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Introduction: The ecosystem service value (ESV) is a critical element in the
preservation of ecological barriers. The objective of this study is to elucidate the
nonlinear correlation between ESV and the key factors that contribute to
enhancing the accuracy and reliability of ecosystem service value assessment.

Methods: In this study, ESV were evaluated based on grid and county scales.
Furthermore, the driving factors of ESV were explored using the explainable
machine learning method.

Results: The findings are as follows: (1) The net ESV of the Gangjiang Upstream
Basin (GUB) has undergone a decline from 1990 to 2000, with climate regulation
and hydrological regulation collectively accounting for approximately 50% of all
functions. (2) A mere 0.69% of the areas exhibited an increase in the level of ESV,
while 11.19% demonstrated a decline by 2020, based on the grid scale. The ESV
exhibited a slight increase in two counties, while it demonstrated a decrease in
the remaining 16 counties at the county scale. The ESV exhibited a substantial
positive spatial correlation, manifesting as the presence of considerable high-
high and low-low clustering regions. (3) The interpretable machine learning
analysis revealed a consistently strong negative correlation between ESV and
human activity intensity (HAI), fractional vegetation cover (FVC), and elevation
across the entire observed range. In contrast, the soil organic matter (SOC)
demonstrated a non-linear, highly significant positive correlation with ESV.

Discussion: This paper addresses the observed decline in the value of ecosystem
services of GUB by proposing a series of strategies designed to enhance ESV in
the region. Furthermore, drawing on research findings related to the driving
factors and thresholds of ESV, this paper presents specific measures that can
serve as references for managers.
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1 Introduction

China has suggested the grand strategy of developing a “Beautiful China” in response to
the growing ecological and environmental issues brought on by rapid urbanization. This
plan specifically aims to “support high-quality development with a high-quality ecological
environment.” As a result, ecosystem services have gradually become a hot spot (Zhang
et al., 2021). The goods and services that are obtained either directly or indirectly from
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ecosystem functions are known as ecosystem services. They consist of
energy flows, material flows and information flows from natural and
non-natural capital that contribute to human wellbeing. Changes in
ecosystem services are closely linked to human welfare (Wang et al.,
2017; Ouyang et al., 1999). In 1997, Costanza et al. published a paper
in Nature on the global assessment of ESV, which stimulated research
in the field of ecosystem services (Costanza et al., 1997). Xie Gaodi
et al. developed the “Equivalent Factor Table for Ecosystem Service
Value in China,” which was tailored to the specific characteristics of
ecosystems and has been widely utilized in studies of ESV at various
regional scales (Xie et al., 2015; Liu et al., 2021; Gao et al., 2021). One
of the main ways that human activity affects ecosystems is through
land use change (LUC). This is because LUC modifies the availability
of ecosystem services and products, which impacts ecosystem
patterns and functions. Consequently, land use change plays a
pivotal role in ecosystem service value (Xiao et al., 2020; Yang X.
et al, 2025). Rapid growth over the last 3 decades has exacerbated
changes in land use, including as reclamation, urbanization, and
land abandonment, which has led to a fall in ESV and a
degradation of ecosystem service functions. This has posed a
significant challenge to regional sustainable development (Sun
et al., 2024; Liu J. et al., 2014).

Numerous national and international studies have examined the
impact of LUC on ecosystem service value. The unit area value
equivalent factor method, the integrated model method, and the
remote sensing quantification method are some evaluation
techniques used in ESV assessment (Zhang and Fu, 2014; Zhang
et al., 2024; Wang et al., 2024). The evolution features, response
relationships, and driving forces of LUC-ESV have been the subject
of a considerable number of investigations on a large scale. One of
the scales selected for investigation was grid units, another was
administrative regions, and a third was watersheds (Wei et al., 2023;
Shen et al., 2024; Wang et al., 2021). Furthermore, to illustrate how
LUC affects ESV, current research mostly uses quantitative
techniques, such as hotspot analysis, land use transition matrices,
land use change maps, and horizontal changes in land use types (Ye
et al., 2004; Feng et al., 2021). Nevertheless, there is still little study
on multi-scale studies. Therefore, this study reveals the multi-
dimensional characteristics of ESV based on grid and county scales.

To improve regional ecological security and support the
sustainable growth, it is essential to determine the variables that
drive ESV. However, conventional quantitative techniques that
concentrate on explanatory analysis, like spatial quantile
regression modeling, geographically weighted regression, and
geographic detector, are limited in their ability to handle
nonlinear interactions and the physical significance of the driving
factors (Shi et al., 2022; Zhang et al., 2023; Deng et al., 2025).
Geodetector analysis identifies the factors driving spatial
heterogeneity in ESV and can reveal both dominant drivers and
their optimal combinations. However, given the adoption of
disparate criteria and rules for factor selection and data
discretization by researchers, the final detection results may
exhibit variability to a certain extent (Wang et al., 2025).
Machine learning (ML) algorithms provide innovative tools for
clarifying intricate driving mechanisms and accurate prediction
in order to handle this problem (Zhao et al., 2025). A more
realistic depiction of the underlying dynamics is possible thanks
to machine learning’s ability to capture the interactions between

variables and their combined impacts on ESV (Li et al., 2025a). Both
natural and man-made elements contribute to the intricate
construction process of ecosystem structure and function services
(Yang Y. et al., 2025). ML methods, with their powerful nonlinear
modeling capabilities, offer novel analytical tools for ESV research
(Li et al., 2025b). However, decision-makers face interpretability
issues due to the “black box” nature of ML models, which makes it
difficult for them to intuitively understand the relative relevance of
driving elements (Lee et al., 2022). In comparison with conventional
factor-analysis methodologies, Shapley Additive Explanations
(SHAP) enhances model transparency while preserving predictive
accuracy, thereby elucidating the key drivers and their underlying
mechanisms. The integration of feature importance, partial
dependence plots, and SHAP values within the framework of ML
and SHAP offers a comprehensive analysis of the impact of drivers
on ecosystem services (Zhao et al., 2022; Huang et al., 2025). This
enables researchers to visualize the interactions between
components and their overall impacts, as well as to comprehend
the direction (positive or negative) and size of impact (Ling
et al., 2022).

The GUB, which includes 18 counties in Ganzhou Municipality,
is located in the southern part of Jiangxi Province, China. The GUB
represents the source area for both the Ganjiang River and the
Dongjiang River. The Ganjiang River represents the largest river
system in the Poyang Lake Basin and constitutes a pivotal tributary
of the lower Yangtze River. Additionally, the region of GUB was a
crucial barrier for ecological security in southern China. The GUB is
located within Ganzhou City, where confirmed ion-adsorption rare-
earth reserves total approximately 470 thousand tonnes-
approximately 40% of China’s total ionic-type rare earth
resources. This has led to the region being dubbed the “Rare
Earth Kingdom” (Xiong et al., 2019). However, due to human
activity, the area is experiencing serious environmental problems
that are significantly affecting the composition and functionality of
the local ecosystem. In light of the aforementioned background, the
present study puts forth the two hypotheses to direct the
investigation. Firstly, the ESV of GUB has undergone a
substantial spatiotemporal decline over the past 2 decades,
primarily attributable to LUC and HAI. Secondly, the
relationship between ESV and driving factors is nonlinear and
scale-dependent, and traditional linear models are insufficient to
capture these complex interactions. Accordingly, explainable
machine learning approach is applied to explore the driving
factors of ESV. The study aims to: (1) Investigate the
spatiotemporal changes of ESV. (2) Optimal machine learning
model selection via parameter comparison. (3) Detect the driving
factor of ESV. The findings will furnish theoretical backing and
consultancy expertise for the zonal administration of ecosystem
services of the GUB, thereby contributing to the advancement of the
“Ganzhou Model” of a Beautiful China.

2 Materials and methods

2.1 Study area

The GUB is situated in the upper reach of the Ganjiang River
(Figure 1), in Jiangxi Province, southern China, encompassing
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18 counties of Ganzhou city. It is situated between latitudes 24°29′N
and 27°09′N, and longitudes 113°54′E and 116°38′E, encompassing a
total area of 39,379.64 km2, which constitutes 23.6% of the total area
of Jiangxi Province. The region’s topography is predominantly
characterised by mountainous and hilly terrain, which collectively
constitute the geomorphological framework and account for 80.98%
of the total area. The GUB has a subtropical monsoon climate
because it is located on the southern border of the mid-subtropical
zone. The predominant winter and summermonsoons, heavy spring
and summer precipitation, clear seasonal variations, a moderate
temperature, copious amounts of heat and precipitation, brief
episodes of extreme cold or heat, and an extended frost-free
season are its defining features. The average annual temperature
in the area is 19.8°C, while the average annual precipitation is
1,318.9 mm (Xu, 2025).

2.2 Data sources

The data comprised digital elevation model (DEM), land use
data, Soil Organic Carbon (SOC) and grain output (Table 1). The
grain output and GDP data were provided by the Ganzhou
Municipal Bureau of Statistics (2021), while the product price
data was sourced from the China Agricultural Products Price
Survey Yearbook (2021). The research framework is shown in

Figure 2. In order to standardize the spatial resolution of multi-
source data, the present study employed resampling techniques to
normalize the raw data. The study area was meticulously delineated
into a regular grid of 5 km × 5 km cells. The mean value of all data
points within each grid cell was calculated using spatial statistical
methods, and these means were used as training samples for the
machine learning model.

2.3 Method for assessing ESV

In this study, the equivalent factor method was employed to
ascertain the value of individual ecosystem service equivalent
factors and to estimate the coefficients for different land use
types (Xie et al., 2003). According to data from the Ganzhou
Statistical Yearbook, In 2020, the average grain production per unit
area of the GUB was 9,792.71 kg/hm2. Considering that the
research duration extended over 3 decades, the fixed price of
2020 was utilized to correlate the ESV of each period. The
principal crops cultivated in the GUB are rice, vegetables, and
fungi, along with oil crops. The mean prices for rice, vegetables,
fungi, and oil crops in 2020 were 3.53 yuan/kg, 2.29 yuan/kg,
4.7 yuan/kg, and 2.21 yuan/kg, respectively. Thus, in 2020, the
economic value of the equivalent factor of the GUB was
4,109.01 yuan/hm2, which allowed for the calculation of the

FIGURE 1
Geographic location of study area.
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ESV coefficients for the GUB (Table 2). The calculation of ESV is
shown in Equations 1, 2 (Hu et al., 2023; Shi et al., 2012):

ESV � ∑ Ak × VCk( ) (1)
ESVk � ∑ Ak × VCfk( ) (2)

Where ESV represents the total value of ecosystem services,VCk

is the ecosystem value coefficient, Ak is the area of land use type k,
ESVk is the value of the fth ecosystem service function, and VCfk is
the value coefficient of the fth service function for land use type k.

2.4 Grid-based spatial expression of ESV

Grids measuring 2 km by 2 km, 5 km by 5 km, 8 km by 8 km,
and 10 km by 10 km were first built as potential assessment units
for this study. The ArcGIS10.8 software tools, including Create
Fishnet, Clip, and Dissolve, were employed to select a grid size of
5 km × 5 km, resulting in a total of 1,744 small grids. Based on the
land use data available for each grid, the ESV (ESV) of each land
use within each grid was calculated, and the values were then
summed to obtain the total ESV for the grid. The following

TABLE 1 Data source.

Data Data sources Data accuracy Year

Digital Elevation Model (DEM) Geospatial Data Cloud
(https://www.gscloud.cn/)

30 m 2020

Monthly mean temperature Resource and Environmental Science Data Platform
(http://www.resdc.cn/)

1 km 1990–2020

Monthly mean precipitation Resource and Environmental Science Data Platform
(http://www.resdc.cn/)

1 km 1990–2020

Normalized Difference Vegetation Index (NDVI) Resource and Environmental Science Data Platform
(http://www.resdc.cn/)

1 km 1990, 2000, 2010, 2020

Land use Data Center for Resources and Environmental Sciences, Chinese
Academy of Sciences
(https://www.resdc.cn/)

30 m 1990, 2000, 2010, 2020

Soil Organic Carbon (SOC) National Earth System Science Data Center
(http://www.geodata.cn/)

90 m 2010–2018

GDP Jiangxi Statistical Yearbooks County 2021

FIGURE 2
The research framework.
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Equations 3, 4 provide the formula (Li et al., 2018; Yang
et al., 2022):

ESVn � ∑ Smn × LUm( ) (3)

ESV � ∑
k

n�1
ESVn (4)

ESVn represents the ESV (ESV) of the nth land use type within
each grid cell; Smn denotes the area (in hectares) of the nth land use
type in themth grid cell; LUm is the ESV coefficient for themth land
use type; and k is the total number of land use types.

2.5 Analysis of regional variability based on
administrative unit

The regional variability of ESV can be reflected by utilising the
relative change rate, as expressed by the following Equation 5 (Liu G.
et al., 2014):

R � RL

RC
�

Lb−La
La

Cb−Ca

Ca

(5)

R represents the relative change rate, where RL and RC are the
regional and global change rates, respectively; La and Lb denote the
initial and final values of regional ESV; and Ca and Cb represent the
initial and final values of global ESV. The relative change rate
exhibits the following characteristics:

(1) It has been demonstrated that when the relative change rate is
greater than or equal to 0, regional ESV trends exhibit
alignment with global trends. When the relative change
rate is greater than or equal to 0 but less than 1, regional

change is weaker. In contrast, a relative change rate that is
greater than 1 indicates that regional change exceeds
global change.

(2) Conversely, a negative relative change rate, defined as a value
less than zero, signifies that regional ESV trends are in
opposition to global ESV trends. Specifically, when the rate
is between −1 and 0, regional change is weaker than global
change; when the rate is less than −1, regional change exceeds
global change in magnitude.

2.6 Analysis of spatial autocorrelation

“Spatial autocorrelation” refers to both local and global types of
spatial autocorrelation. The global Moran’s index (Moran’sI) is
employed to delineate the prevailing trend of spatial correlation
in ESV. The local spatial autocorrelation index, represented by
Moran’sIi, reflects the degree of spatial autocorrelation within
grid cells (Pearson, 2002). The formula is presented in Equations
6-8 as follow (Jin et al., 2020; Yao et al., 2015):

Moran′sI � n∑n
i�1∑

n
j�1wij xi − �x( ) xj − �x( )

∑n
i�1∑

n
j�1wij( )∑n

i�1 xi − �x( )2 (6)

Moran′sIi � xi − �x( )
m0

∑
n

j�1
wij xj − �x( ) (7)

m_ 0 � ∑n
i�1 Xi − �x( )2

n
(8)

Where n represents the number of spatial units; xi and xj denote
the ESV values of the ith and jth spatial units, respectively; x is the
mean ESV; wij is the spatial weight matrix; and _m0 denotes
the variance.

TABLE 2 Coefficients of ESV of different land use of the GUB, 2020. (yuan/hm2).

Ecosystem Farmland Forest Grassland Wetland Urban Desert

Land use Farmland Forestland Grassland Water
body

Construction
land

Unused
land

Provisioning
services

Food production 4540.45 959.45 1249.14 2989.30 0.00 0.00

Raw material production 1006.71 2192.16 1840.84 1222.43 0.00 0.00

Water supply −5362.25 1138.20 1019.03 28208.34 0.00 0.00

Regulating services Gas regulation 3657.02 7242.13 6475.80 4324.73 0.00 82.18

Climate regulation 1910.69 21677.07 17126.34 10755.33 0.00 0.00

Environmental
purification

554.72 6221.04 5653.99 20801.85 0.00 410.90

Hydrological regulation 6142.97 12094.86 12557.13 339969.00 0.00 123.27

Supporting services Soil retention 2136.68 8817.93 7889.29 5238.98 0.00 82.18

Nutrient cycling 636.90 675.93 591.70 400.63 0.00 0.00

Biodiversity conservation 698.53 8022.84 7166.11 15942.95 0.00 82.18

Cultural services Aesthetic landscape 308.18 3519.36 3155.72 10683.42 0.00 41.09

— Total 16230.58 72560.96 64725.08 440536.96 0.00 821.80
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2.7 Driving factor analysis of ESV

In this study, a 5 km × 5 km grid was employed to subdivide
the study area into 1,744 grid cells, and the mean values of
environmental variables within each grid were extracted as
feature data. Subsequent to the collection of these data, five
machine learning models are constructed, including eXtreme
Gradient Boosting (XGBoost), Gradient Boosting Machine
(GBM), Random Forest (RF), HistGradientBoosting (HGB),
and Linear Regression (LR), to predict ESV. Table 3 offers a
synopsis of the fundamental assumptions and the applicable
scopes of the five models utilized in this study for ESV
prediction. The transition from linear benchmark (LR) to tree-
based models facilitates a comprehensive comparison chain,
thereby enabling the validation of nonlinear gains. The
algorithms RF, GBM, XGBoost, and HGB do not prespecify
functional forms, a property that enables them to capture
nonlinearities, interactions, and threshold effects between ESV
and multisource drivers. The XGBoost and HGB models have
been demonstrated to be effective tools for the analysis of large,
high-dimensional datasets, with the capacity to meet the
demands of multi-scale ESV mapping (Chen and Guestrin,
2016; Ke et al., 2017; Zhang et al., 2020).

The dependent variable in this study was ESV, and the
independent variables included six natural factors, elevation (Ele),
slope, precipitation (Pre), temperature (Tem), soil organic carbon
(SOC) and fractional vegetation cover (FVC), and two
socioeconomic factors, human activity intensity (HAI) and gross
domestic product (GDP). The distributions of the eight variation are
shown in Figure 3 (The elevation is shown in Figure 1). To quantify
the effect of each factor on ESV, the study incorporated the SHAP
analysis method. The dataset was split into two parts randomly: a
test set and a training set. The percentage of the former to the latter
was 20% and 80%, respectively. The performance of the model was
evaluated based on the coefficient of determination (R2), the mean
absolute error (MAE), and the root mean square error (RMSE). The
optimal model is applied to the trained model for driving
factor detection.

The extraction of elevation and slope data was conducted using
DEM, while the calculation of the FVC and HAI indicators was
informed by relevant literature.

The calculation of FVC are shown in Equation 9 (Li et al., 2021):

FVC � NDVI −NDVImin

NDVImax −NDVImin
(9)

In the formula, FVC represents the vegetation cover (%), NDVI
is the normalized difference vegetation index, with the multi-year
monthly average used in this study. The NDVI value of pixels that
are fully covered by vegetation is known as NDVImax, whereas the
NDVI value of bare soil or regions devoid of vegetation cover is
known as NDVImin.

The HAI was employed to quantify the intensity of human
interference in a specific region’s landscape. The HAI value ranged
from 0 to 1, with higher values indicating greater human activity
impact on the landscape components. The formulas are shown in
Equation 10 (Yan et al., 2014):

HAI � ∑
N

i�1

AiPi

TA
(10)

Where, HAI is the comprehensive index of anthropogenic
impacts, N is the number of landscape types, Ai is the area of
the ith type of landscape, Pi is the intensity coefficient of
anthropogenic impacts of the ith type of landscape, the Pi in this
study were given values of 0.12, 0.61, 0.09, 0.12, 0.94, and 0.08 for
forestland, farmland, grassland, water body, construction land, and
unused land, respectively, based on results of other studies (Yan
et al., 2014). TA is the total area of the landscape.

In this study, Pearson’s correlation coefficient was employed
to evaluate the relationship between each factor and SHAP
values. In order to more accurately depict the nonlinear
relationship between the eigenfactors and SHAP values, the
LOWESS (locally weighted scatter smoothing) method was
introduced to smooth the data. SHAP (SHapley Additive
exPlanations) is a game theory-based method for interpreting
machine learning models. The methodology employed entails the
quantification of the marginal contribution of each input feature
variable to the prediction results of individual samples through
the utilization of Shapley values (Dandolo et al., 2023). This
approach not only elucidates the trend of model predictors but
also underscores the significance of features. The following
mathematical expressions in Equation 11 are pertinent to this
discussion (Aas et al., 2021):

yi � ybase + f xi,1( ) + f xi,2( ) +/ + f xi,j( ) +/f xi,k( ) (11)

TABLE 3 The fundamental assumptions and the applicable scopes of ML models.

Model Key assumptions Applicable scope

LR Linear relationship between predictors and response; no severe multicollinearity
among predictors

Small to medium datasets with approximately linear relationships or where
interpretability is paramount

RF No distributional assumptions; handles high-order interactions and
multicollinearity via bootstrap sampling and random feature subspacing

Medium- to high-dimensional data with nonlinearities, interactions, outliers,
and missing values

GBM Differentiable loss function; additive model of weak learners (typically regression
trees) sequentially reduces residuals

Continuous or discrete responses exhibiting nonlinear predictor–target
relationships; moderate to large sample sizes

XGBoost Same as GBM, but employs second-order derivative (Hessian) approximation
and regularization

Large-scale, high-dimensional, sparse, or missing-value datasets demanding
high predictive accuracy and efficient tuning

HGB Same as GBM, but uses histogram-based binning; no strict assumptions on
feature distributions

Large datasets with high-dimensional features and stringent memory/time
constraints; handles missing and categorical features natively
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In this equation, yi denotes the predicted ESV value of the ith
sample, ybase signifies the mean ESV prediction of all samples, xi
represents the observed ESV value of the ith sample, f (xi,j) is the
SHAP value of the jth feature of the ith sample, and k denotes the
number of input features.

In this study, the Bootstrap method is employed to analyze the
uncertainty in the prediction results of SHAP values. Specifically, the
generation of multiple Bootstrap samples is achieved through the
implementation of 100 resampling with put-back from the original
sample. For each Bootstrap sample, the corresponding statistic is
computed, thereby estimating the probability distribution of the
original statistic. Consequently, we are equipped to derive

confidence intervals for the raw statistic. In this context, 95%
confidence intervals are delineated by referencing the 2.5% and
97.5% quantiles of the Bootstrap sample statistic. The width of the
confidence interval is a critical metric for evaluating the precision of
the estimate. Narrower confidence intervals are indicative of precise
estimates, while wider intervals suggest greater uncertainty (Sothe
et al., 2022). The Bootstrap method has been demonstrated to
effectively quantify the uncertainty of the prediction results of
SHAP values, thereby providing a more reliable basis for model
interpretive analysis.

As demonstrated in the following section, partial dependence
plots facilitate a more thorough elucidation of the specific

FIGURE 3
The spatial distribution of driving factors. (a) Temperature, (b) Precipitation, (c) Slope, (d) FVC, (e)HAI, (f)GDP, (g) SOC. Note: human activity intensity
(HAI), fractional vegetation cover (FVC), gross domestic product (GDP) and soil organic carbon (SOC).
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association patterns between each feature and the target variable.
The intersection of the dashed line (SHAP = 0) with the LOWESS
trend line delineates the SHAP values into two regimes: values above
the dashed line (SHAP >0) indicate a positive influence of the driver
on ESV, whereas values below the dashed line (SHAP <0) denote an
inhibitory effect (Lu et al., 2025).

3 Results

3.1 Analysis of LUC of the GUB

Figure 4 illustrates the distribution of landscape types in GUB in
1990 (a), 2000 (b), 2010 (c), and 2020 (d). Table 4 presents a
summary of the observed changes in these landscape types. The
findings indicated that forestland has remained the predominant
landscape type in GUB, encompassing over 74% of the total area.
From 1990 to 2020, the area of forestland exhibited a reduction of
388.19 km2. The second-largest landscape type, farmland, exhibited
relatively stable conditions. Even while construction land made up a
very small percentage of the total area (less than 2%), this category
had grown significantly, with a net gain of 363.97 km2, or 105.21%.

The area of water bodies increased by 12.86 km2, while the area of
grassland increased by 15.01 km2. Unused land exhibited a general
decreasing trend, with a small proportion throughout the study
period, remaining consistently below 0.1%.

3.2 Temporal changes of ESV of the GUB

3.2.1 Analysis of ESV evolution by land use type
The ESV of the GUB exhibited a trend of initial increase followed

by a decrease, resulting in a net reduction of 21.5 × 108 yuan (Table 5).
Among the various land use types, forestland contributed the most to
the overall ESV, accounting for over 83% of the total. This proportion
is significantly higher than that of other landscape types. However, the
proportion of forestland has shown a declining trend. Water bodies
were the secondmost significant contributor to the ESV, representing
over 6% of the total. The ESV of water bodies demonstrated a net
increase of 5.67 × 108 yuan. The grassland category exhibited an initial
decline, followed by an increase. The ESV of farmland remained
unchanged. The contribution of unused land was insignificant,
accounting for less than 0.01% of the total value. Furthermore, the
ESV of constructed land was not identified.

FIGURE 4
Distribution of LUC of the GUB, 1990–2020. (a) 1990, (b) 2000, (c) 2010, (d) 2020.

TABLE 4 LUC characteristics of the GUB, 1990–2020.

Year Statistics Farmland Forestland Grassland Water body Construction land Unused land

1990 Area (km2) 6813.93 29541.85 2287.15 369.96 345.95 2.36

(%) 17.31% 75.05% 5.81% 0.94% 0.88% 0.01%

2000 Area (km2) 6806.37 29560.41 2246.3 379.97 367.24 2.2

(%) 17.29% 75.10% 5.71% 0.97% 0.93% 0.01%

2010 Area (km2) 6946.52 29403.99 2170.4 383.03 459.34 2.14

(%) 17.65% 74.69% 5.51% 0.97% 1.17% 0.01%

2020 Area (km2) 6813.94 29153.66 2302.16 382.83 709.92 2.17

(%) 17.31% 74.06% 5.85% 0.97% 1.80% 0.01%

1990–2020 Area change (km2) 0.01 −388.19 15.01 12.86 363.97 −0.19

Change (%) 0.00% −1.31% 0.66% 3.48% 105.21% −8.00%
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3.2.2 Analysis of the value by ecosystem
services function

Figure 5 illustrates the value of ecosystem services by function. It
is evident that regulating services represent the dominant ecosystem
functions of the GUB, significantly surpassing other functions. The
two most important factors, climate regulation and hydrological
regulation, together make up almost half of the total value. Soil
conservation and biodiversity consistently occupy the third and
fourth positions, respectively, while supporting services are also
significant ecosystem functions in the region, following
regulating services.

With regard to the trend in the proportion of service values,
there is an overall decline in the values attributed to raw material
production, climate regulation, soil conservation, gas regulation, and
nutrient cycling. Conversely, the trends observed in environmental
purification, hydrological regulation, biodiversity, and aesthetic
landscape values indicate an initial increase, followed by a
subsequent decrease. The patterns observed in food production
and water supply demonstrate fluctuations.

3.3 Spatial variation of ESV based on
grid scale

The natural breaks method was utilised for the classification of
the ESV index (ESVI) across the various grids into five distinct
categories. The categories are ordered from low to high as follows:
The categories are defined as follows: low (ESVI ≤24000 yuan/hm2),
lower (24000 yuan/hm2 < ESVI ≤48000 yuan/hm2), central
(48000 yuan/hm2 < ESVI ≤64000 yuan/hm2), higher

(64000 yuan/hm2 < ESVI ≤88000 yuan/hm2), and high
(88000 yuan/hm2 < ESVI). The resulting classification produced
spatial variation maps of ESV of the GUB (see Figure 6). The
distribution exhibited a distinctive pattern, with elevated values
observed at the county boundaries and diminished values at the
county centres. The boundaries of Shangyou County and Chongyi
County were the main locations with the greatest ESV levels. In
contrast, areas with low and relatively low ESV were predominantly
situated in Ruijin City, Shicheng County, Nankang District and
Xinfeng County, Dayu County.

Comparing the ESV levels at two different times shows that a
“grade stability zone” is created if the two ESV levels are the same.
The latter is referred to as a “grade up zone” if its ESV level shows
improvement. Lastly, a “grade drop zone” is created if the level of the
subsequent ESV declines. The results indicate that from 1990 to
2000, 95.82% of the area exhibited stable ecosystem service value
(ESV) levels, while 3.42% of the area demonstrated an increase in
ESV levels. Conversely, only 0.76% of the area exhibited a decrease
in ESV levels, representing a very small proportion and distributed
sporadically (Figure 7). From 2000 to 2010, 89.88% of the area
exhibited stable ecosystem service levels, while 0.44% experienced an
increase, which was minimal and distributed sporadically.
Nevertheless, a decrease in levels was observed in 9.68% of the
area. From 2010 to 2020, 95.66% of the area exhibited stable ESV
levels, with only 0.17% demonstrating an increase, representing a
minimal proportion and sporadic distribution. Conversely, a
decrease in levels was observed in 4.16% of the area. From
1990 to 2020, 88.13% of the area exhibited stable ESV levels,
with 0.69% demonstrating an increase. Conversely, 11.19% of the
area exhibited a decline in ecosystem service levels, with the greatest

TABLE 5 Temporal change of ESV of different land use of the GUB, 1990–2020.

Year Statistics Farmland Forestland Grassland Water body Unused land Total

1990 Value (108/year) 110.59 2143.59 148.04 162.98 0.0019 2565.20

Ratio (%) 4.31% 83.56% 5.77% 6.35% 0.00% 100%

2000 Value (108/year) 110.47 2144.93 145.39 167.39 0.0018 2568.19

Ratio (%) 4.30% 83.52% 5.66% 6.52% 0.00% 100%

2010 Value (108/year) 112.75 2133.58 140.48 168.74 0.0018 2555.55

Ratio (%) 4.41% 83.49% 5.50% 6.60% 0.00% 100%

2020 Value (108/year) 110.59 2115.42 149.01 168.65 0.0018 2543.67

Ratio (%) 4.35% 83.16% 5.86% 6.63% 0.00% 100%

1990–2000 Value (108/year) −0.12 1.35 −2.64 4.41 −0.0001 2.99

Ratio (%) −0.11% 0.06% −1.79% 2.70% −6.83% 0%

2000–2010 Value (108/year) 2.27 −11.35 −4.91 1.35 0.0000 −12.64

Ratio (%) 2.06% −0.53% −3.38% 0.81% −2.59% 0%

2010–2020 Value (108/year) −2.15 −18.16 8.53 −0.09 0.0000 −11.87

Ratio (%) −1.91% −0.85% 6.07% −0.05% 1.37% 0%

1990–2020 Value (108/year) 0.00 −28.17 0.97 5.67 −0.0002 −21.53

Ratio (%) 0.00% −1.31% 0.66% 3.48% −8.00% −1%

Frontiers in Environmental Science frontiersin.org09

Xu et al. 10.3389/fenvs.2025.1640840

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1640840


concentration of affected areas observed in Dayu County, Shangyou
County, Zhanggong District, and Nankang District. From a broader
perspective, the proportion of areas with decreasing ESV levels of the
GUB is significantly higher than those with increasing levels,
indicating a risk of decline for regional ESV.

3.4 Spatial variation of ESV based on
administrative scale

This study selects 18 counties or districts of the GUB as the
subjects of analysis, and the differences in ESV among districts/

FIGURE 5
Temporal change of ESV by function of the GUB, 1990–2020. Note: The horizontal axis showed the ESV of individual function, the vertical axis
showed the types of individual function. The comparison included the ranking, percentage (%), and value (×108 yuan). (a) 1990, (b) 2000, (c) 2010,
(d) 2020.

FIGURE 6
Spatial distribution of ESV based on grid of the GUB, 1990–2020. (a) 1990, (b) 2000, (c) 2010, (d) 2020.
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counties are presented in Table 6. During study period, the ESV of
Shangyou and Ganxian exhibited an increase of 0.21% and 0.67%,
respectively, while the ESV in the remaining 16 counties or districts
demonstrated a decline. Zhanggong exhibited the most significant
decline, at 8.44%, with Nankang, Dayu, Longnan, and Dingnan also
demonstrating declines exceeding 1%.

To analyse regional variability using relative change rates (R),
it was observed that from 1990 to 2000, the ESV of the GUB
increased by 0.12%. The R values for three counties (Ganxian,
Shangyou, Xunwu) exceeded 1, indicating that their ESV
increased at a rate greater than that observed for the GUB as a
whole. From 2000 to 2010, the ESV of the GUB exhibited a
decrease of 0.49%. R values larger than 0 were shown in all
18 counties, suggesting that the ESV changes there were
consistent with the general trend of the GUB. From 2010 to
2020, the ESV decreased by 0.47%. Once more, all counties
exhibited R values greater than 0, thereby confirming the
alignment of ESV changes with the overall trend.

From 1990 to 2020, the ESV of the GUB exhibited a net decline
of 0.84%. The R values for Shangyou and Ganxian were less than 0,
indicating an increase in these two counties, while the remaining
16 counties experienced a reduction in ESV, consistent with the
findings of previous change rate analyses. It is noteworthy that six
counties/districts (Zhanggong, Nankang, Dayu, Longnan, Dingnan,
Yudu) exhibited R values greater than 1, indicating that these areas
experienced greater ESV changes than the overall region, with
similar trends.

3.5 Analysis of spatial autocorrelation of ESV

3.5.1 Analysis of global scale spatial autocorrelation
The global Moran’s I values for the years 1990, 2000, 2010, and

2020 were 0.318, 0.316, 0.315, and 0.316, respectively. This indicates
a lack of variation across the four periods, as illustrated in Figure 8.

Across the four time periods, the global Moran’s I values
remained consistently positive, with significance levels below
0.01. This implies a strong positive correlation in the spatial
distribution of ESV, showing that nearby grid units are highly
comparable and clustered.

3.5.2 Local spatial autocorrelation analysis
The local spatial relationships between events and their

neighboring events are reflected in the Local Indicators of Spatial
Association (LISA) distribution map. Four categories can be used to
classify these relationships: The clustering patterns are low-high,
low-low, high-high, and high-low.

The results of the local spatial autocorrelation of ESV of the
GUB for 1990, 2000, 2010, and 2020 show that the distribution of
high-value and low-value clusters stayed rather stable, as shown
in Figure 9. This shows a spatial clustering pattern and a
significant positive association. The region is primarily
characterised by high-high clustering and low-low clustering,
with high-high clustering mainly concentrated at the boundaries
of Shangyou County and Chongyi County, as well as at the
intersections of Yudu County and Ruijin City, and Ganxian
District and Huichang County. In contrast, low-low clustering
is predominantly observed in Nankang and Zhanggong District,
Xinfeng County.

3.6 Exploration of drivers integrating HGB
and SHAP model

To quantify the effect of each factor on ESV, the study integrated
machine learning model with the SHAP analysis method. The
performance of the model was evaluated based on the R2, MAE
and RMSE. Due to the substantial computational demands of this
approach, only the data of 2020 were used to identify the driving
factors of ESV.

The model evaluation metrics are delineated in Table 7, and the
optimal model is identified through comprehensive analysis in terms
of performance, error, and risk of overfitting. R2 (Test) is a measure
of the explanatory power of the model on the test set, and the closer
it is to 1, the better the model performance is. The findings indicate
that HGB (0.62) surpasses XGBoost (0.59), RF (0.55), GBM (0.53)
and LR (0.41). Consequently, HGB emerges as the most effective
model. MAE (Test) denotes the Mean Absolute Error, with smaller
values being preferable. The resultant data indicates that HGB
(1905.28) is outperformed by XGBoost (1965.46), RF (1978.37),
GBM (2079.60) and LR (2540.72), with HGB demonstrating the

FIGURE 7
Temporal evolution of ESV grade of the GUB, 1990–2000, 2000–2010, 2010–2020 and 1990–2020. (a) 1990-2000, (b) 2000-2010, (c) 2010-
2020, (d) 2000-2020.
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TABLE 6 Variation and change rate of ESV based on county scale of the GUB, 1990–2020.

Counties/Districts Variation Change rate(%)

1990–2000 2000–2010 2010–2020 1990–2020 1990–2000 2000–2010 2010–2020 1990–2020

Shangyou 6.37 0.23 0.89 −0.25 0.74 −0.11 −0.42 0.21

Yudu 0.35 1.12 0.89 1.10 0.04 −0.55 −0.42 −0.92

Huichang −0.13 0.87 0.59 0.85 −0.02 −0.43 −0.28 −0.72

Xinfeng −1.72 0.19 0.95 0.87 −0.20 −0.09 −0.44 −0.73

Quannan 0.75 0.96 0.31 0.63 0.09 −0.47 −0.15 −0.53

Xingguo 0.28 0.06 0.39 0.21 0.03 −0.03 −0.18 −0.18

Nankang −3.92 1.89 5.32 4.56 −0.46 −0.93 −2.48 −3.83

Dayu −1.37 5.05 1.70 4.06 −0.16 −2.48 −0.79 −3.41

Ningdu −0.65 0.31 0.42 0.51 −0.08 −0.15 −0.20 −0.42

Anyuan 0.44 0.55 0.45 0.51 0.05 −0.27 −0.21 −0.43

Dingnan −1.06 2.27 0.58 1.79 −0.12 −1.12 −0.27 −1.51

Xunwu 3.29 1.47 0.77 0.84 0.38 −0.72 −0.36 −0.70

Chongyi −3.16 0.55 0.22 0.88 −0.37 −0.27 −0.10 −0.74

Ruijin −1.05 0.38 0.65 0.73 −0.12 −0.19 −0.30 −0.61

Shicheng 1.05 0.19 0.64 0.32 0.12 −0.09 −0.30 −0.27

Zhanggong −1.27 6.78 11.03 10.05 −0.15 −3.33 −5.15 −8.44

Ganxian 13.24 0.93 0.86 −0.80 1.54 −0.46 −0.40 0.67

Longnan −0.33 1.98 1.15 1.84 −0.04 −0.97 −0.54 −1.54
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lowest error rate. RMSE (Test) is the Root Mean Squared Error, and
a smaller value is preferable. The findings indicate that HGB
(3229.46) is outperformed by XGBoost (3351.19), followed by RF
(3499.00), GBM (3555.46), and LR (3996.22), with the lowest HGB
error. It is evident that HGB demonstrates superior overall
performance on the test set, as evidenced by its elevated R2,
minimal MAE, and RMSE. The negligible discrepancy between
Train (0.84) and Test (0.62) further substantiates its reduced risk
of overfitting and enhanced generalisation capability. Consequently,
the optimal model is identified as HGB, while the alternative model
is XGBoost.

The HGB plus SHAP analysis revealed the extent and direction
of the effects of each environmental factor on ESV. The eight impact
factors were then classified into three distinct grades, based on the
results of the feature importance calculation (Figure 10). These three
grades were designated as key factors, relatively important factors,
and low-impact factors, respectively. Key factors are defined as those
with feature importance ≥2000, Human Activity Intensity (HAI)
emerged as the key factor, with a contribution value of 2285.21
(30.57%), exhibiting a substantial negative effect. That is, elevated
HAI values were associated with diminished ESV predictions. The
relatively important factors are those with feature importance of
500 ≤ importance value <2000, and include FVC (1681.43, 22.50%,
negative effect), elevation (1038.79, 13.90%, negative effect) and
SOC (851.48, 11.39%, positive effect). The low-impact factor, which
is equivalent to the importance value of <500, encompasses the GDP
(461.25, 6.17%, nonlinear relationship), slope (455.53, 6.09%,
nonlinear relationship), temperature (362.35, 4.85%, nonlinear
relationship) and precipitation (338.55, 4.53%, nonlinear
relationship). Essentially, it was determined that the main
parameters influencing changes in ESV were HAI, FVC, Ele, and
SOC. In contrast, the contributions of economic, topographic and
climatic factors were found to be comparatively negligible, though
their influence should not be overlooked.

FIGURE 8
Spatial-temporal distribution of scatter plots of the GUB, 1990–2020. (a) 1990, (b) 2000, (c) 2010, (d) 2020.

FIGURE 9
Spatial-temporal distribution of local spatial autocorrelation of the GUB, 1990–2020. (a) 1990, (b) 2000, (c) 2010, (d) 2020.

TABLE 7 Performance metrics of machine learning models.

Model R2 (Train) R2 (test) MAE (test) RMSE (test)

HGB 0.84 0.62 (*) 1905.28 (*) 3229.46 (*)

XGBoost 0.88 0.59 1965.46 3351.19

RF 0.94 0.55 1978.37 3499.00

LR 0.39 0.41 2540.72 3996.22

GBM 0.95 (*) 0.53 2079.60 3555.46

* Represents optimal values.
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FIGURE 10
Detection of driving factors. (a) Bar plots of average absolute SHAP values and pie charts of contribution percentages. (b) SHAP summary plot. Note:
human activity intensity (HAI), fractional vegetation cover (FVC), gross domestic product (GDP), soil organic carbon (SOC), elevation (Ele), precipitation
(Pre), temperature (Tem).

FIGURE 11
Partial dependency graph of key characteristic factors based on SHAP value. Note: human activity intensity (HAI), fractional vegetation cover (FVC),
soil organic carbon (SOC), elevation (Ele).
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The present study investigated the effects of HAI, FVC, Ele, and
SOC on ESV in the study area. The findings indicated that these
factors exerted substantial influence on ESV, with divergent
mechanisms of action being observed. The contribution of the key
characterization factors to the model predictions was quantified by
SHAP feature dependency plot analysis, and the nonlinear
relationships and thresholds between the features and the
predictions were revealed. Figure 11 illustrates these relationships.

A highly significant negative correlation was identified between
HAI and SHAP values (r = −0.78, p < 0.001). As the HAI level
increased, its effect on ESV shifted from promotion to inhibition.
When HAI was less than 0.23, it exhibited a positive effect on ESV;
conversely, when HAI was greater than 0.23, it demonstrated a
negative effect.

A highly significant negative correlation was also identified
between FVC and SHAP values (r = −0.92, p < 0.001). When
FVC was less than 0.76, it exhibited a promoting effect on ESV;
conversely, when FVC was greater than 0.76, the effect changed to
inhibitory.

A highly significant negative correlation was also identified
between altitude and SHAP values (r = −0.89, p < 0.001). At
altitudes less than 400 meters, ESV exhibited a promoting effect,
while at altitudes greater than 400 meters, the effect transitioned to
inhibition.

A highly significant positive correlation was identified between
the SHAP values and the SOC (r = 0.77, p < 0.001). When the SOC
was less than 14 g/kg, it exhibited an inhibitory effect on ESV.
Conversely, when the SOC was greater than 14 g/kg, the effect
changed to a promoting one. The SHAP values exhibited a marked
increase with rising SOC levels. However, this increase began to
plateau after reaching a maximum value when the SOC level
exceeded 20 g/kg.

In summary, the findings of the study demonstrated a non-
linear, highly significant negative correlation between HAI, FVC,
and elevation with ESV in the study area. Conversely, SOC exhibited
a non-linear, highly significant positive correlation with ESV.

A thorough analysis of the uncertainty inherent in the predicted
results of ESV was conducted in this study. To this end, we employed
a 95% confidence interval (CI) to quantify the uncertainty. To
illustrate this uncertainty, gray shading was employed to
represent the 95% CI. The width of the shading is proportional
to the size of the 95% CI; that is, the wider the shading, the greater
the uncertainty in the prediction results.

The 95% CI of the ESV prediction result was found to be
significantly larger when the HAI was greater than 0.6. This
finding suggests that the ESV prediction results exhibit enhanced
accuracy within the range of HAI less than 0.6. The 95% CI of the
ESV prediction results was found to be significantly greater when the
FVCwas less than 0.6. This finding suggests that ESV predictions are
more precise in cases where FVC is greater than 0.6. The 95% CI of
the ESV prediction results exhibited a substantial increase when Ele
was greater than 1000 meters. This finding suggests that ESV
predictions exhibited higher accuracy within the range of
elevation less than 1000 meters. The 95% CI of the ESV
prediction results was found to be significantly greater when the
SOC was less than 10 g/kg or greater than 25 g/kg. This finding
indicates that ESV was more precisely predicted in the range of
10 g/kg ≤ SOC ≤25 g/kg.

In summary, the analysis of the 95% CI enabled the
identification of key thresholds affecting the accuracy of the ESV
prediction and the optimization of the predictive performance of the
model accordingly. This finding is significant for improving the
accuracy and reliability of ecosystem service value assessment.

4 Discussion

4.1 Driving mechanisms and threshold
identification of ESV

In order to quantify the effect of each factor on ESV accurately,
an integrated explainable machine learning approach was conducted
in this study. The results indicate that HGB demonstrates superior
overall performance on the test set, as evidenced by its elevated R2,
minimal MAE, and RMSE. The HGB model demonstrates distinct
advantages over linear regression approaches by effectively
capturing nonlinearity without requiring linearity assumptions.
Compared to RF model, it is more computationally efficient and
more adapted for analyzing huge data sets. Compared to XGBoost or
GBMmodel, the HGBmodel has the benefits of seamless integration
with Scikit-learn, and compatibility with sparse data (Du et al.,
2025). HGB is an advanced machine learning method designed to
optimize the equilibrium of efficiency, accuracy, and user-
friendliness in identifying feature importance. It is an effective
approach for driving factor selection (Bridge et al., 2025).

The study indicated that HAI is the key driving factor of ESV of
the GUB, with a feature important of 30.57%, exhibiting a
substantial negative effect of pearson analysis. SHAP-based non-
linear analysis revealed that when HAI was less than 0.23, it
exhibited a positive effect on ESV; conversely, when HAI was
greater than 0.23, it demonstrated a negative effect. In the
formula of HAI, construction land had the greatest human
impact intensity coefficients among the six land use
classifications. A net loss of 388.19 km2of forestland over the
research period and a dramatic 105% increase in building land as
a result of fast urbanization account for this decline in ESV. The
rapid urbanization of GUB over the past 3 decades has resulted in a
notable decline in agricultural and forestland and a notable rise in
building area. The conversion of industrial structures, particularly
the annual expansion of aquaculture regions, has resulted in the loss
of some cropland (Chen et al., 2015; Wu et al., 2022). It is therefore
evident that changes in land use of the GUB directly impact the ESV.
The impact of anthropogenic activities on landscape patterns has
resulted in a reduction in the ecosystem service capacity of the GUB
(Qiao et al., 2025; Liu et al., 2022). This finding aligns with the results
of previous studies in this field (Yao et al., 2025). The HAI is the
predominant factor in ESV spatial differentiation, underscoring the
repercussions of recurrent human activities on the ecological
environment. The formulation of strict environmental protection
policies and measures is imperative to enhance the effective
management of human activities and to restrict unreasonable
land use and development, thereby reducing the negative impact
of human activities on the ecological environment (Hu et al., 2023).

A highly significant negative correlation was also identified
between FVC and SHAP values in this study. When FVC was
less than 0.76, it exhibited a promoting effect on ESV;
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conversely, when FVC was greater than 0.76, the effect changed to
inhibitory. This finding is at odds with the conclusions of numerous
preceding studies (Princelyn et al., 2025). This “abnormal”
phenomenon is primarily attributable to the unique natural and
socio-economic context of the GUB. A potential explanation for this
phenomenon is that Ganzhou City had implemented large-scale
artificial afforestation projects (primarily pure stands of cypress and
pine) in rare earth tailings areas, slope farmland, and urban
peripheries over the past 2 decades. These projects had led to a
rapid increase in regional FVC. These artificial forests consist of a
single tree species, exhibit simple community structures, and possess
low understory biodiversity (Zhang et al., 2025). Consequently, the
core ecological functions of carbon sequestration, water
conservation, and soil retention are significantly lower than those
observed in natural evergreen broadleaf forests. This phenomenon
has resulted in a decline in ESV per unit area. Another potential
explanation pertains to remote sensing NDVI saturation. High FVC
areas (>0.7) are predominantly artificial pure forests, where NDVI
has reached or approached saturation. This renders it impossible to
distinguish differences in forest stand quality, thereby creating the
illusion of “high FVC-low ESV” (Li Y. et al., 2025).

4.2 Assessment of ESV based on
different scales

This study employs both grid-based and administrative scales to
evaluate the total ESV, the unit area ESV, and their spatial
distribution characteristics of the GUB. The grid method
employed a 5 km × 5 km grid, representing a micro-scale
approach, which facilitated the mapping of the spatial
distribution of unit area ESV across the various levels within the
study area. Furthermore, it permitted a comparison of the
fluctuations in different levels at two distinct points in time.
While micro-scale assessments can elucidate the distinctions
between diverse ecological subsystems at larger scales, the
outcomes obtained at smaller scales are frequently challenging to
extrapolate for ecological regulation applications at broader scales
(Zhang et al., 2022).

Conversely, the spatial distribution of ESV based on
administrative divisions represents a macro-scale assessment,
offering insights into the spatial distribution of ESV across the
18 counties or districts within the study area. By analysing relative
changes, similarities and differences in the trends of each county can
be identified in comparison to the overall region. Administrative
scale assessments may be constrained by the influence of dominant
land and ecological system components within the units, which may
result in the omission of variations among subsystems. Nevertheless,
the benefit of administrative scales lies in their practical applicability,
enabling the collection of statistical data related to administrative
units and the establishment of ecological management models,
which are more straightforward to implement than grid-scale
assessments (Huang et al., 2019; Yu et al., 2025). Therefore, it is
advantageous to combine several scales to fully comprehend the
ecological functional status of the assessment units. The study of
scale characteristics in ecosystem service evaluations can be
enhanced to improve the objectivity, credibility, and practicality
of assessment results (Xu et al., 2019; Peng et al., 2017).

4.3 Proposes

The ESV of the GUB was evaluated, revealing an overall decline
in ESV from 1990 to 2020. To improve regional ecological service
value, bolster ecological security, and advance the formulation of
ecological compensation policies for water supplies, the following
proposals and strategies are suggested:

(1) The major purpose is to improve approach aimed at
conserving and rehabilitating forest ecosystems.
Prioritizing the conservation of high ESV areas is
essential. Development must be rigorously limited, and
the safeguarding of natural forests along with the
restoration of agricultural land to forest should be
strengthened to improve climate and hydrological
regulatory functions, which constitute 50 percent of the
ESV (Sun et al., 2025). GUB boasts a substantial forest
area, and through the implementation of afforestation
and grassland restoration initiatives, it has attained a
notable degree of greening in the southern Jiangxi region,
approaching the upper limit of the achievable greening scale.
Given the sensitivity of forest land to the ESV of the region,
future research should prioritize the optimization of forest
stand structure and the enhancement of forest quality within
mountainous forest land. This approach is expected to
contribute to the continuous enhancement of the climate
regulation, biodiversity maintenance, soil conservation, and
landscape aesthetic ecological service values of forest land.
For forest reserves, conservation should be the primary
focus, with the objective of maintaining the soil and
water conservation and water source protection functions
of forest land (Yang et al., 2024).

(2) Careful oversight of the growth of construction land and the
achievement of suitable land use patterns are crucial. Stringent
regulation is essential about the unregulated expansion of
construction land, especially in the 16 counties that have
experienced a significant decrease in ESV. Furthermore, the
execution of intense land utilization patterns is essential.
Implementing ecological restoration activities in grid areas
showing a reduction in ESV is essential (Zhen et al., 2021;
Zhou et al., 2024).

(3) It is essential to alleviate the detrimental environmental effects
resulting from HAI. It is essential to control the degree of
development. The analysis reveals that HAI adversely affects
ESV by 30.57%, highlighting the need to restrict high-intensity
activities, such as resource development and urban expansion, in
ecologically sensitive areas (Deng et al., 2025). The “high FVC-
low ESV” phenomenon observed in the GUB is not attributable
to the inherent harmfulness of the vegetation. Rather, it is a
consequence of systemic disadvantages in terms of tree species
structure, substrate quality, and site conditions that are present in
high FVC areas. Subsequent measures should encompass the
following: Fistly, the primary objective is to optimize the
structure of artificial forests, which is to be accomplished by
replanting native broad-leaved trees and enhancing community
heterogeneity. Secondly, the implementation of soil
improvement and functional vegetation restoration in rare
earth tailings areas is imperative. Thirdly, it is imperative to
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differentiate between natural forests and artificial forests in
statistical analyses. This is essential to circumvent potential
biases that may arise from NDVI saturation.

(4) In light of the ESV clustering results, a region-specific, precision-
governance strategy is hereby proposed. In the “high-high”
clusters, the existing natural-forest closure policy should be
maintained. Additionally, the implementation of an ecological
compensation fund is imperative, along with the establishment
of a maximum limit on tourism capacity. In “low-low” clusters,
the following strategies should be implemented: urban renewal
and brownfield remediation, rooftop greening, and sponge-city
techniques to reduce impervious surface.

5 Conclusion

The principal findings are as follows:
(1) Forestland has consistently constituted the predominant

terrain in the GUB, encompassing over 74% of the total area
from 1990 to 2020. The ESV of the GUB showed a trend of
initial expansion succeeded by a contraction, culminating in a
net decrease of 21.53 × 108 yuan. Regulating services constituted
the predominant ecological function of the GUB, markedly
exceeding other functions. Climate and hydrological regulation
were first and second, respectively, accounting for roughly 50%
of the overall value. (2) The grid-based examination of unit area ESV
of the GUB demonstrates a notable geographical pattern, with
higher values concentrated at the outside of counties or districts,
and lower values found at their centers. An analysis of the ESV
across administrative districts indicates that the ESV in Shangyou
and Ganxian counties experienced minor rises, while the ESV in the
other 16 counties showed a decrease. (3) The study identified the
HGB model combined with the SHAP model as the optimal
explainable machine learning model. Furthermore, the
investigation into the driving factors of ESV revealed that HAI is
the primary determinant of ESV of the GUB, with a feature
importance of 30.57%, demonstrating a significant negative impact.
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