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Investigating the impact of grazing on soil respiration in artificial Caragana
korshinskii is crucial for harmonizing the carbon sequestration potential of
ecological restoration with the sustainable development of animal husbandry.
This research is directly linked to addressing the challenges of carbon balance
regulation in arid regions and mitigating the conflict between forestry and
livestock farming. Continuous grazing modifies biomass and soil properties in
artificial C. korshinskii shrublands, potentially influencing soil respiration. To
assess the effects of grazing on soil respiration in artificial C. korshinskii
shrublands, we established three experimental plots (no grazing, light grazing,
and heavy grazing) in the northern foothills of the Daqing Mountains in Inner
Mongolia in 2022. Soil respiration, physicochemical properties, and biomass were
monitored throughout the growing season. The study results indicate that: (1) No
significant difference in soil respiration was observed in C. korshinskii shrublands
under grazing conditions. (2) The chemical properties of surface soil may serve as
the primary regulatory factors influencing soil respiration under grazing
conditions. Based on the average level of soil respiration under different
grazing intensities, to effectively mitigate soil carbon emissions, we
recommend a moderate reduction in the grazing intensity of C. korshinskii
shrublands in arid and semi-arid agro-pastoral regions.
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1 Introduction

Soil respiration (SR) is the main process that exports carbon dioxide (CO2) from the soil
carbon pool to the atmosphere, and this process is an important link in the carbon exchange
between terrestrial ecosystems and the atmosphere (Xu and Shang, 2016; Kim et al., 2024).
As the largest carbon pool in terrestrial ecosystems, the soil carbon pool is approximately
twice the size of the atmospheric carbon pool and three times that of the plant carbon pool
(Pang and Xu, 2024). Its CO2 release is the second-largest flux in the global carbon cycle,
playing a critical role in ecosystem carbon cycling (Li et al., 2017). Small changes in SR may
disrupt the balance of soil carbon pools in terrestrial ecosystems and may even alter the
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functions of ecosystem carbon sources and sinks, with potential
impacts on global climate change (Li et al., 2019; Zheng et al., 2021;
Shen H. et al., 2023; Song et al., 2021).

SR is well known to vary in response to changes in vegetation,
soil temperature (ST), soil moisture (SM), soil nutrient levels, air
temperature, and other environmental factors (Raich et al., 2022;
Wang et al., 2020). In arid regions, alterations in soil physical and
chemical properties are the predominant factors influencing SR
(Raich et al., 2022; Wang et al., 2020). SR is also related to the type of
vegetation, which not only directly affects SR but also indirectly
affects SR by influencing ST and SM (Post and Kwon, 2000).
Different land use practices have varying degrees of influence on
SR, with grazing being a traditional and significant land use practice
that has garnered substantial research attention. Grazing herbivores
can alter vegetation and soil characteristics, as well as nutrient
cycling and flow, through selective foraging, trampling, resting,
and excreta return. These changes can ultimately influence
ecosystem SR and the stability and health of ecosystems (Ju
et al., 2024; Zhao et al., 2017; Mekuria et al., 2007; Kölbl et al.,
2011; Kelsey et al., 2023). Numerous authors have studied the effects
of grazing behavior on SR in different ecosystems (Peri et al., 2015;
Gourlez de la Motte et al., 2018; Ondier et al., 2020), but globally, the
effects of grazing on SR remain unclear because of different and
sometimes contradictory results observed (Raiesi and Asadi, 2006;
Chen et al., 2016; Naidu et al., 2022; Li et al., 2024). Previous research
has demonstrated that grazing exerts variable and, at times,
contrasting effects on soil respiration across diverse ecosystems
and plant communities (Li et al., 2024). Specifically, grazing has
been found to significantly suppress SR in two typical steppe species,
Stipa grandis and Leymus chinensis (Chen et al., 2019). In Inner
Mongolia’s typical grasslands, rotational grazing resulted in the
highest SR rates, followed by grazing prohibition, whereas
continuous grazing led to the lowest SR rates due to reductions
in TN and TP (Nie et al., 2019). In the alpine meadows of the
Tibetan Plateau, grazing was shown to suppress SR, with soil
nitrogen content having a significant influence on SR levels (Du
et al., 2022). Conversely, some studies have reported that grazing in
the meadow steppes of the Tibetan Plateau accelerated SR (Chen
et al., 2016). Research by Sharkhuu et al. (2016) further indicates that
light grazing may actually enhance SR. These findings collectively
underscore the context-dependent relationship between grazing and
SR, which can vary substantially depending on ecosystem type, soil
characteristics, and grazing intensity.

Since the 1990s, Caragana korshinskii (cited as C. korshinskii)
has been cultivated on abandoned land at the northern foothills of
Daqing Mountain in Inner Mongolia. C. korshinskii is a perennial
shrub of the genus Caragana, family Leguminosae, that is light-
loving, cold-resistant, heat-resistant, and highly adaptable. It thrives
in environments with soil pH ranging from 6.5 to 10.5 and average
annual precipitation of 100–800 mm. This plant species is crucial in
central Inner Mongolia, serving as an excellent forage resource
favored by sheep and demonstrating strong branch regeneration
capabilities Following grazing, it can produce a substantial number
of new branches, forming dense shrubs. This plant acts as a life-
saving resource for livestock in grass-deficient areas and harsh
conditions, such as winter. It also plays a crucial role in
enhancing soil structure, increasing soil fertility, and maintaining
ecological balance (De et al., 2024).

Investigating the impact of grazing on SR in artificial C.
korshinskii is crucial for harmonizing the carbon sequestration
potential of ecological restoration with the sustainable
development of animal husbandry. This research is directly
linked to addressing the challenges of carbon balance regulation
in arid regions and mitigating the conflict between forestry and
livestock farming (Bastani et al., 2023). However, no relevant studies
have been identified to date. Therefore, a comprehensive
understanding of the SR characteristics of C. korshinskii
shrublands under grazing and its relationship to soil
physicochemical properties and vegetation changes is essential
not only for maintaining and enhancing carbon sequestration
capacity but also for optimizing the use of existing C. korshinskii
forage resources, thereby maximizing ecological and economic
benefits in these regions.

Grazing is recognized for its direct and indirect effects on
vegetation, soil properties, and nutrient cycling processes.
Therefore, we hypothesized that grazing could influence the soil
physicochemical properties and vegetation biomass of the C.
korshinskii shrublands, consequently affecting SR. This study
focuses on the C. korshinskii shrublands located at the northern
foothills of the DaqingMountains in central Inner Mongolia, aiming
to clarify two scientific issues: 1. What are the dynamic
characteristics of SR in the C. korshinski shrublands under
grazing, and are there significant differences in SR across these
intensities? 2. Under grazing conditions, which factors primarily
regulate SR? The overarching objective of this research is to provide
a robust theoretical foundation for establishing appropriate grazing
intensity, optimizing land use practices, and enhancing the
sustainable management and development of C. korshinskii
shrublands in central Inner Mongolia.

2 Materials and methods

2.1 The study area

The experimental site is located at the junction of Damao Banner
and Wuchuan County (N 40°74′-41°23′, E 110°30′-111°52′), at the
northern foothills of Daqing Mountain Range in the central part of
Inner Mongolia (Figure 1). The area is characterized by an elevated
terrain (average elevation: 1700 m) and an arid to semi-arid grassland
climate. The region experiences extreme temperature variability, with
an annual average of 1.2°C, ranging from −14.89°C in January (coldest
month) to 18.80°C in July (hottestmonth). Precipitation is low (343mm
annually), predominantly occurring fromMay to September, with high
solar radiation (2,960 sunshine hours/year) and evaporation
(2,200 mm/year). Frequent strong winds (gusts of 6–7 m/s) are
observed between April and June. The frost-free period spans
75–105 days. The soil is dominated by chestnut soils, and the
formation of vegetation types dominated by degraded hay meadows
and secondary forests (Han et al., 2024).

2.2 Experimental design

The experimental plots were established on flat terrain with
uniform climatic conditions. The study subjects consisted of
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artificial C. korshinskii shrublands planted in 2014, arranged in two-
row bands. Three grazing treatments were implemented based on
regional practices: no grazing (NG), light grazing (LG), and heavy
grazing (HG). The NG plots (initiated in 2014) were permanently
fenced to exclude grazing. The LG treatment (70 hm2) was stocked
with 72 sheep (1.0 sheep/hm2/year), while the HG treatment
(140 hm2) contained 350 sheep (2.5 sheep/hm2/year). Both LG
and HG grazing throughout the year, grazing during the day,
and sheep returning to the pen at night, grazing started in 2016.

SR was measured in 2022. The specific design of setting up SR
observation points in the above shrubland experimental plots is as
follows: 3 SR observation points were set up in each experimental plot
along the outermost edge of the canopy of the shrub with an interval of
about 50mbetween the observation points within the same plot, total of
nine observation points were established. Measurement, 1 month in
advance, the circular steel circle (30 cm diameter, 8 cm height) buried at
each observation point, vertical pressure into the soil 5 cm, to ensure
that the steel circle and the surrounding soil seamless fit. The steel ring
will remain stationary until the year-end test. To minimize interference
from above-ground plant respiration, we carefully removed herbaceous
above-ground portions within the steel rings using scissors and cleared
away dead leaves and branches.We alsominimized soil disturbance and
root damage to reduce their potential impact on the
measurement results.

The ACE soil carbon flux measurement system (Manufactured
by ADC United Kingdom) was installed, and SM and ST probes
were inserted into the soil at a depth of 10 cm tomeasure SM and ST,
at the conclusion of the measurement process, the respiratory
chamber is opened to perform a zero-point measurement, and
the ambient CO2 concentration is recalibrated to calculate the
net carbon exchange rate accurately. The SR of C. korshinskii
shrublands under the three treatments was measured from 08:
00 to 18:00 on the measurement day. Each observation points
was measured for 10 min every 2 h. The test dates for the entire
growing season in 2022 were as follows: May 8, May 28, June 7, June
25, July 6, July 23, August 3, August 29, September 10, and
September 24. To ensure representativeness, the measurement

days were selected to coincide with clear, cloudless, and either
windless or breezy weather conditions.

To avoid disturbance to SR, three 1 m × 1 m herbaceous sample
plots were set up 1 m away from the SR monitoring steel ring to
investigate the basic condition of herbaceous plants, the above-
ground plant materials were harvested, placed in paper bags, and
transported to the laboratory where they were dried to a constant
weight to determine the above-ground biomass (AGB).

After the investigation, an 8 cm diameter electric root drill was
used in the sample plots to extract underground roots at a depth of
20 cm (the root systems of herbaceous plants are mainly distributed
between 0 and 20 cm), repeated five times. Roots from the same soil
layer were carefully collected, washed with deionized water to
remove adhering soil, then dried and weighed to determine
belowground biomass (BGB).

The soil bulk density sample was collected using a ring knife,
transported to the laboratory, and subsequently dried in an oven set
at 105°C until it reached a constant weight.

A soil drill with an inner diameter of 5 cm was used to collect soil
from the sample plots at a depth of 20 cm for chemical analysis, repeated
3 times. The soil sampleswere placed in sealed plastic bags, transported to
the laboratory, and air-dried. Subsequently, they were sieved through a
2 mm sieve to remove non - soil substances. After that, the samples were
ground using a lapping body and then passed through a 0.25 mm sieve.
The sieved soil samples were placed in sample bottles to be measured for
soil organic carbon (SOC), total nitrogen (TN), alkali-hydrolyzable
nitrogen (ASN), total phosphorus (TP), available phosphorus (AP),
available potassium (AK), soil acidity and alkalinity (pH), soil C/N
ratio (C/N), Soil pH (pH). SOC was measured using the dichromate
oxidation with external heating method. TN was determined via the
diffusion method. For TP, samples were first digested with concentrated
sulfuric acid and perchloric acid, and then analyzed using a continuous
flow analyzer. ASN was measured by the alkali - hydrolysis diffusion
method. AP was extracted with sodium hydroxide and analyzed by the
molybdenum - antimony - potassium antimony tartrate colorimetric
method. AK was extracted with ammonium acetate and measured using
a flame photometer. The pH was directly measured with a pH meter

FIGURE 1
Sampling schematic.
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(model PHS - 2F, produced by Shanghai INESA Scientific Instrument
Co., Ltd.). Soil sample collection date: May 8, June 7, July 6, August 3,
September 10 (Bao, 2007).

2.3 Statistical analysis

Data were organized using Excel 2021 (Microsoft
Corporation, Redmond, WA, United States) Figures and
correlation analyses were generated using Origin 2021 (Origin
Lab Corporation, Northampton, MA, United States). Two-way
and three-way factorial ANOVA was conducted to evaluate the
effects of grazing intensity, month, and soil depth, as well as their
interaction effects. Post hoc multiple comparisons were
performed for each factor across different levels of grazing
intensity. Additionally, a structural equation model (SEM) was
constructed to explore the relationships among variables. All
statistical analyses were performed using SPSSPRO software
(www.spsspro.com).

2.4 Basic information of the sample plot

In 2022, the total rainfall from May to September, covering
the plant growing season, amounted to 333 mm. The monthly
distribution of precipitation was highly uneven, with a
significant concentration of rainfall in July and August, while
May, June, and September experienced relatively lower
precipitation levels. The average temperature for this period
was approximately 11.75°C, but daily temperature variations
were considerable (Figure 2).

The mechanical composition of the three plots exhibits a
high degree of similarity, with no statistically significant
differences. The particle size distribution is primarily
concentrated within the range of 2–50 μm, predominantly
consisting of silt (Table 1).

3 Results

3.1 Dynamic characteristics of soil
respiration

The temporal dynamics of SR in C. korshinskii shrublands were
studied under different grazing treatments from May to September.
SR showed a clear seasonal pattern, with an initial increase from
May, peaking in July, and then declining until the end of the study in
September. SM in C. korshinskii shrublands fluctuated during the
study period, with the highest recorded on June 7 and the lowest on
June 25. ST beneath C. korshinskii shrublands showed complex
variations. From May onwards, ST increased consistently across all
grazing treatments, maintaining a range of 30°C–40°C from June
through August. A rapid decline in ST was observed by late
September (Figure 3).

3.2 Responses of soil respiration, soil
physical and chemical properties and
biomass to grazing

G has a main effect on SOC, TN, ASN, C/N, pH, AGB and BGB.
D has a main effect on all the physical and chemical properties of the

FIGURE 2
Daily meteorological conditions in 2022.
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soil. M has a major effect on SR and all soil physical and chemical
properties and biomass except TP. G × D has an interaction on SOC,
TN, C/N, TP, AP and pH. G × M has an interaction effect on all soil
physicochemical properties and biomass. D × M has an interaction
effect on all soil physical and chemical properties; G × D ×M has an
interaction with SOC, TN, TP, AP, AK and pH (Table 2).

In this study, no significant differences in SR, ST, SM, TP, AP,
and AK were observed among various grazing treatments. SOC and
TN increased significantly with rising grazing intensity, and
differences among all grazing treatments were significant. ASN
also showed an increasing trend, with a significant difference
between NG and HG treatments, while no significant differences
were found between other treatments. Grazing enhanced the C/N
ratio, and the C/N under NG was significantly different from that
under LG and HG. Notably, HG significantly reduced soil pH, with
significant differences found between HG and both NG and LG

treatments. Furthermore, AGB and BGB decreased significantly
with increasing grazing intensity, and significant differences were
observed among all treatments (Table 3).

3.3 Control factors of soil respiration

SR showed significant positive correlations with ST, SOC10, TN10,
AHN10, TP10, AP10, AK10, AK20, and C/N10. SR showed non-
significant positive correlations with SOC20, TN20, ASN20, C/N20,
aboveground biomass and below-ground biomass; and SR showed non-
significant negative correlations with SM, TP20, pH10, and pH20
(Figure 4). Grazing influences SR by altering the chemistry of the
topsoil, both directly and indirectly. Soil physical properties, deep soil
chemistry, and biomass do not have a significant direct impact on
SR (Figure 5).

FIGURE 3
Dynamic characteristics of soil respiration, soil temperature, soil moisture.

TABLE 1 Soil bulk weight and soil mechanical composition.

Treatment Layer of soil (cm) Soil capacity (g/cm3) Soil particle size composition (%)

<0.1 μm <2 μm <20 μm <50 μm <100 μm

NG 0–10 1.51 ± 0.11a 0 4.42 ± 0.66a 65.88 ± 8.60a 99.9 ± 0.05a 100

10–20 1.46 ± 0.09a 0 3.16 ± 0.76a 61.05 ± 8.48a 96.59 ± 3.96a 100

LG 0–10 1.52 ± 0.16a 0 4.51 ± 0.47a 63.44 ± 7.92a 99.1 ± 0.19a 100

10–20 1.50 ± 0.11a 0 2.77 ± 0.71a 66.38 ± 8.62a 98.37 ± 0.25a 100

HG 0–10 1.58 ± 0.06a 0 3.40 ± 0.62a 60.73 ± 6.14a 97.47 ± 3.51a 100

10–20 1.49 ± 0.07a 0 2.81 ± 0.63a 62.88 ± 8.03a 98.69 ± 2.41a 100

Note: Lowercase letters indicate the statistical significance of differences among the same indicators under varying grazing treatments.
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4 Discussion

4.1 The regulation of abiotic factors on soil
respiration under grazing effect

Currently, there is no definitive conclusion regarding the impact
of grazing on SM (Odriozola et al., 2014; Gao et al., 2004). The
findings of this study, which indicate an insignificant effect of
grazing on SM, align with those of Qu et al. (2024). ST is closely

associated with SM and plant shading. no significant differences in
ST are observed across different treatments. The reduced water
holding capacity and limited deep infiltration potential of sandy soils
may contribute to a mitigating effect on both SM and ST (Vermeire
et al., 2005).

The research findings on the effect of grazing intensity on soil
chemical properties have not yet reached a consistent conclusion
(Jalilpour et al., 2022). Bolan posited that the chemical attributes of
pasture soils are significantly shaped by the deposition of manure

TABLE 2 Results of variance analysis of grazing intensity, month and soil depth on three/two factors of soil respiration, soil chemical properties and
biomass.

Indicator G D M G × D G × M D × M G × D × M

SR 3.896 - 18.331*** - 1.403 - -

ST 3.159 - 70.222*** - 0.563 - -

SM 0.008 - 3.723** - 0.050 - -

SOC 225.566*** 5.459** 74.72*** 12.774*** 28.664*** 31.486*** 16.200***

TN 161.078*** 19.621*** 31.596*** 22.846*** 8.321*** 16.904*** 12.387***

ASN 18.053*** 14.726*** 16.245*** 1.655 2.171** 30.614*** 0.091

C/N 32.309*** 12.601*** 21.467*** 3.276*** 13.85*** 22.988*** 1.712

TP 2.363 2.6** 0.79 3.391*** 3.405** 11.427*** 2.583***

AP 2.026 62.447*** 24.832*** 11.163*** 6.302*** 28.1*** 12.239***

AK 0.7 2128.636*** 62.129*** 0.25 16.596*** 15.56*** 13.469***

pH 4.927** 7.262*** 43.688*** 8.156*** 10.089*** 10.899*** 4.268***

AGB 86.746*** - 69.43*** - 4.641*** - --

BGB 501.58*** - 387.358*** - 20.277*** - -

Note: *, **, and *** indicate that the main effect and interaction results are significant at 5%, 1%, and 0.1% significance levels, respectively. G, grazing intensity; M, monthly variation; D, Soil

depth. This convention applies throughout.

TABLE 3 Post-event multiple comparisons (grazing intensity).

Indicator NG-LG NG-HG LG-HG

SR (μmol/m2·s) −0.03 ± 0.26 −0.35 ± 0.38 −0.38 ± 0.39

ST (°C) −1.20 ± 2.53 −2.34 ± 2.25 −1.14 ± 2.60

SM(m-3·m-3) −0.001 ± 0.02 −0.002 ± 0.022 −0.002 ± 0.02

SOC(g/kg) −1.28 ± 0.23*** −1.92 ± 0.31*** −0.65 ± 0.33***

TN (g/kg) −0.07 ± 0.02*** −0.19 ± 0.03*** −0.12 ± 0.03***

ASN(g/kg) −0.003 ± 0.002 −0.007 ± 0.002*** −0.004 ± 0.002

C/N −1.04 ± 0.28*** −0.66 ± 0.24*** 0.31 ± 0.21

TP (g/kg) −0.009 ± 0.01 −0.013 ± 0.01 −0.004 ± 0.006

AP (m/kg) 0.05 ± 0.236 −0.172 ± 0.301 −0.222 ± 0.296

AK (m/kg) −0.78 ± 11.35 −2.43 ± 12.10 −1.65 ± 11.82

pH −0.005 ± 0.027 0.028 ± 0.026* 0.033 ± 0.022*

AGB (g/m2) 18.99 ± 9.15** 29.89 ± 8.49*** 10.89 ± 6.25*

BGB (g/m2) 60.21 ± 23.03** 98.37 ± 20.95*** 38.16 ± 15.83**

Note: *, **, and *** indicate that the results are significant at 5%, 1%, and 0.1% significance levels.
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and urine and their subsequent transformations within the soil
(Bolan et al., 2024). As grazing intensity increases, livestock food
intake rises, potentially reducing the decomposition of dead
branches, leaves, and ground vegetation, thereby decreasing soil
nutrient levels. In contrast, high-intensity grazing can enhance soil
nutrient content through increased livestock excretion of manure
and urine (Bastani et al., 2023).

Some studies suggest that grazing can enhance SOC, primarily
due to the trampling by animals breaking down litter and facilitating
its intimate contact with the soil, thereby accelerating
decomposition and the rapid return of organic carbon to the soil,
or altering the root-to-shoot ratio of plants and increasing the
allocation of carbon to below ground biomass (Reeder and
Schuman, 2002; Pan et al., 2023; Shen Y. et al., 2023; Wei et al.,
2023; Wienhold et al., 2001). Other studies indicate that grazing has
either no significant effect or a negligible impact on SOC depending
on whether soil erosion occurs following grazing activities
(Robertson et al., 2016; Derner et al., 2019; Nüsse et al., 2017;
Wang G. et al., 2022; Hancock and Vallely, 2020; Zhang et al., 2023).
Furthermore, some research indicates that the relationship between
SOC and grazing lacks a consistent pattern, showing both positive
and negative correlations at different times (Derner et al., 2019). In

this study, grazing was found to increase SOC in Caragana
korshinskii shrublands. The current grazing intensity or duration
does not cause soil erosion, and animal trampling may facilitate the
decomposition of litter.

Soil nitrogen content is influenced by the rates of accumulation
and decomposition of soil organic matter. Higher organic matter
content generally leads to higher soil nitrogen levels (Calazans et al.,
2018; Yao et al., 2023). In this study, both TN and ASN showed
significant positive correlations with SOC, which supports the
aforementioned findings.

In this study grazing did not have a direct effect on TP, AP, or
AK, and the differences among various grazing treatments were not
statistically significant. This result aligns with the findings of
Navasardyan et al. (2024). The lack of immediate impact may be
attributed to the fact that most phosphorus and potassium inputs
originate from animal manure, whose decomposition is a prolonged
process lasting 5–10 years and is heavily influenced by climatic and
soil conditions (Vinograd et al., 2019). The significant interaction
between grazing and month or soil depth observed in this study
suggests that although grazing does not directly alter TP, AP, or AK
levels, it may influence these nutrients indirectly through
modifications in environmental conditions or other ecological

FIGURE 4
The heat map illustrates the correlation between soil respiration and soil physicochemical properties. Note: SR: soil respiration rate; SM: soil
moisture; ST: soil temperature; SOC10: soil organic carbon in 0–10 cm soil layer; SOC20: organic carbon in 10–20 cm soil layer; TN10: soil total nitrogen
in 0–10 cm soil layer; TN20: soil total nitrogen in 10–20 cm soil layer; ASN10: soil alkali-hydrolyzed nitrogen in 0–10 cm soil layer; ASN20: soil alkali-
hydrolyzed nitrogen in 10–20 cm soil layer; TP10: total phosphorus in 0–10 cm soil layer; TP20: total phosphorus in 10–20 cm soil layer; AP10: soil
available phosphorus in 0–10 cm soil layer; AP20: soil available phosphorus in 10–20 cm soil layer; AK10: soil available potassium in 0–10 cm soil layer;
AK20: soil available potassium in 10–20 cm soil layer; pH10: pH value in 0–10 cm soil layer; pH: pH value in 10–20 cm soil layer; C/N10: soil layer carbon
nitrogen ratio in 0–10 cm soil layer; C/N20: soil layer carbon nitrogen ratio in 10–20 cm soil layer; AGB: aboveground biomass; BGB: below-
ground biomass.
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processes. This also explains the varying results reported by Yao
et al. (2019) across different sampling times and soil layers under
diverse grazing regimes.

Grazing exerts a direct influence on soil pH; however, the
pH value within the C. korshinskii shrublands remains stable
between 8.25 and 8.55, preserving the soil’s weakly alkaline
condition. This stability can be attributed to the loose soil
structure and the rapid evaporation of surface moisture in the
experimental area.

In arid regions, soil physical and chemical properties account for
65%–70% of the variability in SR, with soil chemical properties being
the predominant factor influencing SR in shrubland ecosystems
(Wen et al., 2018). In this study, SR exhibited significant positive
correlations with ST, SOC10, TN10, ASN10, TP10, AP10, AK10,
and AK20. The chemical properties of surface soil may be the
primary determinants of SR.

SM is the primary determinant of dissolved organic matter
availability and mobility in soil, serving as a respiratory substrate
and energy source for soil microorganisms (Chowdhury et al., 2011;
Lloyd et al., 2016). Additionally, SM significantly influences plant
root growth and survival, particularly in water-scarce regions (Lloyd
et al., 2016). Numerous studies have demonstrated a positive
correlation between SM and SR during the growing season, with
the relationship potentially being linear, logarithmic, quadratic, or
parabolic (Ondier et al., 2020; Luo et al., 2012; Zhang et al., 2017; Xu
and Wan, 2008; Hanpattanakit et al., 2015; Luo et al., 2012; Rubio
and Detto, 2017). Some research indicates that SM affects SR within
an optimal range; excessive or insufficient SM can either inhibit or
have no significant effect on SR (Knowles et al., 2015). However, this
study found no significant relationship between SM and SR. The
study area, characterized by arid conditions, low precipitation, loose
soil texture, and poor water retention, suggests that water availability
becomes a non-limiting factor. This finding aligns with previous

research conducted in similar arid environments (Wang et al., 2023;
Lin et al., 2020).

ST constitutes a critical determinant of SR, particularly when SM
is not a limiting factor, thereby becoming the predominant
environmental influence on SR. Extensive research has
demonstrated that SR exhibits significant or highly significant
positive correlations with both air and ST, which can be
mathematically represented by linear or exponential functions.
The findings of this study align with those of previous
researchers, indicating a positive correlation between SR and ST
(Guo et al., 2018).

SOC serves as the material foundation for CO2 emissions
resulting from microbial decomposition activities and constitutes
the largest carbon pool within the ecosystem, significantly
influencing SR (Wang et al., 2017). Previous studies have
demonstrated a positive correlation between SOC and SR,
findings that are consistent with our study.

Soil nitrogen serves as the primary source of plant nitrogen
nutrition. The majority of soil nitrogen exists in organic forms, while
only a minor portion is inorganic. Organic nitrogen undergoes
mineralization to transform into ammonium, which can then be
absorbed and utilized by crops, leading to the release of CO2 (Wang
et al., 2017). Several studies have demonstrated that higher TN
significantly increases the CO2 emission flux in grassland
communities (Graham et al., 2014), and Zhou also observed a
significant positive correlation between SR and TN (Zhou et al.,
2021). Some studies have also shown that excessive nitrogen inhibits
SR, possibly because the affinity between nitrogen and carbon
reduces the availability of carbon, thus hindering the metabolic
activities of microorganisms and slowing down CO2 emission (Zhou
et al., 2009). In this study, SR showed a significant positive
correlation with TN in 0–10 cm soil layer, based on the research
findings of other authors, it is hypothesized that the SR of C.

FIGURE 5
Structural equation modeling. Note: Structural equation modelling of factors on soil respiration, grazing intensity including NG, LG, HG; surface soil
chemical properties including SOC10, TN10, ASN10, C/N10, TP10, AP10, AK10, pH10; deep soil properties including SOC20, TN20, ASN20, C/N20, TP20,
AP20, AK20, pH20; biomass including aboveground biomass, BGB: below-ground biomass. ***, **, * are significant at 5%, 1%, and 0.1% significance levels.
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korshinskii shrublands exhibits a strong positive correlation with the
denitrification rate of surface soil (Van Kessel et al., 1993;
Christensen et al., 1990; Zhao et al., 2015). ASN is a major
component affecting plant roots and soil microbial metabolic
activities, and generally has a significant positive correlation with
SR, and the results of this study are consistent with this inference
(Zhao et al., 2015).

C/N serves as an indicator of the mineralization efficiency of soil
organic matter during decomposition. Studies have demonstrated
that C/N is inversely related to the rate of organic matter
decomposition. A lower C/N facilitates soil mineralization,
leading to faster decomposition of soil organic carbon and
increased CO2 release from the soil, whereas a higher C/N can
limit this process (Sinsabaugh et al., 2002; Mande et al., 2014; Xu
et al., 2016; Tian et al., 2019). Other researchers have observed that
low C/N can restrict microbial activity and decomposition due to the
presence of recalcitrant carbon sources, suggesting that low C/N
indicates more decomposed SOC by microorganisms (Tian et al.,
2019; Ngao et al., 2012; Webster et al., 2018; Klimek et al., 2021).
During organic matter mineralization, organotrophic
microorganisms require carbon sources for cellular components
and nitrogen for nutrient supply to maintain C/N balance within
their cell composition. The C/N conditions thus constrain microbial
growth and activity, influencing the decomposition rate of organic
matter, which in turn affects SR. This suggests that microbial
decomposition activity requires an optimal C/N (Zhao et al.,
2015; Sinsabaugh et al., 2002). Our study reveals a positive
correlation between SR and C/N in the 0–10 cm soil layer,
differing from some studies but aligning with others (Tian et al.,
2019; Klimek et al., 2021). Our findings may indicate enhanced
carbon consumption with increased C/N under non-nitrogen-
limited conditions (Tian et al., 2019; Ngao et al., 2012; Darenova
et al., 2024).

The observed low soil C/N ratios are likely driven by the
nitrogen-fixing capacity of C. korshinskii. Although biological
nitrogen fixation (BNF) was not directly measured in this study,
C. korshinskii, as a nitrogen-fixing plant, enriches the soil nitrogen
pool. This increase in nitrogen availability provides a mechanistic
explanation for the lower C/N ratios observed in its presence. This
finding aligns with the established hypothesis that nitrogen-fixing
species can significantly alter soil C/N dynamics by enhancing
nitrogen inputs, thereby potentially influencing soil organic
matter decomposition and stabilization rates (SR). Future studies
directly comparing soils with and without C. korshinskii would
further elucidate its specific impact on soil nitrogen cycling and SR.

Plant growth requires phosphorus (P) and potassium (K)
elements. When P and K in soil become limiting factors, even
minor changes in their concentrations can significantly affect SR
(Li et al., 2021). P can enhance the amount of easily decomposable
organic matter, thereby increasing the substrate available for SR.
Additionally, it can boost root biomass, thus promoting microbial
decomposition activities and root respiration. Studies have
demonstrated a significant or highly significant positive
correlation between TP and SR, with increased TP stimulating
higher soil CO2 emissions. However, some studies indicate that
excessive TP may inhibit SR (Wang et al., 2017). In this study, SR in
C. korshinskii shrublands was positively correlated with TP10 and
AP10, suggesting that topsoil P content within an optimal range

influenced SR. AK refers to potassium ions in soil that plants can
directly absorb and utilize. It is widely accepted that its
concentration directly impacts crop growth, development, and
root respiration, which constitutes a crucial component of overall
SR. Therefore, the supply of AK directly affects root respiration and
consequently the overall intensity of SR. In this study, AK10 and
AK20 showed a positive correlation with SR, aligning with the
aforementioned hypothesis.

In this study, the SR values across different grazing treatments
did not exhibit statistically significant differences. The results align
with findings from investigations conducted in the Stipa krylovii
desert steppe and sandy grasslands of Inner Mongolia, where
grazing did not significantly affect SR (Wang et al., 2023; Lin
et al., 2020). The authors of those studies proposed that this
pattern might be due to the arid and semi-arid conditions of the
regions, which are characterized by consistently low and stable SM
levels. Furthermore, the absence of a significant relationship
between SM and SR can be attributed to the asynchrony between
fluctuations in SM and variations in ST, suggesting that SM does not
act as a limiting factor for SR under these environmental conditions.
Our findings further support the conclusions drawn by these
previous studies.

Our study demonstrates that grazing exerts both direct and
indirect effects on soil chemical properties, and surface soil
chemistry shows a significant correlation with SR. This supports
Li’s findings that in arid and semi-arid shrubland ecosystems,
variations in soil chemical properties are the dominant drivers of
SR (Wen et al., 2018). However, no significant differences were
observed in annual average SR across different grazing treatments.
This outcome may be explained by several factors: First, the
alterations in soil chemical composition under varying grazing
intensities may not have reached a threshold sufficient to elicit
measurable changes in SR. Although statistically significant, these
changes might not have been physiologically or biochemically
meaningful enough to influence in SR. Secondly, the influence of
soil chemical properties on soil respiration may exhibit a lagging
effect, which necessitates continued monitoring in future studies.
Last, other factors such as microbial community structure and
activity could have buffered the effects of soil chemical changes
on SR. Microbial adaptation to grazing-induced shifts in soil
nutrients may have mitigated potential impacts on respiration
rates, an area that will be explored in future research.

4.2 The regulation of biotic factors on soil
respiration under grazing effect

Most studies have demonstrated that grazing reduces the AGB
of plants, primarily through nibbling and trampling by animals.
These activities inhibit plant photosynthesis and significantly hinder
their recovery. Other studies suggest that grazing selectively
decreases palatable plant species while creating favorable
conditions for less palatable weeds. While the AGB of weeds
increased, this increment was insufficient to offset the reduction
in total AGB. (Chen et al., 2024; Seabloom et al., 2020). A few studies
support the “moderate disturbance hypothesis,” indicating that
moderate grazing intensity initially increases AGB before
decreasing it. Moderate grazing can promote the growth of
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forage grasses, enhance AGB, and increase species diversity, thereby
boosting overall biomass. Studies also indicate that grazing reduces
BGB by compacting soil through animal trampling, creating an
anaerobic environment that inhibits root growth (Wang J. et al.,
2022). Some authors argue that moderate grazing promotes BGB as
plants allocate more resources below ground to recover from
reduced AGB, thus obtaining more nutrients and water (Frank
et al., 2002). In this study, both the AGB and BGB of herbal in
LG and NG were significantly reduced, consistent with previous
findings (Chen et al., 2024; Wang G. et al., 2022), highlighting the
significant impact of grazing on the vegetation structure of C.
korshinskii shrublands.

It is widely accepted that SR is closely linked to biomass. An
increase in AGB enhances photosynthetic capacity, leading to
greater carbon fixation. A portion of this fixed carbon is
transported to the roots as photosynthetic products, providing
additional carbon sources for root respiration and soil
microorganisms, thereby stimulating SR. Roots serve as the
primary interface between plants and soil, and their respiration
constitutes a significant component of overall SR. Typically, higher
root biomass results in more vigorous root respiration, which
directly contributes to an increased SR (Carrillo et al., 2011).
However, existing research presents divergent conclusions. Hu
posited that the relationship between SR and biomass varies
depending on vegetation type (Hu et al., 2024). Previous studies
have demonstrated that in arid regions, soil heterotrophic
respiration (Rh), which microorganisms decompose SOC to
release CO2, constitutes the primary contribution to SR, as
opposed to soil autotrophic respiration (Ra), which involves CO2

release from root activities (Balogh et al., 2016). In arid and water-
scarce regions, SM is the predominant factor influencing SR, as
opposed to biomass, plant roots require water to maintain active
metabolism and respiration. Drought stress induces stomatal closure
in plants, thereby reducing root respiration. Secondly, soil
microorganisms are more sensitive to moisture fluctuations and
can exhibit rapid bursts of respiratory activity. Finally,
microorganisms are spatially closer to carbon sources. Most
organic matter is concentrated in the upper layers of the soil,
where it can be directly utilized by microorganisms. In contrast,
roots must transport photosynthetic products over long distances
before they can be used. (Han et al., 2019). Our experiment was also
conducted in an arid region, where no significant correlation was
observed between biomass and SR, a finding consistent with
previous studies carried out in similar environments. A previous
global meta-analysis of the relationship between grazing and soil
respiration (SR), which included 69 studies, revealed that grazing
significantly inhibits soil respiration, encompassing both
autotrophic and heterotrophic respiration. The negative impact
on soil respiration becomes more pronounced with increased
grazing intensity, prolonged grazing duration (>10 years), and
higher temperatures (>5°C). Grazing-induced changes in
belowground biomass primarily drive variations in soil
respiration. The discrepancy between our findings and those of
the meta-analysis may stem from several factors: the grazing
duration at our experimental site was less than 10 years, the
growing season temperature at our site was relatively low, and
the meta-analysis did not differentiate study regions based on
water availability (Li et al., 2024).

5 Conclusion

Our study revealed that: (1) No significant difference in SR
was observed in C. korshinskii shrublands under grazing
conditions. (2) The chemical properties of surface soil may
serve as the primary regulatory factors influencing SR under
grazing conditions. Based on the average level of SR under
different grazing intensities, to effectively mitigate soil carbon
emissions, we recommend a moderate reduction in the grazing
intensity of C. korshinskii shrublands in arid and semi-arid agro-
pastoral regions.
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