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Driven by a series of policies, the rapid urban expansion and industrial
transformation of the Harbin and Changchun Urban Agglomeration (HCUA),
has altered the original land use structure, adversely impacting the ecological
environment. This has consequently affected regional carbon storage.In the
present study, a theoretical evaluation model of dynamic change of carbon
stock based on land use type was established, which linked PLUS, InVEST,
geographic detector and geographical weighted regression model to analyze
the evolution of land use and carbon stock in the process of industrial
transformation. The findings revealed that cultivated and forest were the
predominant land types within HCUA. Over these 2 decades, HCUA
experienced a decline in carbon stocks by 1.74%, resulting in an overall
reduction of 87.02 Mt to reach 4902.63 Mt by 2020. Natural factors primarily
shape the spatial distribution of carbon stocks. The amount of carbon stored in
each scenario is reduced by 2040. The SD scenario is characterized by its
exceptional capacity for carbon storage (4882.06 Mt).
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1 Introduction

In recent years, human activities have intensified global climate change by increasing
carbon emissions. This presents an immediate danger to the survival of humans and the
long-term viability of ecosystem services. Addressing global climate change now hinges on
reducing anthropogenic carbon emissions as a priority (Sawyer, 1972). Research indicates
that mitigating climate change can be achieved through terrestrial ecosystems’ ability to
sequester carbon (Li J. et al., 2021; Sarkodie et al., 2020). China, the largest developing
nation globally, has witnessed a rapid surge in urbanization over the past few decades.
Consequently, this swift urban expansion has led to alterations in land use and land cover
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(LULC), thereby diminishing their capacity for carbon storage (Feng
et al., 2020). As a result, terrestrial ecosystems have become less
efficient at sequestering carbon. Therefore, it is crucial to carry out
investigations on the carbon dynamics associated with alterations in
LUCC and understand the factors that influence it. This will
contribute to the sustainable development of ecosystems.

Therefore, A substantial corpus of research has been amassed by
scholars to explore the storage of carbon in regional ecosystems.
Field surveying is widely regarded as a reliable source of data since
they provide initial data on carbon density and serve as a basis for
validating subsequent data products. For instance, some scholars
estimated the carbon storage of green spaces in Shanghai’s central
urban area through field investigations that measured sample land
carbon density (Chen et al., 2024a). However, conducting large-scale
ecosystem carbon storage estimations through field investigations
requires significant human and material resources. Consequently,
remote sensing inversion and model simulation have emerged as
more suitable alternatives. To illustrate this point further, Yang et al.
(2024) employed machine learning techniques combined with
Landsat remote sensing inversion to analyze changes in
Zhengzhou’s carbon storage. Carbon sequestration capacity of
various land use types directly affects the structure of ecosystems
as well as carbon storage in terrestrial ecosystems (Xu et al., 2023).
We can estimate the future carbon storage by merging information
on forthcoming land utilization and its associated carbon density.
Many researchers have extensively studied this topic and often
create multiple development scenarios to predict land use. Hence,
the use of a land utilization model has become an essential technical
tool for evaluating changes in land usage over time and conducting
scenario analysis. Many researchers have coupled the InVESTmodel
with it for the purpose of assessing carbon stocks in ecosystems
under varying situations. For instance, a study by Liu et al. (2024)
investigated fluctuations in carbon stocks within the province of
Gansu during the time span from 2000 to 2050 and found that an
ecological red line scenario was able to alter the trend of carbon
storage. Zhu et al. (2022), on their part, analyzed past, present, and
future LULC changes along China’s coastal areas as well as their
impact on carbon storage. The simulation of carbon storage under
future scenarios has emerged as a prominent trend within current
research on carbon sequestration.

Urban agglomeration plays a crucial role in driving urbanization
and serves as a strategic focal point for national and regional economic
development. The presence of dense populations, rapid urban
expansion, and efforts towards urban greening within these
agglomerations significantly impact the carbon balance (Liu et al.,
2019). In the research on Beijing, Tianjin, and Hebei areas, Wu et al.
(2023) simulated future land growth under various ecological priority
scenarios. They also made predictions regarding the potential capacity
for storing carbon in this region. An evaluation was carried out by
Zhang et al. (2023a) to analyze the impact of wetland transformations
on carbon sequestration, employing the SDG15.1 indicator. In the
context of the “two-carbon” policy, the old industrial infrastructure,
has naturally become the focus of carbon emission reduction work.
The Harbin-Changchun Urban Agglomeration (HCUA), ranked as
one of China’s top second-tier urban agglomerations (Li et al., 2018).
It plays a crucial role as a gateway for China’s engagement with
Northeast Asia. The implementation of the revitalizing strategy of the
old industrial base in Northeast China has facilitated the

transformation of the industrial structure in Northeast
China.These changes have weakened ecosystem resilience and
gradually degraded ecological functions such as carbon storage
capacity. Some scholars have conducted initial investigations into
carbon dynamics within the HCUA region. Some scholars examined
changes in carbon sequestration capacity of HCUA forests between
2000 and 2020 amidst rapid urbanization while exploring driving
factors behind these changes (Hong et al., 2024). Liu et al. (2022)
studied dynamic shifts in forest carbon storage across three Eastern
provinces from 1994 to 2018. However, although the existing studies
have evaluated the carbon dynamics in the HCUA region, these
studies mainly focus on the carbon sequestration capacity of urban
forests or the carbon storage of forests in the three northeastern
provinces, lacking systematic research on the HCUA region. And only
the forest carbon storage in historical periods is evaluated, lacking
predictions for future carbon storage.

Given the lacunae in extant literature, a quantitative evaluation
of the factors affecting spatiotemporal evolution in HCUA is
imperative. This will aid in reducing the impact on ecosystem
carbon storage while achieving industrial transformation and
upgrading of urbanization level. Therefore, abased on LUCC, this
study investigates the spatiotemporal variations in carbon stocks
and their influencing factors, over the past 2 decades. We then
predict the land use pattern and carbon stocks.

2 Materials and methods

2.1 Study area

The Harbin-Changchun Urban Agglomeration (HCUA) is
situated in the northeastern part of China, precisely within the
geographical boundaries defined by latitude 41°37′~49°04′N and
longitude 122°24′~ 131°23′E (Figure 1). It serves as a significant
regional cluster of cities in this part of the country, with Harbin and
Changchun acting as its central hubs. The influence of HCUA
extends to Heilongjiang and Jilin provinces, encompassing a total
land area of 325,385 km2. Geographically, HCUA spans across the
Songnen Plain and Changbai Mountain regions. Notably famous for
its black soil zone worldwide, the Songnen Plain primarily comprises
cultivated land along with grassland and woodland resources.
Woodlands are predominantly found in the eastern hills and
mountains which serve as crucial carbon storage sites within this
region’s ecosystems.

2.2 Data sources

The study incorporates various datasets (Table 1), including
land use data, driving factors (such as terrain, weather conditions,
vegetation, soil quality, socio-economic aspects, and accessibility).
The Zenodo website provides access to the LULC data. It is classified
into: arable land, forested areas, grasslands, water bodies, urban
areas, and unused lands. To extract slope details from topographic
data sources, we acquired DEM data from the Geospatial Data
Cloud. The National Tibetan Plateau Scientific Data Center was the
source of meteorological data, including temperature and
precipitation variables. NDVI data was derived from
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MOD13A3 dataset available on the EarthData website under
MODIS collection. Soil-related data encompasses soil
classification and erosion condition. Socio-economic factors
include GDP, Night Light Index (NLI), and population density.
We acquired data regarding soil categorization, along with statistics
on GDP and population density, from the Resources and
Environmental Science and Data Center affiliated with the
Chinese Academy of Sciences. The Night Light Index was
derived by processing improved Chinese DMSP-OLS data
conducted by Wu et al. (2022). Accessibility metrics like road
networks and railways were obtained through OpenStreetMap

platform while ArcGIS 10.8 was employed for Euclidean distance
analysis to generate a distance grid layer. All aforementioned
datasets were transformed to Albers_Conic_Equal_Area projection.

2.3 Methods

2.3.1 Research framework
This study establishes a theoretical evaluation model of dynamic

change of carbon stocks based on LULC (Figure 2). Figure 3 presents
the methodological approach.

FIGURE 1
Location map of the research area.

TABLE 1 Datasets obtained for the research.

Data Resolution Source

Land use 30 m https://zenodo.org/records/5210928

DEM 30 m Geospatial Data Cloud, https://www.gscloud.cn/

Slope 30 m Geospatial Data Cloud, https://www.gscloud.cn/

Temperature 1000 m https://data.tpdc.ac.cn/home

Precipitation 1000 m https://data.tpdc.ac.cn/home

NDVI 1000 m https://search.earthdata.nasa.gov/search

Soil type 1000 m https://www.resdc.cn/

Soil erosion 1000 m https://www.resdc.cn/

GDP 1000 m https://www.resdc.cn/

POP 1000 m https://www.resdc.cn/

NLI 1000 m https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GIYGJU

Roads - https://openmaptiles.org/languages/zh/
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2.3.2 PLUS model
The PLUS model is capable of predicting alterations in land

utilization via raster data (Liang et al., 2021). Compared with the
FLUS or CLUE-S models, the PLUS model can achieve higher
simulation accuracy and more similar landscapes. This research
is conducted using the PLUS model. Initially, we extract data on
HCUA land expansion from 2010 to 2020 utilizing the LEAS
module. Subsequently, we determine the likelihood of each land
type occurrence and assess the contribution rate of various drivers
behind land expansion. Additionally, we select twelve influencing
factors including DEM, slope, temperature, precipitation, soil type,
soil erosion, GDP, population density, distance to highways as well
as primary-, secondary-, and tertiary-level roads based on existing
studies and regional characteristics. The spatial resolution of all
driving factors is consistent with the land use data. By calculating
probabilities for six different types of land use using these factors as a
basis. Furthermore, by integrating the CA model with relevant
parameters such as land demand estimation and considering
domain weight age along with transfer matrix for different land
types under multiple future scenarios; we aim to forecast future land
use for the year 2040 while taking into account 2020 as our initial
reference point. Utilizing scenario modeling allows for comparison
between various development policies’ potential impacts on future

environmental changes (Tang et al., 2024). This study has
established three scenarios with the aim of simulating land use
patterns in our research area until 2040:

(1) Natural development scenario (ND): We do not take into
account any planning policy’s binding effect on land use
change. We make the assumption of a consistent socio-
economic environment and maintain that the rate at which
land use types are converted has remained steady throughout.

(2) Economic development scenario (ED): The HCUA is
currently undergoing rapid urbanization and experiencing
significant growth in construction land. As a result, there is a
20% higher likelihood of cultivated land, forest land, and
grassland being converted into construction land. Conversely,
there is a 20% lower probability of construction land being
transformed into other landscape types except for cultivated
land (Li et al., 2022).

(3) Sustainable development scenario (SD): High-quality spatial
development of urban areas is our target through the
promotion of coordinated urban growth and ecological
protection. We accomplish this through the policies that
contain a 20% reduction in the probability of cultivated
land and grassland converting to construction land, a 30%

FIGURE 2
Theoretical evaluation model.
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decline in the probability of the transformation of forest land
into construction land, and a 15% increase in the probability
of construction land transformed into forestland. Further, we
add restrictions to arbitrary changes between regional water
areas and limit their free transformation (Chen L. et al., 2022).

2.3.3 Model accuracy verification
The value of the Kappa coefficient was used as the criterion of

precision, and values greater than 0.8 implied strong
consistency.(Pontius Jr, and Millones, 2011). The reliability of the
PLUS model was tested by HCUA land use data in 2000 and
2010 while mimicking the distribution of land use in 2020. By
comparing the real data with the simulation results, it is found that
the Kappa coefficient of the model has reached 0.87 and the overall
accuracy has reached 0.92. This indicates that the simulation results
are robust enough to enable the model to predict different land use
change scenarios.

2.3.4 InVEST model
The InVESTmodel “Carbon Storage and Sequestration”module

subdivides carbon storage in terrestrial ecosystems into four basic
carbon pools (Equation 1): the calculation formula shown below
(Equation 2):

Ci � Ciabove + Cibelow + Cisoil + Ci dead (1)

Ci total � ∑
n

i�1
Ai × Ci (2)

Where i is the land use type and Ci is the total carbon density of i
land use type. Ci above, Ci below, Ci soil and Ci dead are the carbon
density of aboveground biomass, underground biomass, soil carbon
density and dead biomass of the i type of land use, respectively. Ai is
the area of each type of land use. Ci total is the carbon storage of type
i land use. The carbon density data utilized in this study are derived
from earlier research findings (Qu et al., 2023; Wang et al., 2011). By
employing the formula proposed (Alam et al., 2013), modifications
are made to determine the carbon density of the HCUA ecosystem
(Equations 3–5).

Csp � 3.3968 × MAP + 3996.1 R2 � 0.11 (3)
CBP � 6.7981e0.0054×MAP R2 � 0.70 (4)

CBT � 28 × T + 398 R2 � 0.47,P< 0.01 (5)
Where: Csp represents soil carbon density (t/km2) corrected by
precipitation factor; MAP represents the mean annual
precipitation (mm); CBP and CBT represent biomass carbon
density (t/km2) modified by precipitation factor and temperature
factor, respectively. MAT represents the average yearly temperature
in degrees Celsius. The correction factor is determined by
comparing the ratio of annual mean precipitation to annual

FIGURE 3
Flowchart of the integrated assessment method in this study.
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mean temperature (634.50 mm/610.82 mm, 4.66°C/7.61°C) between
the HCUA and the entire country.

KBP � C1
BP

C2
BP

(6)

KBT � C1
BT

C2
BT

(7)

KB � KBP + KBT (8)

KS � C1
SP

C2
SP

(9)

Where: KBP is the correction coefficient of biomass carbon density
under the influence of precipitation factor (Equation 6); KBT is the
correction coefficient of biomass carbon density under the influence
of temperature factor (Equation 7). KB represents the correction
coefficient of biomass carbon density (Equation 8). KS represents
the correction coefficient of soil carbon density (Equation 9). C1 and
C2 represent the HCUA and overall national carbon density
correction coefficients, respectively. The ratio between these two
coefficients serves as the adjustment parameter for carbon density
data within the study area, as indicated in Table 2.

2.3.5 Geographical detector model
In this research, we employed factor identification and

interactive identification of geographic detectors (Wang and Xu,
2017) to investigate the main factors that contribute to the spatial
variation of carbon stocks in HCUA. Drawing on relevant research
findings (Jia and Hu, 2024), a total of eight natural and socio-
economic factors were chosen for analysis. Natural factors include
precipitation (PRE), temperature (TEM), DEM, slope, and
normalized difference NDVI, GDP, population (POP), and Night
Light Index (NLI) are human factors that reflect human activities
and ecosystem disturbances. The q value is used to measure the
determinants of the explanatory power of the influence factor on the
response variable. Geodetector can also detect interactions between
these two factors (Shi et al., 2018).

2.3.6 Geographically weighted regression
We employed the GWR model to explore the spatial

heterogeneity and differences in the direction and intensity of the
main driving factors in different geographical spatial units (Li et al.,
2024).The GWR model can be expressed as (Equation 10):

yi � β0 ui, vi( ) + β1 ui, vi( )xi1 + β2 ui, vi( )xi2 + . . . + βj ui, vi( )xij + εi
(10)

where yi is the dependent variable of unit i; (ui, vi) are the
geographical coordinates of unit i; xij is the independent variable
of unit i; j is the number of independent variables; βj(ui, vi) is the
regression parameter of unit i; and εi is the random error term. The
kernel type in the GWR model uses Gaussian kernels.

3 Results

3.1 Dynamic changes in land use and carbon
stock from 2000 to 2020

3.1.1 LUCC dynamics
The dominant land categories within the HCUA between

2000 and 2020 were agricultural land and woodland, collectively
accounting for more than 90% of the overall area (Figure 4).
Cultivated land was predominantly found in the plain areas. On
the other hand, forest land was mainly distributed across higher-
elevation regions. Notably, the concentration of construction land
primarily occurred in economic development hubs surrounding
provincial capitals as well as smaller cities. In the last 20 years,
there has been a notable transformation in land utilization
characterized by a substantial growth of construction zones,
resulting in an overall increase of 5762.50 km2. Conversely,
cultivated land, grassland, and forested areas experienced
decreases of 3603.75 km2, 1408.75 km2, and 1103.00 km2

respectively (Figures 5a,b).

3.1.2 Spatiotemporal variation of carbon stock
The carbon storage of the HCUA experienced a gradual

decrease, going down from 4989.65 Mt in 2000–4902.63 Mt in
2020 (Figure 5c). The carbon storage distribution displayed a
distinct trend, with comparatively lower levels observed in west of
the study area and relatively higher levels detected in east of the
study area (Figure 4). Notably, areas with abundant vegetation
and predominantly wooded land use types concentrated
significant amounts of high-value carbon storage. The
distribution of regions exhibiting diminished carbon storage
capacity is predominantly concentrated within the central area
of each urban settlement. This phenomenon aligns with the
observed pattern of construction land distribution (Figure 6a).
From 2000 to 2010, the southwest of Harbin and the northeast of
Changchun were the centers of carbon storage increases and
decreases, respectively. The center of gravity of carbon storage
increases moved 30.80 km to the southwest, in the northeast of
Changchun, from 2010 to 2020, and the center of gravity of
carbon storage reductions moved 35.69 km to the northeast, the
southwest of Harbin (Figures 6b,c).

3.2 Analysis of the influencing factors of the
spatial differentiation of carbon stock

3.2.1 Analysis of driving factors
The results of single factor detection revealed that natural factors

demonstrated significantly greater explanatory power than human-
related factors. Specifically, from 2000 to 2020, NDVI (0.5006),
DEM (0.4329), and SLOPE (0.3541) emerged as dominant

TABLE 2 Carbon density of each land use type in the study area (Mg/hm2).

Land use type Cabove Cbelow Csoil Cdead

Cultivated land 8.45 24.86 84.6 0.00

Woodland 12.48 29.59 192.87 3.14

Grassland 7.82 42.44 65.66 2.36

Water 2.46 1.18 22.31 0.00

Construction land 0.00 0.00 0.00 1.14

Unused land 10.02 0.00 43.24 1.53
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FIGURE 4
Spatial distribution of land use and carbon stocks in the HCUA from 2000 to 2020.

FIGURE 5
Chordal map of land-use transfer in the HCUA from 2000 to 2020 (a,b) and Statistical map of carbon stocks in each region from 2000 to 2020 (c).
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explanations for spatial variations in carbon stocks (Table 3).
Furthermore, NLI and POP displayed enhanced explanatory
power between 2000 and 2020 with respective increases of
0.0708 and 0.0250. The interactive detection results of the
geographical detector show (Figures 7a-c) that POP∩NDVI
(0.6114), POP∩DEM (0.6372) and NLI∩DEM (0.7752) had
the highest q values in the interaction in 2000, 2010 and
2020, respectively. These interactions had the strongest
explanatory power to the spatial differentiation of carbon
storage in HCUA. From the perspective of different years,
with the advancement of the urbanization process of urban
agglomerations, the interaction detection q value of socio-
economic factors and natural factors was increasing. The q
values of POP∩DEM, NLI∩DEM, NLI∩SLOPE, and

NLI∩NDVI increased from 2000 to 2020 by 0.0525, 0.2010,
0.0521, and 0.1277, respectively.

3.2.2 Spatial differences in response to carbon
stocks to drivers

The detection results of the geographic detector were considered
in this analysis, the six driving factors (NDVI, DEM, SLOPE, TEM,
PRE, PRE, and NLI) with the greatest explanatory power for the
spatial heterogeneity of carbon storage were selected for collinearity
tests (VIF <7). The VIF value of each influence factor is less than 6,
indicating that there is no collinearity between the selected factors.
The GWR model is characterized by its minimal AICc value, which
is notable given its concurrent superiority in terms of R2 and
adjusted R2 values (Table 4). This indicates that the GWR model

FIGURE 6
Spatial change map of carbon stocks in the HCUA from 2000 to 2020 (a); Track map of the center of gravity of the increase of carbon storage in the
HCUA from 2000 to 2020 (b) and Track map of the center of gravity of the reduction of carbon storage in the HCUA from 2000 to 2020 (c).
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has the highest goodness-of-fit. The geographically weighted
regression results (Figure 8) show that during the study
period, the influence of each driving factor on the spatial
differentiation of carbon stocks exhibits obvious spatial
heterogeneity, and the effect intensity also varies with the
region. The positive effect of NDVI on the spatial
differentiation of carbon storage is stronger than the negative
effect. In addition, the positive effects are concentrated in the
forest land. The positive effect of DEM is stronger than the
negative effect. SLOPE has a positive effect in 2000, while the
majority of effects are negative in 2010 and 2020. The positive
effects of TEM are predominantly concentrated in the region of
western. The direction and intensity of the effects of PRE

fluctuate greatly for both the positive and negative effects. The
negative effect intensity of NLI is more widely distributed,
occupying the core cities and most of both the central and
western areas.

3.3 Scenario simulation of future land use
and carbon stocks

3.3.1 Simulation of land use change scenarios
The results of the forecast indicate a consistent rise in urban

development, while concurrently, the extent of cultivated land and
grassland will undergo a decline, albeit to varying extents, under

TABLE 3 Factor detection results in different years.

Driving factor 2000 2010 2020 2000–2020 average

q-values q-values q-values q-values

DEM 0.4242 0.4292 0.4329 0.4288

SLOPE 0.3532 0.3513 0.3541 0.3529

PRE 0.2877 0.1425 0.1355 0.1886

TEM 0.1815 0.2243 0.1821 0.1960

NDVI 0.4918 0.4772 0.5006 0.4899

GDP 0.0926 0.0358 0.0481 0.0588

POP 0.0150 0.0265 0.0400 0.0272

NLI 0.0673 0.1051 0.1381 0.1035

FIGURE 7
Interaction results of influencing factors on spatial differentiation of carbon stocks in the HCUA from 2000 to 2020 (a-c).

TABLE 4 Comparison between OLS model and GWR model.

Year Ordinary least squares Geographically weighted regression

AICc R2 Adjusted R2 AICc R2 Adjusted R2

2000 −99.929683 0.505330 0.475044 −136.4674 0.7411 0.6679

2010 −101.769342 0.505482 0.475206 −146.9455 0.7611 0.6934

2020 −146.433813 0.679313 0.659679 −200.8228 0.8643 0.8220

AICc: Akaike Information Criterion, corrected.
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the specified scenarios in 2040. The spatial arrangement of land use
remains unchanged from 2020 (Figure 9). Construction land has
witnessed different levels of expansion, with the ED scenario
showing the most significant growth by an additional
7507.75 km2 compared to 2020, representing approximately
7.42% of the HCUA (Figures 10a–c). This is consistent with the
research results of Li et al. (2025). By way of contrast, in the SD
scenario, there is minimal growth in construction land
(2365.50 km2) among the three scenarios, accompanied by
lesser reduction in cultivated land and grassland compared
to others.

3.3.2 Carbon stock assessment under different
scenario simulations

Under various scenarios in 2040, the carbon storage capacity of
HCUA is anticipated to undergo a persistent decline (Figure 10d).
Among them, the maximum loss of carbon storage was under the
ED scenario, with a loss compared to about 112.85 Mt in 2020. The
SD scenario demonstrates a mitigation of 20.57 Mt of carbon
storage. Despite the fact that the general spatial distribution of
carbon storage remains similar to that of 2020, there has been an
increase in low-value areas, primarily concentrated around
provincial capitals and their surrounding urban centers due to
rapid economic development. Across all land classes in every
scenario, both crop and grassland carbon stocks have
experienced declines. However, it is noteworthy that forest
areas have witnessed an increase in carbon storage by 11.73 Mt
solely under the SD scenario while facing reductions in the other
two scenarios.

4 Discussion

4.1 Analysis of carbon stock losses in urban
agglomerations

The carbon storage inside HCUA has continuously decreased
over the past 2 decades, from 97.54 Mt to 87.02 Mt. In particular,
during the period 2010–2020, the carbon reduction was greater, by
57.72Mt, compared to the years 2000–2010, thus revealing that after
the formation of the urban agglomerations of Harbin and
Changchun, human activities have exacerbated this decline in
carbon storage. The southeastern hills and mountains contain
high-quality areas with significant carbon storage, which is also
more or less consistent with the distribution patterns of forest
resources in Yu et al. (2021). Conversely, median-value regions
are mainly found in the western plains dominated by farmland.
Low-value areas coincide with densely populated urban centers
where human activities are frequent, resulting in significant losses
of carbon stocks as noted by other researchers (Fan et al., 2023; Li
and Geng, 2023). Land use patterns play a crucial role in shaping
HCUA’s spatial distribution of carbon stocks (Xie et al., 2022). The
implementation of relevant policies alongside accelerated
urbanization has substantially altered land use patterns within
this urban agglomeration, resulting in a decline in carbon
storage.Policies significantly influence land cover change (Tropek
et al., 2014).

The primary land use type within the HCUA consists of
cultivated areas that serve as crucial carbon reservoirs for this
region abundant in black soil resources known for its major grain

FIGURE 8
Estimated GWR coefficient maps for major impact factors.
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production sector located in northeastern China. There has been
a notable rise in crop output recently according to our
investigation spanning 2 decades revealing how cropland
expansion activities have led to replacing approximately
6458.25 km2 along with an additional 3667.75 km2 previously

occupied by woodlands and grasslands within this region
consequently causing a depletion equivalent to losing around
2.40 Mt worth of stored carbon from the overall carbon storage
capacity held by HCUA; these outcomes align well with previous
studies conducted by Mao et al. (2019). The cultivated area in the

FIGURE 9
Spatial distribution map of land use and carbon stocks of the HCUA under different scenarios in 2040.

FIGURE 10
Chordal map of the land use transfer of the HCUA for different scenarios from 2020 to 2040 (a–c) and Statistical map of carbon stocks in each
region under different scenarios in 2040 (d).
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study region increased during the period 2010–2020, because
several agro-development policies had been executed in China to
increase food production. For instance, the elimination of the
agricultural tax in 2005 resulted in an influx of illegally reclaimed
farmland. Additionally, a food security program was launched in
2008, with both Heilongjiang and Jilin provinces proposing
measures to expand agricultural land and enhance
modernization of agricultural production (Yu et al., 2021).
This expansion aligns with the Ministry of Land and
Resources’ initiative in 2010 to safeguard the economy by
protecting the red line for cultivated land, as well as The State
Council’s issuance of Regulations on Land Reclamation in 2011
(Chen H. et al., 2022). Consequently, policy support for
agricultural development has significantly facilitated the
growth in cultivated land area, resulting in substantial
occupation of ecological land and subsequent carbon loss.

Construction land has a limited carbon sequestration capacity in
comparison to agricultural land. Cities with extensive urban
expansion and their surrounding areas were the regions with
significant carbon storage loss in the HCUA, such as Harbin,
Changchun, Jilin, Suihua, and other urban centers. Alongside
agricultural policies, China has implemented various economic
measures to stimulate regional development and urbanization
(Kuang et al., 2016). In 2003, the Northeast China old industrial
base revitalization strategy was put into action, leading to substantial
economic growth in the region and facilitating industrial
transformation and urban expansion. The Northeast Region
Revitalization Plan became effective in 2007. The HCUA is
identified as a crucial urban agglomeration for development and
growth in the 13th Five-Year Plan (Li et al., 2018). The official
announcement of the “Harbin and Changchun Urban
Agglomeration Development Plan” in 2016 further accelerated
the pace of urbanization within the HCUA during this period.
Frequent human activities have transformed large parts of green
areas into production areas. The specific process of land use
conversion primarily involves converting land types with high
carbon density to low carbon density, resulting in a reduction of
carbon stocks in HCUA, in line with the research findings (Shi
et al., 2024).

In addition, alongside the economic development, the
government demonstrated its awareness of the severe ecological
issues and devised numerous ecological policies to safeguard and
rehabilitate the ecosystem. Between 2000 and 2010, there was an
expansion of forest land by 686.25 km2 and grassland by
2536.75 km2 in the HCUA region. Consequently, carbon storage
increased by 16.72Mg for forests and 29.85Mg for grasslands during
this period. The implementation of a project aimed at converting
farmland into forest areas while addressing land salinization
(Ouyang et al., 2016) resulted in some cultivated land being
transformed into forests and grasslands.

We used the PLUS model and the InVEST model to predict
the land use and carbon storage under three scenarios of HCUA
in 2040. In the absence of ecological policy intervention, the ND
scenario continues the previous development model, while the
ED scenario focuses on rapid economic development while
neglecting ecological protection, resulting in a large amount of
forest land and grassland being converted into construction land
and cultivated land. Both of these scenarios have caused a

significant loss of carbon storage compared with 2020.
Compared with the above two scenarios, the SD scenario not
only restricts the conversion of forest and grassland to
construction land, but also increases the probability of the
transfer of other land use types to forest and grassland,
thereby increasing some carbon sinks. Therefore, the extent
of carbon storage loss significantly weakens under the SD
scenario, which is consistent with the conclusion drawn by
Zhang et al. (2022) and Fan et al. (2023). Historical policies
have further demonstrated that the implementation of ecological
protection policies can better protect land. For instance, the
entire first provincial wetland protection regulation
promulgated by Heilongjiang Province, as well as the land
salinity/sodium content improvement project developed by
Jilin Province, have largely restored grasslands and cultivated
land (Mao et al., 2019).

4.2 Driving factor analysis of the spatial
differentiation of carbon stock

In order to comprehend the underlying mechanism driving
spatial variations in carbon stocks within HCUA ecosystems, we
utilized Geodetector as an analytical tool. Our findings indicate
that NDVI, DEM, and Slope exhibit strong explanatory power
when it comes to explaining spatial variations in carbon stocks
within these ecosystems. These findings are also in agreement with
previous surveys (Zhang et al., 2024). High-altitude areas that
demonstrate higher carbon reserves compared to other regions.
This observation aligns with a study conducted by Hong et al.
(2022). Notably, these areas include Changbai Mountain National
Nature Reserve, Songhua River Three Lakes National Nature
Reserve, Moranfeng among other nature reserves. The
topography of these regions is characterized by relatively high
elevations while maintaining low population density and limited
human activities intensity. Moreover, they boast significantly
higher vegetation coverage rates compared to other regions
along with rich biodiversity. Forests play a crucial role as
important terrestrial carbon pools due to their higher carbon
density; this has been highlighted by Peng et al. (2023).
Consequently, forests within these regions exhibit higher levels
of carbon reserves.

Moreover, with the growth of urban agglomerations, the q
values for socio-economic factors such as POP and NLI have
increased between 2000 and 2020. This indicates a stronger
ability to explain spatial differences in carbon stocks, which
aligns with Li K. et al. (2021) research findings. The q value for
GDP initially decreased from 2000 to 2010 but then rose again
from 2010 to 2020. This suggests that industrialization,
urbanization, and human activities have intensified since the
formation of Harbin and Changchun’s urban agglomeration.
Consequently, socio-economic factors are exerting a greater
influence on variations in carbon stocks across space.
Additionally, all interactive detection results exhibit bilinear or
nonlinear enhancement consistent with previous studies (Jia and
Hu, 2024). Our study reveals that combining different driving
forces can increase the strength of the explanation for the
geographical differentiation of carbon storage.
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As urbanization and regional economic growth continue
expanding within urban agglomerations, natural-social factor
interactions will make it easier for each factor to account for
differences in carbon storage across space - e.g., POP∩DEM;
NLI∩DEM; NLI∩SLOPE; NLI∩NDVI. These findings indicate
that human activities increasingly interfere with ecological
environments during the development of urban agglomerations
thereby affecting spatial differentiation of carbon stocks.

4.3 Suggestions for future development

Although ecological policies have been implemented to promote
the growth of forests and grasslands, thereby slowing down the rate
of carbon loss, it is necessary to bear in mind that restoring
ecosystem functions takes considerable time and cannot fully
reach their natural levels (Chazdon, 2008). In addition, land use
change also has an impact on other ecosystem functions, including
changes in ecosystem services such as habitat quality (Li et al., 2025),
soil retention, water production, and their trade-off synergy
relationships, all of which are closely related to land cover types
(Yu et al., 2021). Hence, to effectively tackle the sustainability of
socio-economic factors and ecological safety in urban
agglomerations, it is crucial to consider proactive measures.

First, mitigating the negative impacts of development on carbon
stocks requires sustainable management. Urban agglomerations
should adhere to relevant policies regarding land use planning,
adopt a scientific and rational approach towards developing
construction land, and prioritize enhancing the quality of
urbanization. Furthermore, it is of utmost importance to give
priority to the conservation of nature reserves, forests, cultivated
land reserves, and black soil reserves within urban agglomerations
with the aim of minimizing the adverse effects caused by human
activities.

Secondly, it is essential to increase the impact of ecological
planning in urban agglomerations and strengthen the establishment
of ecological spaces within these areas. The forest ecosystem serves
as a vital carbon pool for this region with high-quality forests playing
a significant role in improving the country’s forest carbon sink
function (Liu et al., 2022). Thus, it is imperative to reinforce
forestland protection in the eastern part of our study area while
simultaneously improving its quality and ensuring appropriate
species distribution within forests (Cao et al., 2011). The HCUA
encompasses a variety of aquatic ecosystems, including rivers, lakes,
and wetlands.

From 2000 to 2020, the analysis reveals an upward trajectory in
water carbon storage within the HCUA. This indicates that
protecting wetland ecosystems can contribute significantly to the
regional carbon sink.

Lastly, ensuring food security remains a primary responsibility
that must be fulfilled diligently while concurrently intensifying
efforts towards safeguarding cultivated land–which serves as the
second-largest carbon reservoir in the HCUA. Additionally, since
black soil farming areas are present within the study area,
implementing rational agricultural practices becomes crucial for
promoting sustainable agriculture growth while minimizing land
transfer activities in these regions and restoring overdeveloped areas
with forestation or grassland.

4.4 Limitations and prospects

This study combined the PLUS and InVEST models with the
analysis of influencing factors to provide a systematic method for
the long-term management of carbon stocks in urban
agglomerations. Although these models effectively predict future
ecological carbon stocks, they have certain limitations. Instead of
relying on direct measurements, this research uses carbon density
values from former surveys. However, it is essential to realize that
these are just estimates for regional ecosystem carbon storage and
do not adequately reflect the actual situation even after adjustment
using meteorological data. Therefore, future studies should
consider incorporating field sampling and measurement data
alongside historical monitoring data to obtain more precise
evaluations of carbon storage. Furthermore, when designing
different future land use development scenarios, due to the lack
of accurate control over future development scenarios, there are
subjective factors influencing. Moreover, due to the lack of
technology, it is impossible to measure the impact of the
quantity and specific types of land use drivers on the
simulation accuracy. In future research, various factors will be
comprehensively considered in combination with field
investigation data. Multiple experiments will be conducted to
explore the influence of driving factors on simulation accuracy
and design future development scenarios that are more in line with
the actual trends of the study area.

5 Conclusion

This research utilized the PLUS and InVEST models with the
analysis of influencing factors to provide a systematic method for the
long-term management of carbon stocks in urban agglomerations.
The key points of this research are outlined below:

(1) From 2000 to 2020, construction land has largely increased,
resulting in a loss of carbon storage by about 87.02 Mt. The
eastern hilly region is found to be storing high levels of
carbon. Whereas the carbon storage of low value is found
in the urban center area that has relatively high economic
development level.

(2) Natural factors primarily drive the geographical variation in
carbon storage within HCUA. Factors such as NDVI, DEM,
and slope contribute significantly to explaining these spatial
differences. Combining natural and socio-economic factors
greatly enhances their collective explanatory capacity.

(3) All the scenarios for natural development and economic
development showed great expansion in the area for
construction land. In the sustainable development case, it
was noted that the forested areas are very well conserved and
less sprawl to construction land use.

(4) In 2040, the carbon storage of HCUA shows a decreasing
trend, with the economic development scenario witnessing
the most substantial decline in carbon storage by 112.85 Mt.
Nevertheless, the sustainable development scenario helps
alleviate this declining trend to some extent, resulting in
an estimated carbon storage of 4882.06 Mt within the
study area by 2040.
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