the
airborne lidar data is 1 m; these three ALS sites were chosen
because their temporal coverages matched those of the GLOBE
data, and the density of GLOBE data was higher at these sites. The
GLOBE tree heights ranged from 5.06 m to 45.73 m, representing
variable tree heights. The airborne lidar data were further
processed to produce CHMs. Digital elevation models (DEMs)
were downloaded to produce digital surface models (DSMs) using
the LAS dataset to raster tool in ArcGIS Pro, and the CHMs were
created by subtracting the DEMs from DSMs. We then overlapped
the GLOBE data with the airborne-lidar-derived CHMs. In
addition, since the GO application encourages measuring the

TABLE 1 Distribution of GLOBE data across LANDFIRE EVC data from 2020.

Land cover type Count Percentage

Barren 24 0.11%

Developed, High Intensity 1,347 6.04%

Developed, Low Intensity 3,352 15.03%

Developed, Medium Intensity 3,241 14.53%

Developed, Roads 6,522 29.24%

Developed, Upland Deciduous Forest 548 2.46%

Developed, Upland Evergreen Forest 538 2.41%

Developed, Upland Herbaceous 769 3.45%

Developed, Upland Mixed Forest 324 1.45%

Developed, Upland Shrubland 897 4.02%

Herbs 1,180 5.29%

NASS, Close Grown Crop 47 0.21%

NASS, Row Crop 173 0.78%

NASS, Row Crop, Close Grown Crop 5 0.02%

NASS, Vineyard 1 0.00%

NASS, Wheat 10 0.04%

Open Water 285 1.28%

Shrubs 231 1.04%

Sparse Vegetation Canopy 34 0.15%

Trees 2,780 12.46%

Grand Total 22,308 100.00%
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tallest tree in a cluster of trees near the user and obtaining
measurements from a distance of 7–25 m to clearly see the top
and bottom of each tree, we created a buffer of 25 m for the selected
trees from GLOBE data, manually identified the tallest tree within

the buffer, and recorded the height of the tallest tree. Then, we
compared the manually rectified tree height with the GLOBE tree
height and investigated their relationship using the performance
metrics detailed in Section 2.3.3.

FIGURE 1
Nine major biomes defined in the RESOLVE Ecoregions 2017 base map showing the GLOBE tree height data and validation sites.

FIGURE 2
Flowchart of the procedures in this study.
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FIGURE 3
Validation of the GLOBE tree heights against airborne lidar data.

FIGURE 4
Distributions of the GLOBE tree height data across the contiguous United States (CONUS) for (a) all land cover types and (b) forests.

FIGURE 5
Overall model performances of the three spaceborne lidar-derived canopy height models (CHMs): (a) GL, (b) GS-2, and (c) ICESat-2.
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2.2.3 ICESat-2 canopy height map
The ICESat-2 canopy height map was modeled for the year

2020 using the ancillary Landsat, LANDFIRE, and topographic
variables along with a gradient-boosted trees regression across
different biomes (Malambo and Popescu, 2024). The 30-m
continental canopy height map was produced across the CONUS.
The fitted model achieved a general overestimation with an overall
R2 value of 0.76, a mean bias of 0.1 m, and an MAE of 2.5 m on the
15% hold-out validation dataset. The CHM performed differently
across the biomes (R2 = 0.49–0.73, mean bias = −0.3 to 0.8 m,MAE =
1.4–3.3 m). Independent validation datasets were also used for
comparisons (airborne lidar data: R2 = 0.72, MAE = 3.9 m;
NEON canopy height data: R2 = 0.67, MAE = 6.9 m), and the
results showed consistent agreement across the continental
United States. The produced CHM provides finer details of the
canopy heights across the United States and is publicly available
online for download (Malambo and Popescu, 2024).

2.2.4 GL canopy height map
The GL canopy height map was created by fusing GEDI lidar

forest structure measurements with Landsat time-series data to
extrapolate the sparse GEDI footprint-level canopy height data to
global coverage. The GL map was provided with a spatial resolution
of 30 m for the year 2019 and compared with GEDI validation data

(RMSE = 6.6 m, MAE = 4.45 m, R2 = 0.62) and airborne lidar data
(RMSE = 9.07 m, MAE = 6.36 m, R2 = 0.61). The global forest
canopy height mapping efforts involving integration of GEDI data
with optical imagery is useful for estimating carbon emissions,
understanding forest dynamics, and supporting decision making
for global climate change (Potapov et al., 2021).

2.2.5 GS-2 canopy height map
The GS-2 canopy height map was created by fusing the sparse

height data from GEDI with dense optical satellite images from
Sentinel-2 using a deep-learning model. Here, the model was used to
extrapolate the canopy height to global coverage and was provided
with a spatial resolution of 10 m for the year 2020. To assess the
model globally, we divided the dataset according to Sentinel-2 tiles.
Among the 100 km × 100 km regions defined by the Sentinel-2
tiling, 20% were retained for validation while the remaining 80%
were used for model training. The RMSE across all validation
samples (without height balancing) is 6.0 m with a bias of 1.3 m;
this bias is a result of a slight overestimation of low canopy heights,
which is a trade-off for improving the performances for tall
canopies. The GS-2 map was also validated with independent
airborne lidar data (RMSE = 7.9 m, bias = 1.7 m), which showed
a tendency for GS-2 to overestimate the airborne lidar data in most
cases. The uncertainty values were also estimated for the canopy

FIGURE 6
Validation of the GL CHM andGLOBE tree height results based on biome types: (a) temperate broadleaf andmixed forests; (b) temperate coniferous
forests; (c) temperate grasslands, savannas, and shrublands; (d)Mediterranean forests, woodlands, and scrub; (e) deserts and xeric shrublands; (f) flooded
grasslands and savannas; (g) tropical and subtropical coniferous forests; (h) tropical and subtropical grasslands, savannas, and shrublands.
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heights, which showed that the GS-2 map improved canopy height
estimates for tall vegetation and can serve as a reference for forest
conservation as well as carbon modeling since it can provide
important insights about forest distribution (Lang et al., 2023).
To ensure consistent spatial resolution between the GS-2 map
and the other two CHMs, the GS-2 map was resampled to 30 m
by calculating the maximum height among the eight nearest cells.

2.3 Methods

2.3.1 Data preprocessing and filtering
The tree height data contributions from citizen science were

downloaded from the GLOBE Program website through the
advanced data access tool (https://datasearch.globe.gov/). The
GLOBE tree height data across the United States were
downloaded from 2019 to 2021 for analysis since the three
spaceborne lidar-derived canopy height maps were produced for
the years 2019–2020. Since the GLOBE data mainly comprises
information from urban areas and our study focuses on the
canopy height of forests, the LANDFIRE EVC data for the year
2020 were used to filter information that was not in the forest
landscapes (Picotte et al., 2019). Moreover, since the ICESat-2 and
GL CHMs have a spatial resolution of 30 m, the GS-2 map was

aggregated to a spatial resolution of 30 m to ensure consistent
comparisons and comparability with other map products and
airborne lidar data. Then, we extracted the canopy heights of the
three maps for locations that coincided with the GLOBE point data
to investigate the relationships. To exclude outliers from the
analysis, we further filtered the trees by height. Then, we
calculated the 2nd and 98th percentiles of the three spaceborne
lidar-derived CHMs to represent the minimum and maximum tree
heights, respectively. If the tree heights are lower than the minimum
or higher than the maximum values, the data points were
excluded (Figure 2).

2.3.2 Validation of spaceborne lidar-derived
canopy height maps using GLOBE tree heights

To evaluate the performances of the three CHMs across the
CONUS over different ecozones, we used the nine major biomes
defined in the RESOLVE Ecoregions 2017 base map (Dinerstein
et al., 2017) to correlate the GLOBE data with the spaceborne lidar-
derived maps across the biomes (Figure 1). Then, performance
metrics such as the coefficient of determination (R2) and RMSE
were calculated to investigate the relationships between the citizen
science data and spaceborne lidar-derived CHMs. Since the GLOBE
data have geolocation errors, we computed the maximum, median,
and mean values of blocks of nine pixels centered about the given

FIGURE 7
Validation of the GS-2 CHM and GLOBE tree height results by biome types: (a) temperate broadleaf and mixed forests; (b) temperate coniferous
forests; (c) temperate grasslands, savannas, and shrublands; (d)Mediterranean forests, woodlands, and scrub; (e) deserts and xeric shrublands; (f) flooded
grasslands and savannas; (g) tropical and subtropical coniferous forests; (h) tropical and subtropical grasslands, savannas, and shrublands.
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pixels in the three maps for comparisons with the three CHMs and
for investigating the statistical metric with the highest correlation
between the GLOBE data and three CHMs.

2.3.3 CHM evaluations
We assessed the relationships between the GLOBE data and

three CHMs with reference validation datasets using R2, RMSE
(Willmott et al., 1985), mean bias (bias), and MAE as the
performance metrics as well as the percent bias (pBias) and
percent MAE (pMAE) as the relative performance metrics, as
shown in Equations 1–6:

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2 (1)

RMSE �
������������∑n

i�1 ŷi − yi( )2
n

√
(2)

Bias � 1
n
∑n
i�1

ŷi − yi( ) (3)

pBias � 100 ×
∑n

i�1 ŷi − yi( )∑n
i�1yi

(4)

MAE � 1
n
∑n
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣ (5)

pMAE � 100 ×
∑n

i�1 ŷi − yi

∣∣∣∣ ∣∣∣∣∑n
i�1yi

(6)

where yi is the reference canopy height, ŷi is the predicted canopy
height based on the models, �y is the mean of the reference canopy
height, and n is the sample size. All procedures for model training
and validation were implemented in Python.

3 Results

3.1 Validation of GLOBE data with reference
airborne lidar canopy heights

We validated GLOBE data with the reference airborne-lidar-
derived canopy heights to determine the GLOBE tree height
measurement accuracies. Based on our analysis, the R2 for the
GLOBE data versus ALS canopy heights is 0.14 and RMSE is
10.69 m; here, the GLOBE data showed a tendency to
underestimate tree heights (bias = −1.82 m, pBias = −10.26%)
compared to ALS canopy heights. The MAE and pMAE of the
GLOBE data were 9.08 m and 51.13%, respectively (Figure 3). The
results showed that the general agreement between the GLOBE tree
heights and ALS canopy heights were not high even after manual

FIGURE 8
Validation of the ICESat-2 CHM and GLOBE tree height results by biome types: (a) temperate broadleaf andmixed forests; (b) temperate coniferous
forests; (c) temperate grasslands, savannas, and shrublands; (d)Mediterranean forests, woodlands, and scrub; (e) deserts and xeric shrublands; (f) flooded
grasslands and savannas; (g) tropical and subtropical coniferous forests; (h) tropical and subtropical grasslands, savannas, and shrublands.
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calibration (R2 = 0.14), which led to the conclusion that the GLOBE
data have low general agreement with the reference ALS data.

3.2 Validation of spaceborne lidar-derived
canopy height maps with GLOBE
tree heights

Figure 4 shows the distribution of the GLOBE tree height data
across the CONUS for all land cover types (Figure 4a) and forests
(Figure 4b) for the years 2019–2021. The descriptive statistics were
computed for data from all land cover types and forests. For data
from all land cover types across the CONUS, the minimum,
maximum, mean, and standard deviation values of the tree
heights are 0 m, 98.3 m, 15.4 m, and 9.5 m, respectively
(Figure 4a). For data from forests, the minimum, maximum,
mean, and standard deviation values of the tree heights are
0.01 m, 98.3 m, 19.6 m, and 11.4 m, respectively (Figure 4b).
According to the Forest Inventory and Analysis definition, a tree
is a woody perennial plant with a minimum height of 15 feet
(4.56 m) at maturity. Moreover, the heights of most trees do not
exceed 60 m, except for the trees in California. Thus, there are some
outliers in the data. Therefore, a further height filtering process was
implemented to ensure that only trees with heights less than 60 m

FIGURE 9
Relationships between the maximum (left), mean (middle), and median (right) tree heights for the nine pixels centered around a given pixel in the
(a–c) GL; (d–f) GS-2; (g–i) ICESat-2 CHMs and GLOBE tree heights.

TABLE 2 Distribution of the tree height location accuracies (in meters).

Bin (m) Frequency

25 1,306

50 404

75 1,222

100 177

200 51

400 18

600 11

800 7

1,000 6

2,000 34

3,000 33

4,000 7

5,000 3

9,100 13

Total 3,293
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were included in the analysis. The detailed filtering criteria are
described in Section 2.3.1.

Figure 5 shows the overall performances of the three spaceborne
lidar-derived CHMs for GLOBE data across the CONUS. The R2

values for the three maps are low (GL: 0.08; GS-2: 0.17; ICESat-2:
0.11), and the GS-2 CHM has the highest overall agreement with the
GLOBE data. We also evaluated the performances of the three maps
for the GLOBE data across biomes in the CONUS (Figures 6–8). The

FIGURE 10
Scatter plot of the GLOBE tree height data with location accuracies of 0–100 m.

FIGURE 11
Validation results of the overall model performances of the three spaceborne lidar-derived CHMs for GLOBE data with location accuracies of
0–25 m: (a) GL; (b) GS-2; (c) ICESat-2.

FIGURE 12
Validation results of the overall model performances of the three spaceborne lidar-derived CHMs for GLOBE data with location accuracies of
0–100 m: (a) GL, (b) GS-2, and (c) ICESat-2.
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model performances varied across biomes (GL: R2 = 0–0.33; GS-2:
R2 = 0.04–0.33; ICESat-2: R2 = 0.02–0.30). We note that temperate
broadleaf and mixed forests had relatively lower R2 values while
temperate grasslands, savannas, and shrublands had relatively
higher R2 values across the biomes. These differences between
land cover types may be attributed to scale mismatches because
measuring the tallest tree over a land surface with low canopy height
(e.g., grasslands) is inherently easier than that over a surface with a
larger canopy height (e.g., densely forested areas). This could
potentially bias the results and/or conclusions.

Since there are geolocation errors in the GLOBE data, the
maximum, median, and mean values of the nine pixels centered
around a given pixel were computed for the three maps for
comparison with the GLOBE data and for investigating the
relationships between the statistical metrics and citizen science
data; this allowed us to identify the metric having the highest
correlation with the GLOBE data so as to improve the height
validation results (Figure 9). However, our findings show that
there is no statistical metric that has a significantly high R2 value
for the GLOBE data among the three CHMs. Thus, the R2 values for
the maximum, mean, and median heights of each canopy height
product are almost similar.

3.3 GLOBE tree height location accuracy

The GLOBE application records the geolocation accuracies of
the measured trees as tree height location accuracies in meters. The
tree height location accuracy is the estimated accuracy of the
calculated measurement location in meters, as determined by the
GPS in the measuring device. There is an option in the GO trees tool
that allows an observer to use a touchscreen map to pinpoint the
exact location of a tree prior to submitting its observation to the
GLOBE database in the event that the device GPS cannot confirm
the exact location of the observed tree. This option is most likely
underutilized prior to observation submission, which could
potentially lead to tree height location inaccuracies. Table 2
shows the distribution of the tree height location accuracy data,
where 94% of the data are confirmed to be within 100 m of the tree
height location accuracy, with the reported location accuracy
ranging from 0 to 9,100 m. Since most of the data are within the
location accuracy of 100 m and our goal was to select trees with high
location accuracies, GLOBE data with location accuracies of 0–25 m
and 0–100 m were selected (Figure 10) to validate the general
agreement between the three canopy height maps and GLOBE
data filtered by location accuracy. Figure 11 shows the validation
results between the three lidar-derived canopy height maps and
GLOBE data for location accuracies of 0–25 m. Compared to the
unfiltered GLOBE data (Figure 5), the R2 values of the GL, GS-2, and
ICESat-2 CHMs increased by 40%, 29%, and 6.9%, respectively (R2:
GL = 0.112, GS-2 = 0.219, ICESat-2 = 0.118). Figure 12 shows the
validation results between the three canopy height maps and
GLOBE data for location accuracies of 0–100 m. Compared to
the unfiltered GLOBE data (Figure 5), the R2 values of the GL,
GS-2, and ICESat-2 CHMs increased by 10%, 4.8%, and 4.9%,
respectively (R2: GL = 0.09, GS-2 = 0.18, ICESat-2 = 0.12).
However, the location accuracies of the GLOBE data for
0–100 m did not improve notably from those for 0–25 m.

Therefore, we suggest using data with location accuracies
between 0 and 25 m for more accurate validation.

4 Discussion

4.1 GLOBE data geolocation errors

Enterkine et al. (2022) reported that the data location accuracy
should be addressed before comparisons to ensure alignment
between the GLOBE tree height and spaceborne lidar-derived
data. In our study, we observed this issue when validating the
GLOBE tree height and ALS data. The GLOBE data include
geolocation information for each data point. However, we were
unable to identify the exact tree measured by the users when there
were multiple trees in the vicinity. Therefore, we performed the
buffer analysis first in an attempt to identify the exact trees being
measured and validate the GLOBE tree heights. We were also unable
to pinpoint the trees measured by the users when there were
multiple trees nearby. This uncertainty is another source of error
in the data. Since the citizen scientists used different devices for the
measurements, there may also be location errors caused by these
different electronic devices. In addition, human measurement errors
could also affect the data quality and accuracy. Given these errors,
the geolocation errors could vary among different data points. To
minimize such geolocation errors, Enterkine et al. (2022)
recommended the following: (1) tree height observations should
be avoided in locations where the treetops are within 2.5 m of one
another as it may be challenging to distinguish individual trees in
such settings; (2) users should prioritize measurements of
prominent or easily identifiable trees, such as large isolated
individuals or those that clearly stand above the
surrounding canopy.

4.2 Variability in agreement across biomes

The observed differences in correlations across biome types
(Figures 6–8) are likely influenced by variations in the vegetation
structures, canopy complexities, and land cover heterogeneities. For
example, the higher correlations observed in temperate grasslands,
savannas, and shrublands may be attributed to their relatively simple
and open vegetation structures, where identifying andmeasuring the
tallest individual trees are more straightforward for citizen scientists.
In contrast, densely forested biomes such as temperate broadleaf and
mixed forests exhibit lower correlations, likely owing to the more
complex vertical canopy structures, overlapping crowns, and
potential misalignment between the ground-based point
measurements and spatial averaging inherent in gridded CHMs.
Among the three models evaluated herein, GS-2 generally exhibited
the highest overall agreement with GLOBE data, especially after
applying the location accuracy filter (0–25 m), for which the
R2 was 0.22.

It is also important to acknowledge that the spaceborne lidar-
derived canopy height products (ICESat-2, GL, and GS-2) are
subject to their own sources of error and uncertainty. For
ICESat-2, there may be errors arising from photon noise,
geolocation uncertainties, terrain slope effects, and lower

Frontiers in Environmental Science frontiersin.org11

Lu et al. 10.3389/fenvs.2025.1635707

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1635707


sensitivity of the instrument to densely vegetated areas, which can
affect differentiation between the ground and canopy surface. For
GEDI-based products, there may be sampling limitations due to the
sparse nature of the GEDI footprint, which could introduce
challenges in representing heterogeneous landscapes, particularly
in regions with complex canopy structures or steep topography.
Furthermore, the process of fusing GEDI data with optical imagery
(Landsat or Sentinel-2) for wall-to-wall coverage can introduce
additional uncertainties related to sensor resolution differences,
cloud contamination, and model generalization errors in the
fusion algorithms. Hence, discrepancies observed between the
GLOBE data and these spaceborne products are not solely
attributable to citizen science data limitations but can also reflect
the inherent uncertainties of the satellite-derived CHMs themselves.

4.3 Potential of citizen science data

GLOBE data are prone to geolocation and tree height
measurement errors. As noted earlier, these errors may arise
from different sources, such as geolocation errors owing to the
use of different cellphone devices, user measurement errors, or
missing information for the true trees measured. Enterkine et al.
(2022) mentioned that the stride length of the user is the main
source of error when measuring the tree height. When the users are
farther away from the tree, errors due to stride length would have a
greater impact on the tree height estimation. Therefore, the
application suggests that users measure the trees within 50 steps
and validate their stride length or measure the actual distance to the
tree rather than using the values estimated by the application.
Considering the potential errors mentioned above, GLOBE data
should be used with care when validating spaceborne lidar-derived
CHMs. Furthermore, inconsistent spatial resolution between the
GLOBE data and satellite-based data should be taken into account
when comparing maps with different spatial resolutions.

Beyond tree height measurements, citizen science datasets such as
those collected through the GLOBE Observer program hold
significant potential for various other environmental and ecological
applications. These include monitoring land cover changes, assessing
urban heat island effects, documenting phenological events, and
tracking invasive species. The broad spatial and temporal coverages
provided by citizen scientists can complement professional
monitoring networks. However, as with tree height data, careful
attention to data quality, standardized protocols, and validation
with independent reference datasets are essential to maximize the
scientific value of these observations across different disciplines.

5 Conclusion

In the present work, we evaluated the accuracy of citizen science
data and demonstrated the utilization of such data to validate
spaceborne lidar-derived canopy height maps with different spatial
resolutions. This study is a pivotal effort on using citizen science data
as a proxy to validate spaceborne lidar-derived canopy height maps.
Although the overall accuracy of the GLOBE data was not high
compared to the ALS canopy heights (R2 = 0.14), we showcased the
data filtering process and identified potential errors in the GLOBE tree

height data, which can serve as precious insights for future researchers
who would consider integrating GLOBE citizen science data in their
research. Since there are inherent geolocation errors in the GLOBE
data and these GLOBE data are mainly located in urban settings, we
suggest that users of the GLOBE Observer application could measure
trees in natural cover types outside of the built environment for better
characterization of the average vegetation heights in multiple
ecozones across the globe. We also suggest that users submit data
with location accuracies between 0 and 25 m for more accurate
validation results, in addition to utilizing the GO tree tool touchscreen
option to increase the location accuracies of the trees observed.
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