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Land cover change is an important cause of carbon source/sink changes in
terrestrial ecosystems. Studying the relationship between land use transition and
carbon sources/sinks is of great significance for optimizing regional land use
planning, achieving sustainable development, and the “double carbon” goals.
Land cover change significantly impacts carbon sources and sinks in terrestrial
ecosystems, making the study of land use transition crucial for optimizing
regional planning and achieving sustainable development and carbon
neutrality goals. This research analyzes carbon effects of land use changes in
Pingzhai Reservoir watershed (2010–2020) using carbon effect coefficient
method, and employs PLUS model to simulate 2030 scenarios (natural
development, cropland protection, economic priority). Results show net
carbon emissions increased 64.92% (from 121,558.73 to 200,477.90 tons), with
built-up land becoming the main carbon source (167% growth) while forests
contributed over 90% of carbon sequestration. All scenarios predict rising
emissions by 2030, suggesting the need to control production land
expansion, accelerate agricultural innovation, and promote low-carbon
development. The study applies PLUS model to karst mountain areas,
quantifying land use-carbon emission relationships through scenario
simulations to support ecological conservation and low-carbon strategies in
fragile regions.
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1 Introduction

Global warming and other environmental issues have led humanity to start paying attention
to the factors that cause global warming and increased carbon emissions. Research has found
that changes in Land Use/Cover (LULC) are one of the important reasons for the increase in
carbon emissions (Houghton and Hackler, 2003; Houghton, 1999), and they also play a role in
the process of climate change and carbon cycling (Lin et al., 2021). Current LULC research
focuses on accurately identifying and tracking land cover changes to understand ecosystems and
support decisions (Prasad et al., 2022). Machine learning and deep learning now boost analysis
capabilities in this field (Ebenezer andManohar, 2024; Azedou et al., 2023). Studies show LULC
research is becoming more diverse (Jat Baloch et al., 2022; Iqbal et al., 2024). This trend makes
studies more detailed and smart. Better land classification improves carbon source/sink
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estimates. Recent years have witnessed abundant research achievements
both domestically and internationally regarding LULC and carbon
emissions, with studies primarily focusing on the changing trends of
land use-related carbon emissions (Yali et al., 2023; Tian et al., 2022;
Yang and Li, 2022; Pu et al., 2023), and the influencing factors of LULC
carbon emissions (Lijing et al., 2024; Chong et al., 2024; Yamei and
Zhang, 2024; Yajuan et al., 2024).Methodologically, the land use carbon
emission coefficient method has been widely adopted to estimate
carbon emissions/sequestration based on land use types and their
corresponding carbon emission/absorption characteristics (Tian
et al., 2022). Pu et al. (Pu et al., 2023) applied this approach to
reveal the spatiotemporal evolution patterns of land use carbon
emissions across 20 Chinese urban agglomerations from 1990 to
2019, providing crucial data support for regional carbon reduction
efforts. However, the impact mechanisms of land use change on carbon
emissions exhibit complex regional variations globally, necessitating
further exploration. Consequently, comprehensive analysis of land use
carbon emissions and their driving mechanisms serves as a scientific
basis for formulating regional carbon emission strategies and proves
essential for achieving low-carbon development (Yang and Li, 2022).

As the world’s largest developing country, China actively
addresses climate change while maintaining rapid economic
growth. In 2020, the Chinese government announced its “Dual
Carbon” goals: peaking carbon emissions by 2030 and achieving
carbon neutrality by 2060. These ambitious targets demand
enhanced carbon sequestration capacity and precise emissions
control across China’s territorial spaces. While existing studies
have used CA-Markov and ANN-CA models to predict land use
changes and carbon storage (Yang et al., 2023; Nabikandi et al., 2024;
Huang et al., 2021), these models have limitations in identifying
complex driving factors and simulating fragmented land use
patterns. Due to frequent human activities and complex planning
and Construction, urban environmental patches usually show
significant fragmentation characteristics (Xueliang et al., 2023).
Moreover, current research predominantly focuses on terrestrial
ecosystems (Wenwen et al., 2022; Ruei-Yuan et al., 2023; Jiahong
and Ruei-Yuan, 2024; Wei et al., 2023; Rong et al., 2022), while
largely neglecting the role of aquatic systems—particularly artificial
reservoirs—in regional carbon cycles. This represents a critical
knowledge gap that must be addressed to achieve carbon
neutrality goals.

Reservoirs formed by river damming represent artificially
modified ecosystems that significantly alter original land use/
cover types and carbon cycling pathways. The flooding of
vegetation and soils releases stored carbon as CO2 and CH4

through decomposition. Simultaneously, phytoplankton
photosynthesis captures carbon, potentially turning some
reservoirs into temporary carbon sinks during certain periods
(Wang et al., 2021; Wen, 2023). Accurately quantifying
reservoirs’ carbon source/sink effects helps clarify aquatic
systems’ role in global carbon cycles and informs water
management and ecological policies. As the key water source for
Guizhou’s Qianzhong Water Diversion Project, Pingzhai Reservoir
has dramatically altered its watershed’s land use patterns. The
impoundment significantly expanded water areas, triggered land
reallocation due to population relocation, and transformed
surrounding farmlands and forests. While crucial for regional
water supply and irrigation, these changes necessitate urgent

assessment of the reservoir’s ecological impacts. Current research
on Pingzhai Reservoir has primarily focused on hydrochemical
characteristics and water quality monitoring (Kong et al., 2021;
Wang et al., 2023; Zou et al., 2023), leaving significant gaps in carbon
source/sink analysis. As a typical reservoir in karst mountainous
areas, Pingzhai’s unique features—including widespread carbonate
rocks, complex hydrological conditions, and intensive human
activities—make it an ideal site for studying carbon dynamics in
artificial reservoirs.

This study systematically evaluates the carbon source/sink
effects of six LULC categories (cropland, forest land, grassland,
built-up land, water bodies, and unused land) in the Pingzhai
Reservoir basin. Leveraging the PLUS model’s adaptive inertia
competition mechanism and multi-factor potential calculation
capabilities, we simulate 2030 LULC change scenarios and
associated carbon dynamics. Compared to conventional models,
PLUS demonstrates superior performance in simulating fragmented
LULC patterns, particularly suitable for the complex karst terrain.
The results will establish a comprehensive carbon accounting
framework for Pingzhai Reservoir, providing scientific support
for regional spatial planning and ecological conservation, while
offering new methodological insights for carbon dynamics
research in similar karst reservoirs.

2 Materials and methods

2.1 Study area

The Pingzhai Reservoir basin (105°17′3″E−105°26′44″E,
26°29′33″N-26°35′38″N) is located at the junction of Nayong
County, Zhijin County, Shuicheng District, and Liuzhi Special
District in Guizhou Province (Figure 1). This reservoir serves as
the headwater reservoir of the Guizhou Central Water Conservancy
Hub and plays a vital role in water resource allocation and supply.
The construction of the Pingzhai Reservoir began with damming in
2011, followed by gate closure and water storage in 2015, and it
officially stabilized its water supply in 2020.

The Pingzhai Reservoir basin covers an area of 833.77 km2,
located on the Yunnan-Guizhou karst plateau, the Pingzhai
Reservoir basin features highly fragmented terrain with dense
gullies. The area exhibits typical karst dual structures,
characterized by extensive surface landforms including peak
clusters, pinnacles, dissolution depressions, and sinkholes, along
with underground features such as caves, subterranean rivers, and
hidden lakes. Influenced by geological structures, the basin’s
complex topography shows significant elevation variations, with
higher altitudes in the eastern/northern sectors and lower elevations
in the western/southern areas. In the study area, regions with a
dissection depth of 200–500 m account for 40.37%, those with a
depth of 500–700 m account for 42.05%, and areas above 700 m
account for 17.58%. The karst topography is extensively developed
in the study area, with alternating carbonate and non-carbonate
rocks, covering an area of approximately 620.01 km2, which is
74.36% of the total area. The study area is located in a
subtropical plateau monsoon climate zone, featuring mild
temperatures with four distinct seasons: hot and rainy summers,
and warm, humid winters. The resident population in the study area

Frontiers in Environmental Science frontiersin.org02

Ding et al. 10.3389/fenvs.2025.1640766

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1640766


is about 223,400, and the total population at the end of the year is
approximately 339,000. The study area is rich in mineral resources,
with more than 20 types of minerals identified, such as coal, lead-
zinc, marble, and limestone. Coal mines are widely distributed,
including major ones like Zhangjiawan Coal Mine, Yinglong Coal
Industry, Dabatian Coal Mine, and Bide Coal Mine. LULC types are
divided into six categories, including crop land (CL), forest land
(FL), grassland (GL), built-up land (BL), water bodies (WB), and

unused land (UL). Among these, CL and FL account for more than
78.37% of the total area in the Pingzhai Reservoir basin.

2.2 Data sources

LULC Data: The ALOS (Advanced Land Observing Satellite)
satellite image data from 2010 was used (http://alos-pasco.com).

FIGURE 1
Location of the pingzhai reservoir. (a) China. (b) Guizhou Province. (c) Pingzhai Reservoir basin.
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Multi-spectral band images with a spatial resolution of 10 m and
panchromatic band images with a spatial resolution of 2.6 m were
obtained. The panchromatic and multi-spectral bands were fused using
the image sharpening tool in ENVI 5.3 to obtain remote sensing image
data of the study area with a spatial resolution of 2.6 m. The satellite
imagery data in 2015 and 2020were sourced from theGaofen-1 Satellite
(GF-1) and the Gaofen-2 Satellite (GF-2), which can be found at the
website: https://grid.cpeos.org.cn/index.htm. The spatial resolutions of
GF-1 and GF-2 data were 8 m and 3.2 m, respectively. The
panchromatic and multi-spectral bands were fused using the image
sharpening tool in ENVI 5.3 to obtain higher resolution images with
spatial resolutions of 2 m and 0.8 m, respectively. It has been verified
that the precision of the processed datameets the research requirements
and can be compared inter-annually without significant impact on the
research results.

Natural Factor Data: The digital elevation model (DEM) data is
sourced from the Geospatial Data Cloud site of the Computer
Network Information Center of the Chinese Academy of Sciences
(https://www.gscloud.cn), with the data from the year 2020 and a
spatial resolution of 30 m. The slope data was extracted from the
digital elevation data using the spatial analysis module in ArcGIS10.
8 software, also with a spatial resolution of 30 m. The average annual
precipitation and average annual temperature data are from the
Resource and Environmental Science and Data Center of the
Chinese Academy of Sciences (https://www.resdc.cn), with the
data from the year 2020 and a spatial resolution of 1000 m.

Accessibility Factor Data: Road data, township locations, and
hydrographic data were all sourced from the Open Street Map
website (https://www.openstreetmap.org) for the year 2020. Major
and secondary roads were extracted through the attribute table of the
road data. In ArcGIS10.8 software, data processing was conducted to
merge primary and secondary roads into major roads, and tertiary
and quaternary roads into minor roads.

Socioeconomic Factor Data: Population and Gross Domestic
Product (GDP) data were both sourced from the Resource and
Environmental Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn), with the data from the year
2020 and a spatial resolution of 1000 m.

2.3 Methods

2.3.1 Data interpretation
This paper uses a combination of supervised classification and

visual interpretation to extract land categories from remote sensing
images. Supervised classification is a method of classifying images based
on established image interpretation signs and selecting the correct data
parameters (Zhao et al., 2019). Visual interpretation refers to the process
in which professionals analyze and identify the image features of remote
sensing images, aerial photographs, or other image materials through
direct observation or with the aid of simple tools, thereby determining
the category, nature, scope, distribution patterns, and other related
information of the corresponding ground objects (Mei, 2001).

According to the research requirements and in accordance with
the National Land Use Status Classification (GB/T21010-2017),
LULC types are divided into six categories: crop land, forest land,
grassland, built-up land, water bodies, and unused land. To ensure
classification accuracy, validation points for each land category are

selected on the images and combined with GPS positioning points
collected in the field for verification and correction.When the Kappa
coefficient is greater than 0.7, it indicates a high classification
accuracy. The overall accuracy of the LULC interpretation data
in this paper, after verification, is 91.03%, with a Kappa coefficient of
0.86, which meets the research requirements.

2.3.2 LULC change analysis
The LULC transition matrix is a dynamic transformation model

that describes the LULC transformation within a certain period. It
can directly reflect the direction and quantity of LULC changes in
the study area over time (Zhu and Li, 2003). Its model expression is
shown in Equation 1:

Tij �
T11

T21

T12

T22
/

T1n

T2n

..

.
1 ..

.

Tn1 Tn2 / Tnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

In the formula, Tij represents the area of the ith type of LULC
that has been transformed into the jth type of LULC within a certain
period, and n is the number of LULC types. In this study, n = 6.

Through the use of ArcGIS10.8, an overlay analysis was conducted
on the current LULC data of the Pingzhai Reservoir basin. By utilizing
the spatial analysis module, the LULC transition matrices for different
periods of the Pingzhai Reservoir basin were calculated.

2.3.3 Carbon source/sink calculation
In this study, the carbon emissions from crop land, forest land,

grassland, water bodies, and unused land are calculated using the
direct carbon effect coefficient method (Meng et al., 2023), with the
Equation 2 as follows:

E � ∑ Si × ki (2)

In the formula: E is the total carbon absorption(t); Si is the area
of the ith type of LULC (hm2); ki is the carbon sequestration
coefficient of the ith type of LULC (t/hm2).

Due to research limitations, the carbon emission coefficients in
this study were determined through extensive literature review,
incorporating the climatic characteristics and land distribution
patterns of the Pingzhai Reservoir basin. The specific
determination process is as follows:

Crop land emission coefficient: Crop lands exhibit dual
characteristics as both carbon sources and sinks. Based on the
research of Cai et al. (Caizu et al., 2005) reporting 0.504 t/ha and
He Yong et al. (Yong and Jiang, 2006) reporting −0.007 t/ha, this
study adopted a net emission coefficient of 0.497 t/ha for crop lands
in the basin.

Forest land and grassland coefficients: Forest lands, covering
approximately 40% of the basin area, primarily function as carbon
sinks. Following Shi et al. (Shi et al., 2012) and Xiao et al. (Xiao et al.,
2012), we applied a carbon sink coefficient of −0.581 t/ha for forest
lands. For grasslands, the coefficient was set at −0.021 t/ha according
to Fang et al. (Fang et al., 2007).

Water bodies coefficient: Considering both Lai‘s (Lai, 2011)
national water bodie coefficient of −0.257 t/ha and Duan et al. ‘s
(Duan et al., 2008) lake study result of −0.248 t/ha, we determined a
coefficient of −0.253 t/ha for water bodies in the reservoir.
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Unused land coefficient: For bare rocks and soils, we adopted a
coefficient of −0.005 t/ha based on Liu Xiya et al. (Liu et al., 2015).

The carbon absorption coefficients (t/hm2) for crop land, forest
land, grassland, water bodies, and unused land, estimated based on
existing research (t/hm2), are 0.497、-0.581、-0.021、-0.253、-
0.005,respectively.

The carbon emissions from built-up land are calculated using
the indirect carbon effect coefficient method (Tian et al., 2021), with
the Equation 3 as follows:

EC � ∑Ei × fi (3)

In the formula: EC is the total carbon emissions from built-up land,
Ei is the consumption of various types of energy, and fi is the carbon
effect coefficient of each type of energy. The standard coal conversion
coefficients for various fossil fuels and their corresponding carbon effect
coefficients are referenced from the “China Energy Statistical Yearbook”
and the IPCC “Guidelines for National Greenhouse Gas Inventory”
(2006). The energy consumption data is sourced from the
2020 Guizhou Statistical Yearbook and the statistical yearbooks of
the four counties, as shown in Table 1.

The total carbon emissions in the region are equal to the sum of
the carbon emissions resulting from LULC type transformations and
the carbon emissions from energy consumption on built-up land.
The calculation Equation 4 is as follows:

C � E + EC (4)
C is the total carbon emissions in the region; E is the total carbon
emissions from LULC changes; EC is the total carbon emissions
from built-up land.

2.3.4 Future LULC scenario prediction
The PLUS model is used to design three development scenarios

to predict the LULC type areas for the year 2030. The carbon source/
sink amounts for the Pingzhai Reservoir in 2030 are estimated using
the carbon effect coefficient method.

2.3.4.1 Development scenario design
Three LULC change scenarios were systematically developed

using Markov chain transition costs and constraints,
incorporating China’s cropland protection policies, territorial
spatial planning regulations, and rural urbanization strategies:
1) Natural Development Scenario: Simulates the spontaneous
evolution of LULC spatial distribution without policy

interventions or human influence. 2) Cropland Protection
Scenario: Simulates maximum cropland conservation by:
Reducing cropland-to-built-up land conversion probability by
50% compared to the natural scenario. Increasing grassland-to-
cropland and unused land-to-cropland conversion probabilities
by 10% and 50% respectively. Designating stable croplands
(remaining unchanged from 2010–2020) as non-convertible
areas. 3) Economic Development Scenario: Simulates
prioritized economic growth through enhanced urbanization
by: Increasing conversion probabilities from cropland/forest
land/grassland to built-up land by 20%. Decreasing built-up
land conversion probabilities to other LULC types by 40%,
compared to natural development conditions. The cost
matrices for the three scenarios (Du et al., 2023) are shown
in Table 2.

2.3.4.2 PLUS model
The PLUSmodel predicts LULC changes at the patch scale based

on raster data. It proposes a rule mining framework based on the
Land Expansion Analysis Strategy (LEAS) and a Cellular Automata
model based on multiple Random Seeds (CA based on multiple
Random Seeds, CARS). These tools are used to identify the driving
factors of land expansion and landscape changes, aiming to achieve
higher simulation accuracy and a more realistic landscape evolution
(Li et al., 2022; Liang et al., 2021).

(1) The LEAS land expansion analysis strategy is based on two
periods of LULC data. It calculates the development
probability of each type of land using the Random Forest
algorithm and computes the contribution rates of the selected
land expansion driving factors (Yang et al., 2022), with the
Equation 5 as follows:

Pd
i,k X( ) � ∑M

n�1 l hn X( ) � d( )[ ]
M

(5)

In the formula, x is the vector of driving factors, Pd
i,k (x) is the

probability of expansion of the ith type of LULC within a patch
under the condition d = 0 or d = 1. Here, d = 1 indicates a transition
from other land types to the ith type of LULC, while d = 0 indicates
no transition involving the ith type of LULC. M represents the
number of decision trees, I() is the indicator function of the decision
tree, and hn (x) represents the LULC types obtained when the
decision tree is n.

TABLE 1 Main fossil fuel consumption, standard coal conversion coefficients, and carbon effect coefficients in the pingzhai reservoir basin.

Energy Types Annual Total Consumption (Wen,
2023)

Standard Coal Conversion
Coefficient

Carbon Emission
Coefficient

Raw Coal 323580t 0.7143 kg/kg 0.7559

Crude Oil 11t 1.4286 kg/kg 0.5857

Gasoline 930t 1.4714 kg/kg 0.5538

Diesel 34242t 1.4571 kg/kg 0.5921

Liquefied Petroleum
Gas (LPG)

5t 1.7143 kg/kg 0.504

Note: The reference materials for the data on the total annual consumption were published in 2023, but the data within these materials are from 2020.
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(2) CARS, under the constraints of the development probability
of various types of LULC, generates LULC patches based on
multiple random seeds and a threshold decrement
mechanism (Sun et al., 2023). The calculation Equation 6
is as follows:

OPd�1,t
i,k � Pd

j,k × Wt
i,k × Dt

k (6)

In the formula, OPd�1,t
i,k is the comprehensive probability of the

ith patch transitioning to LULC type k at time t, Pd
j,k is the suitability

probability of the ith patch transitioning to LULC type k, Wt
i,k is the

proportion of LULC type k in the next neighborhood, and represents
the influence of future requirements on LULC type k.

The PLUS model, which combines cellular automata with a
random seed mechanism, serves as an effective spatial simulation
tool for quantifying LULC drivers and simulating patch-scale
dynamics under multiple scenarios (Liang et al., 2021). In the
LEAS module, ten expansion driving factors were selected for the
Pingzhai Reservoir basin based on local conditions and data
availability (Liu and Long, 2016). These drivers were used to

TABLE 2 Multi-scenario simulation cost matrix.

NT Scenario CLP Scenario EP Scenario

LUCC CL FL GL BL WB UL CL FL GL BL WB UL CL FL GL BL WB UL

CL 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1

FL 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1

GL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

BL 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0

WB 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1

UL 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

a1″indicates convertible, 0″indicates non-convertible.

FIGURE 2
Driving Factors of LULC Expansion in the Pingzhai Reservoir Basin. Note: (a)DEM; (b) Slope; (c) Temperature; (d) Precipitation; (e)Distance to water;
(f) Distance to main road; (g) Distance to minor road; (h) Distance to government; (i) Population; (j) GDP.

Frontiers in Environmental Science frontiersin.org06

Ding et al. 10.3389/fenvs.2025.1640766

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1640766


calculate land expansion probabilities. The resulting spatial
constraints were then input into the CARS module. Through
iterative calculations, the model achieved refined simulation of
LULC changes, providing critical data support for multi-scenario
projections (Figure 2).

2.4 Model accuracy validation

The confusion matrix is a tabular representation where rows and
columns correspond to predicted and actual classes, respectively.
Four key metrics are derived from the matrix: True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives
(FN)—illustrated here for cropland classification (Figure 3).
These metrics provide a nuanced evaluation of model
performance, surpassing simplistic accuracy measurements
(Vujovic, 2021).

Kappa coefficient and overall accuracy serve as critical metrics
for evaluating the classification performance of the PLUS model.
The kappa coefficient calculation Equation 7 is as follows.

k � p0 − pe

1 − pe
(7)

The calculation methods are as follows:
Overall accuracy (p0) (Equation 8):

p0 � TP + TN

TP + TN + FP + FN
(8)

Expected agreement by chance (pe) (Equation 9):

pe � TP + FP( ) TP + FN( ) + FN + TN( ) FP + TN( )
TP + TN + FP + FN( )2 (9)

The Kappa coefficient and overall accuracy serve as key metrics
for evaluating the classification performance of the PLUS model, as
specified in Equations 7–9 (Yang, Zhang, et al., 2023). The Kappa
coefficient accurately measures the agreement between predicted
and actual categories by correcting for random chance, while overall
classification accuracy intuitively reflects the model’s predictive
performance through the proportion of correctly classified
samples. Producer’s accuracy and user’s accuracy further reveal
model performance across different categories from

complementary perspectives. Through systematic analysis of
confusion matrix results, this approach enables precise
identification of model weaknesses, thereby informing targeted
model optimization and data collection strategies.

2.5 Research framework

This study employs the PLUS model to analyze land expansion
dynamics in the Pingzhai Reservoir basin, utilizing LULC data
(2010, 2015, 2020) and ten driving factors. Subsequently, the
carbon effect coefficient method is applied to quantify carbon
flux variations in this karst mountainous area based on LULC
patterns and carbon coefficients. The integrated approach
provides scientific support for optimizing land use planning,
ecological conservation, and sustainable development strategies in
karst regions. (Figure 4).

3 Results

3.1 LULC changes and carbon source/sink
effects from 2010 to 2020

3.1.1 Analysis of LULC changes
The LULC types in the Pingzhai Reservoir basin are

predominantly crop land and forest land, followed by grassland,
with water bodies, built-up land, and other land uses accounting for
a smaller proportion. As shown in Figure 5, changes occurred
among all types of LULC between 2010 and 2020.

Crop land mainly shifted to forest land, grassland, and built-up
land, with conversion areas of 9,353.33 h m2, 1,941.69 h m2, and
1,131.52 h m2, respectively. The phenomenon of built-up land
occupying crop land is relatively prominent. This indicates that
the advancement of urbanization is the main factor for the transfer
of crop land to built-up land. It is also one of the main reasons for the
increase in the area of built-up land.

Forest land mainly shifted to crop land, grassland, and built-up
land, with transfer areas of 11,029.05 h m2, 4,064.44 h m2, and
550.24 h m2, respectively, accounting for 89.30% of the total forest
land area transferred out.

Grassland mainly shifted to crop land and forest land, with
transfer areas of 4,924.34 hm2 and 4,884.39 h m2, respectively,
accounting for 39.20% and 38.88% of the total grassland transfer
area. The study reveals bidirectional conversion between forest land
and crop land, a phenomenon closely tied to Guizhou’s
mountainous terrain. In these complex topographical conditions,
terraced farmlands and forested areas exhibit interwoven
distributions with blurred boundaries. Due to terrain constraints,
local farmers frequently adjust land use practices based on field
conditions and agricultural needs, leading to dynamic land
transitions.

The increase in water bodies area was mainly due to the
construction of new reservoirs, which occupied surrounding crop
land, forest land, grassland, and some built-up land. The area of
unused land continuously decreased, mainly shifting to crop land,
forest land, and grassland, with transfer areas of 82.27 h m2,
40.65 h m2, and 25.23 h m2, respectively.

FIGURE 3
Confusion matrix for accuracy assessment.
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3.1.2 Carbon source/sink calculation results
Based on the LULC data of the Pingzhai Reservoir basin in 2010,

2015, and 2020, the carbon emissions and carbon absorption before
and after the construction of the dam were calculated.

As shown in Table 3, the total carbon emissions of the Pingzhai
Reservoir show an upward trend, increasing from 141,117.77 tons
before the dam construction to 220,656.31 tons after the dam
construction, an increase of 56.36%. The net carbon emissions of

FIGURE 4
Data processing and methodology study flowchart. Note: LEAS and CARS are the two modules of the PLUS model.

FIGURE 5
LULC Transition in the Pingzhai Reservoir from 2010 to 2020 (unit: hm2).
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the Pingzhai Reservoir also show an upward trend, increasing from
121,558.73 tons to 200,477.90 tons, an increase of 64.92%. The main
carbon sources of the Pingzhai Reservoir are crop land and built-up
land, with built-up land accounting for more than 87% of the total
carbon emissions.

In the carbon sink LULC of the Pingzhai Reservoir basin, the
main carbon sink is forest land, accounting for more than 96%
of the total carbon absorption. The carbon sequestration
capacity of grassland and water bodies is relatively weak,
which is closely related to the LULC structure of the
Pingzhai Reservoir. The differences in carbon sequestration
capacity among different LULC types also have an impact.
Grassland and water bodies account for about 17% of the
total area, while forest land and crop land account for about
80% of the total area. In 2020, the carbon sequestration capacity
of water bodies increased, mainly because the reservoir was fully
stocked and officially stabilized its water supply, reaching its
maximum area. After the reservoir was fully stocked, the water
bodies became relatively stable, with reduced mobility, allowing
phytoplankton to grow in a stable environment and
microorganisms to absorb CO2 and release oxygen, thereby
increasing the carbon sequestration capacity.

According to the calculation results of carbon emissions and
carbon absorption of the Pingzhai Reservoir, the net carbon emissions

of the region’s LULC were obtained. Comparing the 10-year
calculation results of each type, as the area of crop land decreased,
its carbon sink capacity also decreased. Forest land and grassland were
relatively stable in carbon absorption. The area of water bodies
reached its maximum in 2020, and the carbon absorption capacity
increased, rising by 5.93 times compared to previous years. However,
compared to forest land, crop land, and built-up land, the proportion
is still small, so the carbon absorption effect is not strong. In 2020, the
carbon absorption of LULC was not sufficient to offset the carbon
emissions, and the net carbon emissions of LULC showed an overall
upward trend, reaching the maximum in 2020.

The trend of carbon emissions from built-up land is basically
consistent with the trend of net carbon emissions. This indicates that
the carbon emissions from built-up land have a crucial impact on the
total carbon emissions of the Pingzhai Reservoir basin. Therefore,
efforts can be made to control the carbon emissions of the Pingzhai
Reservoir by focusing on built-up land to achieve carbon
reduction targets.

3.2 Multi-scenario simulation of LULC and
carbon source/sink changes

3.2.1 Precision verification of multi-scenario
simulation methods

Using land use changes from 2010–2015 as baseline data, we
simulated and predicted the 2020 land use patterns. The simulation
results were then compared against the actual 2020 land use map,
with model accuracy evaluated through a confusion matrix-based
assessment. (Table 4).

The model achieved an overall accuracy of 92.5%, indicating
successful classification of most LULC types, with this high
accuracy demonstrating its robust training and capability to
effectively differentiate between actual and simulated LULC
patterns. User’s accuracy exceeded 89% for all categories except
unused land (whose minimal area had negligible impact on results),
while producer’s accuracy surpassed 75% for all types except water
bodies - this particular discrepancy resulted from artificial reservoir
impoundment during 2015–2020, representing an exceptional
anthropogenic intervention rather than systemic model limitations.

TABLE 3 Carbon source/sink conditions of the pingzhai reservoir from
2010 to 2020 (unit:t).

Carbon effects of LULC 2010 2015 2020

CL 18,611.10 16,109.91 15,582.68

BL 122,506.67 171,550.63 205,073.63

Total 141,117.77 187,660.54 220,656.31

GL −179.97 −270.36 −264.01

FL −19,308.42 −19,819.72 −19,537.86

WB −63.88 −63.30 −375.74

UL −6.78 −1.21 −0.79

Net Carbon Emissions 121,558.73 167,507.55 200,477.90

TABLE 4 Confusion matrix.

Actual LUCC Quantities

Predicted LUCC Quantities CL FL GL BL WB UL Total User’s accuracy

CL 319847 4,581 4,869 8,356 7,381 45 345079 92.69%

FL 17071 364794 2,447 1863 2,647 17 388839 93.82%

GL 8,665 2,772 131716 584 3,125 30 146892 89.67%

BL 2,188 1,230 314 35694 506 138 40070 89.08%

WB 47 4 9 3 2,753 0 2,816 97.76%

UL 114 93 40 855 71 1,526 2,699 56.54%

Total 347932 373474 139395 47355 16483 1756 926395

producer’s accuracy 91.93% 97.68% 94.49% 75.38% 16.70% 86.90% 91.93% 97.68%

Note: overall accuracy: 92.5%, kappa: 0.89.
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Given that water area stabilized by 2020, using 2020 LULC data for
2030 projections would only minimally affect water bodies simulation
accuracy, with no significant impact on overall findings. The Kappa
statistic of 0.89 confirmed excellent model-data agreement,
substantially exceeding chance-level expectations.

3.2.2 Multi-scenario simulation of LULC changes
According to Table 5 and Figure 6, compared to 2020, under the

NT scenario, the areas of crop land, grassland, and unused land in

the Pingzhai Reservoir basin in 2030 will decrease by 1,666.3 ha,
828.85 ha, and 12.66 ha, respectively, with the largest reduction in
crop land. Forest land, built-up land, and water bodies will increase
by 1,226.06 ha, 895.85 ha, and 304.75 ha, respectively, with forest
land and built-up land being the main increasing land types.

Under the CLP scenario, crop land is the main increasing land
type, with an increase of 1,063.62 ha. Built-up land and water bodies
areas will slightly increase, while forest land and grassland will
decrease by 901.2 ha and 603.92 ha, respectively.

TABLE 5 LULC type area for 2020 and multi-scenario simulations for 2030. (unit:hm2).

Simulated LULC 2020 NT (2030) CLP (2030) EP (2030)

Area Area Change Amount Area Change Amount Area Change Amount

CL 31,353.48 29,687.18 −1,666.30 32,417.10 1,063.62 31,522.57 169.09

FL 33,627.99 34,854.05 1,226.06 32,726.79 −901.20 32,656.46 −971.53

GL 12,571.76 11,743.21 −828.55 11,967.84 −603.92 11,726.92 −844.84

BL 4,246.71 5,142.56 895.85 4,493.16 246.45 5,530.90 1,284.19

WB 1,485.15 1,789.90 304.75 1,660.32 175.17 1,813.53 328.38

UL 158.64 145.98 −12.66 110.34 −48.30 112.51 −46.13

FIGURE 6
PLUS Model Simulation and Prediction of Multi-Scenario LULC Expansion. Note: Figures (a) and (b) show enlargement under the NT scenario.
Figures (c) and (d) show enlargement under the CLP scenario. Figures (e) and (f) show enlargement under the EP scenario.
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Under the EP scenario, the increase in built-up land is the
largest, at 1,284.19 ha, with significant reductions in forest land and
grassland, decreasing by 971.53 ha and 844.84 ha, respectively.

In the simulated three scenarios for 2030, compared to the actual
LULC in 2020, the increase in built-up land area is the highest under
EP scenario, followed by NT scenario, and then CLP scenario. The
decrease in grassland area is the highest under EP, followed by NT
scenario, and then CLP scenario. Crop land area increases under
both CLP scenario and EP scenario but decreases under NT
scenario. The decrease in crop land area from 2010 to 2020 was
19.43%. In contrast, under the NT scenario for the same prediction
period (2020–2030), the decrease is 5.61%, indicating a significant
reduction in the rate of decrease.

3.2.3 Multi-scenario simulation of carbon source/
sink changes

In terms of carbon sources/sinks, according to Table 6, the
carbon emissions in all three scenarios from 2020 to 2030 are higher
than in 2020. Under the NT scenario, the net carbon emissions are
242,138.55 tons, an increase of 17.21%. Compared to the other two
scenarios, the increase in built-up land is the smallest in the CLP
scenario, with an increase of 246.45 ha. Under the CLP scenario, the
net carbon emissions are the lowest compared to the other two
scenarios, with an increase of 6.06%. Based on the carbon source/
sink calculation formula and the carbon effect coefficients of each
LULC type, it is evident that the amount of built-up land has a
significant impact on carbon emissions. Under the EP scenario, due
to the substantial increase in built-up land area, and the fact that
forest land and grassland, which act as carbon sinks, decrease the
most compared to the other two scenarios, the net carbon emissions
in this scenario increase significantly, reaching a total of
263,074.67 tons, an increase of 23.79% compared to the net
carbon emissions in 2020.

4 Discussion

4.1 LULC driving factors
contribution analysis

LULC changes are often influenced by both natural and various
social factors. The LEAS module of the PLUS model analyzes the

driving factors of LULC structure changes. This module calculates
the contribution of driving factors to changes in LULC types. The
higher the percentage of the contribution value of a driving factor,
the greater its contribution and the stronger its driving
force on LULC.

As shown in Figure 7, the DEM has the highest contribution
value for the expansion of crop land, forest land, and water
bodies. The topographic constraints in Pingzhai Reservoir
basin, dominated by mid- and high-mountain landscapes
(elevation 1182–2279 m, with 59.63% of areas having
dissection depth exceeding 500 m), form fundamental
constraints on LULC changes. This geomorphology
influences socioeconomic activities through two pathways: 1)
directly limiting human development capacity - steep terrain
increases transportation construction costs; 2) indirectly
altering population distribution patterns, as high-altitude
areas exhibit lower population density compared to valley
zones, creating a chain effect of “topography-accessibility-
population” constraints. These findings align with Chen
et al.’s (Chen et al., 2017) research in Guizhou-Guangxi karst
mountains, demonstrating how terrain ruggedness indirectly
regulates LULC changes by modulating human
activity intensity.

Socio-economic factors play an adaptive regulatory role on
the natural base. The significant impact of population density
on forest and grassland expansion, with a contribution value
second only to DEM, corroborates the “population pressure-
ecological land encroachment” response mechanism.
When population density exceeds the threshold, humans
convert ecological land to meet survival needs, which is
consistent with the theory proposed by Liu (Liu, 2017) that
human-land conflicts drive cultivated land expansion.
For transport accessibility factors, the distance from
major roads has a contribution value of 0.18 to built-up
land expansion, reflecting the “infrastructure-economic
development” linkage effect. This finding is corroborated by
the research conclusions of Lian et al.’s (Lian et al., 2021), as
well as Chen (Chen, 2017), which show that road traffic drives
urban expansion.

The comparison with the Wuhan plain area further highlights
the differences in the regulatory role of topography. Studies in
Wuhan have shown that road traffic and DEM are key factors in

TABLE 6 Carbon source/sink quantities for 2020 and multi-scenario simulations for 2030 (unit:t).

Simulated carbon effects 2020 NT (2030) CLP (2030) EP (2030)

CL 15,582.68 14,754.53 16,111.30 15,666.72

FL −19,537.86 −20,250.20 −19,014.26 −18,973.40

GL −264.01 −246.61 −251.32 −246.27

BL 205,073.63 248,334.41 216,974.70 267,087.01

WB −375.74 −452.84 −420.06 −458.82

UL −0.79 −0.73 −0.55 −0.56

Net Carbon Emissions 200,477.90 242,138.55 213,399.79 263,074.67

Increase Ratio - 17.21% 6.06% 23.79%
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the expansion of built-up land and forest land (Yuan, 2022). As a
typical mountainous area, the study area is restricted by
topographical conditions, and the urbanization process is
relatively lagging. In terms of spatial distribution,built-up land is

mostly linearly arranged along major roads to reduce development
costs and meet traffic convenience needs. This spatial development
model results in the distance frommajor roads contributing more to
the expansion of built-up land than DEM.

FIGURE 7
Contribution values of LULC change driving factors in the pingzhai reservoir basin.
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In plain terrain, land with lower elevation is often more convenient
for human activities such as agricultural reclamation and built-up (Liu
et al., 2020), and social and economic factors have a stronger direct
driving effect. Wu et al. (Wu et al., 2022) also pointed out that social
economy is an important factor affecting the expansion of built-up land.
In regional ecological environment studies, the topographic relief
amplitude is significantly negatively correlated with land cover
change. In areas with large topographic relief, complex natural
environments and inconvenient transportation restrict human
activities, reduce the degree of land development and utilization, and
lead to a decrease in the area of land cover transition.

In summary, the karst mountainous terrain demarcates the
boundaries of land development through spatial isolation effects,
while social and economic factors such as population and
transportation make adaptive adjustments within these boundaries.
Together, they form a dynamic equilibrium driving system.

Some driving factors show relatively low contribution values to
LULC expansion. The low contribution of GDP to the expansion of
cultivated land and built-up land is, on the one hand, due to the
backward regional economy and single industry, and on the other hand,
closely related to ecological protection policies. In recent years, China
has vigorously implemented the policy of returning farmland to forest
and grassland and the ecological compensation mechanism in the karst
rocky desertification areas, which has restricted the disorderly
reclamation of farmland and the expansion of built-up land,
weakening the driving force of economic growth on land expansion.
Population density has no direct correlationwith the expansion of water
areas, mainly regulated by water conservancy project planning and
ecological protection policies. For instance, the area and boundary of the
Pingzhai Reservoir, an important water resource guarantee project in
the region, are determined by engineering design and policy goals such
as flood control and water supply, rather than driven by population
demand. Behind these low contribution value factors, the role of policies
in the land use change in the ecologically fragile areas of karst
mountainous regions is highlighted. They not only limit excessive
human interference with the ecological background but also guide
the transformation of land use towards an ecological priority direction.

4.2 Carbon emission effects of the Pingzhai
Reservoir Basin

Pingzhai Reservoir basin during 2010–2020. The results revealed
that built-up land served as the dominant carbon source,
contributing over 92.94% of total emissions with a 1.67-fold
increase, confirming the trend of urbanization and
industrialization driving built-up land expansion and consequent
emission growth. The net land-use carbon emissions showed
consistent growth patterns with built-up land emissions. Energy
intensity was identified as the decisive factor in land-use carbon
emissions (You and Wu, 2010), where fossil fuel consumption in
building operations and organic carbon oxidation during land
conversion were primary emission sources. The transformation of
natural lands to construction areas disrupts soil structure, triggering
oxidative decomposition of soil organic carbon and CO2 release (de
Souza Medeiros et al., 2020). Socioeconomic development, as a key
driver of built-up land expansion, aligns with findings from Tian
and Zhao (2024), Wu et al. (2022).

The accelerated urbanization process has led to rapid expansion
of built-up areas, resulting in increased energy consumption, higher
carbon emissions, and weakened carbon sequestration capacity of
ecosystems (Yuan et al., 2019). To address these challenges, policy
interventions play a pivotal role in controlling carbon emissions
from built-up land. Measures such as land-use planning, green
building standards, and land structure optimization can
effectively reduce emissions and promote low-carbon
development. Achieving carbon reduction goals requires
integrated consideration of both land use and policy regulation
during urbanization to ensure sustainable utilization of built-up
areas and facilitate low-carbon city construction.

In alignment with China’s and Guizhou Province’s key
policies—including the Regulations on the Protection of Basic
Farmland, the 14th Five-Year Plan for Water Security, and the
Guizhou Province 14th Five-Year Plan for National Economic and
Social Development and Long-Range Objectives Through 2035—this
study incorporates policy constraints into the PLUS model scenario
design. In the scenario setting of the PLUS model, we should protect
reservoirs from being occupied by other land use types, taking the
reservoir area in 2020 as a constraint in themodel calculations to prevent
other land uses from expanding into reservoir areas, and reduce the
conversion of cultivated land through cultivated land protection policies.
By deeply integrating local policies with research objectives, this study
significantly enhances its practical applicability for regional low-
carbon planning.

Through the integrated application of the carbon effect coefficient
method and PLUS model, this study calculated carbon emissions for
three simulated 2030 scenarios, revealing that the cropland protection
scenario yielded the lowest emissions due to its effective control over
built-up land expansion. In the natural development scenario,
emissions were mitigated through green building promotion and
improved energy efficiency in construction areas, while the
economic priority scenario required strict enforcement of ecological
protection red-lines to curb disorderly built-up land expansion and
enhance industrial land carbon management. The cropland protection
scenario achieved optimal results by implementing low-carbon
agricultural technologies like straw returning and conservation tillage
to boost carbon sequestration, while simultaneously establishing
ecological buffer zones around protected croplands in territorial
spatial planning to balance farmland preservation with emission
reduction, ultimately realizing synergistic development of food
security and carbon neutrality goals. The findings demonstrate that
targeted land-use policies incorporating sector-specific measures can
effectively reduce emissions while accommodating development needs.

4.3 Limitation and prospects

LULC carbon emissions are primarily due to changes in land
types influenced by natural factors, changes in LULC management
practices by human activities, and differences in the carbon
sequestration capabilities of various LULC types at different
times. Although the water area in the Pingzhai Reservoir basin
has shown significant dynamic changes over the past decade, it
accounts for less than 2% of the total basin area, thus having a
limited impact on overall carbon emissions. More importantly, the
carbon source-sink processes in water bodies exhibit strong
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spatiotemporal heterogeneity, which not only includes seasonal
carbon budget transitions, such as the seasonal carbon source/
sink characteristics of reservoir water bodies identified by Wang
Cui et al. (Wang et al., 2021), but also involves the coupled effects of
multiple processes like phytoplankton metabolism and carbonate
rock dissolution (Jiang and Zhou, 2020; Han et al., 2020). Limited by
the accuracy of existing data and the research cycle, it is currently
difficult to comprehensively quantify this complex process.
Therefore, this study temporarily uses carbon effect coefficients
similar to those of most lakes in China as substitute values.
While this approach ensures the feasibility of the research, it also
clearly points to a future optimization direction: improving the
quantitative accuracy of the methodological model for the karst-
specific hydrological environment through deepened
spatiotemporal monitoring of water carbon processes.

The carbon emission accounting model draws on research data
from previous scholars and refers to the IPCC “Guidelines for
National Greenhouse Gas Inventories”. However, current
descriptions of carbon emission characteristics of built-up land in
different regions show significant heterogeneity, and universal
research remains insufficient. Building a high-precision carbon
effect coefficient accounting system that considers regional
differences, time series, and scale effects will become the core
direction of follow-up research. Although there may be
deviations between the results obtained by the carbon effect
coefficient method and the actual values, this method is still
reliable for judging long-term evolution trends and comparing
carbon emission structures among cities in the region. By
analyzing the spatial-temporal differentiation characteristics of
carbon emissions and coupling with policy implementation
effects, it can not only reveal the policy response mechanism of
carbon emissions from land use, but also provide theoretical support
and technical paradigms for subsequent planning research.

5 Conclusion

A study on the LULC changes and carbon emission effects of the
Pingzhai Reservoir has led to the following conclusions:

The main LULC types of the Pingzhai Reservoir are crop land
and forest land, followed by grassland, with water bodies, built-up
land, and other land uses accounting for a smaller proportion.
Between 2010 and 2020, the LULC types that were primarily
transferred out were crop land, forest land, and grassland, while
the land types that were mainly transferred in were crop land and
forest land.

The total carbon emissions of the Pingzhai Reservoir from
2010 to 2020 showed an overall upward trend, increasing from
141,117.77 tons to 220,656.31 tons, a rise of 56.36%. The total carbon
absorption showed a decrease, with the main carbon source shifting
from crop land to built-up land. The net carbon emissions increased
year by year, from 121,558.73 tons in 2010 to 200,477.90 tons in
2020, a rise of 64.92%.

Predictions of LULC type changes from 2020 to 2030 using the
PLUS model show that the area of built-up land continues to
increase, with the most significant increase under the EP
scenario. The area of forest land continues to increase under the
NT scenario, but decreases under the CLP and the EP scenarios.

Under the three development scenarios simulated by the PLUS
model, carbon emissions increased, with the least increase under the
CLP scenario and the most under the EP scenario.

Based on the research results, land use optimization contributes
to the “dual carbon” goals through the mechanism of “carbon source
control - carbon sink enhancement - policy synergy”. It is
recommended that policymakers and planners strictly control the
expansion of built-up land, focus on restricting development on
steep slopes and around reservoir protection areas, and promote
compact construction models. Implement arbor forest planting
projects in peak-cluster depressions. Rely on PLUS model
simulations to establish a carbon emission early-warning
mechanism, dynamically adjust land use plans by combining
remote sensing monitoring with on-site verification, and
effectively promote land use optimization under the “dual
carbon” goals.
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