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This study assessed the potential impacts of climate change on Ghana’s Black
Volta Basin (BVB) to inform the development of robust adaptation strategies for
the region’s vulnerable sectors. Projections from 14 Global Climate Models
(GCMs) under four CMIP6 scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5) were analyzed. The predictive skill of an ensemble of bias-corrected data was
rigorously evaluated against individual bias-corrected and rawGCMoutputs, with
the coefficient of determination (R2) serving as a primary performancemetric. The
ensemble bias-corrected data demonstrated superior performance, particularly
for precipitation, where the R2 value increased markedly from values as low as
0.001 in the raw data to a range of 0.87-0.99. Projections indicate a consistent
trend of substantial warming and an overall decline in precipitation by 2050
across all scenarios, with rainfall reductions anticipated in most months except
August and September. Themost significant temperature increases, ranging from
1.0 °C to 7.5 °C for monthly averages, were projected under the SSP2-4.5, SSP3-
7.0, and SSP5-8.5 scenarios. Spatial analysis revealed pronounced warming in the
northern part of the basin, where annual rainfall under SSP5-8.5 could decline to
800-900 mm from historical norms of 1,000-1,400. The projected climatic
changes pose significant threats to livelihoods, water resources, agricultural
productivity, and energy security. The hydroelectric sector, a critical
component of the national grid supported by the Bui and Akosombo dams, is
likely to face challenges from reduced water inflows, increasing the risk of power
outages. These findings underscore the critical necessity for proactive adaptation.
Key recommendations include the promotion of drought-resistant crops,
implementation of advanced water management strategies, revision of energy
policies, and investment in climate-resilient infrastructure to enhance the long-
term sustainability of the BVB.
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1 Introduction

Extreme climate conditions are expected to become more
intense due to the large changes in precipitation patterns that
have coincided with the significant rise in global temperatures in
recent decades (Dembélé et al., 2022). Climate change inWest Africa
has been especially noticeable, with temperature increases of about
0.5 °C per 10 years and more unpredictable rainfall patterns that
directly affect water resources, energy infrastructure, and
agricultural systems (Limantol et al., 2022; Limantol et al., 2023;
McCartney et al., 2012). Recent global extreme events, like as fatal
heatwaves in Europe and South Asia, highlight the severity of these
impacts (Siabi et al., 2021; Yeboah et al., 2022).

The climate vulnerabilities of West Africa are exemplified by the
Black Volta Basin (BVB). Across a variety of agroecological zones,
this transboundary watershed sustains more than 2.5 million people.
It also houses vital infrastructure, like as the 400 MW Bui
hydroelectric dam, which is essential to Ghana’s energy security.
Due to its semi-arid and humid climate transition, the basin is
particularly vulnerable to climate change, which is made worse by its
reliance on rain-fed agriculture and unsustainable landmanagement
techniques (Andah et al., 2003). It has been demonstrated that the
widespread use of slash-and-burn agriculture in the basin reduces
soil fertility and local species diversity by over 50% (Akpoti
et al., 2022).

Despite the basin’s relevance, there are still a lot of unanswered
questions about how the climate may change in the future under
changing emission scenarios. Ghana has issues with the quality of its
meteorological data, such as restricted geographic coverage and
accessibility, which jeopardizes the validity of climate studies. The
examination of CMIP6 forecasts throughout the entire range of
Shared Socioeconomic Pathway (SSP) scenarios for this basin has
been insufficient in previous evaluations due to their reliance on
outdated modeling methodologies or restricted downscaling
strategies (Ouedraogo et al., 2025).

1.1 Climatic modeling and scenario selection

Global Climate Models (GCMs) are critical tools for projecting
future climate dynamics, simulating complex interactions across
atmospheric, oceanic, and terrestrial systems under varying
greenhouse gas concentrations. However, their coarse spatial
resolution limits their direct application for regional impact
assessments, necessitating downscaling techniques to refine
outputs to locally relevant scales (Fadhillah et al., 2021). Regional
Climate Models (RCMs) address this gap by providing dynamical
downscaling at higher resolutions (~50 km), improving temporal
and spatial detail essential for adaptation planning. While RCMs
share similar physical frameworks with GCMs, they require distinct
parameterizations to effectively simulate smaller-scale processes.
Typically covering domains of approximately 5,000 × 5,000 km,
RCMs enhance the precision of climate projections, supporting
robust, region-specific impact analyses and policy development.

Projected changes indicate substantial warming across West
Africa by 2,100, with temperature increases of 2.05 °C–5.84 °C
and potential rainfall reductions of up to 46% in some areas
(IPCC, 2021; Murshed et al., 2020). These shifts pose severe

challenges for agriculture and water resources in West Africa,
where adaptive capacity is limited (Niang et al., 2014), and
extreme events ranging from droughts to intense flooding are
expected to become more frequent (IPCC, 2021; Murshed et al.,
2020; Arnell et al., 2019). Specific SSP pathways indicate warming
levels of approximately 2 °C under SSP1-2.6 ((Siabi et al., 2021;
O’Neill et al., 2020), 2.1 °C–3.5 °C under SSP2-4.5 (Hausfather and
Peters, 2020), 2.8 °C–4.6 °C under SSP3-7.0, and 3.3 °C–5.7 °C under
SSP5-8.5 (Ullah et al., 2022), highlighting the need for proactive
adaptation strategies (Bauer et al., 2017; van Vuuren et al., 2017).

This study employs bias-corrected, multi-model ensemble
outputs from CMIP6, focusing on four key Shared
Socioeconomic Pathway (SSP) scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5) to assess climate impacts on the Black
Volta Basin (Mensah et al., 2024; Siabi et al., 2023; 2024). These
scenarios were selected to capture divergent socioeconomic and
emission trajectories, ranging from low-emission sustainability to
high-emission fossil-fueled development pathways, and align with
methodological approaches applied in Ghana and the Volta Basin
(Siabi et al., 2024; O’Neill et al., 2017). The CMIP6 framework
integrates socioeconomic narratives with physical climate processes,
offering enhanced spatial resolution and improved representation of
uncertainty (Lee, 2022).

Therefore, the study focuses on three key contributions:
1 rigorous evaluation of 14 CMIP6 models using advanced bias
correction techniques; 2 detailed quantification of projected climate
changes across spatial and temporal scales under four SSP scenarios
(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5); and 3 comprehensive
assessment of potential implications for agriculture, hydropower,
and water resource management (Ahn et al., 2023).

2 Materials and methods

2.1 Study area

One of West Africa’s largest river basins, measuring
414,000 km2, is the Volta River Basin (Owusu and Waylen,
2009). The Basin has four main climate zones: semi-arid, dry-
subhumid, humid, and desert (Figure 1). The rainfall pattern in
the basin is influenced by the movingmonsoon from the south to the
north inWest Africa. The Basin, 40% of which is in Ghana, is mostly
utilized for socioeconomic purposes such as hydropower production
and agriculture. The Volta Basin dominates the economic
development of the riparian countries, especially Ghana and
Burkina Faso, where 35.5% of the population lives and 47.6% of
the population lives. The basin covers over 60% of its surface area.
The basin’s essential infrastructure includes several small reservoirs,
the irrigation and electrical Akosombo, Kpong, Bui, and Bagre
Dams, and others (Akpoti et al., 2022; Awotwi et al., 2021;
Abungba et al., 2022).

2.2 Observed station data

As indicated in Table 1, the Prcp, Tmax, and Tmin datasets were
attained from the Ghana Meteorological Agency (GMet). The nine
sites in Ghana’s BV basin serve as the basis for the data, which covers
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the years 1960–2016. A major constraint on water resource
modeling is the dearth of hydroclimatic data. According to
Yeboah et al. (2022), there are just a few climatic stations in the
Black Volta Basin. Even with the data that is currently accessible,
there are several gaps.

2.3 Climatic models and simulations

To assess anticipated hydroclimatic changes in the Black
Volta Basin under four Shared Socioeconomic Pathway
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5), this study
employs an ensemble of 14 Global Climate Models (GCMs) from
the Coupled Model Intercomparison Project Phase 6 (CMIP6).

These models were selected based on three principal criteria:
enhanced spatial resolution relative to CMIP5 predecessors,
improved simulation of greenhouse gas concentrations, and
capacity to integrate socioeconomic pathway projections as
indicated in Table 2.

2.4 Statistical bias correction

The CMhyd tool, developed by Rathjens et al. (2016), was used
to correct statistical biases in climate data from Regional Climate
Models (RCMs) and Global Climate Models (GCMs). This tool
adjusts raw climate model outputs to align with observed data,
assuming the validity of algorithms and parameters across current
and future climates. Known for its compatibility with CMIP6 data,
CMhyd has been widely utilized in studies like Andrade et al. (2021),
de Carvalho et al. (2021), and Tian et al. (2020).

Of the eight bias-correction methods offered by CMhyd,
quantile mapping (distribution mapping) was selected for this
study due to its proven reliability. Xin et al. (2018) identified it as
the most dependable technique. Quantile mapping adjusts
predicted RCM data distributions to match observed station
data, improving accuracy (Block et al., 2009; Teutschbein and
Seibert, 2012). For precipitation, the Gamma distribution, as
recommended by Teutschbein and Seibert (2012) and Thom
(1958), was used for its ability to replicate rainfall patterns. In
Ghana, studies (Awotwi et al., 2021; Incoom et al., 2022; Yeboah
et al., 2022) consistently highlight distribution mapping as the
most effective bias-correction method, supporting its selection in
this research. Figure 2 presents the flowchart of statistical bias-
correction process in CMhyd.

FIGURE 1
Map of the study area.

TABLE 1 Available ground Stations.

No. Station name Longitude Latitude

1 Wa −2.5 10.05

2 Bole −2.483 9.03

3 Bui −2.1 8.25

4 Wenchi −2.1 7.75

5 Berekum −2.583 7.45

6 Sunyani −2.33 7.33

7 Damongo −1.817 9.067

8 Kintampo −1.717 8.05

9 Barbile −2.817 10.817
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2.5 Statistical downscaling and bias
correction methodology

To enhance the reliability of climate projections for the Black
Volta Basin, this study implemented a statistical bias correction
procedure using the CMhyd computational tool (Rathjens et al.,
2016). This essential post-processing step systematically adjusts raw
model outputs to better align with observed climatic conditions
while preserving the underlying climate change signals.

The quantile mapping algorithm was employed to perform
distribution-based corrections and given as:

fγ x
∣∣∣∣α, β( ) � xα−1.

1
βα.Γ α( ).e

−x
β ;x≥ 0; α, β> 0

where:

x is random variable
fγ is Gamma cumulative distribution function (CDF)
Γ is the Gamma function
α is the form parameter
β is the scale parameter

The methodology builds upon successful applications in
comparable West African basins (Amekudzi et al., 2020;
Kankam-Yeboah et al., 2022), while incorporating specific
enhancements to address the Black Volta Basin’s unique
transitional climate characteristics. These include refined
treatment of dry-day precipitation thresholds and seasonal
stratification to better capture bimodal rainfall patterns.

This comprehensive bias adjustment framework ensures the
climate projections maintain physical consistency while achieving
unprecedented agreement with observed distributions, providing

reliable inputs for subsequent impact assessments. The corrected
datasets particularly improve representation of extreme events and
seasonal cycles - critical factors for water resource management and
agricultural planning in the region.

2.5.1 Validation of models
A variety of evaluationmetrics was used to gauge the bias-corrected

model’s performance. The accuracy of the bias-corrected model was
assessed using the coefficient of determination (R2) (Equation 1), Mean
Absolute Error (MAE) (Equation 3), Mean Square Error (MSE)
(Equation 4), and root mean square error (RMSE) (Equation 2).
The goodness-of-fit was evaluated using RMSE, which displayed the
standard deviation of the observed and simulated data. Consequently,
model performance is improved by a decreased RMSE.

Consequently, a smaller RMSE improves model performance.
The quality of fit between the simulated and observed data was also
evaluated using the R2 statistic. When R2 gets closer to 1, the model
performs better. The value of the NSE falls between −1 and 1
(Getachew and Manjunatha, 2021).

R2 � ∑N
i�1 Xi − �X( ) Yi − �Y( )∑N

i�1 Xi − �X( )2∑N
i�1 Yi − �Y( )2 (1)

RSME �
������������∑N

i�1 Yi −Xi( )2
N

√
(2)

MAE � ∑N
i�1 Yi −Xi( )������∑N

i�1Xi

√ (3)

MSE � 1
n
∑n
i�1

Yi − Yi( ) (4)

whereXi and,X. andYi and,Y. are the observed andmodelmonthly and
average data, respectively, of the ith event in N number of events. We

TABLE 2 CMIP6 global climate models utilized in this study.

Number Model acronomy Full modell name

1 ACCESS-CM2 Australian Community Climate and Earth-System Simulator – Coupled Model
Version 2

2 BCC-CSM2-MR Beijing Climate Centre Climate System Model Version 2-Medium Resolution

3 CanESM5 Canadian Earth System Model Version 5

4 CNRM-CM4 Centre National de Recherches Météorologiques Climate Model Version 4

5 CNRM-CM6 Centre National de Recherches Météorologiques Climate Model Version 6

6 FGOALS-g3 Flexible Global Ocean-Atmosphere-Land System Model Gridpoint Version 3

7 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory Earth System Model Version 4

8 INM-CM5 Institute for Numerical Mathematics Climate Model Version 5

9 IPSL-CM6A-LR Institut Pierre-Simon Laplace Climate Model Version 6A-Low Resolution

10 KACE-1.0-G Korea Advanced Institute of Science and Technology Coupled Model Version 1.0-
Gridpoint

11 MIROC6 Model for Interdisciplinary Research on Climate Version 6

12 MPI-ESM1-2-LR Max Planck Institute Earth System Model Version 1.2-Low Resolution

13 MRI-ESM2-0 Meteorological Research Institute Earth System Model Version 2.0

14 NorESM2-MM Norwegian Earth System Model Version 2
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also quantified uncertainty in our projections using the natural spread
across our 14 models. For each future climate value, we report the range
between the 10th and 90th percentile of the ensemble this shows how
much the models agreed or differed (Gebrechorkos et al., 2019).

3 Results

3.1 Evaluation of model performance

After adjustment, the coefficient of determination (R2) values for
precipitation increased from a range of 0.001–0.88 in the raw model
outputs to 0.87–0.99, showing that the bias-corrected models now
capture almost. The bias-corrected models now account for almost
all observed variance in precipitation patterns across the basin’s
weather stations, as seen by the improvement in the coefficient of
determination (R2) values for precipitation from a range of
0.001–0.88 in raw model outputs to 0.87–0.99 after correction.

The model’s performance improved with temperature
variables in an equally significant way. After bias correction,
maximum temperature models produced R2 values between
0.79 and 0.99, as opposed to 0.53–0.94 in raw results. Even
more noticeable improvements were shown by minimum
temperature models, which improved from raw outputs with
R2 values as low as 0.01 to a range of 0.75–0.97 following
adjustment. These enhancements demonstrate how well the
quantile mapping method matches model distributions to
observed temperature trends in the basin’s various
climatic zones.

The better performance of bias-corrected models is further
supported by error measures. After adjustment, the Root Mean
Square Error (RMSE) values significantly dropped for all
variables and stations. The effectiveness of the multi-model
ensemble technique was demonstrated by the persistent
superior performance of ensemble bias-corrected models for
precipitation compared to individual model adjustments. For

FIGURE 2
Flowchart of statistical bias-correction process in CMhyd.
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temperature variables, Mean Absolute Error (MAE) reductions
were especially noteworthy; most stations displayed seasonal
temperature error reductions of 60%–80% when compared to
raw model outputs.

Even while the model performed better overall, several stations
showed higher residual errors. For instance, the Wenchi station
exhibits greater residual errors for minimum temperature (MAE:
1.60 °C), which are explained by problems with data quality that
impact 2.74%–28.74% of the station’s historical records. While the
overall basin-wide improvements confirm the robustness of the
correction methods used in this work, these localized issues
highlight the significance of data quality in bias correction
effectiveness.

3.2 Comparison of ensemble bias-corrected
and raw precipitation, Tmax and Tmin

3.2.1 Comparison of ensemble bias-corrected and
raw precipitation

As shown in Figure 3, the bias correction significantly improves
precipitation simulations in the Black Volta Basin. The corrected data
accurately captures dry-season rainfall (<100mm/month) andwet-season
patterns, including Babile’s June peak (~5,000 mm) and Bui’s bimodal
distribution features missed by the raw model, which underestimates
rainfall by 18%–32% and shifts peaks erroneously to August.

Projections to 2050 (vs. 1990–2010) show annual rainfall
declines of 3%–14%, with dry-season reductions up to 25%.

FIGURE 3
Comparison of ensemble bias-corrected and raw Precipitation in the baseline period. Obs = Observed, mod = modeled.
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These trends coincide with warming of 1.1 °C–3.4 °C. The results
underscore the necessity of bias-corrected data for climate
adaptation in water and agricultural planning.

3.2.2 Comparison of ensemble bias-corrected and
raw Tmax

The bias-corrected Tmax data significantly reduces raw model
errors, particularly during peak temperatures. In most stations (e.g.,
Babile, Wa, Bui), the raw model underestimates March highs by
3 °C–5 °C (34 °C–36 °C vs. observed 38 °C–39 °C), while the corrected
data aligns within 1 °C. Wet-season (July-August) biases also
improve, with raw model underestimations of 2 °C–3 °C reduced
to <1 °C after correction. Exceptions like Damongo show minor

deviations, likely due to local factors. The correction cuts seasonal
Tmax errors by 60%–80%, demonstrating its critical role in
improving accuracy as illustrated in Figure 4.

3.2.3 Comparison of ensemble bias-corrected and
raw Tmin

Bias correction effectively reduces systematic Tmin overestimation
in raw models across the basin. The corrected data accurately captures
seasonal patterns, including the January-April warming (peaking at
24 °C–25 °C) and May-August cooling (to 19 °C–22 °C), while raw
models overestimate temperatures by 2 °C–5 °C throughout the year.
The largest discrepancies occur during mid-year cooling periods, where
rawTmin exceeds observations by up to 6 °C (e.g., 26 °C vs. 20 °C in Bui).

FIGURE 4
Comparison of ensemble bias-corrected and raw Tmax in the baseline period. Obs = Observed, mod = modeled.
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Projections show corrected Tmin trends align with observed
late-year warming (October-December), though raw models
maintain a persistent 1 °C–2 °C warm bias. These results
demonstrate the critical importance of bias correction for
accurate minimum temperature simulations in climate impact
studies, as shown in Figure 5.

3.3 Projected climate changes by 2050

Figure 6 shows a clear deviation between historical and projected
rainfall trends across the Black Volta Basin, with most stations
showing an overall decline despite localized increases under certain

scenarios. This reduction signals a significant hydrological shift with
implications for water availability, agricultural productivity,
ecosystem integrity, and socio-economic resilience.

Wenchi, historically receiving 850–1700 mm of annual rainfall,
is projected to decline to 750–1200 mm, while Wa is expected to
drop from 900–1600 mm to 800–1100 mm annually. Bole follows a
similar trend, falling from 800–1500 mm historically to 700–1000
mm under future projections. Bui, a critical hydropower station,
may see rainfall decrease from 1000–1800 mm to 900–1300 mm,
potentially affecting reservoir recharge. Further south, Berekum and
Sunyani are projected to experience reductions from 950–1650 mm
and 900–1600 mm to 850–1200 mm and 800–1150 mm,
respectively. Northern stations show more severe deficits;

FIGURE 5
Comparison of ensemble bias-corrected and raw Tmin in the baseline period. Obs = Observed, mod = modeled.
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Damongo may decline from 850–1500 mm to 750–1100 mm, while
Kintampo is projected to drop from 950–1700 mm to 850–1250
mm. Babile presents the steepest decline, with projected values of
800–900 mm under SSP5-8.5, compared to its historical 1000–1400
mm range.

Figure 7 further indicates significant seasonal variations, with
dry-season months (January–March) experiencing the most severe
precipitation deficits. Under SSP1-2.6, Babile records −85% in
February and -85.5% in March, while Wa shows −69.8% in
March. Under SSP2-4.5, Wenchi experiences −93.6% in March,
and Damongo records −93.1% in May. Wet-season gains are
observed in some cases, such as a +48.8% spike at Bui in
September under SSP2-4.5. Under SSP3-7.0 and SSP5-8.5, rainfall
variability intensifies, with extreme reductions (≤ −97.1%) and
surpluses (≥ +83.1%) occurring within the same year. Figure 8
shows the spatial distribution of precipitation changes, highlighting
that while most stations face substantial declines, Wenchi retains
minor wet-season surpluses under certain scenarios.

Projected maximum temperature (Tmax) trends (Figure 9)
show a basin-wide warming signal under all SSP scenarios, with
increases ranging between +1.2 °C and +1.8 °C relative to historical
baselines. Wenchi’s Tmax is projected to rise from 30.5–34.2 °C to
31.8–35.6 °C, while Berekum and Sunyani are expected to reach
36.0 °C and 35.5 °C, respectively. Northern stations such as Damongo

and Kintampo are projected to experience Tmax increases to 37.8 °C
and 36.8 °C, respectively while Wa increases from 32.1–36.8 °C
to 33.5–38.2 °C. Bole follows a similar trend, rising from
31.8–35.5 °C to 33.2–37.1 °C. Bui’s Tmax is projected to
increase from 31.2–34.9 °C to 32.6–36.5 °C. The highest Tmax
values are projected at Babile, with an increase from 33.2–37.0 °C
to 34.6–38.5 °C under SSP5-8.5.

Minimum temperature (Tmin) projections (Figure 10) reveal a
parallel warming trajectory, with nocturnal heat intensification
emerging as a critical challenge. At Babile, Tmin increases from
20–24 °C to 22–25 °C, marking a 2–3 °C rise. Wa and Bole follow
similar patterns, reaching 24–25 °C, while Bui and Kintampo show
comparable increases. Damongo, Wenchi, Sunyani, and Berekum all
indicatewarming of 2–3 °C, consistent with broader basin-wide patterns.

Long-term precipitation patterns across the Black Volta Basin
exhibit pronounced spatial and seasonal heterogeneity, with
northern and transitional stations experiencing the most severe
reductions. Most locations demonstrate consistent long-term declines
despite localized increases under specific scenarios (Figure 6). These
stations show intensified temporal variability characterized by steeper
declining trends and diminished interannual consistency relative to
historical baselines. Enhanced year-to-year variability at stations such as
Wenchi and Wa presents considerable challenges for hydrological
forecasting and agricultural planning, while northern locations

FIGURE 6
Temporal variations in annual mean precipitation from 1976 to 2050 for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Shaded areas on the trendlines
represents 95% confidence interval.
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display compressed precipitation distributions with reduced upper
quantiles but maintained lower bounds.

Changes in interannual variability between historical and future
climates extend beyond simple mean shifts, creating significant
implications for water resource management and agricultural
decision-making. Hydropower-dependent stations, particularly Bui,
exhibit deteriorating temporal coherence in precipitation patterns,
with projected sequences showing weakened persistence and increased
frequency of sub-median conditions that threaten operational reliability
for reservoir management and electricity generation.

Intra-seasonal variability compounds these challenges
substantially. For instance, the late dry season (February–May)
experiences the most severe deficits, with reductions ranging
from −60% to −97% (Table 3). Critical reductions include
Berekum (−97.1% in March under SSP3-7.0), Damongo (−95% in
May under SSP3-7.0), and Babile (−95% in February under SSP3-
7.0), indicating delayed planting windows and potential crop
establishment failure. Conversely, localized wet-season surpluses
emerge, most notably at Bui (+48.8% in September under SSP2-
4.5, reaching +83.1% under SSP5-8.5). While these surpluses may
support hydropower generation and soil moisture replenishment,
they simultaneously increase risks of flooding, soil erosion, and
water management complications.

Examination across SSPs reveals that dry-season declines occur
under all emission scenarios, though severity varies considerably by
pathway (Table 3). Reductions remain relatively moderate under SSP1-
2.6 but intensify substantially under SSP3-7.0 and SSP5-8.5, particularly
affecting northern stations such as Wa, which experiences consistent

year-round reductions including −45% in March and −39.4% in
November under SSP5-8.5. Wet-season increases remain spatially
restricted to specific stations like Bui and Wenchi, while
precipitation variability expands dramatically under SSP5-8.5
(ranging from −74% in February to +83.1% in September), creating
amplified risks for both drought and flooding events.

Temperature projections demonstrate consistent basin-wide
warming patterns with distinct spatial and seasonal characteristics
that pose serious challenges for human settlements, agricultural
systems, and energy infrastructure. Maximum temperature increases
range from +1.2 °C to +1.8 °C relative to historical baselines (Table 4),
with northern stations experiencing the most pronounced warming
gradients. Peak warming occurs at Babile, which shows the highest
absolute temperature increases across all emission scenarios.

Daytime warming intensifies progressively with higher emission
scenarios, creating concerning conditions for human health and
agricultural productivity. Under SSP1-2.6, maximum temperature
increases range from +0.16 °C to +4.40 °C, while SSP5-8.5 produces
extreme increases, with temperatures rising by +7.20 °C at Kintampo in
January and +5.00 °C at Wenchi in August (Figure 11). Northern and
hydropower-dependent areas such as Bui and Sunyani consistently
exceed +2.78 °C during critical months, raising substantial concerns for
energy security and water resource management.

Minimum temperature changes follow similar warming
patterns, with nighttime increases evident across all scenarios but
varying substantially by emission pathway. Under SSP1-2.6,
projected changes range from +0.55 °C to +3.75 °C, while SSP5-
8.5 demonstrates the most extreme increases, with nighttime

FIGURE 7
Mean monthly changes in precipitation (%) between 2015–2050 (relative 1976–2015 for ground stations) under SSP1-2.6, SSP2-4.5, SSP3-7.0 and
SSP5-8.5.
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warming between 1.5 and 2.2 times greater than SSP1-2.6, peaking at
+4.95 °C at Wa in May and +4.77 °C at Damongo in December
(Figure 12). This reduction in nocturnal cooling periods represents a

particularly concerning threat to crop productivity and ecosystem
health, as it eliminates the critical recovery period that vegetation
requires following daytime heat stress.

FIGURE 8
Spatial distribution of annual mean precipitation anomalies (%) relative to the historical baseline. Negative values represent declines in rainfall
compared with the baseline, while positive values indicate increases.
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Spatial distribution patterns remain consistent across temperature
variables: Babile and Bui experience the most intense warming for both
maximum and minimum temperatures, while Wenchi demonstrates
pronounced nocturnal warming potentially associated with
anthropogenic factors including quarrying activities and aerosol
emissions (Figures 13, 14). These temperature changes, when
combined with precipitation variability, create compound
environmental stresses that threaten agricultural productivity, energy
infrastructure reliability, and ecosystem stability throughout the basin.

Table 5 presents the summary of the projected climate changes
by 2050. Across all SSP scenarios, the Black Volta Basin is projected
to experience substantially drier dry seasons, more intense wet
seasons in specific locations, and a consistent rise in both
maximum and minimum temperatures by 2050.

4 Discussion

4.1 Model performance evaluation

The evaluation of climate model performance in the Black Volta
Basin reveals important insights about both model capabilities and
limitations that carry significant implications for agricultural adaptation
planning. Our analysis demonstrates that while bias correction
techniques have substantially improved temperature and

precipitation simulations, persistent challenges remain in accurately
capturing minimum nighttime temperatures (Tmin) and extreme
rainfall events - two climate factors that critically influence crop
productivity and farm management decisions (Siabi et al., 2021;
Baffour-Ata et al., 2021). The particular difficulty in modeling Tmin
stems from the complex interplay of local-scale processes including
topography-induced air drainage, land surface heterogeneity, and
boundary layer dynamics that operate at spatial scales finer than
current global climate models can resolve (Gebrechorkos et al.,
2019). This explains the model’s alternating pattern of over- and
underestimation observed at stations like Babile and Wenchi, where
valley cooling effects and urban heat islands respectively create
microclimates that challenge coarse-resolution representations (Funk
et al., 2022).

For precipitation, while statistical corrections have successfully
improved seasonal total estimates, the models continue to struggle
with simulating the intensity distribution of rainfall events -
consistently underestimating peak rainfall amounts while
overestimating lighter events (Yeboah et al., 2022). This
limitation has direct consequences for agricultural water
management and erosion control planning, particularly in the
basin’s northern areas where soils are most vulnerable to heavy
rain impacts (Ayiiwe Joachim, 2013). The transitional zones around
Wenchi present particularly complex modeling challenges due to
their position between distinct ecological regions, resulting in

FIGURE 9
Temporal variations in annual mean Tmax from 1976 to 2050 for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Shaded areas on the trendlines
represents 95% confidence interval.
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convective rainfall patterns that global models frequently
misrepresent (Sultan et al., 2023).

From an agricultural adaptation perspective, these modeling
limitations necessitate differentiated approaches across the basin’s
agroecological zones. In the northern sectors, where uncertainties in
projected Tmin are most pronounced and precipitation is not only
relatively well constrained but also characterized by persistently low
baseline levels, the adoption of drought-tolerant cereal cultivars,
coupled with enhanced in-situ water-harvesting and soil-moisture
retention practices that have proven effective in similar semi-arid
regions, would be critical for sustaining agro-climatic resilience
under evolving SSP-driven climate regimes (World Bank, 2021;
Ouédraogo et al., 2021). The transitional mid-basin zones require
more flexible systems that can buffer against greater climate
uncertainty; agroforestry configurations integrating shade-tolerant
cash crops with native tree species offer particular promise here, as
demonstrated by successful implementations in comparable West
African ecotones (FAO, 2022). Southern areas with stronger model
performance can support more targeted interventions including
climate-informed planting calendars and precision irrigation
scheduling, building on documented successes in Ghana’s more
humid agricultural zones (UNDP, 2020).

Moving forward, three strategic priorities emerge for
enhancing the practical utility of climate modeling for
agricultural adaptation. First, targeted expansion of automated
weather stations in data-sparse northern regions would
significantly improve observational datasets for model
calibration and validation (Gebrechorkos et al., 2019). Bias

correction techniques have considerably enhanced the
reliability of mean temperature and precipitation simulations.
However, their effectiveness is less pronounced for extremes and
variability, where residual uncertainties remain. This distinction
underscores that the primary gains from bias correction lie in
improving averages, while the accurate representation of extreme
events continues to present challenges. Third, establishing
structured knowledge-exchange mechanisms between climate
scientists and agricultural stakeholders would ensure model
development addresses practical farming needs while building
local capacity to interpret and apply climate information
effectively (World Bank, 2021; Fitton et al., 2019). Together,
these improvements would help transform climate model
outputs into actionable intelligence for building resilient
farming systems across the Black Volta Basin’s diverse
agricultural landscapes.

4.2 Projected changes in precipitation
across the black volta basin under the shared
socioeconomic pathways (SSP) scenarios

The climate projections for the Black Volta Basin paint a
concerning picture that demands urgent attention from
researchers, policymakers, and agricultural stakeholders alike. The
basin’s complex climate system, spanning multiple ecological zones,
faces fundamental transformations that will reshape its agricultural
potential and water resource availability in coming decades.

FIGURE 10
Temporal variations in annual mean Tmin from 1976 to 2050 for SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Shaded areas on the trendlines
represents 95% confidence interval.
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TABLE 3 Monthly precipitation extremes (% change vs. historical).

Station Month
(decline)

SSP1-
2.6

SSP2-
4.5

SSP3-
7.0

SSP5-
8.5

Month
(increase)

SSP1-
2.6

SSP2-
4.5

SSP3-
7.0

SSP5-
8.5

Notes

Wenchi Mar −85% −93.6% −92% −90% Aug +20% +25% +30% +40% Severe dry-season
loss/Localized
wet-season
increase

Wa Mar −70% −80% −85% −45% Sep +10% +15% +20% +25% Consistent
northern decline,
limited wet-
season surplus

Bole Mar −75% −82% −90% −85% Aug +18% +22% +28% +35% Severe dry-season
decline, moderate
wet-season
increase

Bui Feb −60% −70% −78% −72% Sep +30% +48.8% +60% +83.1% Hydropower site:
strong wet-season
surplus

Berekum Mar −80% −85% −97.1% −90% Sep +12% +18% +22% +30% Largest single-
month decline,
minor wet-season
rise

Sunyani Mar −65% −75% −82% −78% Sep +15% +20% +25% +30% Moderate decline,
localized wet-
season increase

Damongo May −70% −93.1% −95% −88% Sep +8% +12% +18% +25% Peak dry-season
deficit, modest
wet-season rise

Kintampo Mar −72% −85% −88% −82% Aug +18% +25% +28% +35% Severe decline,
localized wet-
season increase

Babile Feb −85% −90% −95% −74% Sep +25% +30% +38% +45% Severe northern
variability

TABLE 4 Annual average temperature projections (°C) across stations.

Station Historical
Tmax

Projected Tmax
(SSP5-8.5)

Historical
Tmin

Projected Tmin
(SSP5-8.5)

Notes

Wenchi 30.5–34.2 31.8–35.6 20–24 22–25 Severe-extreme
warming

Wa 32.1–36.8 33.5–38.2 21–23 24–25 Severe-extreme
warming

Bole 31.8–35.5 33.2–37.1 20–22 23–24 Severe-extreme
warming

Bui 31.2–34.9 32.6–36.5 20–22 23–24 Severe-extreme
warming

Berekum 30.5–33.8 32.0–36.0 19–21 22–24 Severe-extreme
warming

Sunyani 30.0–33.5 31.5–35.5 19–22 22–24 Moderate-severe
increase

Damongo 31.5–35.0 33.0–37.8 20–22 23–25 Severe-extreme
warming

Kintampo 31.8–34.5 33.2–36.8 20–22 22–24 Severe-extreme
warming

Babile 33.2–37.0 34.6–38.5 20–24 22–25 Moderate-severe
warming

Warming = <=1 °C, moderate Warming = 1.5 °C, Severe warming = 2 °C, Extreme warming = 3 °C+ (IPCC AR6).

Frontiers in Environmental Science frontiersin.org14

Kabo-Bah et al. 10.3389/fenvs.2025.1643465

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1643465


Precipitation patterns are projected to shift dramatically under all
SSP scenarios, with particularly severe changes anticipated under the
high-emission SSP3-7.0 and SSP5-8.5 pathways. The northern
stations, already marginal for rainfed agriculture, will experience
the most pronounced reductions in annual rainfall totals. Historical
averages around 1,200 mm at critical agricultural stations like
Damongo and Kintampo may decline to approximately 600 mm
by 2050, representing a halving of precious water resources (Vera
et al., 2006). This aridification trend aligns with broader West
African drying patterns identified in recent IPCC assessments.
However, these overall reductions will be punctuated by more
intense rainfall events, creating a dangerous combination of
water scarcity and flood risk that threatens both crops and
infrastructure (Siabi et al., 2024).

Temperature projections compound these hydrological
challenges. Maximum daytime temperatures may rise by about
4.5 °C with mean values rising from 33.2 °C to 37.0 °C historically
to 34.6 °C–38.5 °C under SSP5-8.5 in northern stations like Wa and
Babile under high-emission scenarios, pushing many current crop
varieties beyond their thermal tolerance limits (Akpoti et al., 2019).
The physiological stress on plants will be exacerbated by parallel
increases in minimum nighttime temperatures, projected to rise
2 °C–3 °C elevating mean values from 20 °C–24 °C to 22 °C–25 °C
under the SSP scenarios. This loss of nocturnal cooling represents a
particularly insidious threat to crop productivity and ecosystem

health, as it eliminates the critical recovery period that plants require
after daytime heat stress (Niang et al., 2014). Recent field studies
have demonstrated how these elevated nighttime temperatures can
reduce photosynthetic efficiency by up to 20% in staple crops like
maize and millet (IPCC, 2021).

The agricultural implications of these combined changes are
profound. Farmers throughout the basin will need to adapt to
fundamentally new growing conditions characterized by hotter
days, warmer nights, less reliable rains, and more extreme
weather events. The northern regions face particularly severe
challenges, where the combination of reduced rainfall and higher
temperatures may render current agricultural systems nonviable
without major adaptation investments. The disproportionate
role of maximum temperatures in elevating CWR aligns with
Islam et al. (2024), who attributed 65% of irrigation demand
increases to warming not precipitation shifts in Bangladesh.
Southern areas, while somewhat buffered by relatively higher
rainfall, will still confront significant productivity losses from
heat stress and changing precipitation patterns (Kouman
et al., 2024).

Effective adaptation will require integrated strategies that address
both climatic and socioeconomic dimensions. The development and
deployment of heat- and drought-tolerant crop varieties must be
prioritized, particularly for the staple crops that form the foundation
of local food security (World Bank, 2021). Water management systems,

FIGURE 11
Mean monthly changes in Tmax between 2015–2050 (relative 1976–2015 for ground stations) under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.
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from small-scale irrigation to community rainwater harvesting, will be
essential to buffer against rainfall variability and ensure reliable water
supplies during critical growth periods (FAO, 2022). Perhaps most
importantly, strengthening climate information services and
agricultural extension systems can help farmers interpret changing
conditions and implement appropriate adaptive responses
(CGIAR, 2023).

These adaptation efforts must be carefully tailored to the basin’s
distinct agroecological zones. Northern areas require particular
focus on drought resilience strategies and alternative livelihood
options, while southern regions may prioritize climate-smart
intensification approaches. The transitional middle basin presents
perhaps the greatest challenge, requiring flexible, diversified
production systems that can withstand greater climate
uncertainty (UNDP, 2020).

The scientific evidence leaves no doubt about the scale of the
challenge facing the Black Volta Basin. Without immediate and
concerted action to both reduce emissions and strengthen climate
resilience, the region risks crossing ecological thresholds that could
undermine food security and water availability for generations. The
projected changes demand nothing less than a fundamental
transformation of agricultural systems, supported by strong
policies, substantial investments, and innovative partnerships
between researchers, policymakers, and farming communities.
The window for proactive adaptation is closing rapidly, making
this one of the most urgent challenges facing the region’s sustainable
development.

4.3 Implications of the study

Global temperature projections indicate an increase of
0.3 °C–4.8 °C by the conclusion of the twenty-first century, with
regional variations contingent upon local climatic conditions and
emission scenarios. Ghana, positioned within the West African
region, confronts multidimensional climate vulnerabilities that
significantly impact agricultural systems, water resources, energy
infrastructure, and public health (Duku and Hein, 2021). The
heightened susceptibility of sub-Saharan Africa to alterations in
temperature and precipitation patterns is particularly evident in the
Black Volta Basin, where Shared Socioeconomic Pathway (SSP)
projections indicate temperature increases of 3.0 °C–5.0 °C by
2050 relative to the 1976–2014 baseline period.

The hydrological regime of the Black Volta Basin faces substantial
modification, with precipitation projections under SSP3-7.0 and SSP5-
8.5 scenarios indicating significant declines during critical agricultural
months of April and May. Monitoring stations including Babile, Wa,
and Damongo are projected to experience precipitation deficits
exceeding 100% during essential growth periods, potentially
reducing agricultural water availability by 30%–40% (Kankam-
Yeboah et al., 2022). Such deficits are most acute during the DJF
andMAMseasons, which correspond to early planting windows across
much of the basin. Seasonal Tmax and Tmin increases during this time
frame exacerbate crop stress and shorten the effective growing period.
These findings, derived from statistically significant trend analyses,
point to the need for seasonal forecasting services and adaptive crop

FIGURE 12
Mean monthly changes in Tmin between 2015–2050 (relative 1976–2015 for ground stations) under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.
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calendars. This hydrological stress compounds existing water security
challenges, particularly in rural communities where access to improved
water sources remains limited.

Projected rainfall declines and extreme dry-season deficits
threaten the reliability of inflows to reservoirs such as at Bui,
which already shows February rainfall reductions of −60%

FIGURE 13
Spatial distribution of annual mean Tmax (°C) 2015–2050 (relative 1976–2015 for ground stations) under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-
8.5 in the Black Volta basin under SSP scenarios.

Frontiers in Environmental Science frontiersin.org17

Kabo-Bah et al. 10.3389/fenvs.2025.1643465

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1643465


to −78%. Although wet-season surpluses (+83% in September at
Bui) could temporarily boost inflows, such variability increases
the likelihood of intra-annual water imbalance, complicating
dam operations, energy generation scheduling, and flood
control (Kabo-Bah et al., 2016; Akpoti et al., 2016; Diawuo
et al., 2020).

Precipitation declines of 300–500 mm annually in Wa, Bole,
Wenchi, and Babile (Table 6), combined with dry-season losses
exceeding −90% in March-May (Table 3), indicate delayed

planting and high risks of crop establishment failure. These
deficits, paired with rising Tmax of 36 °C–38 °C and Tmin
increases of 2 °C–4 °C (Table 4), will accelerate
evapotranspiration, shorten growing periods, and increase
crop water demand. Localized wet-season rainfall surpluses
may provide temporary water benefits but also heighten risks
of flood damage, erosion, and post-harvest losses.

For implications on water resources and ecosystems, reduced
annual rainfall (Table 6) and prolonged dry seasons (Table 3) will

FIGURE 14
Spatial distribution of annual mean Tmin (°C) 2015–2050 (relative 1976–2015 for ground stations) under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-
8.5 in the Black Volta basin under SSP scenarios.
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diminish groundwater recharge and river baseflows, leading to
seasonal water scarcity. At the same time, intense wet-season
rainfall surpluses could cause flash floods, soil erosion, and
siltation of rivers and reservoirs. Ecosystems dependent on
transitional rainfall regimes face disruption in biodiversity,
grazing resources, and forest regeneration.

Public health systems confront emerging challenges,
including expansion of malaria transmission zones into high-
elevation areas such as Bui, potentially exposing over
400,000 additional residents to vector-borne diseases
(Lecouffe, 2022). Transition to severe to extreme warming
across most stations implies greater risks of heatwaves and
nighttime warming, which reduce human recovery periods.
Urban centers including Sunyani and Kintampo face amplified
health risks due to the urban heat island effect, with projected
increases in heat-related morbidity particularly affecting
pediatric and geriatric populations. Rising night temperatures
(Tmin + 2 °C–4 °C) particularly affect vulnerable groups such as
children, the elderly, and outdoor workers. Concurrently, energy
demand dynamics demonstrate increased cooling requirements,
with cooling degree days projected to increase by 35%–50%,
stimulating electricity demand growth of 25% during seasonal
hydropower generation minima.

Renewable energy diversification faces technical constraints,
as solar photovoltaic efficiency declines by 0.4%–0.5% per degree
Celsius above 25 °C (Al-Badi et al., 2012). This thermodynamic
limitation necessitates complementary investments in energy
storage systems and photovoltaic cooling technologies,

particularly at stations including Babile and Bui where
maximum temperatures are projected to increase by more
than 2 °C.

Despite overall precipitation reductions, extreme rainfall events
exceeding 1,200 mm under SSP3-7.0 to SSP5-8.5 scenarios present
flood risks in rapidly urbanizing areas including Wenchi and
Sunyani. These episodic events may compromise drainage
infrastructure and increase sediment loading in reservoirs by
30%–50%, further constraining water storage capacity (Duku and
Hein, 2021).

Adaptation strategies require integrated approaches: climate-
resilient agricultural practices incorporating drought-tolerant
cultivars and precision irrigation could reduce groundwater
demand by 25%, while strategic enhancements to early
warning systems may reduce climate-attributable mortality by
55%. The persistent challenge of nitrogen use efficiency,
currently at 55.47% globally (Kabato et al., 2025), underscores
the necessity for optimized nutrient management strategies in
basin agriculture.

5 Conclusion

The study used the CMhyd model and statistical bias
correction to analyze the effects of climate change in the Black
Volta Basin under several shared socioeconomic pathways (SSP)
scenarios. Using 15 Global Climate Models (GCMs) and a 38-
year dataset of precipitation, maximum temperature (Tmax), and

TABLE 5 Summary of projected climate changes by 2050.

Scenario Station and
month (Max
Precip drop)

Drop
(%)

Station and
month (Max
Precip rise)

Rise
(%)

Station and
month (peak
Tmax increase)

Tmax
(°C)

Station and
month (peak
Tmin increase)

Tmin
(°C)

SSP1-2.6 Babile – Feb −18 Bui – Sep +15 Kintampo – Jan +1.8 Wa – May +1.6

SSP2-4.5 Damango – Mar −20 Bui – Sep +15 Bui – Jan +2.0 Babile – May +1.5

SSP3-7.0 Berekum – Mar −26 Bui – Sep +20 Sunyani – Jan +2.6 Wenchi – May +2.3

SSP5-8.5 Berekum – Mar −25 Bui – Sep +22 Kintampo – Jan +2.5 Wa – May +2.2

TABLE 6 Annual mean precipitation (mm).

Station Historical range Projected range (SSP5-8.5) Notes

Wenchi 850–1700 750–1,200 Moderate - severe decline

Wa 900–1,600 800–1,100 Moderate - severe decline

Bole 800–1,500 700–1,000 Moderate - severe decline

Bui 1,000–1800 900–1,300 Moderate - severe decline

Berekum 950–1,650 850–1,200 Low - moderate decline

Sunyani 900–1,600 800–1,150 Low - moderate decline

Damongo 850–1,500 750–1,100 Low - moderate decline

Kintampo 950–1700 850–1,250 Low - moderate decline

Babile 1,000–1,400 800–900 Moderate - severe decline

Low decline = <100 mm, Decline = 101–300 mm, moderate decline = 301–500 mm, Severe decline = 501 mm.
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lowest temperature (Tmin), climate changes under the SSP
scenarios were projected. According to validation results, raw
GCM data was substantially outperformed by ensemble bias-
corrected climatic data. The raw GCM precipitation recorded
substantially lower values, ranging from 0.001 to 0.88, but the
bias-corrected precipitation R2 varied from 0.87 to 0.99.
Precipitation performed worse than ensemble bias-corrected
Tmax and Tmin in most cases. The SSP scenarios’ predictions
for the future show a trend of rising Tmax and Tmin combined
with noticeably lower precipitation.

For instance, Tmax is projected to increase between 1.4 °C–3.4 °C
by 2050. Again, Tmin is projected to increase between 1.1 °C–3.1 °C,
and up to 5.5 °C in northern areas.

It is anticipated that these modifications will lower
agricultural productivity, decrease the amount of water
available, and raise the risk of heat-related illnesses. Inaction
might lead to increased food insecurity, more frequent droughts,
and sporadic flooding in important locations including Wa, Bui,
Damongo, Sunyani, and Kintampo. The expected changes in
climate would also put stress on Ghana’s energy
infrastructure. Government agencies and energy suppliers
must give renewable energy sources like solar and thermal
plants top priority to solve this. Planning for the future of the
energy sector must carefully take into account how variations in
temperature and precipitation will impact the capacity to
generate electricity. The report also supports adopting the “Go
Green” approach, which emphasizes localizing climate resilience
initiatives and acknowledging the interconnectedness of human
and environmental systems.

The study’s findings underscore the pressing need for
evidence-based policymaking that incorporates adaptation and
mitigation strategies across all sectors. Ghana can improve its
climate resilience, protect livelihoods in the Black Volta Basin,
and help achieve Sustainable Development Goal 13 and its
nationally determined contributions (NDCs) by addressing the
vulnerabilities found in the study. The inclusion of seasonally
disaggregated analyses and the identification of statistically
significant trends allow for a more granular understanding of
climate risks. By linking these trends to underlying physical
processes such as land surface changes and atmospheric
circulation shifts this study provides a robust foundation for
designing climate-smart interventions that are sensitive to both
time of year and local environmental conditions.

6 Recommendations

Given the climate change issues facing the Black Volta Basin,
governments must prioritize coordinated adaptation strategies
across key sectors. To protect water supplies for domestic and
agricultural use, stations like Wa, Babile, and Damongo must
increase the efficiency of irrigation and expand their rainwater
collection systems. Decreased rainfall and rising temperatures
can be mitigated by investing in eco-friendly water management
strategies like drip irrigation and efficient water storage. The
falling water levels at the Bui Dam and other significant water
bodies are forcing Ghana to diversify its energy sources as
hydropower production declines. Given the climate change

issues facing the Black Volta Basin, governments must
prioritize coordinated adaptation strategies across key sectors.
To protect water supplies for domestic and agricultural use,
stations like Wa, Babile, and Damongo must increase the
efficiency of irrigation and expand their rainwater collection
systems. Decreased rainfall and rising temperatures can be
mitigated by investing in eco-friendly water management
strategies like drip irrigation and efficient water storage. The
falling water levels at the Bui Dam and other significant water
bodies are forcing Ghana to diversify its energy sources as
hydropower production declines. In urbanizing areas like
Sunyani, Wenchi, and Kintampo, government spending on
drainage systems and stormwater infrastructure is crucial to
reducing the risk of flash floods; urban planning regulations
should discourage development in flood-prone areas; and solid
waste management reforms should prevent drainage blockages.
While warming temperatures will help meet the growing demand
for energy, research into PV cooling systems will be necessary,
particularly in stations like Bui and Babile, given the decrease in
solar PV efficiency brought on by rising temperatures. The Black
Volta Basin will require climate-smart agriculture, which
includes employing drought- and heat-resistant crops and
putting in place water-efficient irrigation systems, to guarantee
food security. Investments in irrigation infrastructure and access
to climate forecasting technologies will be essential to sustaining
agricultural productivity in regions like Kintampo and Sunyani,
where water shortages are expected to intensify. Investments in
irrigation infrastructure and access to climate forecasting
technologies will be essential to sustaining agricultural
productivity in regions like Kintampo and Sunyani, where
water shortages are expected to intensify.
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